FunctionComparator.cpp 33.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
//===- FunctionComparator.h - Function Comparator -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the FunctionComparator and GlobalNumberState classes
// which are used by the MergeFunctions pass for comparing functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/FunctionComparator.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "functioncomparator"

int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
  if (L < R) return -1;
  if (L > R) return 1;
  return 0;
}

int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
  if ((int)L < (int)R) return -1;
  if ((int)L > (int)R) return 1;
  return 0;
}

int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
    return Res;
  if (L.ugt(R)) return 1;
  if (R.ugt(L)) return -1;
  return 0;
}

int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
  // Floats are ordered first by semantics (i.e. float, double, half, etc.),
  // then by value interpreted as a bitstring (aka APInt).
  const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
  if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
                           APFloat::semanticsPrecision(SR)))
    return Res;
  if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
                           APFloat::semanticsMaxExponent(SR)))
    return Res;
  if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
                           APFloat::semanticsMinExponent(SR)))
    return Res;
  if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
                           APFloat::semanticsSizeInBits(SR)))
    return Res;
  return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
}

int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
  // Prevent heavy comparison, compare sizes first.
  if (int Res = cmpNumbers(L.size(), R.size()))
    return Res;

  // Compare strings lexicographically only when it is necessary: only when
  // strings are equal in size.
  return L.compare(R);
}

int FunctionComparator::cmpAttrs(const AttributeList L,
                                 const AttributeList R) const {
  if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
    return Res;

  for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
    AttributeSet LAS = L.getAttributes(i);
    AttributeSet RAS = R.getAttributes(i);
    AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
    AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
    for (; LI != LE && RI != RE; ++LI, ++RI) {
      Attribute LA = *LI;
      Attribute RA = *RI;
      if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
        if (LA.getKindAsEnum() != RA.getKindAsEnum())
          return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());

        Type *TyL = LA.getValueAsType();
        Type *TyR = RA.getValueAsType();
        if (TyL && TyR)
          return cmpTypes(TyL, TyR);

        // Two pointers, at least one null, so the comparison result is
        // independent of the value of a real pointer.
        return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
      }
      if (LA < RA)
        return -1;
      if (RA < LA)
        return 1;
    }
    if (LI != LE)
      return 1;
    if (RI != RE)
      return -1;
  }
  return 0;
}

int FunctionComparator::cmpRangeMetadata(const MDNode *L,
                                         const MDNode *R) const {
  if (L == R)
    return 0;
  if (!L)
    return -1;
  if (!R)
    return 1;
  // Range metadata is a sequence of numbers. Make sure they are the same
  // sequence.
  // TODO: Note that as this is metadata, it is possible to drop and/or merge
  // this data when considering functions to merge. Thus this comparison would
  // return 0 (i.e. equivalent), but merging would become more complicated
  // because the ranges would need to be unioned. It is not likely that
  // functions differ ONLY in this metadata if they are actually the same
  // function semantically.
  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
    return Res;
  for (size_t I = 0; I < L->getNumOperands(); ++I) {
    ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
    ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
    if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
      return Res;
  }
  return 0;
}

int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
                                                const Instruction *R) const {
  ImmutableCallSite LCS(L);
  ImmutableCallSite RCS(R);

  assert(LCS && RCS && "Must be calls or invokes!");
  assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");

  if (int Res =
          cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
    return Res;

  for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
    auto OBL = LCS.getOperandBundleAt(i);
    auto OBR = RCS.getOperandBundleAt(i);

    if (int Res = OBL.getTagName().compare(OBR.getTagName()))
      return Res;

    if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
      return Res;
  }

  return 0;
}

/// Constants comparison:
/// 1. Check whether type of L constant could be losslessly bitcasted to R
/// type.
/// 2. Compare constant contents.
/// For more details see declaration comments.
int FunctionComparator::cmpConstants(const Constant *L,
                                     const Constant *R) const {
  Type *TyL = L->getType();
  Type *TyR = R->getType();

  // Check whether types are bitcastable. This part is just re-factored
  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
  // we also pack into result which type is "less" for us.
  int TypesRes = cmpTypes(TyL, TyR);
  if (TypesRes != 0) {
    // Types are different, but check whether we can bitcast them.
    if (!TyL->isFirstClassType()) {
      if (TyR->isFirstClassType())
        return -1;
      // Neither TyL nor TyR are values of first class type. Return the result
      // of comparing the types
      return TypesRes;
    }
    if (!TyR->isFirstClassType()) {
      if (TyL->isFirstClassType())
        return 1;
      return TypesRes;
    }

    // Vector -> Vector conversions are always lossless if the two vector types
    // have the same size, otherwise not.
    unsigned TyLWidth = 0;
    unsigned TyRWidth = 0;

    if (auto *VecTyL = dyn_cast<VectorType>(TyL))
      TyLWidth = VecTyL->getBitWidth();
    if (auto *VecTyR = dyn_cast<VectorType>(TyR))
      TyRWidth = VecTyR->getBitWidth();

    if (TyLWidth != TyRWidth)
      return cmpNumbers(TyLWidth, TyRWidth);

    // Zero bit-width means neither TyL nor TyR are vectors.
    if (!TyLWidth) {
      PointerType *PTyL = dyn_cast<PointerType>(TyL);
      PointerType *PTyR = dyn_cast<PointerType>(TyR);
      if (PTyL && PTyR) {
        unsigned AddrSpaceL = PTyL->getAddressSpace();
        unsigned AddrSpaceR = PTyR->getAddressSpace();
        if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
          return Res;
      }
      if (PTyL)
        return 1;
      if (PTyR)
        return -1;

      // TyL and TyR aren't vectors, nor pointers. We don't know how to
      // bitcast them.
      return TypesRes;
    }
  }

  // OK, types are bitcastable, now check constant contents.

  if (L->isNullValue() && R->isNullValue())
    return TypesRes;
  if (L->isNullValue() && !R->isNullValue())
    return 1;
  if (!L->isNullValue() && R->isNullValue())
    return -1;

  auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
  auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
  if (GlobalValueL && GlobalValueR) {
    return cmpGlobalValues(GlobalValueL, GlobalValueR);
  }

  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
    return Res;

  if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
    const auto *SeqR = cast<ConstantDataSequential>(R);
    // This handles ConstantDataArray and ConstantDataVector. Note that we
    // compare the two raw data arrays, which might differ depending on the host
    // endianness. This isn't a problem though, because the endiness of a module
    // will affect the order of the constants, but this order is the same
    // for a given input module and host platform.
    return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
  }

  switch (L->getValueID()) {
  case Value::UndefValueVal:
  case Value::ConstantTokenNoneVal:
    return TypesRes;
  case Value::ConstantIntVal: {
    const APInt &LInt = cast<ConstantInt>(L)->getValue();
    const APInt &RInt = cast<ConstantInt>(R)->getValue();
    return cmpAPInts(LInt, RInt);
  }
  case Value::ConstantFPVal: {
    const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
    const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
    return cmpAPFloats(LAPF, RAPF);
  }
  case Value::ConstantArrayVal: {
    const ConstantArray *LA = cast<ConstantArray>(L);
    const ConstantArray *RA = cast<ConstantArray>(R);
    uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
    uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
      return Res;
    for (uint64_t i = 0; i < NumElementsL; ++i) {
      if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
                                 cast<Constant>(RA->getOperand(i))))
        return Res;
    }
    return 0;
  }
  case Value::ConstantStructVal: {
    const ConstantStruct *LS = cast<ConstantStruct>(L);
    const ConstantStruct *RS = cast<ConstantStruct>(R);
    unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
    unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
      return Res;
    for (unsigned i = 0; i != NumElementsL; ++i) {
      if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
                                 cast<Constant>(RS->getOperand(i))))
        return Res;
    }
    return 0;
  }
  case Value::ConstantVectorVal: {
    const ConstantVector *LV = cast<ConstantVector>(L);
    const ConstantVector *RV = cast<ConstantVector>(R);
    unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
    unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
      return Res;
    for (uint64_t i = 0; i < NumElementsL; ++i) {
      if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
                                 cast<Constant>(RV->getOperand(i))))
        return Res;
    }
    return 0;
  }
  case Value::ConstantExprVal: {
    const ConstantExpr *LE = cast<ConstantExpr>(L);
    const ConstantExpr *RE = cast<ConstantExpr>(R);
    unsigned NumOperandsL = LE->getNumOperands();
    unsigned NumOperandsR = RE->getNumOperands();
    if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
      return Res;
    for (unsigned i = 0; i < NumOperandsL; ++i) {
      if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
                                 cast<Constant>(RE->getOperand(i))))
        return Res;
    }
    return 0;
  }
  case Value::BlockAddressVal: {
    const BlockAddress *LBA = cast<BlockAddress>(L);
    const BlockAddress *RBA = cast<BlockAddress>(R);
    if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
      return Res;
    if (LBA->getFunction() == RBA->getFunction()) {
      // They are BBs in the same function. Order by which comes first in the
      // BB order of the function. This order is deterministic.
      Function* F = LBA->getFunction();
      BasicBlock *LBB = LBA->getBasicBlock();
      BasicBlock *RBB = RBA->getBasicBlock();
      if (LBB == RBB)
        return 0;
      for(BasicBlock &BB : F->getBasicBlockList()) {
        if (&BB == LBB) {
          assert(&BB != RBB);
          return -1;
        }
        if (&BB == RBB)
          return 1;
      }
      llvm_unreachable("Basic Block Address does not point to a basic block in "
                       "its function.");
      return -1;
    } else {
      // cmpValues said the functions are the same. So because they aren't
      // literally the same pointer, they must respectively be the left and
      // right functions.
      assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
      // cmpValues will tell us if these are equivalent BasicBlocks, in the
      // context of their respective functions.
      return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
    }
  }
  default: // Unknown constant, abort.
    LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
    llvm_unreachable("Constant ValueID not recognized.");
    return -1;
  }
}

int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
  uint64_t LNumber = GlobalNumbers->getNumber(L);
  uint64_t RNumber = GlobalNumbers->getNumber(R);
  return cmpNumbers(LNumber, RNumber);
}

/// cmpType - compares two types,
/// defines total ordering among the types set.
/// See method declaration comments for more details.
int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
  PointerType *PTyL = dyn_cast<PointerType>(TyL);
  PointerType *PTyR = dyn_cast<PointerType>(TyR);

  const DataLayout &DL = FnL->getParent()->getDataLayout();
  if (PTyL && PTyL->getAddressSpace() == 0)
    TyL = DL.getIntPtrType(TyL);
  if (PTyR && PTyR->getAddressSpace() == 0)
    TyR = DL.getIntPtrType(TyR);

  if (TyL == TyR)
    return 0;

  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
    return Res;

  switch (TyL->getTypeID()) {
  default:
    llvm_unreachable("Unknown type!");
  case Type::IntegerTyID:
    return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
                      cast<IntegerType>(TyR)->getBitWidth());
  // TyL == TyR would have returned true earlier, because types are uniqued.
  case Type::VoidTyID:
  case Type::FloatTyID:
  case Type::DoubleTyID:
  case Type::X86_FP80TyID:
  case Type::FP128TyID:
  case Type::PPC_FP128TyID:
  case Type::LabelTyID:
  case Type::MetadataTyID:
  case Type::TokenTyID:
    return 0;

  case Type::PointerTyID:
    assert(PTyL && PTyR && "Both types must be pointers here.");
    return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());

  case Type::StructTyID: {
    StructType *STyL = cast<StructType>(TyL);
    StructType *STyR = cast<StructType>(TyR);
    if (STyL->getNumElements() != STyR->getNumElements())
      return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());

    if (STyL->isPacked() != STyR->isPacked())
      return cmpNumbers(STyL->isPacked(), STyR->isPacked());

    for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
      if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
        return Res;
    }
    return 0;
  }

  case Type::FunctionTyID: {
    FunctionType *FTyL = cast<FunctionType>(TyL);
    FunctionType *FTyR = cast<FunctionType>(TyR);
    if (FTyL->getNumParams() != FTyR->getNumParams())
      return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());

    if (FTyL->isVarArg() != FTyR->isVarArg())
      return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());

    if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
      return Res;

    for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
      if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
        return Res;
    }
    return 0;
  }

  case Type::ArrayTyID:
  case Type::VectorTyID: {
    auto *STyL = cast<SequentialType>(TyL);
    auto *STyR = cast<SequentialType>(TyR);
    if (STyL->getNumElements() != STyR->getNumElements())
      return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
    return cmpTypes(STyL->getElementType(), STyR->getElementType());
  }
  }
}

// Determine whether the two operations are the same except that pointer-to-A
// and pointer-to-B are equivalent. This should be kept in sync with
// Instruction::isSameOperationAs.
// Read method declaration comments for more details.
int FunctionComparator::cmpOperations(const Instruction *L,
                                      const Instruction *R,
                                      bool &needToCmpOperands) const {
  needToCmpOperands = true;
  if (int Res = cmpValues(L, R))
    return Res;

  // Differences from Instruction::isSameOperationAs:
  //  * replace type comparison with calls to cmpTypes.
  //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
  //  * because of the above, we don't test for the tail bit on calls later on.
  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
    return Res;

  if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
    needToCmpOperands = false;
    const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
    if (int Res =
            cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
      return Res;
    return cmpGEPs(GEPL, GEPR);
  }

  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
    return Res;

  if (int Res = cmpTypes(L->getType(), R->getType()))
    return Res;

  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
                           R->getRawSubclassOptionalData()))
    return Res;

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same type
  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
    if (int Res =
            cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
      return Res;
  }

  // Check special state that is a part of some instructions.
  if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
    if (int Res = cmpTypes(AI->getAllocatedType(),
                           cast<AllocaInst>(R)->getAllocatedType()))
      return Res;
    return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
  }
  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
    if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
      return Res;
    if (int Res =
            cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
      return Res;
    if (int Res =
            cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
      return Res;
    if (int Res = cmpNumbers(LI->getSyncScopeID(),
                             cast<LoadInst>(R)->getSyncScopeID()))
      return Res;
    return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
        cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
  }
  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
    if (int Res =
            cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
      return Res;
    if (int Res =
            cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
      return Res;
    if (int Res =
            cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
      return Res;
    return cmpNumbers(SI->getSyncScopeID(),
                      cast<StoreInst>(R)->getSyncScopeID());
  }
  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
    return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
  if (auto CSL = CallSite(const_cast<Instruction *>(L))) {
    auto CSR = CallSite(const_cast<Instruction *>(R));
    if (int Res = cmpNumbers(CSL.getCallingConv(), CSR.getCallingConv()))
      return Res;
    if (int Res = cmpAttrs(CSL.getAttributes(), CSR.getAttributes()))
      return Res;
    if (int Res = cmpOperandBundlesSchema(L, R))
      return Res;
    if (const CallInst *CI = dyn_cast<CallInst>(L))
      if (int Res = cmpNumbers(CI->getTailCallKind(),
                               cast<CallInst>(R)->getTailCallKind()))
        return Res;
    return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
                            R->getMetadata(LLVMContext::MD_range));
  }
  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
    ArrayRef<unsigned> LIndices = IVI->getIndices();
    ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
      return Res;
    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
        return Res;
    }
    return 0;
  }
  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
    ArrayRef<unsigned> LIndices = EVI->getIndices();
    ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
      return Res;
    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
        return Res;
    }
  }
  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
    if (int Res =
            cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
      return Res;
    return cmpNumbers(FI->getSyncScopeID(),
                      cast<FenceInst>(R)->getSyncScopeID());
  }
  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
    if (int Res = cmpNumbers(CXI->isVolatile(),
                             cast<AtomicCmpXchgInst>(R)->isVolatile()))
      return Res;
    if (int Res = cmpNumbers(CXI->isWeak(),
                             cast<AtomicCmpXchgInst>(R)->isWeak()))
      return Res;
    if (int Res =
            cmpOrderings(CXI->getSuccessOrdering(),
                         cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
      return Res;
    if (int Res =
            cmpOrderings(CXI->getFailureOrdering(),
                         cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
      return Res;
    return cmpNumbers(CXI->getSyncScopeID(),
                      cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
  }
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
    if (int Res = cmpNumbers(RMWI->getOperation(),
                             cast<AtomicRMWInst>(R)->getOperation()))
      return Res;
    if (int Res = cmpNumbers(RMWI->isVolatile(),
                             cast<AtomicRMWInst>(R)->isVolatile()))
      return Res;
    if (int Res = cmpOrderings(RMWI->getOrdering(),
                             cast<AtomicRMWInst>(R)->getOrdering()))
      return Res;
    return cmpNumbers(RMWI->getSyncScopeID(),
                      cast<AtomicRMWInst>(R)->getSyncScopeID());
  }
  if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
    const PHINode *PNR = cast<PHINode>(R);
    // Ensure that in addition to the incoming values being identical
    // (checked by the caller of this function), the incoming blocks
    // are also identical.
    for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
      if (int Res =
              cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
        return Res;
    }
  }
  return 0;
}

// Determine whether two GEP operations perform the same underlying arithmetic.
// Read method declaration comments for more details.
int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
                                const GEPOperator *GEPR) const {
  unsigned int ASL = GEPL->getPointerAddressSpace();
  unsigned int ASR = GEPR->getPointerAddressSpace();

  if (int Res = cmpNumbers(ASL, ASR))
    return Res;

  // When we have target data, we can reduce the GEP down to the value in bytes
  // added to the address.
  const DataLayout &DL = FnL->getParent()->getDataLayout();
  unsigned BitWidth = DL.getPointerSizeInBits(ASL);
  APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
  if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
      GEPR->accumulateConstantOffset(DL, OffsetR))
    return cmpAPInts(OffsetL, OffsetR);
  if (int Res = cmpTypes(GEPL->getSourceElementType(),
                         GEPR->getSourceElementType()))
    return Res;

  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
    return Res;

  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
    if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
      return Res;
  }

  return 0;
}

int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
                                     const InlineAsm *R) const {
  // InlineAsm's are uniqued. If they are the same pointer, obviously they are
  // the same, otherwise compare the fields.
  if (L == R)
    return 0;
  if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
    return Res;
  if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
    return Res;
  if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
    return Res;
  if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
    return Res;
  if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
    return Res;
  if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
    return Res;
  assert(L->getFunctionType() != R->getFunctionType());
  return 0;
}

/// Compare two values used by the two functions under pair-wise comparison. If
/// this is the first time the values are seen, they're added to the mapping so
/// that we will detect mismatches on next use.
/// See comments in declaration for more details.
int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
  // Catch self-reference case.
  if (L == FnL) {
    if (R == FnR)
      return 0;
    return -1;
  }
  if (R == FnR) {
    if (L == FnL)
      return 0;
    return 1;
  }

  const Constant *ConstL = dyn_cast<Constant>(L);
  const Constant *ConstR = dyn_cast<Constant>(R);
  if (ConstL && ConstR) {
    if (L == R)
      return 0;
    return cmpConstants(ConstL, ConstR);
  }

  if (ConstL)
    return 1;
  if (ConstR)
    return -1;

  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);

  if (InlineAsmL && InlineAsmR)
    return cmpInlineAsm(InlineAsmL, InlineAsmR);
  if (InlineAsmL)
    return 1;
  if (InlineAsmR)
    return -1;

  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
       RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));

  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
}

// Test whether two basic blocks have equivalent behaviour.
int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
                                       const BasicBlock *BBR) const {
  BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
  BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();

  do {
    bool needToCmpOperands = true;
    if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
      return Res;
    if (needToCmpOperands) {
      assert(InstL->getNumOperands() == InstR->getNumOperands());

      for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
        Value *OpL = InstL->getOperand(i);
        Value *OpR = InstR->getOperand(i);
        if (int Res = cmpValues(OpL, OpR))
          return Res;
        // cmpValues should ensure this is true.
        assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
      }
    }

    ++InstL;
    ++InstR;
  } while (InstL != InstLE && InstR != InstRE);

  if (InstL != InstLE && InstR == InstRE)
    return 1;
  if (InstL == InstLE && InstR != InstRE)
    return -1;
  return 0;
}

int FunctionComparator::compareSignature() const {
  if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
    return Res;

  if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
    return Res;

  if (FnL->hasGC()) {
    if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
      return Res;
  }

  if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
    return Res;

  if (FnL->hasSection()) {
    if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
      return Res;
  }

  if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
    return Res;

  // TODO: if it's internal and only used in direct calls, we could handle this
  // case too.
  if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
    return Res;

  if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
    return Res;

  assert(FnL->arg_size() == FnR->arg_size() &&
         "Identically typed functions have different numbers of args!");

  // Visit the arguments so that they get enumerated in the order they're
  // passed in.
  for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
       ArgRI = FnR->arg_begin(),
       ArgLE = FnL->arg_end();
       ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
    if (cmpValues(&*ArgLI, &*ArgRI) != 0)
      llvm_unreachable("Arguments repeat!");
  }
  return 0;
}

// Test whether the two functions have equivalent behaviour.
int FunctionComparator::compare() {
  beginCompare();

  if (int Res = compareSignature())
    return Res;

  // We do a CFG-ordered walk since the actual ordering of the blocks in the
  // linked list is immaterial. Our walk starts at the entry block for both
  // functions, then takes each block from each terminator in order. As an
  // artifact, this also means that unreachable blocks are ignored.
  SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
  SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.

  FnLBBs.push_back(&FnL->getEntryBlock());
  FnRBBs.push_back(&FnR->getEntryBlock());

  VisitedBBs.insert(FnLBBs[0]);
  while (!FnLBBs.empty()) {
    const BasicBlock *BBL = FnLBBs.pop_back_val();
    const BasicBlock *BBR = FnRBBs.pop_back_val();

    if (int Res = cmpValues(BBL, BBR))
      return Res;

    if (int Res = cmpBasicBlocks(BBL, BBR))
      return Res;

    const Instruction *TermL = BBL->getTerminator();
    const Instruction *TermR = BBR->getTerminator();

    assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
    for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
      if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
        continue;

      FnLBBs.push_back(TermL->getSuccessor(i));
      FnRBBs.push_back(TermR->getSuccessor(i));
    }
  }
  return 0;
}

namespace {

// Accumulate the hash of a sequence of 64-bit integers. This is similar to a
// hash of a sequence of 64bit ints, but the entire input does not need to be
// available at once. This interface is necessary for functionHash because it
// needs to accumulate the hash as the structure of the function is traversed
// without saving these values to an intermediate buffer. This form of hashing
// is not often needed, as usually the object to hash is just read from a
// buffer.
class HashAccumulator64 {
  uint64_t Hash;

public:
  // Initialize to random constant, so the state isn't zero.
  HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }

  void add(uint64_t V) {
     Hash = hashing::detail::hash_16_bytes(Hash, V);
  }

  // No finishing is required, because the entire hash value is used.
  uint64_t getHash() { return Hash; }
};

} // end anonymous namespace

// A function hash is calculated by considering only the number of arguments and
// whether a function is varargs, the order of basic blocks (given by the
// successors of each basic block in depth first order), and the order of
// opcodes of each instruction within each of these basic blocks. This mirrors
// the strategy compare() uses to compare functions by walking the BBs in depth
// first order and comparing each instruction in sequence. Because this hash
// does not look at the operands, it is insensitive to things such as the
// target of calls and the constants used in the function, which makes it useful
// when possibly merging functions which are the same modulo constants and call
// targets.
FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
  HashAccumulator64 H;
  H.add(F.isVarArg());
  H.add(F.arg_size());

  SmallVector<const BasicBlock *, 8> BBs;
  SmallPtrSet<const BasicBlock *, 16> VisitedBBs;

  // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
  // accumulating the hash of the function "structure." (BB and opcode sequence)
  BBs.push_back(&F.getEntryBlock());
  VisitedBBs.insert(BBs[0]);
  while (!BBs.empty()) {
    const BasicBlock *BB = BBs.pop_back_val();
    // This random value acts as a block header, as otherwise the partition of
    // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
    H.add(45798);
    for (auto &Inst : *BB) {
      H.add(Inst.getOpcode());
    }
    const Instruction *Term = BB->getTerminator();
    for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
      if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
        continue;
      BBs.push_back(Term->getSuccessor(i));
    }
  }
  return H.getHash();
}