ScheduleDAGSDNodes.cpp 36.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAG class, which is a base class used by
// scheduling implementation classes.
//
//===----------------------------------------------------------------------===//

#include "ScheduleDAGSDNodes.h"
#include "InstrEmitter.h"
#include "SDNodeDbgValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define DEBUG_TYPE "pre-RA-sched"

STATISTIC(LoadsClustered, "Number of loads clustered together");

// This allows the latency-based scheduler to notice high latency instructions
// without a target itinerary. The choice of number here has more to do with
// balancing scheduler heuristics than with the actual machine latency.
static cl::opt<int> HighLatencyCycles(
  "sched-high-latency-cycles", cl::Hidden, cl::init(10),
  cl::desc("Roughly estimate the number of cycles that 'long latency'"
           "instructions take for targets with no itinerary"));

ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
    : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
      InstrItins(mf.getSubtarget().getInstrItineraryData()) {}

/// Run - perform scheduling.
///
void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
  BB = bb;
  DAG = dag;

  // Clear the scheduler's SUnit DAG.
  ScheduleDAG::clearDAG();
  Sequence.clear();

  // Invoke the target's selection of scheduler.
  Schedule();
}

/// NewSUnit - Creates a new SUnit and return a ptr to it.
///
SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
#ifndef NDEBUG
  const SUnit *Addr = nullptr;
  if (!SUnits.empty())
    Addr = &SUnits[0];
#endif
  SUnits.emplace_back(N, (unsigned)SUnits.size());
  assert((Addr == nullptr || Addr == &SUnits[0]) &&
         "SUnits std::vector reallocated on the fly!");
  SUnits.back().OrigNode = &SUnits.back();
  SUnit *SU = &SUnits.back();
  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
  if (!N ||
      (N->isMachineOpcode() &&
       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
    SU->SchedulingPref = Sched::None;
  else
    SU->SchedulingPref = TLI.getSchedulingPreference(N);
  return SU;
}

SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
  SUnit *SU = newSUnit(Old->getNode());
  SU->OrigNode = Old->OrigNode;
  SU->Latency = Old->Latency;
  SU->isVRegCycle = Old->isVRegCycle;
  SU->isCall = Old->isCall;
  SU->isCallOp = Old->isCallOp;
  SU->isTwoAddress = Old->isTwoAddress;
  SU->isCommutable = Old->isCommutable;
  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
  SU->isScheduleHigh = Old->isScheduleHigh;
  SU->isScheduleLow = Old->isScheduleLow;
  SU->SchedulingPref = Old->SchedulingPref;
  Old->isCloned = true;
  return SU;
}

/// CheckForPhysRegDependency - Check if the dependency between def and use of
/// a specified operand is a physical register dependency. If so, returns the
/// register and the cost of copying the register.
static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
                                      const TargetRegisterInfo *TRI,
                                      const TargetInstrInfo *TII,
                                      unsigned &PhysReg, int &Cost) {
  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
    return;

  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
  if (Register::isVirtualRegister(Reg))
    return;

  unsigned ResNo = User->getOperand(2).getResNo();
  if (Def->getOpcode() == ISD::CopyFromReg &&
      cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
    PhysReg = Reg;
  } else if (Def->isMachineOpcode()) {
    const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
    if (ResNo >= II.getNumDefs() &&
        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
      PhysReg = Reg;
  }

  if (PhysReg != 0) {
    const TargetRegisterClass *RC =
        TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
    Cost = RC->getCopyCost();
  }
}

// Helper for AddGlue to clone node operands.
static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
                                SDValue ExtraOper = SDValue()) {
  SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
  if (ExtraOper.getNode())
    Ops.push_back(ExtraOper);

  SDVTList VTList = DAG->getVTList(VTs);
  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);

  // Store memory references.
  SmallVector<MachineMemOperand *, 2> MMOs;
  if (MN)
    MMOs.assign(MN->memoperands_begin(), MN->memoperands_end());

  DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);

  // Reset the memory references
  if (MN)
    DAG->setNodeMemRefs(MN, MMOs);
}

static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
  SDNode *GlueDestNode = Glue.getNode();

  // Don't add glue from a node to itself.
  if (GlueDestNode == N) return false;

  // Don't add a glue operand to something that already uses glue.
  if (GlueDestNode &&
      N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
    return false;
  }
  // Don't add glue to something that already has a glue value.
  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;

  SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end());
  if (AddGlue)
    VTs.push_back(MVT::Glue);

  CloneNodeWithValues(N, DAG, VTs, Glue);

  return true;
}

// Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
// node even though simply shrinking the value list is sufficient.
static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
  assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
          !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
         "expected an unused glue value");

  CloneNodeWithValues(N, DAG,
                      makeArrayRef(N->value_begin(), N->getNumValues() - 1));
}

/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
/// This function finds loads of the same base and different offsets. If the
/// offsets are not far apart (target specific), it add MVT::Glue inputs and
/// outputs to ensure they are scheduled together and in order. This
/// optimization may benefit some targets by improving cache locality.
void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
  SDNode *Chain = nullptr;
  unsigned NumOps = Node->getNumOperands();
  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
    Chain = Node->getOperand(NumOps-1).getNode();
  if (!Chain)
    return;

  // Skip any load instruction that has a tied input. There may be an additional
  // dependency requiring a different order than by increasing offsets, and the
  // added glue may introduce a cycle.
  auto hasTiedInput = [this](const SDNode *N) {
    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    for (unsigned I = 0; I != MCID.getNumOperands(); ++I) {
      if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1)
        return true;
    }

    return false;
  };

  // Look for other loads of the same chain. Find loads that are loading from
  // the same base pointer and different offsets.
  SmallPtrSet<SDNode*, 16> Visited;
  SmallVector<int64_t, 4> Offsets;
  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
  bool Cluster = false;
  SDNode *Base = Node;

  if (hasTiedInput(Base))
    return;

  // This algorithm requires a reasonably low use count before finding a match
  // to avoid uselessly blowing up compile time in large blocks.
  unsigned UseCount = 0;
  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
       I != E && UseCount < 100; ++I, ++UseCount) {
    SDNode *User = *I;
    if (User == Node || !Visited.insert(User).second)
      continue;
    int64_t Offset1, Offset2;
    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
        Offset1 == Offset2 ||
        hasTiedInput(User)) {
      // FIXME: Should be ok if they addresses are identical. But earlier
      // optimizations really should have eliminated one of the loads.
      continue;
    }
    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
      Offsets.push_back(Offset1);
    O2SMap.insert(std::make_pair(Offset2, User));
    Offsets.push_back(Offset2);
    if (Offset2 < Offset1)
      Base = User;
    Cluster = true;
    // Reset UseCount to allow more matches.
    UseCount = 0;
  }

  if (!Cluster)
    return;

  // Sort them in increasing order.
  llvm::sort(Offsets);

  // Check if the loads are close enough.
  SmallVector<SDNode*, 4> Loads;
  unsigned NumLoads = 0;
  int64_t BaseOff = Offsets[0];
  SDNode *BaseLoad = O2SMap[BaseOff];
  Loads.push_back(BaseLoad);
  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
    int64_t Offset = Offsets[i];
    SDNode *Load = O2SMap[Offset];
    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
      break; // Stop right here. Ignore loads that are further away.
    Loads.push_back(Load);
    ++NumLoads;
  }

  if (NumLoads == 0)
    return;

  // Cluster loads by adding MVT::Glue outputs and inputs. This also
  // ensure they are scheduled in order of increasing addresses.
  SDNode *Lead = Loads[0];
  SDValue InGlue = SDValue(nullptr, 0);
  if (AddGlue(Lead, InGlue, true, DAG))
    InGlue = SDValue(Lead, Lead->getNumValues() - 1);
  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
    bool OutGlue = I < E - 1;
    SDNode *Load = Loads[I];

    // If AddGlue fails, we could leave an unsused glue value. This should not
    // cause any
    if (AddGlue(Load, InGlue, OutGlue, DAG)) {
      if (OutGlue)
        InGlue = SDValue(Load, Load->getNumValues() - 1);

      ++LoadsClustered;
    }
    else if (!OutGlue && InGlue.getNode())
      RemoveUnusedGlue(InGlue.getNode(), DAG);
  }
}

/// ClusterNodes - Cluster certain nodes which should be scheduled together.
///
void ScheduleDAGSDNodes::ClusterNodes() {
  for (SDNode &NI : DAG->allnodes()) {
    SDNode *Node = &NI;
    if (!Node || !Node->isMachineOpcode())
      continue;

    unsigned Opc = Node->getMachineOpcode();
    const MCInstrDesc &MCID = TII->get(Opc);
    if (MCID.mayLoad())
      // Cluster loads from "near" addresses into combined SUnits.
      ClusterNeighboringLoads(Node);
  }
}

void ScheduleDAGSDNodes::BuildSchedUnits() {
  // During scheduling, the NodeId field of SDNode is used to map SDNodes
  // to their associated SUnits by holding SUnits table indices. A value
  // of -1 means the SDNode does not yet have an associated SUnit.
  unsigned NumNodes = 0;
  for (SDNode &NI : DAG->allnodes()) {
    NI.setNodeId(-1);
    ++NumNodes;
  }

  // Reserve entries in the vector for each of the SUnits we are creating.  This
  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
  // invalidated.
  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
  // This is a temporary workaround.
  SUnits.reserve(NumNodes * 2);

  // Add all nodes in depth first order.
  SmallVector<SDNode*, 64> Worklist;
  SmallPtrSet<SDNode*, 32> Visited;
  Worklist.push_back(DAG->getRoot().getNode());
  Visited.insert(DAG->getRoot().getNode());

  SmallVector<SUnit*, 8> CallSUnits;
  while (!Worklist.empty()) {
    SDNode *NI = Worklist.pop_back_val();

    // Add all operands to the worklist unless they've already been added.
    for (const SDValue &Op : NI->op_values())
      if (Visited.insert(Op.getNode()).second)
        Worklist.push_back(Op.getNode());

    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
      continue;

    // If this node has already been processed, stop now.
    if (NI->getNodeId() != -1) continue;

    SUnit *NodeSUnit = newSUnit(NI);

    // See if anything is glued to this node, if so, add them to glued
    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
    // is required to be the last operand and result of a node.

    // Scan up to find glued preds.
    SDNode *N = NI;
    while (N->getNumOperands() &&
           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
      N = N->getOperand(N->getNumOperands()-1).getNode();
      assert(N->getNodeId() == -1 && "Node already inserted!");
      N->setNodeId(NodeSUnit->NodeNum);
      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
        NodeSUnit->isCall = true;
    }

    // Scan down to find any glued succs.
    N = NI;
    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
      SDValue GlueVal(N, N->getNumValues()-1);

      // There are either zero or one users of the Glue result.
      bool HasGlueUse = false;
      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
           UI != E; ++UI)
        if (GlueVal.isOperandOf(*UI)) {
          HasGlueUse = true;
          assert(N->getNodeId() == -1 && "Node already inserted!");
          N->setNodeId(NodeSUnit->NodeNum);
          N = *UI;
          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
            NodeSUnit->isCall = true;
          break;
        }
      if (!HasGlueUse) break;
    }

    if (NodeSUnit->isCall)
      CallSUnits.push_back(NodeSUnit);

    // Schedule zero-latency TokenFactor below any nodes that may increase the
    // schedule height. Otherwise, ancestors of the TokenFactor may appear to
    // have false stalls.
    if (NI->getOpcode() == ISD::TokenFactor)
      NodeSUnit->isScheduleLow = true;

    // If there are glue operands involved, N is now the bottom-most node
    // of the sequence of nodes that are glued together.
    // Update the SUnit.
    NodeSUnit->setNode(N);
    assert(N->getNodeId() == -1 && "Node already inserted!");
    N->setNodeId(NodeSUnit->NodeNum);

    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
    InitNumRegDefsLeft(NodeSUnit);

    // Assign the Latency field of NodeSUnit using target-provided information.
    computeLatency(NodeSUnit);
  }

  // Find all call operands.
  while (!CallSUnits.empty()) {
    SUnit *SU = CallSUnits.pop_back_val();
    for (const SDNode *SUNode = SU->getNode(); SUNode;
         SUNode = SUNode->getGluedNode()) {
      if (SUNode->getOpcode() != ISD::CopyToReg)
        continue;
      SDNode *SrcN = SUNode->getOperand(2).getNode();
      if (isPassiveNode(SrcN)) continue;   // Not scheduled.
      SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
      SrcSU->isCallOp = true;
    }
  }
}

void ScheduleDAGSDNodes::AddSchedEdges() {
  const TargetSubtargetInfo &ST = MF.getSubtarget();

  // Check to see if the scheduler cares about latencies.
  bool UnitLatencies = forceUnitLatencies();

  // Pass 2: add the preds, succs, etc.
  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
    SUnit *SU = &SUnits[su];
    SDNode *MainNode = SU->getNode();

    if (MainNode->isMachineOpcode()) {
      unsigned Opc = MainNode->getMachineOpcode();
      const MCInstrDesc &MCID = TII->get(Opc);
      for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
        if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
          SU->isTwoAddress = true;
          break;
        }
      }
      if (MCID.isCommutable())
        SU->isCommutable = true;
    }

    // Find all predecessors and successors of the group.
    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
      if (N->isMachineOpcode() &&
          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
        SU->hasPhysRegClobbers = true;
        unsigned NumUsed = InstrEmitter::CountResults(N);
        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
          --NumUsed;    // Skip over unused values at the end.
        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
          SU->hasPhysRegDefs = true;
      }

      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
        SDNode *OpN = N->getOperand(i).getNode();
        if (isPassiveNode(OpN)) continue;   // Not scheduled.
        SUnit *OpSU = &SUnits[OpN->getNodeId()];
        assert(OpSU && "Node has no SUnit!");
        if (OpSU == SU) continue;           // In the same group.

        EVT OpVT = N->getOperand(i).getValueType();
        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
        bool isChain = OpVT == MVT::Other;

        unsigned PhysReg = 0;
        int Cost = 1;
        // Determine if this is a physical register dependency.
        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
        assert((PhysReg == 0 || !isChain) &&
               "Chain dependence via physreg data?");
        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
        // emits a copy from the physical register to a virtual register unless
        // it requires a cross class copy (cost < 0). That means we are only
        // treating "expensive to copy" register dependency as physical register
        // dependency. This may change in the future though.
        if (Cost >= 0 && !StressSched)
          PhysReg = 0;

        // If this is a ctrl dep, latency is 1.
        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
        // Special-case TokenFactor chains as zero-latency.
        if(isChain && OpN->getOpcode() == ISD::TokenFactor)
          OpLatency = 0;

        SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
          : SDep(OpSU, SDep::Data, PhysReg);
        Dep.setLatency(OpLatency);
        if (!isChain && !UnitLatencies) {
          computeOperandLatency(OpN, N, i, Dep);
          ST.adjustSchedDependency(OpSU, SU, Dep);
        }

        if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
          // Multiple register uses are combined in the same SUnit. For example,
          // we could have a set of glued nodes with all their defs consumed by
          // another set of glued nodes. Register pressure tracking sees this as
          // a single use, so to keep pressure balanced we reduce the defs.
          //
          // We can't tell (without more book-keeping) if this results from
          // glued nodes or duplicate operands. As long as we don't reduce
          // NumRegDefsLeft to zero, we handle the common cases well.
          --OpSU->NumRegDefsLeft;
        }
      }
    }
  }
}

/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
/// are input.  This SUnit graph is similar to the SelectionDAG, but
/// excludes nodes that aren't interesting to scheduling, and represents
/// glued together nodes with a single SUnit.
void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) {
  // Cluster certain nodes which should be scheduled together.
  ClusterNodes();
  // Populate the SUnits array.
  BuildSchedUnits();
  // Compute all the scheduling dependencies between nodes.
  AddSchedEdges();
}

// Initialize NumNodeDefs for the current Node's opcode.
void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
  // Check for phys reg copy.
  if (!Node)
    return;

  if (!Node->isMachineOpcode()) {
    if (Node->getOpcode() == ISD::CopyFromReg)
      NodeNumDefs = 1;
    else
      NodeNumDefs = 0;
    return;
  }
  unsigned POpc = Node->getMachineOpcode();
  if (POpc == TargetOpcode::IMPLICIT_DEF) {
    // No register need be allocated for this.
    NodeNumDefs = 0;
    return;
  }
  if (POpc == TargetOpcode::PATCHPOINT &&
      Node->getValueType(0) == MVT::Other) {
    // PATCHPOINT is defined to have one result, but it might really have none
    // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
    // real definition.
    NodeNumDefs = 0;
    return;
  }
  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
  // Some instructions define regs that are not represented in the selection DAG
  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
  DefIdx = 0;
}

// Construct a RegDefIter for this SUnit and find the first valid value.
ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
                                           const ScheduleDAGSDNodes *SD)
  : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
  InitNodeNumDefs();
  Advance();
}

// Advance to the next valid value defined by the SUnit.
void ScheduleDAGSDNodes::RegDefIter::Advance() {
  for (;Node;) { // Visit all glued nodes.
    for (;DefIdx < NodeNumDefs; ++DefIdx) {
      if (!Node->hasAnyUseOfValue(DefIdx))
        continue;
      ValueType = Node->getSimpleValueType(DefIdx);
      ++DefIdx;
      return; // Found a normal regdef.
    }
    Node = Node->getGluedNode();
    if (!Node) {
      return; // No values left to visit.
    }
    InitNodeNumDefs();
  }
}

void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
    ++SU->NumRegDefsLeft;
  }
}

void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
  SDNode *N = SU->getNode();

  // TokenFactor operands are considered zero latency, and some schedulers
  // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
  // whenever node latency is nonzero.
  if (N && N->getOpcode() == ISD::TokenFactor) {
    SU->Latency = 0;
    return;
  }

  // Check to see if the scheduler cares about latencies.
  if (forceUnitLatencies()) {
    SU->Latency = 1;
    return;
  }

  if (!InstrItins || InstrItins->isEmpty()) {
    if (N && N->isMachineOpcode() &&
        TII->isHighLatencyDef(N->getMachineOpcode()))
      SU->Latency = HighLatencyCycles;
    else
      SU->Latency = 1;
    return;
  }

  // Compute the latency for the node.  We use the sum of the latencies for
  // all nodes glued together into this SUnit.
  SU->Latency = 0;
  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
    if (N->isMachineOpcode())
      SU->Latency += TII->getInstrLatency(InstrItins, N);
}

void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
                                               unsigned OpIdx, SDep& dep) const{
  // Check to see if the scheduler cares about latencies.
  if (forceUnitLatencies())
    return;

  if (dep.getKind() != SDep::Data)
    return;

  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
  if (Use->isMachineOpcode())
    // Adjust the use operand index by num of defs.
    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
      !BB->succ_empty()) {
    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
    if (Register::isVirtualRegister(Reg))
      // This copy is a liveout value. It is likely coalesced, so reduce the
      // latency so not to penalize the def.
      // FIXME: need target specific adjustment here?
      Latency = (Latency > 1) ? Latency - 1 : 1;
  }
  if (Latency >= 0)
    dep.setLatency(Latency);
}

void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  dumpNodeName(SU);
  dbgs() << ": ";

  if (!SU.getNode()) {
    dbgs() << "PHYS REG COPY\n";
    return;
  }

  SU.getNode()->dump(DAG);
  dbgs() << "\n";
  SmallVector<SDNode *, 4> GluedNodes;
  for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode())
    GluedNodes.push_back(N);
  while (!GluedNodes.empty()) {
    dbgs() << "    ";
    GluedNodes.back()->dump(DAG);
    dbgs() << "\n";
    GluedNodes.pop_back();
  }
#endif
}

void ScheduleDAGSDNodes::dump() const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  if (EntrySU.getNode() != nullptr)
    dumpNodeAll(EntrySU);
  for (const SUnit &SU : SUnits)
    dumpNodeAll(SU);
  if (ExitSU.getNode() != nullptr)
    dumpNodeAll(ExitSU);
#endif
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void ScheduleDAGSDNodes::dumpSchedule() const {
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    if (SUnit *SU = Sequence[i])
      dumpNode(*SU);
    else
      dbgs() << "**** NOOP ****\n";
  }
}
#endif

#ifndef NDEBUG
/// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
/// their state is consistent with the nodes listed in Sequence.
///
void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
  unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
  unsigned Noops = 0;
  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    if (!Sequence[i])
      ++Noops;
  assert(Sequence.size() - Noops == ScheduledNodes &&
         "The number of nodes scheduled doesn't match the expected number!");
}
#endif // NDEBUG

/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
static void
ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
                   SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
                   DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
  if (!N->getHasDebugValue())
    return;

  // Opportunistically insert immediate dbg_value uses, i.e. those with the same
  // source order number as N.
  MachineBasicBlock *BB = Emitter.getBlock();
  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
  for (auto DV : DAG->GetDbgValues(N)) {
    if (DV->isEmitted())
      continue;
    unsigned DVOrder = DV->getOrder();
    if (!Order || DVOrder == Order) {
      MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
      if (DbgMI) {
        Orders.push_back({DVOrder, DbgMI});
        BB->insert(InsertPos, DbgMI);
      }
    }
  }
}

// ProcessSourceNode - Process nodes with source order numbers. These are added
// to a vector which EmitSchedule uses to determine how to insert dbg_value
// instructions in the right order.
static void
ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
                  DenseMap<SDValue, unsigned> &VRBaseMap,
                  SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders,
                  SmallSet<unsigned, 8> &Seen, MachineInstr *NewInsn) {
  unsigned Order = N->getIROrder();
  if (!Order || Seen.count(Order)) {
    // Process any valid SDDbgValues even if node does not have any order
    // assigned.
    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
    return;
  }

  // If a new instruction was generated for this Order number, record it.
  // Otherwise, leave this order number unseen: we will either find later
  // instructions for it, or leave it unseen if there were no instructions at
  // all.
  if (NewInsn) {
    Seen.insert(Order);
    Orders.push_back({Order, NewInsn});
  }

  // Even if no instruction was generated, a Value may have become defined via
  // earlier nodes. Try to process them now.
  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
}

void ScheduleDAGSDNodes::
EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
                MachineBasicBlock::iterator InsertPos) {
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;  // ignore chain preds
    if (I->getSUnit()->CopyDstRC) {
      // Copy to physical register.
      DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
      assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
      // Find the destination physical register.
      unsigned Reg = 0;
      for (SUnit::const_succ_iterator II = SU->Succs.begin(),
             EE = SU->Succs.end(); II != EE; ++II) {
        if (II->isCtrl()) continue;  // ignore chain preds
        if (II->getReg()) {
          Reg = II->getReg();
          break;
        }
      }
      BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
        .addReg(VRI->second);
    } else {
      // Copy from physical register.
      assert(I->getReg() && "Unknown physical register!");
      Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
      bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
      (void)isNew; // Silence compiler warning.
      assert(isNew && "Node emitted out of order - early");
      BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
        .addReg(I->getReg());
    }
    break;
  }
}

/// EmitSchedule - Emit the machine code in scheduled order. Return the new
/// InsertPos and MachineBasicBlock that contains this insertion
/// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
/// not necessarily refer to returned BB. The emitter may split blocks.
MachineBasicBlock *ScheduleDAGSDNodes::
EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
  InstrEmitter Emitter(BB, InsertPos);
  DenseMap<SDValue, unsigned> VRBaseMap;
  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
  SmallSet<unsigned, 8> Seen;
  bool HasDbg = DAG->hasDebugValues();

  // Emit a node, and determine where its first instruction is for debuginfo.
  // Zero, one, or multiple instructions can be created when emitting a node.
  auto EmitNode =
      [&](SDNode *Node, bool IsClone, bool IsCloned,
          DenseMap<SDValue, unsigned> &VRBaseMap) -> MachineInstr * {
    // Fetch instruction prior to this, or end() if nonexistant.
    auto GetPrevInsn = [&](MachineBasicBlock::iterator I) {
      if (I == BB->begin())
        return BB->end();
      else
        return std::prev(Emitter.getInsertPos());
    };

    MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos());
    Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap);
    MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos());

    // If the iterator did not change, no instructions were inserted.
    if (Before == After)
      return nullptr;

    MachineInstr *MI;
    if (Before == BB->end()) {
      // There were no prior instructions; the new ones must start at the
      // beginning of the block.
      MI = &Emitter.getBlock()->instr_front();
    } else {
      // Return first instruction after the pre-existing instructions.
      MI = &*std::next(Before);
    }

    if (MI->isCall() && DAG->getTarget().Options.EnableDebugEntryValues)
      MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node));

    return MI;
  };

  // If this is the first BB, emit byval parameter dbg_value's.
  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
    for (; PDI != PDE; ++PDI) {
      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
      if (DbgMI) {
        BB->insert(InsertPos, DbgMI);
        // We re-emit the dbg_value closer to its use, too, after instructions
        // are emitted to the BB.
        (*PDI)->clearIsEmitted();
      }
    }
  }

  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    SUnit *SU = Sequence[i];
    if (!SU) {
      // Null SUnit* is a noop.
      TII->insertNoop(*Emitter.getBlock(), InsertPos);
      continue;
    }

    // For pre-regalloc scheduling, create instructions corresponding to the
    // SDNode and any glued SDNodes and append them to the block.
    if (!SU->getNode()) {
      // Emit a copy.
      EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
      continue;
    }

    SmallVector<SDNode *, 4> GluedNodes;
    for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
      GluedNodes.push_back(N);
    while (!GluedNodes.empty()) {
      SDNode *N = GluedNodes.back();
      auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
      // Remember the source order of the inserted instruction.
      if (HasDbg)
        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn);

      if (MDNode *MD = DAG->getHeapAllocSite(N))
        if (NewInsn && NewInsn->isCall())
          NewInsn->setHeapAllocMarker(MF, MD);

      GluedNodes.pop_back();
    }
    auto NewInsn =
        EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
    // Remember the source order of the inserted instruction.
    if (HasDbg)
      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen,
                        NewInsn);

    if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) {
      if (NewInsn && NewInsn->isCall())
        NewInsn->setHeapAllocMarker(MF, MD);
    }
  }

  // Insert all the dbg_values which have not already been inserted in source
  // order sequence.
  if (HasDbg) {
    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();

    // Sort the source order instructions and use the order to insert debug
    // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
    // regardless of the host's implementation fo std::sort.
    llvm::stable_sort(Orders, less_first());
    std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
                     [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
                       return LHS->getOrder() < RHS->getOrder();
                     });

    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
    // Now emit the rest according to source order.
    unsigned LastOrder = 0;
    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
      unsigned Order = Orders[i].first;
      MachineInstr *MI = Orders[i].second;
      // Insert all SDDbgValue's whose order(s) are before "Order".
      assert(MI);
      for (; DI != DE; ++DI) {
        if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
          break;
        if ((*DI)->isEmitted())
          continue;

        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
        if (DbgMI) {
          if (!LastOrder)
            // Insert to start of the BB (after PHIs).
            BB->insert(BBBegin, DbgMI);
          else {
            // Insert at the instruction, which may be in a different
            // block, if the block was split by a custom inserter.
            MachineBasicBlock::iterator Pos = MI;
            MI->getParent()->insert(Pos, DbgMI);
          }
        }
      }
      LastOrder = Order;
    }
    // Add trailing DbgValue's before the terminator. FIXME: May want to add
    // some of them before one or more conditional branches?
    SmallVector<MachineInstr*, 8> DbgMIs;
    for (; DI != DE; ++DI) {
      if ((*DI)->isEmitted())
        continue;
      assert((*DI)->getOrder() >= LastOrder &&
             "emitting DBG_VALUE out of order");
      if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
        DbgMIs.push_back(DbgMI);
    }

    MachineBasicBlock *InsertBB = Emitter.getBlock();
    MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
    InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());

    SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
    SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
    // Now emit the rest according to source order.
    LastOrder = 0;
    for (const auto &InstrOrder : Orders) {
      unsigned Order = InstrOrder.first;
      MachineInstr *MI = InstrOrder.second;
      if (!MI)
        continue;

      // Insert all SDDbgLabel's whose order(s) are before "Order".
      for (; DLI != DLE &&
             (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
             ++DLI) {
        MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
        if (DbgMI) {
          if (!LastOrder)
            // Insert to start of the BB (after PHIs).
            BB->insert(BBBegin, DbgMI);
          else {
            // Insert at the instruction, which may be in a different
            // block, if the block was split by a custom inserter.
            MachineBasicBlock::iterator Pos = MI;
            MI->getParent()->insert(Pos, DbgMI);
          }
        }
      }
      if (DLI == DLE)
        break;

      LastOrder = Order;
    }
  }

  InsertPos = Emitter.getInsertPos();
  return Emitter.getBlock();
}

/// Return the basic block label.
std::string ScheduleDAGSDNodes::getDAGName() const {
  return "sunit-dag." + BB->getFullName();
}