StackMaps.cpp
19.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//===- StackMaps.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "stackmaps"
static cl::opt<int> StackMapVersion(
"stackmap-version", cl::init(3), cl::Hidden,
cl::desc("Specify the stackmap encoding version (default = 3)"));
const char *StackMaps::WSMP = "Stack Maps: ";
StackMapOpers::StackMapOpers(const MachineInstr *MI)
: MI(MI) {
assert(getVarIdx() <= MI->getNumOperands() &&
"invalid stackmap definition");
}
PatchPointOpers::PatchPointOpers(const MachineInstr *MI)
: MI(MI), HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
!MI->getOperand(0).isImplicit()) {
#ifndef NDEBUG
unsigned CheckStartIdx = 0, e = MI->getNumOperands();
while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() &&
MI->getOperand(CheckStartIdx).isDef() &&
!MI->getOperand(CheckStartIdx).isImplicit())
++CheckStartIdx;
assert(getMetaIdx() == CheckStartIdx &&
"Unexpected additional definition in Patchpoint intrinsic.");
#endif
}
unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const {
if (!StartIdx)
StartIdx = getVarIdx();
// Find the next scratch register (implicit def and early clobber)
unsigned ScratchIdx = StartIdx, e = MI->getNumOperands();
while (ScratchIdx < e &&
!(MI->getOperand(ScratchIdx).isReg() &&
MI->getOperand(ScratchIdx).isDef() &&
MI->getOperand(ScratchIdx).isImplicit() &&
MI->getOperand(ScratchIdx).isEarlyClobber()))
++ScratchIdx;
assert(ScratchIdx != e && "No scratch register available");
return ScratchIdx;
}
StackMaps::StackMaps(AsmPrinter &AP) : AP(AP) {
if (StackMapVersion != 3)
llvm_unreachable("Unsupported stackmap version!");
}
/// Go up the super-register chain until we hit a valid dwarf register number.
static unsigned getDwarfRegNum(unsigned Reg, const TargetRegisterInfo *TRI) {
int RegNum = TRI->getDwarfRegNum(Reg, false);
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid() && RegNum < 0; ++SR)
RegNum = TRI->getDwarfRegNum(*SR, false);
assert(RegNum >= 0 && "Invalid Dwarf register number.");
return (unsigned)RegNum;
}
MachineInstr::const_mop_iterator
StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI,
MachineInstr::const_mop_iterator MOE, LocationVec &Locs,
LiveOutVec &LiveOuts) const {
const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo();
if (MOI->isImm()) {
switch (MOI->getImm()) {
default:
llvm_unreachable("Unrecognized operand type.");
case StackMaps::DirectMemRefOp: {
auto &DL = AP.MF->getDataLayout();
unsigned Size = DL.getPointerSizeInBits();
assert((Size % 8) == 0 && "Need pointer size in bytes.");
Size /= 8;
Register Reg = (++MOI)->getReg();
int64_t Imm = (++MOI)->getImm();
Locs.emplace_back(StackMaps::Location::Direct, Size,
getDwarfRegNum(Reg, TRI), Imm);
break;
}
case StackMaps::IndirectMemRefOp: {
int64_t Size = (++MOI)->getImm();
assert(Size > 0 && "Need a valid size for indirect memory locations.");
Register Reg = (++MOI)->getReg();
int64_t Imm = (++MOI)->getImm();
Locs.emplace_back(StackMaps::Location::Indirect, Size,
getDwarfRegNum(Reg, TRI), Imm);
break;
}
case StackMaps::ConstantOp: {
++MOI;
assert(MOI->isImm() && "Expected constant operand.");
int64_t Imm = MOI->getImm();
Locs.emplace_back(Location::Constant, sizeof(int64_t), 0, Imm);
break;
}
}
return ++MOI;
}
// The physical register number will ultimately be encoded as a DWARF regno.
// The stack map also records the size of a spill slot that can hold the
// register content. (The runtime can track the actual size of the data type
// if it needs to.)
if (MOI->isReg()) {
// Skip implicit registers (this includes our scratch registers)
if (MOI->isImplicit())
return ++MOI;
assert(Register::isPhysicalRegister(MOI->getReg()) &&
"Virtreg operands should have been rewritten before now.");
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(MOI->getReg());
assert(!MOI->getSubReg() && "Physical subreg still around.");
unsigned Offset = 0;
unsigned DwarfRegNum = getDwarfRegNum(MOI->getReg(), TRI);
unsigned LLVMRegNum = *TRI->getLLVMRegNum(DwarfRegNum, false);
unsigned SubRegIdx = TRI->getSubRegIndex(LLVMRegNum, MOI->getReg());
if (SubRegIdx)
Offset = TRI->getSubRegIdxOffset(SubRegIdx);
Locs.emplace_back(Location::Register, TRI->getSpillSize(*RC),
DwarfRegNum, Offset);
return ++MOI;
}
if (MOI->isRegLiveOut())
LiveOuts = parseRegisterLiveOutMask(MOI->getRegLiveOut());
return ++MOI;
}
void StackMaps::print(raw_ostream &OS) {
const TargetRegisterInfo *TRI =
AP.MF ? AP.MF->getSubtarget().getRegisterInfo() : nullptr;
OS << WSMP << "callsites:\n";
for (const auto &CSI : CSInfos) {
const LocationVec &CSLocs = CSI.Locations;
const LiveOutVec &LiveOuts = CSI.LiveOuts;
OS << WSMP << "callsite " << CSI.ID << "\n";
OS << WSMP << " has " << CSLocs.size() << " locations\n";
unsigned Idx = 0;
for (const auto &Loc : CSLocs) {
OS << WSMP << "\t\tLoc " << Idx << ": ";
switch (Loc.Type) {
case Location::Unprocessed:
OS << "<Unprocessed operand>";
break;
case Location::Register:
OS << "Register ";
if (TRI)
OS << printReg(Loc.Reg, TRI);
else
OS << Loc.Reg;
break;
case Location::Direct:
OS << "Direct ";
if (TRI)
OS << printReg(Loc.Reg, TRI);
else
OS << Loc.Reg;
if (Loc.Offset)
OS << " + " << Loc.Offset;
break;
case Location::Indirect:
OS << "Indirect ";
if (TRI)
OS << printReg(Loc.Reg, TRI);
else
OS << Loc.Reg;
OS << "+" << Loc.Offset;
break;
case Location::Constant:
OS << "Constant " << Loc.Offset;
break;
case Location::ConstantIndex:
OS << "Constant Index " << Loc.Offset;
break;
}
OS << "\t[encoding: .byte " << Loc.Type << ", .byte 0"
<< ", .short " << Loc.Size << ", .short " << Loc.Reg << ", .short 0"
<< ", .int " << Loc.Offset << "]\n";
Idx++;
}
OS << WSMP << "\thas " << LiveOuts.size() << " live-out registers\n";
Idx = 0;
for (const auto &LO : LiveOuts) {
OS << WSMP << "\t\tLO " << Idx << ": ";
if (TRI)
OS << printReg(LO.Reg, TRI);
else
OS << LO.Reg;
OS << "\t[encoding: .short " << LO.DwarfRegNum << ", .byte 0, .byte "
<< LO.Size << "]\n";
Idx++;
}
}
}
/// Create a live-out register record for the given register Reg.
StackMaps::LiveOutReg
StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const {
unsigned DwarfRegNum = getDwarfRegNum(Reg, TRI);
unsigned Size = TRI->getSpillSize(*TRI->getMinimalPhysRegClass(Reg));
return LiveOutReg(Reg, DwarfRegNum, Size);
}
/// Parse the register live-out mask and return a vector of live-out registers
/// that need to be recorded in the stackmap.
StackMaps::LiveOutVec
StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const {
assert(Mask && "No register mask specified");
const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo();
LiveOutVec LiveOuts;
// Create a LiveOutReg for each bit that is set in the register mask.
for (unsigned Reg = 0, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg)
if ((Mask[Reg / 32] >> (Reg % 32)) & 1)
LiveOuts.push_back(createLiveOutReg(Reg, TRI));
// We don't need to keep track of a register if its super-register is already
// in the list. Merge entries that refer to the same dwarf register and use
// the maximum size that needs to be spilled.
llvm::sort(LiveOuts, [](const LiveOutReg &LHS, const LiveOutReg &RHS) {
// Only sort by the dwarf register number.
return LHS.DwarfRegNum < RHS.DwarfRegNum;
});
for (auto I = LiveOuts.begin(), E = LiveOuts.end(); I != E; ++I) {
for (auto II = std::next(I); II != E; ++II) {
if (I->DwarfRegNum != II->DwarfRegNum) {
// Skip all the now invalid entries.
I = --II;
break;
}
I->Size = std::max(I->Size, II->Size);
if (TRI->isSuperRegister(I->Reg, II->Reg))
I->Reg = II->Reg;
II->Reg = 0; // mark for deletion.
}
}
LiveOuts.erase(
llvm::remove_if(LiveOuts,
[](const LiveOutReg &LO) { return LO.Reg == 0; }),
LiveOuts.end());
return LiveOuts;
}
void StackMaps::recordStackMapOpers(const MCSymbol &MILabel,
const MachineInstr &MI, uint64_t ID,
MachineInstr::const_mop_iterator MOI,
MachineInstr::const_mop_iterator MOE,
bool recordResult) {
MCContext &OutContext = AP.OutStreamer->getContext();
LocationVec Locations;
LiveOutVec LiveOuts;
if (recordResult) {
assert(PatchPointOpers(&MI).hasDef() && "Stackmap has no return value.");
parseOperand(MI.operands_begin(), std::next(MI.operands_begin()), Locations,
LiveOuts);
}
// Parse operands.
while (MOI != MOE) {
MOI = parseOperand(MOI, MOE, Locations, LiveOuts);
}
// Move large constants into the constant pool.
for (auto &Loc : Locations) {
// Constants are encoded as sign-extended integers.
// -1 is directly encoded as .long 0xFFFFFFFF with no constant pool.
if (Loc.Type == Location::Constant && !isInt<32>(Loc.Offset)) {
Loc.Type = Location::ConstantIndex;
// ConstPool is intentionally a MapVector of 'uint64_t's (as
// opposed to 'int64_t's). We should never be in a situation
// where we have to insert either the tombstone or the empty
// keys into a map, and for a DenseMap<uint64_t, T> these are
// (uint64_t)0 and (uint64_t)-1. They can be and are
// represented using 32 bit integers.
assert((uint64_t)Loc.Offset != DenseMapInfo<uint64_t>::getEmptyKey() &&
(uint64_t)Loc.Offset !=
DenseMapInfo<uint64_t>::getTombstoneKey() &&
"empty and tombstone keys should fit in 32 bits!");
auto Result = ConstPool.insert(std::make_pair(Loc.Offset, Loc.Offset));
Loc.Offset = Result.first - ConstPool.begin();
}
}
// Create an expression to calculate the offset of the callsite from function
// entry.
const MCExpr *CSOffsetExpr = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(&MILabel, OutContext),
MCSymbolRefExpr::create(AP.CurrentFnSymForSize, OutContext), OutContext);
CSInfos.emplace_back(CSOffsetExpr, ID, std::move(Locations),
std::move(LiveOuts));
// Record the stack size of the current function and update callsite count.
const MachineFrameInfo &MFI = AP.MF->getFrameInfo();
const TargetRegisterInfo *RegInfo = AP.MF->getSubtarget().getRegisterInfo();
bool HasDynamicFrameSize =
MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(*(AP.MF));
uint64_t FrameSize = HasDynamicFrameSize ? UINT64_MAX : MFI.getStackSize();
auto CurrentIt = FnInfos.find(AP.CurrentFnSym);
if (CurrentIt != FnInfos.end())
CurrentIt->second.RecordCount++;
else
FnInfos.insert(std::make_pair(AP.CurrentFnSym, FunctionInfo(FrameSize)));
}
void StackMaps::recordStackMap(const MCSymbol &L, const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap");
StackMapOpers opers(&MI);
const int64_t ID = MI.getOperand(PatchPointOpers::IDPos).getImm();
recordStackMapOpers(L, MI, ID, std::next(MI.operands_begin(),
opers.getVarIdx()),
MI.operands_end());
}
void StackMaps::recordPatchPoint(const MCSymbol &L, const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint");
PatchPointOpers opers(&MI);
const int64_t ID = opers.getID();
auto MOI = std::next(MI.operands_begin(), opers.getStackMapStartIdx());
recordStackMapOpers(L, MI, ID, MOI, MI.operands_end(),
opers.isAnyReg() && opers.hasDef());
#ifndef NDEBUG
// verify anyregcc
auto &Locations = CSInfos.back().Locations;
if (opers.isAnyReg()) {
unsigned NArgs = opers.getNumCallArgs();
for (unsigned i = 0, e = (opers.hasDef() ? NArgs + 1 : NArgs); i != e; ++i)
assert(Locations[i].Type == Location::Register &&
"anyreg arg must be in reg.");
}
#endif
}
void StackMaps::recordStatepoint(const MCSymbol &L, const MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::STATEPOINT && "expected statepoint");
StatepointOpers opers(&MI);
// Record all the deopt and gc operands (they're contiguous and run from the
// initial index to the end of the operand list)
const unsigned StartIdx = opers.getVarIdx();
recordStackMapOpers(L, MI, opers.getID(), MI.operands_begin() + StartIdx,
MI.operands_end(), false);
}
/// Emit the stackmap header.
///
/// Header {
/// uint8 : Stack Map Version (currently 2)
/// uint8 : Reserved (expected to be 0)
/// uint16 : Reserved (expected to be 0)
/// }
/// uint32 : NumFunctions
/// uint32 : NumConstants
/// uint32 : NumRecords
void StackMaps::emitStackmapHeader(MCStreamer &OS) {
// Header.
OS.EmitIntValue(StackMapVersion, 1); // Version.
OS.EmitIntValue(0, 1); // Reserved.
OS.EmitIntValue(0, 2); // Reserved.
// Num functions.
LLVM_DEBUG(dbgs() << WSMP << "#functions = " << FnInfos.size() << '\n');
OS.EmitIntValue(FnInfos.size(), 4);
// Num constants.
LLVM_DEBUG(dbgs() << WSMP << "#constants = " << ConstPool.size() << '\n');
OS.EmitIntValue(ConstPool.size(), 4);
// Num callsites.
LLVM_DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << '\n');
OS.EmitIntValue(CSInfos.size(), 4);
}
/// Emit the function frame record for each function.
///
/// StkSizeRecord[NumFunctions] {
/// uint64 : Function Address
/// uint64 : Stack Size
/// uint64 : Record Count
/// }
void StackMaps::emitFunctionFrameRecords(MCStreamer &OS) {
// Function Frame records.
LLVM_DEBUG(dbgs() << WSMP << "functions:\n");
for (auto const &FR : FnInfos) {
LLVM_DEBUG(dbgs() << WSMP << "function addr: " << FR.first
<< " frame size: " << FR.second.StackSize
<< " callsite count: " << FR.second.RecordCount << '\n');
OS.EmitSymbolValue(FR.first, 8);
OS.EmitIntValue(FR.second.StackSize, 8);
OS.EmitIntValue(FR.second.RecordCount, 8);
}
}
/// Emit the constant pool.
///
/// int64 : Constants[NumConstants]
void StackMaps::emitConstantPoolEntries(MCStreamer &OS) {
// Constant pool entries.
LLVM_DEBUG(dbgs() << WSMP << "constants:\n");
for (const auto &ConstEntry : ConstPool) {
LLVM_DEBUG(dbgs() << WSMP << ConstEntry.second << '\n');
OS.EmitIntValue(ConstEntry.second, 8);
}
}
/// Emit the callsite info for each callsite.
///
/// StkMapRecord[NumRecords] {
/// uint64 : PatchPoint ID
/// uint32 : Instruction Offset
/// uint16 : Reserved (record flags)
/// uint16 : NumLocations
/// Location[NumLocations] {
/// uint8 : Register | Direct | Indirect | Constant | ConstantIndex
/// uint8 : Size in Bytes
/// uint16 : Dwarf RegNum
/// int32 : Offset
/// }
/// uint16 : Padding
/// uint16 : NumLiveOuts
/// LiveOuts[NumLiveOuts] {
/// uint16 : Dwarf RegNum
/// uint8 : Reserved
/// uint8 : Size in Bytes
/// }
/// uint32 : Padding (only if required to align to 8 byte)
/// }
///
/// Location Encoding, Type, Value:
/// 0x1, Register, Reg (value in register)
/// 0x2, Direct, Reg + Offset (frame index)
/// 0x3, Indirect, [Reg + Offset] (spilled value)
/// 0x4, Constant, Offset (small constant)
/// 0x5, ConstIndex, Constants[Offset] (large constant)
void StackMaps::emitCallsiteEntries(MCStreamer &OS) {
LLVM_DEBUG(print(dbgs()));
// Callsite entries.
for (const auto &CSI : CSInfos) {
const LocationVec &CSLocs = CSI.Locations;
const LiveOutVec &LiveOuts = CSI.LiveOuts;
// Verify stack map entry. It's better to communicate a problem to the
// runtime than crash in case of in-process compilation. Currently, we do
// simple overflow checks, but we may eventually communicate other
// compilation errors this way.
if (CSLocs.size() > UINT16_MAX || LiveOuts.size() > UINT16_MAX) {
OS.EmitIntValue(UINT64_MAX, 8); // Invalid ID.
OS.EmitValue(CSI.CSOffsetExpr, 4);
OS.EmitIntValue(0, 2); // Reserved.
OS.EmitIntValue(0, 2); // 0 locations.
OS.EmitIntValue(0, 2); // padding.
OS.EmitIntValue(0, 2); // 0 live-out registers.
OS.EmitIntValue(0, 4); // padding.
continue;
}
OS.EmitIntValue(CSI.ID, 8);
OS.EmitValue(CSI.CSOffsetExpr, 4);
// Reserved for flags.
OS.EmitIntValue(0, 2);
OS.EmitIntValue(CSLocs.size(), 2);
for (const auto &Loc : CSLocs) {
OS.EmitIntValue(Loc.Type, 1);
OS.EmitIntValue(0, 1); // Reserved
OS.EmitIntValue(Loc.Size, 2);
OS.EmitIntValue(Loc.Reg, 2);
OS.EmitIntValue(0, 2); // Reserved
OS.EmitIntValue(Loc.Offset, 4);
}
// Emit alignment to 8 byte.
OS.EmitValueToAlignment(8);
// Num live-out registers and padding to align to 4 byte.
OS.EmitIntValue(0, 2);
OS.EmitIntValue(LiveOuts.size(), 2);
for (const auto &LO : LiveOuts) {
OS.EmitIntValue(LO.DwarfRegNum, 2);
OS.EmitIntValue(0, 1);
OS.EmitIntValue(LO.Size, 1);
}
// Emit alignment to 8 byte.
OS.EmitValueToAlignment(8);
}
}
/// Serialize the stackmap data.
void StackMaps::serializeToStackMapSection() {
(void)WSMP;
// Bail out if there's no stack map data.
assert((!CSInfos.empty() || ConstPool.empty()) &&
"Expected empty constant pool too!");
assert((!CSInfos.empty() || FnInfos.empty()) &&
"Expected empty function record too!");
if (CSInfos.empty())
return;
MCContext &OutContext = AP.OutStreamer->getContext();
MCStreamer &OS = *AP.OutStreamer;
// Create the section.
MCSection *StackMapSection =
OutContext.getObjectFileInfo()->getStackMapSection();
OS.SwitchSection(StackMapSection);
// Emit a dummy symbol to force section inclusion.
OS.EmitLabel(OutContext.getOrCreateSymbol(Twine("__LLVM_StackMaps")));
// Serialize data.
LLVM_DEBUG(dbgs() << "********** Stack Map Output **********\n");
emitStackmapHeader(OS);
emitFunctionFrameRecords(OS);
emitConstantPoolEntries(OS);
emitCallsiteEntries(OS);
OS.AddBlankLine();
// Clean up.
CSInfos.clear();
ConstPool.clear();
}