ScheduleDAGRRList.cpp 111 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
//===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements bottom-up and top-down register pressure reduction list
// schedulers, using standard algorithms.  The basic approach uses a priority
// queue of available nodes to schedule.  One at a time, nodes are taken from
// the priority queue (thus in priority order), checked for legality to
// schedule, and emitted if legal.
//
//===----------------------------------------------------------------------===//

#include "ScheduleDAGSDNodes.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "pre-RA-sched"

STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
STATISTIC(NumUnfolds,    "Number of nodes unfolded");
STATISTIC(NumDups,       "Number of duplicated nodes");
STATISTIC(NumPRCopies,   "Number of physical register copies");

static RegisterScheduler
  burrListDAGScheduler("list-burr",
                       "Bottom-up register reduction list scheduling",
                       createBURRListDAGScheduler);

static RegisterScheduler
  sourceListDAGScheduler("source",
                         "Similar to list-burr but schedules in source "
                         "order when possible",
                         createSourceListDAGScheduler);

static RegisterScheduler
  hybridListDAGScheduler("list-hybrid",
                         "Bottom-up register pressure aware list scheduling "
                         "which tries to balance latency and register pressure",
                         createHybridListDAGScheduler);

static RegisterScheduler
  ILPListDAGScheduler("list-ilp",
                      "Bottom-up register pressure aware list scheduling "
                      "which tries to balance ILP and register pressure",
                      createILPListDAGScheduler);

static cl::opt<bool> DisableSchedCycles(
  "disable-sched-cycles", cl::Hidden, cl::init(false),
  cl::desc("Disable cycle-level precision during preRA scheduling"));

// Temporary sched=list-ilp flags until the heuristics are robust.
// Some options are also available under sched=list-hybrid.
static cl::opt<bool> DisableSchedRegPressure(
  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
  cl::desc("Disable regpressure priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedLiveUses(
  "disable-sched-live-uses", cl::Hidden, cl::init(true),
  cl::desc("Disable live use priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedVRegCycle(
  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
  cl::desc("Disable virtual register cycle interference checks"));
static cl::opt<bool> DisableSchedPhysRegJoin(
  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
  cl::desc("Disable physreg def-use affinity"));
static cl::opt<bool> DisableSchedStalls(
  "disable-sched-stalls", cl::Hidden, cl::init(true),
  cl::desc("Disable no-stall priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedCriticalPath(
  "disable-sched-critical-path", cl::Hidden, cl::init(false),
  cl::desc("Disable critical path priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedHeight(
  "disable-sched-height", cl::Hidden, cl::init(false),
  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
static cl::opt<bool> Disable2AddrHack(
  "disable-2addr-hack", cl::Hidden, cl::init(true),
  cl::desc("Disable scheduler's two-address hack"));

static cl::opt<int> MaxReorderWindow(
  "max-sched-reorder", cl::Hidden, cl::init(6),
  cl::desc("Number of instructions to allow ahead of the critical path "
           "in sched=list-ilp"));

static cl::opt<unsigned> AvgIPC(
  "sched-avg-ipc", cl::Hidden, cl::init(1),
  cl::desc("Average inst/cycle whan no target itinerary exists."));

namespace {

//===----------------------------------------------------------------------===//
/// ScheduleDAGRRList - The actual register reduction list scheduler
/// implementation.  This supports both top-down and bottom-up scheduling.
///
class ScheduleDAGRRList : public ScheduleDAGSDNodes {
private:
  /// NeedLatency - True if the scheduler will make use of latency information.
  bool NeedLatency;

  /// AvailableQueue - The priority queue to use for the available SUnits.
  SchedulingPriorityQueue *AvailableQueue;

  /// PendingQueue - This contains all of the instructions whose operands have
  /// been issued, but their results are not ready yet (due to the latency of
  /// the operation).  Once the operands becomes available, the instruction is
  /// added to the AvailableQueue.
  std::vector<SUnit *> PendingQueue;

  /// HazardRec - The hazard recognizer to use.
  ScheduleHazardRecognizer *HazardRec;

  /// CurCycle - The current scheduler state corresponds to this cycle.
  unsigned CurCycle = 0;

  /// MinAvailableCycle - Cycle of the soonest available instruction.
  unsigned MinAvailableCycle;

  /// IssueCount - Count instructions issued in this cycle
  /// Currently valid only for bottom-up scheduling.
  unsigned IssueCount;

  /// LiveRegDefs - A set of physical registers and their definition
  /// that are "live". These nodes must be scheduled before any other nodes that
  /// modifies the registers can be scheduled.
  unsigned NumLiveRegs;
  std::unique_ptr<SUnit*[]> LiveRegDefs;
  std::unique_ptr<SUnit*[]> LiveRegGens;

  // Collect interferences between physical register use/defs.
  // Each interference is an SUnit and set of physical registers.
  SmallVector<SUnit*, 4> Interferences;

  using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;

  LRegsMapT LRegsMap;

  /// Topo - A topological ordering for SUnits which permits fast IsReachable
  /// and similar queries.
  ScheduleDAGTopologicalSort Topo;

  // Hack to keep track of the inverse of FindCallSeqStart without more crazy
  // DAG crawling.
  DenseMap<SUnit*, SUnit*> CallSeqEndForStart;

public:
  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
                    SchedulingPriorityQueue *availqueue,
                    CodeGenOpt::Level OptLevel)
    : ScheduleDAGSDNodes(mf),
      NeedLatency(needlatency), AvailableQueue(availqueue),
      Topo(SUnits, nullptr) {
    const TargetSubtargetInfo &STI = mf.getSubtarget();
    if (DisableSchedCycles || !NeedLatency)
      HazardRec = new ScheduleHazardRecognizer();
    else
      HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
  }

  ~ScheduleDAGRRList() override {
    delete HazardRec;
    delete AvailableQueue;
  }

  void Schedule() override;

  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }

  /// IsReachable - Checks if SU is reachable from TargetSU.
  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
    return Topo.IsReachable(SU, TargetSU);
  }

  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
  /// create a cycle.
  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    return Topo.WillCreateCycle(SU, TargetSU);
  }

  /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU.
  /// This returns true if this is a new predecessor.
  /// Does *NOT* update the topological ordering! It just queues an update.
  void AddPredQueued(SUnit *SU, const SDep &D) {
    Topo.AddPredQueued(SU, D.getSUnit());
    SU->addPred(D);
  }

  /// AddPred - adds a predecessor edge to SUnit SU.
  /// This returns true if this is a new predecessor.
  /// Updates the topological ordering if required.
  void AddPred(SUnit *SU, const SDep &D) {
    Topo.AddPred(SU, D.getSUnit());
    SU->addPred(D);
  }

  /// RemovePred - removes a predecessor edge from SUnit SU.
  /// This returns true if an edge was removed.
  /// Updates the topological ordering if required.
  void RemovePred(SUnit *SU, const SDep &D) {
    Topo.RemovePred(SU, D.getSUnit());
    SU->removePred(D);
  }

private:
  bool isReady(SUnit *SU) {
    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
      AvailableQueue->isReady(SU);
  }

  void ReleasePred(SUnit *SU, const SDep *PredEdge);
  void ReleasePredecessors(SUnit *SU);
  void ReleasePending();
  void AdvanceToCycle(unsigned NextCycle);
  void AdvancePastStalls(SUnit *SU);
  void EmitNode(SUnit *SU);
  void ScheduleNodeBottomUp(SUnit*);
  void CapturePred(SDep *PredEdge);
  void UnscheduleNodeBottomUp(SUnit*);
  void RestoreHazardCheckerBottomUp();
  void BacktrackBottomUp(SUnit*, SUnit*);
  SUnit *TryUnfoldSU(SUnit *);
  SUnit *CopyAndMoveSuccessors(SUnit*);
  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
                                const TargetRegisterClass*,
                                const TargetRegisterClass*,
                                SmallVectorImpl<SUnit*>&);
  bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);

  void releaseInterferences(unsigned Reg = 0);

  SUnit *PickNodeToScheduleBottomUp();
  void ListScheduleBottomUp();

  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
  SUnit *CreateNewSUnit(SDNode *N) {
    unsigned NumSUnits = SUnits.size();
    SUnit *NewNode = newSUnit(N);
    // Update the topological ordering.
    if (NewNode->NodeNum >= NumSUnits)
      Topo.MarkDirty();
    return NewNode;
  }

  /// CreateClone - Creates a new SUnit from an existing one.
  SUnit *CreateClone(SUnit *N) {
    unsigned NumSUnits = SUnits.size();
    SUnit *NewNode = Clone(N);
    // Update the topological ordering.
    if (NewNode->NodeNum >= NumSUnits)
      Topo.MarkDirty();
    return NewNode;
  }

  /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
  /// need actual latency information but the hybrid scheduler does.
  bool forceUnitLatencies() const override {
    return !NeedLatency;
  }
};

}  // end anonymous namespace

/// GetCostForDef - Looks up the register class and cost for a given definition.
/// Typically this just means looking up the representative register class,
/// but for untyped values (MVT::Untyped) it means inspecting the node's
/// opcode to determine what register class is being generated.
static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
                          const TargetLowering *TLI,
                          const TargetInstrInfo *TII,
                          const TargetRegisterInfo *TRI,
                          unsigned &RegClass, unsigned &Cost,
                          const MachineFunction &MF) {
  MVT VT = RegDefPos.GetValue();

  // Special handling for untyped values.  These values can only come from
  // the expansion of custom DAG-to-DAG patterns.
  if (VT == MVT::Untyped) {
    const SDNode *Node = RegDefPos.GetNode();

    // Special handling for CopyFromReg of untyped values.
    if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
      unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
      RegClass = RC->getID();
      Cost = 1;
      return;
    }

    unsigned Opcode = Node->getMachineOpcode();
    if (Opcode == TargetOpcode::REG_SEQUENCE) {
      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
      RegClass = RC->getID();
      Cost = 1;
      return;
    }

    unsigned Idx = RegDefPos.GetIdx();
    const MCInstrDesc Desc = TII->get(Opcode);
    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
    RegClass = RC->getID();
    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
    // better way to determine it.
    Cost = 1;
  } else {
    RegClass = TLI->getRepRegClassFor(VT)->getID();
    Cost = TLI->getRepRegClassCostFor(VT);
  }
}

/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
  LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
                    << " '" << BB->getName() << "' **********\n");

  CurCycle = 0;
  IssueCount = 0;
  MinAvailableCycle =
      DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
  NumLiveRegs = 0;
  // Allocate slots for each physical register, plus one for a special register
  // to track the virtual resource of a calling sequence.
  LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
  LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
  CallSeqEndForStart.clear();
  assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");

  // Build the scheduling graph.
  BuildSchedGraph(nullptr);

  LLVM_DEBUG(dump());
  Topo.MarkDirty();

  AvailableQueue->initNodes(SUnits);

  HazardRec->Reset();

  // Execute the actual scheduling loop.
  ListScheduleBottomUp();

  AvailableQueue->releaseState();

  LLVM_DEBUG({
    dbgs() << "*** Final schedule ***\n";
    dumpSchedule();
    dbgs() << '\n';
  });
}

//===----------------------------------------------------------------------===//
//  Bottom-Up Scheduling
//===----------------------------------------------------------------------===//

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();

#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    dumpNode(*PredSU);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(nullptr);
  }
#endif
  --PredSU->NumSuccsLeft;

  if (!forceUnitLatencies()) {
    // Updating predecessor's height. This is now the cycle when the
    // predecessor can be scheduled without causing a pipeline stall.
    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
  }

  // If all the node's successors are scheduled, this node is ready
  // to be scheduled. Ignore the special EntrySU node.
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    PredSU->isAvailable = true;

    unsigned Height = PredSU->getHeight();
    if (Height < MinAvailableCycle)
      MinAvailableCycle = Height;

    if (isReady(PredSU)) {
      AvailableQueue->push(PredSU);
    }
    // CapturePred and others may have left the node in the pending queue, avoid
    // adding it twice.
    else if (!PredSU->isPending) {
      PredSU->isPending = true;
      PendingQueue.push_back(PredSU);
    }
  }
}

/// IsChainDependent - Test if Outer is reachable from Inner through
/// chain dependencies.
static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
                             unsigned NestLevel,
                             const TargetInstrInfo *TII) {
  SDNode *N = Outer;
  while (true) {
    if (N == Inner)
      return true;
    // For a TokenFactor, examine each operand. There may be multiple ways
    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    // most nesting in order to ensure that we find the corresponding match.
    if (N->getOpcode() == ISD::TokenFactor) {
      for (const SDValue &Op : N->op_values())
        if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
          return true;
      return false;
    }
    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    if (N->isMachineOpcode()) {
      if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
        ++NestLevel;
      } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
        if (NestLevel == 0)
          return false;
        --NestLevel;
      }
    }
    // Otherwise, find the chain and continue climbing.
    for (const SDValue &Op : N->op_values())
      if (Op.getValueType() == MVT::Other) {
        N = Op.getNode();
        goto found_chain_operand;
      }
    return false;
  found_chain_operand:;
    if (N->getOpcode() == ISD::EntryToken)
      return false;
  }
}

/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
/// the corresponding (lowered) CALLSEQ_BEGIN node.
///
/// NestLevel and MaxNested are used in recursion to indcate the current level
/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
/// level seen so far.
///
/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
static SDNode *
FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
                 const TargetInstrInfo *TII) {
  while (true) {
    // For a TokenFactor, examine each operand. There may be multiple ways
    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    // most nesting in order to ensure that we find the corresponding match.
    if (N->getOpcode() == ISD::TokenFactor) {
      SDNode *Best = nullptr;
      unsigned BestMaxNest = MaxNest;
      for (const SDValue &Op : N->op_values()) {
        unsigned MyNestLevel = NestLevel;
        unsigned MyMaxNest = MaxNest;
        if (SDNode *New = FindCallSeqStart(Op.getNode(),
                                           MyNestLevel, MyMaxNest, TII))
          if (!Best || (MyMaxNest > BestMaxNest)) {
            Best = New;
            BestMaxNest = MyMaxNest;
          }
      }
      assert(Best);
      MaxNest = BestMaxNest;
      return Best;
    }
    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    if (N->isMachineOpcode()) {
      if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
        ++NestLevel;
        MaxNest = std::max(MaxNest, NestLevel);
      } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
        assert(NestLevel != 0);
        --NestLevel;
        if (NestLevel == 0)
          return N;
      }
    }
    // Otherwise, find the chain and continue climbing.
    for (const SDValue &Op : N->op_values())
      if (Op.getValueType() == MVT::Other) {
        N = Op.getNode();
        goto found_chain_operand;
      }
    return nullptr;
  found_chain_operand:;
    if (N->getOpcode() == ISD::EntryToken)
      return nullptr;
  }
}

/// Call ReleasePred for each predecessor, then update register live def/gen.
/// Always update LiveRegDefs for a register dependence even if the current SU
/// also defines the register. This effectively create one large live range
/// across a sequence of two-address node. This is important because the
/// entire chain must be scheduled together. Example:
///
/// flags = (3) add
/// flags = (2) addc flags
/// flags = (1) addc flags
///
/// results in
///
/// LiveRegDefs[flags] = 3
/// LiveRegGens[flags] = 1
///
/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
/// interference on flags.
void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
  // Bottom up: release predecessors
  for (SDep &Pred : SU->Preds) {
    ReleasePred(SU, &Pred);
    if (Pred.isAssignedRegDep()) {
      // This is a physical register dependency and it's impossible or
      // expensive to copy the register. Make sure nothing that can
      // clobber the register is scheduled between the predecessor and
      // this node.
      SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
      assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&
             "interference on register dependence");
      LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
      if (!LiveRegGens[Pred.getReg()]) {
        ++NumLiveRegs;
        LiveRegGens[Pred.getReg()] = SU;
      }
    }
  }

  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
  // these nodes, to prevent other calls from being interscheduled with them.
  unsigned CallResource = TRI->getNumRegs();
  if (!LiveRegDefs[CallResource])
    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
      if (Node->isMachineOpcode() &&
          Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
        unsigned NestLevel = 0;
        unsigned MaxNest = 0;
        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
        assert(N && "Must find call sequence start");

        SUnit *Def = &SUnits[N->getNodeId()];
        CallSeqEndForStart[Def] = SU;

        ++NumLiveRegs;
        LiveRegDefs[CallResource] = Def;
        LiveRegGens[CallResource] = SU;
        break;
      }
}

/// Check to see if any of the pending instructions are ready to issue.  If
/// so, add them to the available queue.
void ScheduleDAGRRList::ReleasePending() {
  if (DisableSchedCycles) {
    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
    return;
  }

  // If the available queue is empty, it is safe to reset MinAvailableCycle.
  if (AvailableQueue->empty())
    MinAvailableCycle = std::numeric_limits<unsigned>::max();

  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    unsigned ReadyCycle = PendingQueue[i]->getHeight();
    if (ReadyCycle < MinAvailableCycle)
      MinAvailableCycle = ReadyCycle;

    if (PendingQueue[i]->isAvailable) {
      if (!isReady(PendingQueue[i]))
          continue;
      AvailableQueue->push(PendingQueue[i]);
    }
    PendingQueue[i]->isPending = false;
    PendingQueue[i] = PendingQueue.back();
    PendingQueue.pop_back();
    --i; --e;
  }
}

/// Move the scheduler state forward by the specified number of Cycles.
void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
  if (NextCycle <= CurCycle)
    return;

  IssueCount = 0;
  AvailableQueue->setCurCycle(NextCycle);
  if (!HazardRec->isEnabled()) {
    // Bypass lots of virtual calls in case of long latency.
    CurCycle = NextCycle;
  }
  else {
    for (; CurCycle != NextCycle; ++CurCycle) {
      HazardRec->RecedeCycle();
    }
  }
  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
  // available Q to release pending nodes at least once before popping.
  ReleasePending();
}

/// Move the scheduler state forward until the specified node's dependents are
/// ready and can be scheduled with no resource conflicts.
void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
  if (DisableSchedCycles)
    return;

  // FIXME: Nodes such as CopyFromReg probably should not advance the current
  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
  // has predecessors the cycle will be advanced when they are scheduled.
  // But given the crude nature of modeling latency though such nodes, we
  // currently need to treat these nodes like real instructions.
  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;

  unsigned ReadyCycle = SU->getHeight();

  // Bump CurCycle to account for latency. We assume the latency of other
  // available instructions may be hidden by the stall (not a full pipe stall).
  // This updates the hazard recognizer's cycle before reserving resources for
  // this instruction.
  AdvanceToCycle(ReadyCycle);

  // Calls are scheduled in their preceding cycle, so don't conflict with
  // hazards from instructions after the call. EmitNode will reset the
  // scoreboard state before emitting the call.
  if (SU->isCall)
    return;

  // FIXME: For resource conflicts in very long non-pipelined stages, we
  // should probably skip ahead here to avoid useless scoreboard checks.
  int Stalls = 0;
  while (true) {
    ScheduleHazardRecognizer::HazardType HT =
      HazardRec->getHazardType(SU, -Stalls);

    if (HT == ScheduleHazardRecognizer::NoHazard)
      break;

    ++Stalls;
  }
  AdvanceToCycle(CurCycle + Stalls);
}

/// Record this SUnit in the HazardRecognizer.
/// Does not update CurCycle.
void ScheduleDAGRRList::EmitNode(SUnit *SU) {
  if (!HazardRec->isEnabled())
    return;

  // Check for phys reg copy.
  if (!SU->getNode())
    return;

  switch (SU->getNode()->getOpcode()) {
  default:
    assert(SU->getNode()->isMachineOpcode() &&
           "This target-independent node should not be scheduled.");
    break;
  case ISD::MERGE_VALUES:
  case ISD::TokenFactor:
  case ISD::LIFETIME_START:
  case ISD::LIFETIME_END:
  case ISD::CopyToReg:
  case ISD::CopyFromReg:
  case ISD::EH_LABEL:
    // Noops don't affect the scoreboard state. Copies are likely to be
    // removed.
    return;
  case ISD::INLINEASM:
  case ISD::INLINEASM_BR:
    // For inline asm, clear the pipeline state.
    HazardRec->Reset();
    return;
  }
  if (SU->isCall) {
    // Calls are scheduled with their preceding instructions. For bottom-up
    // scheduling, clear the pipeline state before emitting.
    HazardRec->Reset();
  }

  HazardRec->EmitInstruction(SU);
}

static void resetVRegCycle(SUnit *SU);

/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
  LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
  LLVM_DEBUG(dumpNode(*SU));

#ifndef NDEBUG
  if (CurCycle < SU->getHeight())
    LLVM_DEBUG(dbgs() << "   Height [" << SU->getHeight()
                      << "] pipeline stall!\n");
#endif

  // FIXME: Do not modify node height. It may interfere with
  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
  // node its ready cycle can aid heuristics, and after scheduling it can
  // indicate the scheduled cycle.
  SU->setHeightToAtLeast(CurCycle);

  // Reserve resources for the scheduled instruction.
  EmitNode(SU);

  Sequence.push_back(SU);

  AvailableQueue->scheduledNode(SU);

  // If HazardRec is disabled, and each inst counts as one cycle, then
  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
  // PendingQueue for schedulers that implement HasReadyFilter.
  if (!HazardRec->isEnabled() && AvgIPC < 2)
    AdvanceToCycle(CurCycle + 1);

  // Update liveness of predecessors before successors to avoid treating a
  // two-address node as a live range def.
  ReleasePredecessors(SU);

  // Release all the implicit physical register defs that are live.
  for (SDep &Succ : SU->Succs) {
    // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
    if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
      --NumLiveRegs;
      LiveRegDefs[Succ.getReg()] = nullptr;
      LiveRegGens[Succ.getReg()] = nullptr;
      releaseInterferences(Succ.getReg());
    }
  }
  // Release the special call resource dependence, if this is the beginning
  // of a call.
  unsigned CallResource = TRI->getNumRegs();
  if (LiveRegDefs[CallResource] == SU)
    for (const SDNode *SUNode = SU->getNode(); SUNode;
         SUNode = SUNode->getGluedNode()) {
      if (SUNode->isMachineOpcode() &&
          SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
        --NumLiveRegs;
        LiveRegDefs[CallResource] = nullptr;
        LiveRegGens[CallResource] = nullptr;
        releaseInterferences(CallResource);
      }
    }

  resetVRegCycle(SU);

  SU->isScheduled = true;

  // Conditions under which the scheduler should eagerly advance the cycle:
  // (1) No available instructions
  // (2) All pipelines full, so available instructions must have hazards.
  //
  // If HazardRec is disabled, the cycle was pre-advanced before calling
  // ReleasePredecessors. In that case, IssueCount should remain 0.
  //
  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
  if (HazardRec->isEnabled() || AvgIPC > 1) {
    if (SU->getNode() && SU->getNode()->isMachineOpcode())
      ++IssueCount;
    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
      AdvanceToCycle(CurCycle + 1);
  }
}

/// CapturePred - This does the opposite of ReleasePred. Since SU is being
/// unscheduled, increase the succ left count of its predecessors. Remove
/// them from AvailableQueue if necessary.
void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();
  if (PredSU->isAvailable) {
    PredSU->isAvailable = false;
    if (!PredSU->isPending)
      AvailableQueue->remove(PredSU);
  }

  assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
         "NumSuccsLeft will overflow!");
  ++PredSU->NumSuccsLeft;
}

/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
/// its predecessor states to reflect the change.
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
  LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
  LLVM_DEBUG(dumpNode(*SU));

  for (SDep &Pred : SU->Preds) {
    CapturePred(&Pred);
    if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
      assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&
             "Physical register dependency violated?");
      --NumLiveRegs;
      LiveRegDefs[Pred.getReg()] = nullptr;
      LiveRegGens[Pred.getReg()] = nullptr;
      releaseInterferences(Pred.getReg());
    }
  }

  // Reclaim the special call resource dependence, if this is the beginning
  // of a call.
  unsigned CallResource = TRI->getNumRegs();
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (SUNode->isMachineOpcode() &&
        SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
      SUnit *SeqEnd = CallSeqEndForStart[SU];
      assert(SeqEnd && "Call sequence start/end must be known");
      assert(!LiveRegDefs[CallResource]);
      assert(!LiveRegGens[CallResource]);
      ++NumLiveRegs;
      LiveRegDefs[CallResource] = SU;
      LiveRegGens[CallResource] = SeqEnd;
    }
  }

  // Release the special call resource dependence, if this is the end
  // of a call.
  if (LiveRegGens[CallResource] == SU)
    for (const SDNode *SUNode = SU->getNode(); SUNode;
         SUNode = SUNode->getGluedNode()) {
      if (SUNode->isMachineOpcode() &&
          SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
        assert(LiveRegDefs[CallResource]);
        assert(LiveRegGens[CallResource]);
        --NumLiveRegs;
        LiveRegDefs[CallResource] = nullptr;
        LiveRegGens[CallResource] = nullptr;
        releaseInterferences(CallResource);
      }
    }

  for (auto &Succ : SU->Succs) {
    if (Succ.isAssignedRegDep()) {
      auto Reg = Succ.getReg();
      if (!LiveRegDefs[Reg])
        ++NumLiveRegs;
      // This becomes the nearest def. Note that an earlier def may still be
      // pending if this is a two-address node.
      LiveRegDefs[Reg] = SU;

      // Update LiveRegGen only if was empty before this unscheduling.
      // This is to avoid incorrect updating LiveRegGen set in previous run.
      if (!LiveRegGens[Reg]) {
        // Find the successor with the lowest height.
        LiveRegGens[Reg] = Succ.getSUnit();
        for (auto &Succ2 : SU->Succs) {
          if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
              Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
            LiveRegGens[Reg] = Succ2.getSUnit();
        }
      }
    }
  }
  if (SU->getHeight() < MinAvailableCycle)
    MinAvailableCycle = SU->getHeight();

  SU->setHeightDirty();
  SU->isScheduled = false;
  SU->isAvailable = true;
  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
    // Don't make available until backtracking is complete.
    SU->isPending = true;
    PendingQueue.push_back(SU);
  }
  else {
    AvailableQueue->push(SU);
  }
  AvailableQueue->unscheduledNode(SU);
}

/// After backtracking, the hazard checker needs to be restored to a state
/// corresponding the current cycle.
void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
  HazardRec->Reset();

  unsigned LookAhead = std::min((unsigned)Sequence.size(),
                                HazardRec->getMaxLookAhead());
  if (LookAhead == 0)
    return;

  std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
  unsigned HazardCycle = (*I)->getHeight();
  for (auto E = Sequence.end(); I != E; ++I) {
    SUnit *SU = *I;
    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
      HazardRec->RecedeCycle();
    }
    EmitNode(SU);
  }
}

/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
/// BTCycle in order to schedule a specific node.
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
  SUnit *OldSU = Sequence.back();
  while (true) {
    Sequence.pop_back();
    // FIXME: use ready cycle instead of height
    CurCycle = OldSU->getHeight();
    UnscheduleNodeBottomUp(OldSU);
    AvailableQueue->setCurCycle(CurCycle);
    if (OldSU == BtSU)
      break;
    OldSU = Sequence.back();
  }

  assert(!SU->isSucc(OldSU) && "Something is wrong!");

  RestoreHazardCheckerBottomUp();

  ReleasePending();

  ++NumBacktracks;
}

static bool isOperandOf(const SUnit *SU, SDNode *N) {
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (SUNode->isOperandOf(N))
      return true;
  }
  return false;
}

/// TryUnfold - Attempt to unfold
SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
  SDNode *N = SU->getNode();
  // Use while over if to ease fall through.
  SmallVector<SDNode *, 2> NewNodes;
  if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    return nullptr;

  // unfolding an x86 DEC64m operation results in store, dec, load which
  // can't be handled here so quit
  if (NewNodes.size() == 3)
    return nullptr;

  assert(NewNodes.size() == 2 && "Expected a load folding node!");

  N = NewNodes[1];
  SDNode *LoadNode = NewNodes[0];
  unsigned NumVals = N->getNumValues();
  unsigned OldNumVals = SU->getNode()->getNumValues();

  // LoadNode may already exist. This can happen when there is another
  // load from the same location and producing the same type of value
  // but it has different alignment or volatileness.
  bool isNewLoad = true;
  SUnit *LoadSU;
  if (LoadNode->getNodeId() != -1) {
    LoadSU = &SUnits[LoadNode->getNodeId()];
    // If LoadSU has already been scheduled, we should clone it but
    // this would negate the benefit to unfolding so just return SU.
    if (LoadSU->isScheduled)
      return SU;
    isNewLoad = false;
  } else {
    LoadSU = CreateNewSUnit(LoadNode);
    LoadNode->setNodeId(LoadSU->NodeNum);

    InitNumRegDefsLeft(LoadSU);
    computeLatency(LoadSU);
  }

  bool isNewN = true;
  SUnit *NewSU;
  // This can only happen when isNewLoad is false.
  if (N->getNodeId() != -1) {
    NewSU = &SUnits[N->getNodeId()];
    // If NewSU has already been scheduled, we need to clone it, but this
    // negates the benefit to unfolding so just return SU.
    if (NewSU->isScheduled) {
      return SU;
    }
    isNewN = false;
  } else {
    NewSU = CreateNewSUnit(N);
    N->setNodeId(NewSU->NodeNum);

    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
        NewSU->isTwoAddress = true;
        break;
      }
    }
    if (MCID.isCommutable())
      NewSU->isCommutable = true;

    InitNumRegDefsLeft(NewSU);
    computeLatency(NewSU);
  }

  LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");

  // Now that we are committed to unfolding replace DAG Uses.
  for (unsigned i = 0; i != NumVals; ++i)
    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
  DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
                                 SDValue(LoadNode, 1));

  // Record all the edges to and from the old SU, by category.
  SmallVector<SDep, 4> ChainPreds;
  SmallVector<SDep, 4> ChainSuccs;
  SmallVector<SDep, 4> LoadPreds;
  SmallVector<SDep, 4> NodePreds;
  SmallVector<SDep, 4> NodeSuccs;
  for (SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      ChainPreds.push_back(Pred);
    else if (isOperandOf(Pred.getSUnit(), LoadNode))
      LoadPreds.push_back(Pred);
    else
      NodePreds.push_back(Pred);
  }
  for (SDep &Succ : SU->Succs) {
    if (Succ.isCtrl())
      ChainSuccs.push_back(Succ);
    else
      NodeSuccs.push_back(Succ);
  }

  // Now assign edges to the newly-created nodes.
  for (const SDep &Pred : ChainPreds) {
    RemovePred(SU, Pred);
    if (isNewLoad)
      AddPredQueued(LoadSU, Pred);
  }
  for (const SDep &Pred : LoadPreds) {
    RemovePred(SU, Pred);
    if (isNewLoad)
      AddPredQueued(LoadSU, Pred);
  }
  for (const SDep &Pred : NodePreds) {
    RemovePred(SU, Pred);
    AddPredQueued(NewSU, Pred);
  }
  for (SDep D : NodeSuccs) {
    SUnit *SuccDep = D.getSUnit();
    D.setSUnit(SU);
    RemovePred(SuccDep, D);
    D.setSUnit(NewSU);
    AddPredQueued(SuccDep, D);
    // Balance register pressure.
    if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
        !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
      --NewSU->NumRegDefsLeft;
  }
  for (SDep D : ChainSuccs) {
    SUnit *SuccDep = D.getSUnit();
    D.setSUnit(SU);
    RemovePred(SuccDep, D);
    if (isNewLoad) {
      D.setSUnit(LoadSU);
      AddPredQueued(SuccDep, D);
    }
  }

  // Add a data dependency to reflect that NewSU reads the value defined
  // by LoadSU.
  SDep D(LoadSU, SDep::Data, 0);
  D.setLatency(LoadSU->Latency);
  AddPredQueued(NewSU, D);

  if (isNewLoad)
    AvailableQueue->addNode(LoadSU);
  if (isNewN)
    AvailableQueue->addNode(NewSU);

  ++NumUnfolds;

  if (NewSU->NumSuccsLeft == 0)
    NewSU->isAvailable = true;

  return NewSU;
}

/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
  SDNode *N = SU->getNode();
  if (!N)
    return nullptr;

  LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n");
  LLVM_DEBUG(dumpNode(*SU));

  if (N->getGluedNode() &&
      !TII->canCopyGluedNodeDuringSchedule(N)) {
    LLVM_DEBUG(
        dbgs()
        << "Giving up because it has incoming glue and the target does not "
           "want to copy it\n");
    return nullptr;
  }

  SUnit *NewSU;
  bool TryUnfold = false;
  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    MVT VT = N->getSimpleValueType(i);
    if (VT == MVT::Glue) {
      LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n");
      return nullptr;
    } else if (VT == MVT::Other)
      TryUnfold = true;
  }
  for (const SDValue &Op : N->op_values()) {
    MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
    if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
      LLVM_DEBUG(
          dbgs() << "Giving up because it one of the operands is glue and "
                    "the target does not want to copy it\n");
      return nullptr;
    }
  }

  // If possible unfold instruction.
  if (TryUnfold) {
    SUnit *UnfoldSU = TryUnfoldSU(SU);
    if (!UnfoldSU)
      return nullptr;
    SU = UnfoldSU;
    N = SU->getNode();
    // If this can be scheduled don't bother duplicating and just return
    if (SU->NumSuccsLeft == 0)
      return SU;
  }

  LLVM_DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
  NewSU = CreateClone(SU);

  // New SUnit has the exact same predecessors.
  for (SDep &Pred : SU->Preds)
    if (!Pred.isArtificial())
      AddPredQueued(NewSU, Pred);

  // Make sure the clone comes after the original. (InstrEmitter assumes
  // this ordering.)
  AddPredQueued(NewSU, SDep(SU, SDep::Artificial));

  // Only copy scheduled successors. Cut them from old node's successor
  // list and move them over.
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
  for (SDep &Succ : SU->Succs) {
    if (Succ.isArtificial())
      continue;
    SUnit *SuccSU = Succ.getSUnit();
    if (SuccSU->isScheduled) {
      SDep D = Succ;
      D.setSUnit(NewSU);
      AddPredQueued(SuccSU, D);
      D.setSUnit(SU);
      DelDeps.push_back(std::make_pair(SuccSU, D));
    }
  }
  for (auto &DelDep : DelDeps)
    RemovePred(DelDep.first, DelDep.second);

  AvailableQueue->updateNode(SU);
  AvailableQueue->addNode(NewSU);

  ++NumDups;
  return NewSU;
}

/// InsertCopiesAndMoveSuccs - Insert register copies and move all
/// scheduled successors of the given SUnit to the last copy.
void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
                                              const TargetRegisterClass *DestRC,
                                              const TargetRegisterClass *SrcRC,
                                              SmallVectorImpl<SUnit*> &Copies) {
  SUnit *CopyFromSU = CreateNewSUnit(nullptr);
  CopyFromSU->CopySrcRC = SrcRC;
  CopyFromSU->CopyDstRC = DestRC;

  SUnit *CopyToSU = CreateNewSUnit(nullptr);
  CopyToSU->CopySrcRC = DestRC;
  CopyToSU->CopyDstRC = SrcRC;

  // Only copy scheduled successors. Cut them from old node's successor
  // list and move them over.
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
  for (SDep &Succ : SU->Succs) {
    if (Succ.isArtificial())
      continue;
    SUnit *SuccSU = Succ.getSUnit();
    if (SuccSU->isScheduled) {
      SDep D = Succ;
      D.setSUnit(CopyToSU);
      AddPredQueued(SuccSU, D);
      DelDeps.push_back(std::make_pair(SuccSU, Succ));
    }
    else {
      // Avoid scheduling the def-side copy before other successors. Otherwise
      // we could introduce another physreg interference on the copy and
      // continue inserting copies indefinitely.
      AddPredQueued(SuccSU, SDep(CopyFromSU, SDep::Artificial));
    }
  }
  for (auto &DelDep : DelDeps)
    RemovePred(DelDep.first, DelDep.second);

  SDep FromDep(SU, SDep::Data, Reg);
  FromDep.setLatency(SU->Latency);
  AddPredQueued(CopyFromSU, FromDep);
  SDep ToDep(CopyFromSU, SDep::Data, 0);
  ToDep.setLatency(CopyFromSU->Latency);
  AddPredQueued(CopyToSU, ToDep);

  AvailableQueue->updateNode(SU);
  AvailableQueue->addNode(CopyFromSU);
  AvailableQueue->addNode(CopyToSU);
  Copies.push_back(CopyFromSU);
  Copies.push_back(CopyToSU);

  ++NumPRCopies;
}

/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
                                 const TargetInstrInfo *TII) {
  unsigned NumRes;
  if (N->getOpcode() == ISD::CopyFromReg) {
    // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
    NumRes = 1;
  } else {
    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
    NumRes = MCID.getNumDefs();
    for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
      if (Reg == *ImpDef)
        break;
      ++NumRes;
    }
  }
  return N->getSimpleValueType(NumRes);
}

/// CheckForLiveRegDef - Return true and update live register vector if the
/// specified register def of the specified SUnit clobbers any "live" registers.
static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
                               SUnit **LiveRegDefs,
                               SmallSet<unsigned, 4> &RegAdded,
                               SmallVectorImpl<unsigned> &LRegs,
                               const TargetRegisterInfo *TRI) {
  for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {

    // Check if Ref is live.
    if (!LiveRegDefs[*AliasI]) continue;

    // Allow multiple uses of the same def.
    if (LiveRegDefs[*AliasI] == SU) continue;

    // Add Reg to the set of interfering live regs.
    if (RegAdded.insert(*AliasI).second) {
      LRegs.push_back(*AliasI);
    }
  }
}

/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
/// by RegMask, and add them to LRegs.
static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
                                     ArrayRef<SUnit*> LiveRegDefs,
                                     SmallSet<unsigned, 4> &RegAdded,
                                     SmallVectorImpl<unsigned> &LRegs) {
  // Look at all live registers. Skip Reg0 and the special CallResource.
  for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
    if (!LiveRegDefs[i]) continue;
    if (LiveRegDefs[i] == SU) continue;
    if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
    if (RegAdded.insert(i).second)
      LRegs.push_back(i);
  }
}

/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
static const uint32_t *getNodeRegMask(const SDNode *N) {
  for (const SDValue &Op : N->op_values())
    if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
      return RegOp->getRegMask();
  return nullptr;
}

/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGRRList::
DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
  if (NumLiveRegs == 0)
    return false;

  SmallSet<unsigned, 4> RegAdded;
  // If this node would clobber any "live" register, then it's not ready.
  //
  // If SU is the currently live definition of the same register that it uses,
  // then we are free to schedule it.
  for (SDep &Pred : SU->Preds) {
    if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
      CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
                         RegAdded, LRegs, TRI);
  }

  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
    if (Node->getOpcode() == ISD::INLINEASM ||
        Node->getOpcode() == ISD::INLINEASM_BR) {
      // Inline asm can clobber physical defs.
      unsigned NumOps = Node->getNumOperands();
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
        --NumOps;  // Ignore the glue operand.

      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
        unsigned Flags =
          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);

        ++i; // Skip the ID value.
        if (InlineAsm::isRegDefKind(Flags) ||
            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
            InlineAsm::isClobberKind(Flags)) {
          // Check for def of register or earlyclobber register.
          for (; NumVals; --NumVals, ++i) {
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
            if (Register::isPhysicalRegister(Reg))
              CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
          }
        } else
          i += NumVals;
      }
      continue;
    }

    if (!Node->isMachineOpcode())
      continue;
    // If we're in the middle of scheduling a call, don't begin scheduling
    // another call. Also, don't allow any physical registers to be live across
    // the call.
    if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
      // Check the special calling-sequence resource.
      unsigned CallResource = TRI->getNumRegs();
      if (LiveRegDefs[CallResource]) {
        SDNode *Gen = LiveRegGens[CallResource]->getNode();
        while (SDNode *Glued = Gen->getGluedNode())
          Gen = Glued;
        if (!IsChainDependent(Gen, Node, 0, TII) &&
            RegAdded.insert(CallResource).second)
          LRegs.push_back(CallResource);
      }
    }
    if (const uint32_t *RegMask = getNodeRegMask(Node))
      CheckForLiveRegDefMasked(SU, RegMask,
                               makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
                               RegAdded, LRegs);

    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
    if (MCID.hasOptionalDef()) {
      // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
      // This operand can be either a def of CPSR, if the S bit is set; or a use
      // of %noreg.  When the OptionalDef is set to a valid register, we need to
      // handle it in the same way as an ImplicitDef.
      for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
        if (MCID.OpInfo[i].isOptionalDef()) {
          const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
          unsigned Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
          CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
        }
    }
    if (!MCID.ImplicitDefs)
      continue;
    for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
      CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
  }

  return !LRegs.empty();
}

void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
  // Add the nodes that aren't ready back onto the available list.
  for (unsigned i = Interferences.size(); i > 0; --i) {
    SUnit *SU = Interferences[i-1];
    LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
    if (Reg) {
      SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
      if (!is_contained(LRegs, Reg))
        continue;
    }
    SU->isPending = false;
    // The interfering node may no longer be available due to backtracking.
    // Furthermore, it may have been made available again, in which case it is
    // now already in the AvailableQueue.
    if (SU->isAvailable && !SU->NodeQueueId) {
      LLVM_DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
      AvailableQueue->push(SU);
    }
    if (i < Interferences.size())
      Interferences[i-1] = Interferences.back();
    Interferences.pop_back();
    LRegsMap.erase(LRegsPos);
  }
}

/// Return a node that can be scheduled in this cycle. Requirements:
/// (1) Ready: latency has been satisfied
/// (2) No Hazards: resources are available
/// (3) No Interferences: may unschedule to break register interferences.
SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
  SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
  auto FindAvailableNode = [&]() {
    while (CurSU) {
      SmallVector<unsigned, 4> LRegs;
      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
        break;
      LLVM_DEBUG(dbgs() << "    Interfering reg ";
                 if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource";
                 else dbgs() << printReg(LRegs[0], TRI);
                 dbgs() << " SU #" << CurSU->NodeNum << '\n');
      std::pair<LRegsMapT::iterator, bool> LRegsPair =
        LRegsMap.insert(std::make_pair(CurSU, LRegs));
      if (LRegsPair.second) {
        CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
        Interferences.push_back(CurSU);
      }
      else {
        assert(CurSU->isPending && "Interferences are pending");
        // Update the interference with current live regs.
        LRegsPair.first->second = LRegs;
      }
      CurSU = AvailableQueue->pop();
    }
  };
  FindAvailableNode();
  if (CurSU)
    return CurSU;

  // We query the topological order in the loop body, so make sure outstanding
  // updates are applied before entering it (we only enter the loop if there
  // are some interferences). If we make changes to the ordering, we exit
  // the loop.

  // All candidates are delayed due to live physical reg dependencies.
  // Try backtracking, code duplication, or inserting cross class copies
  // to resolve it.
  for (SUnit *TrySU : Interferences) {
    SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];

    // Try unscheduling up to the point where it's safe to schedule
    // this node.
    SUnit *BtSU = nullptr;
    unsigned LiveCycle = std::numeric_limits<unsigned>::max();
    for (unsigned Reg : LRegs) {
      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
        BtSU = LiveRegGens[Reg];
        LiveCycle = BtSU->getHeight();
      }
    }
    if (!WillCreateCycle(TrySU, BtSU))  {
      // BacktrackBottomUp mutates Interferences!
      BacktrackBottomUp(TrySU, BtSU);

      // Force the current node to be scheduled before the node that
      // requires the physical reg dep.
      if (BtSU->isAvailable) {
        BtSU->isAvailable = false;
        if (!BtSU->isPending)
          AvailableQueue->remove(BtSU);
      }
      LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum
                        << ") to SU(" << TrySU->NodeNum << ")\n");
      AddPredQueued(TrySU, SDep(BtSU, SDep::Artificial));

      // If one or more successors has been unscheduled, then the current
      // node is no longer available.
      if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
        LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n");
        CurSU = AvailableQueue->pop();
      } else {
        LLVM_DEBUG(dbgs() << "TrySU available\n");
        // Available and in AvailableQueue
        AvailableQueue->remove(TrySU);
        CurSU = TrySU;
      }
      FindAvailableNode();
      // Interferences has been mutated. We must break.
      break;
    }
  }

  if (!CurSU) {
    // Can't backtrack. If it's too expensive to copy the value, then try
    // duplicate the nodes that produces these "too expensive to copy"
    // values to break the dependency. In case even that doesn't work,
    // insert cross class copies.
    // If it's not too expensive, i.e. cost != -1, issue copies.
    SUnit *TrySU = Interferences[0];
    SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
    assert(LRegs.size() == 1 && "Can't handle this yet!");
    unsigned Reg = LRegs[0];
    SUnit *LRDef = LiveRegDefs[Reg];
    MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
    const TargetRegisterClass *RC =
      TRI->getMinimalPhysRegClass(Reg, VT);
    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);

    // If cross copy register class is the same as RC, then it must be possible
    // copy the value directly. Do not try duplicate the def.
    // If cross copy register class is not the same as RC, then it's possible to
    // copy the value but it require cross register class copies and it is
    // expensive.
    // If cross copy register class is null, then it's not possible to copy
    // the value at all.
    SUnit *NewDef = nullptr;
    if (DestRC != RC) {
      NewDef = CopyAndMoveSuccessors(LRDef);
      if (!DestRC && !NewDef)
        report_fatal_error("Can't handle live physical register dependency!");
    }
    if (!NewDef) {
      // Issue copies, these can be expensive cross register class copies.
      SmallVector<SUnit*, 2> Copies;
      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
      LLVM_DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
                        << " to SU #" << Copies.front()->NodeNum << "\n");
      AddPredQueued(TrySU, SDep(Copies.front(), SDep::Artificial));
      NewDef = Copies.back();
    }

    LLVM_DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
                      << " to SU #" << TrySU->NodeNum << "\n");
    LiveRegDefs[Reg] = NewDef;
    AddPredQueued(NewDef, SDep(TrySU, SDep::Artificial));
    TrySU->isAvailable = false;
    CurSU = NewDef;
  }
  assert(CurSU && "Unable to resolve live physical register dependencies!");
  return CurSU;
}

/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGRRList::ListScheduleBottomUp() {
  // Release any predecessors of the special Exit node.
  ReleasePredecessors(&ExitSU);

  // Add root to Available queue.
  if (!SUnits.empty()) {
    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
    RootSU->isAvailable = true;
    AvailableQueue->push(RootSU);
  }

  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  Sequence.reserve(SUnits.size());
  while (!AvailableQueue->empty() || !Interferences.empty()) {
    LLVM_DEBUG(dbgs() << "\nExamining Available:\n";
               AvailableQueue->dump(this));

    // Pick the best node to schedule taking all constraints into
    // consideration.
    SUnit *SU = PickNodeToScheduleBottomUp();

    AdvancePastStalls(SU);

    ScheduleNodeBottomUp(SU);

    while (AvailableQueue->empty() && !PendingQueue.empty()) {
      // Advance the cycle to free resources. Skip ahead to the next ready SU.
      assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&
             "MinAvailableCycle uninitialized");
      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
    }
  }

  // Reverse the order if it is bottom up.
  std::reverse(Sequence.begin(), Sequence.end());

#ifndef NDEBUG
  VerifyScheduledSequence(/*isBottomUp=*/true);
#endif
}

namespace {

class RegReductionPQBase;

struct queue_sort {
  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
};

#ifndef NDEBUG
template<class SF>
struct reverse_sort : public queue_sort {
  SF &SortFunc;

  reverse_sort(SF &sf) : SortFunc(sf) {}

  bool operator()(SUnit* left, SUnit* right) const {
    // reverse left/right rather than simply !SortFunc(left, right)
    // to expose different paths in the comparison logic.
    return SortFunc(right, left);
  }
};
#endif // NDEBUG

/// bu_ls_rr_sort - Priority function for bottom up register pressure
// reduction scheduler.
struct bu_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };

  RegReductionPQBase *SPQ;

  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}

  bool operator()(SUnit* left, SUnit* right) const;
};

// src_ls_rr_sort - Priority function for source order scheduler.
struct src_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };

  RegReductionPQBase *SPQ;

  src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}

  bool operator()(SUnit* left, SUnit* right) const;
};

// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
struct hybrid_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };

  RegReductionPQBase *SPQ;

  hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}

  bool isReady(SUnit *SU, unsigned CurCycle) const;

  bool operator()(SUnit* left, SUnit* right) const;
};

// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
// scheduler.
struct ilp_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };

  RegReductionPQBase *SPQ;

  ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}

  bool isReady(SUnit *SU, unsigned CurCycle) const;

  bool operator()(SUnit* left, SUnit* right) const;
};

class RegReductionPQBase : public SchedulingPriorityQueue {
protected:
  std::vector<SUnit *> Queue;
  unsigned CurQueueId = 0;
  bool TracksRegPressure;
  bool SrcOrder;

  // SUnits - The SUnits for the current graph.
  std::vector<SUnit> *SUnits;

  MachineFunction &MF;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  const TargetLowering *TLI;
  ScheduleDAGRRList *scheduleDAG = nullptr;

  // SethiUllmanNumbers - The SethiUllman number for each node.
  std::vector<unsigned> SethiUllmanNumbers;

  /// RegPressure - Tracking current reg pressure per register class.
  std::vector<unsigned> RegPressure;

  /// RegLimit - Tracking the number of allocatable registers per register
  /// class.
  std::vector<unsigned> RegLimit;

public:
  RegReductionPQBase(MachineFunction &mf,
                     bool hasReadyFilter,
                     bool tracksrp,
                     bool srcorder,
                     const TargetInstrInfo *tii,
                     const TargetRegisterInfo *tri,
                     const TargetLowering *tli)
    : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
      SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
    if (TracksRegPressure) {
      unsigned NumRC = TRI->getNumRegClasses();
      RegLimit.resize(NumRC);
      RegPressure.resize(NumRC);
      std::fill(RegLimit.begin(), RegLimit.end(), 0);
      std::fill(RegPressure.begin(), RegPressure.end(), 0);
      for (const TargetRegisterClass *RC : TRI->regclasses())
        RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
    }
  }

  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
    scheduleDAG = scheduleDag;
  }

  ScheduleHazardRecognizer* getHazardRec() {
    return scheduleDAG->getHazardRec();
  }

  void initNodes(std::vector<SUnit> &sunits) override;

  void addNode(const SUnit *SU) override;

  void updateNode(const SUnit *SU) override;

  void releaseState() override {
    SUnits = nullptr;
    SethiUllmanNumbers.clear();
    std::fill(RegPressure.begin(), RegPressure.end(), 0);
  }

  unsigned getNodePriority(const SUnit *SU) const;

  unsigned getNodeOrdering(const SUnit *SU) const {
    if (!SU->getNode()) return 0;

    return SU->getNode()->getIROrder();
  }

  bool empty() const override { return Queue.empty(); }

  void push(SUnit *U) override {
    assert(!U->NodeQueueId && "Node in the queue already");
    U->NodeQueueId = ++CurQueueId;
    Queue.push_back(U);
  }

  void remove(SUnit *SU) override {
    assert(!Queue.empty() && "Queue is empty!");
    assert(SU->NodeQueueId != 0 && "Not in queue!");
    std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
    if (I != std::prev(Queue.end()))
      std::swap(*I, Queue.back());
    Queue.pop_back();
    SU->NodeQueueId = 0;
  }

  bool tracksRegPressure() const override { return TracksRegPressure; }

  void dumpRegPressure() const;

  bool HighRegPressure(const SUnit *SU) const;

  bool MayReduceRegPressure(SUnit *SU) const;

  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;

  void scheduledNode(SUnit *SU) override;

  void unscheduledNode(SUnit *SU) override;

protected:
  bool canClobber(const SUnit *SU, const SUnit *Op);
  void AddPseudoTwoAddrDeps();
  void PrescheduleNodesWithMultipleUses();
  void CalculateSethiUllmanNumbers();
};

template<class SF>
static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
  std::vector<SUnit *>::iterator Best = Q.begin();
  for (auto I = std::next(Q.begin()), E = Q.end(); I != E; ++I)
    if (Picker(*Best, *I))
      Best = I;
  SUnit *V = *Best;
  if (Best != std::prev(Q.end()))
    std::swap(*Best, Q.back());
  Q.pop_back();
  return V;
}

template<class SF>
SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
#ifndef NDEBUG
  if (DAG->StressSched) {
    reverse_sort<SF> RPicker(Picker);
    return popFromQueueImpl(Q, RPicker);
  }
#endif
  (void)DAG;
  return popFromQueueImpl(Q, Picker);
}

//===----------------------------------------------------------------------===//
//                RegReductionPriorityQueue Definition
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
// to reduce register pressure.
//
template<class SF>
class RegReductionPriorityQueue : public RegReductionPQBase {
  SF Picker;

public:
  RegReductionPriorityQueue(MachineFunction &mf,
                            bool tracksrp,
                            bool srcorder,
                            const TargetInstrInfo *tii,
                            const TargetRegisterInfo *tri,
                            const TargetLowering *tli)
    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
                         tii, tri, tli),
      Picker(this) {}

  bool isBottomUp() const override { return SF::IsBottomUp; }

  bool isReady(SUnit *U) const override {
    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
  }

  SUnit *pop() override {
    if (Queue.empty()) return nullptr;

    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
    V->NodeQueueId = 0;
    return V;
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override {
    // Emulate pop() without clobbering NodeQueueIds.
    std::vector<SUnit *> DumpQueue = Queue;
    SF DumpPicker = Picker;
    while (!DumpQueue.empty()) {
      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
      dbgs() << "Height " << SU->getHeight() << ": ";
      DAG->dumpNode(*SU);
    }
  }
#endif
};

using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//           Static Node Priority for Register Pressure Reduction
//===----------------------------------------------------------------------===//

// Check for special nodes that bypass scheduling heuristics.
// Currently this pushes TokenFactor nodes down, but may be used for other
// pseudo-ops as well.
//
// Return -1 to schedule right above left, 1 for left above right.
// Return 0 if no bias exists.
static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
  bool LSchedLow = left->isScheduleLow;
  bool RSchedLow = right->isScheduleLow;
  if (LSchedLow != RSchedLow)
    return LSchedLow < RSchedLow ? 1 : -1;
  return 0;
}

/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
/// Smaller number is the higher priority.
static unsigned
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
  if (SUNumbers[SU->NodeNum] != 0)
    return SUNumbers[SU->NodeNum];

  // Use WorkList to avoid stack overflow on excessively large IRs.
  struct WorkState {
    WorkState(const SUnit *SU) : SU(SU) {}
    const SUnit *SU;
    unsigned PredsProcessed = 0;
  };

  SmallVector<WorkState, 16> WorkList;
  WorkList.push_back(SU);
  while (!WorkList.empty()) {
    auto &Temp = WorkList.back();
    auto *TempSU = Temp.SU;
    bool AllPredsKnown = true;
    // Try to find a non-evaluated pred and push it into the processing stack.
    for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
      auto &Pred = TempSU->Preds[P];
      if (Pred.isCtrl()) continue;  // ignore chain preds
      SUnit *PredSU = Pred.getSUnit();
      if (SUNumbers[PredSU->NodeNum] == 0) {
#ifndef NDEBUG
        // In debug mode, check that we don't have such element in the stack.
        for (auto It : WorkList)
          assert(It.SU != PredSU && "Trying to push an element twice?");
#endif
        // Next time start processing this one starting from the next pred.
        Temp.PredsProcessed = P + 1;
        WorkList.push_back(PredSU);
        AllPredsKnown = false;
        break;
      }
    }

    if (!AllPredsKnown)
      continue;

    // Once all preds are known, we can calculate the answer for this one.
    unsigned SethiUllmanNumber = 0;
    unsigned Extra = 0;
    for (const SDep &Pred : TempSU->Preds) {
      if (Pred.isCtrl()) continue;  // ignore chain preds
      SUnit *PredSU = Pred.getSUnit();
      unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
      assert(PredSethiUllman > 0 && "We should have evaluated this pred!");
      if (PredSethiUllman > SethiUllmanNumber) {
        SethiUllmanNumber = PredSethiUllman;
        Extra = 0;
      } else if (PredSethiUllman == SethiUllmanNumber)
        ++Extra;
    }

    SethiUllmanNumber += Extra;
    if (SethiUllmanNumber == 0)
      SethiUllmanNumber = 1;
    SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
    WorkList.pop_back();
  }

  assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!");
  return SUNumbers[SU->NodeNum];
}

/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
void RegReductionPQBase::CalculateSethiUllmanNumbers() {
  SethiUllmanNumbers.assign(SUnits->size(), 0);

  for (const SUnit &SU : *SUnits)
    CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
}

void RegReductionPQBase::addNode(const SUnit *SU) {
  unsigned SUSize = SethiUllmanNumbers.size();
  if (SUnits->size() > SUSize)
    SethiUllmanNumbers.resize(SUSize*2, 0);
  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}

void RegReductionPQBase::updateNode(const SUnit *SU) {
  SethiUllmanNumbers[SU->NodeNum] = 0;
  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}

// Lower priority means schedule further down. For bottom-up scheduling, lower
// priority SUs are scheduled before higher priority SUs.
unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
  assert(SU->NodeNum < SethiUllmanNumbers.size());
  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
    // CopyToReg should be close to its uses to facilitate coalescing and
    // avoid spilling.
    return 0;
  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
      Opc == TargetOpcode::SUBREG_TO_REG ||
      Opc == TargetOpcode::INSERT_SUBREG)
    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
    // close to their uses to facilitate coalescing.
    return 0;
  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
    // If SU does not have a register use, i.e. it doesn't produce a value
    // that would be consumed (e.g. store), then it terminates a chain of
    // computation.  Give it a large SethiUllman number so it will be
    // scheduled right before its predecessors that it doesn't lengthen
    // their live ranges.
    return 0xffff;
  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
    // If SU does not have a register def, schedule it close to its uses
    // because it does not lengthen any live ranges.
    return 0;
#if 1
  return SethiUllmanNumbers[SU->NodeNum];
#else
  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
  if (SU->isCallOp) {
    // FIXME: This assumes all of the defs are used as call operands.
    int NP = (int)Priority - SU->getNode()->getNumValues();
    return (NP > 0) ? NP : 0;
  }
  return Priority;
#endif
}

//===----------------------------------------------------------------------===//
//                     Register Pressure Tracking
//===----------------------------------------------------------------------===//

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const {
  for (const TargetRegisterClass *RC : TRI->regclasses()) {
    unsigned Id = RC->getID();
    unsigned RP = RegPressure[Id];
    if (!RP) continue;
    LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
                      << RegLimit[Id] << '\n');
  }
}
#endif

bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
  if (!TLI)
    return false;

  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      continue;
    SUnit *PredSU = Pred.getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      continue;
    }
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance()) {
      unsigned RCId, Cost;
      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);

      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
        return true;
    }
  }
  return false;
}

bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
  const SDNode *N = SU->getNode();

  if (!N->isMachineOpcode() || !SU->NumSuccs)
    return false;

  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  for (unsigned i = 0; i != NumDefs; ++i) {
    MVT VT = N->getSimpleValueType(i);
    if (!N->hasAnyUseOfValue(i))
      continue;
    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
    if (RegPressure[RCId] >= RegLimit[RCId])
      return true;
  }
  return false;
}

// Compute the register pressure contribution by this instruction by count up
// for uses that are not live and down for defs. Only count register classes
// that are already under high pressure. As a side effect, compute the number of
// uses of registers that are already live.
//
// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
// so could probably be factored.
int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
  LiveUses = 0;
  int PDiff = 0;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      continue;
    SUnit *PredSU = Pred.getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      if (PredSU->getNode()->isMachineOpcode())
        ++LiveUses;
      continue;
    }
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance()) {
      MVT VT = RegDefPos.GetValue();
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      if (RegPressure[RCId] >= RegLimit[RCId])
        ++PDiff;
    }
  }
  const SDNode *N = SU->getNode();

  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
    return PDiff;

  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  for (unsigned i = 0; i != NumDefs; ++i) {
    MVT VT = N->getSimpleValueType(i);
    if (!N->hasAnyUseOfValue(i))
      continue;
    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
    if (RegPressure[RCId] >= RegLimit[RCId])
      --PDiff;
  }
  return PDiff;
}

void RegReductionPQBase::scheduledNode(SUnit *SU) {
  if (!TracksRegPressure)
    return;

  if (!SU->getNode())
    return;

  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      continue;
    SUnit *PredSU = Pred.getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      continue;
    }
    // FIXME: The ScheduleDAG currently loses information about which of a
    // node's values is consumed by each dependence. Consequently, if the node
    // defines multiple register classes, we don't know which to pressurize
    // here. Instead the following loop consumes the register defs in an
    // arbitrary order. At least it handles the common case of clustered loads
    // to the same class. For precise liveness, each SDep needs to indicate the
    // result number. But that tightly couples the ScheduleDAG with the
    // SelectionDAG making updates tricky. A simpler hack would be to attach a
    // value type or register class to SDep.
    //
    // The most important aspect of register tracking is balancing the increase
    // here with the reduction further below. Note that this SU may use multiple
    // defs in PredSU. The can't be determined here, but we've already
    // compensated by reducing NumRegDefsLeft in PredSU during
    // ScheduleDAGSDNodes::AddSchedEdges.
    --PredSU->NumRegDefsLeft;
    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
      if (SkipRegDefs)
        continue;

      unsigned RCId, Cost;
      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
      RegPressure[RCId] += Cost;
      break;
    }
  }

  // We should have this assert, but there may be dead SDNodes that never
  // materialize as SUnits, so they don't appear to generate liveness.
  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
  int SkipRegDefs = (int)SU->NumRegDefsLeft;
  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
    if (SkipRegDefs > 0)
      continue;
    unsigned RCId, Cost;
    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
    if (RegPressure[RCId] < Cost) {
      // Register pressure tracking is imprecise. This can happen. But we try
      // hard not to let it happen because it likely results in poor scheduling.
      LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum
                        << ") has too many regdefs\n");
      RegPressure[RCId] = 0;
    }
    else {
      RegPressure[RCId] -= Cost;
    }
  }
  LLVM_DEBUG(dumpRegPressure());
}

void RegReductionPQBase::unscheduledNode(SUnit *SU) {
  if (!TracksRegPressure)
    return;

  const SDNode *N = SU->getNode();
  if (!N) return;

  if (!N->isMachineOpcode()) {
    if (N->getOpcode() != ISD::CopyToReg)
      return;
  } else {
    unsigned Opc = N->getMachineOpcode();
    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
        Opc == TargetOpcode::INSERT_SUBREG ||
        Opc == TargetOpcode::SUBREG_TO_REG ||
        Opc == TargetOpcode::REG_SEQUENCE ||
        Opc == TargetOpcode::IMPLICIT_DEF)
      return;
  }

  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl())
      continue;
    SUnit *PredSU = Pred.getSUnit();
    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
    // counts data deps.
    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
      continue;
    const SDNode *PN = PredSU->getNode();
    if (!PN->isMachineOpcode()) {
      if (PN->getOpcode() == ISD::CopyFromReg) {
        MVT VT = PN->getSimpleValueType(0);
        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
      }
      continue;
    }
    unsigned POpc = PN->getMachineOpcode();
    if (POpc == TargetOpcode::IMPLICIT_DEF)
      continue;
    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
        POpc == TargetOpcode::INSERT_SUBREG ||
        POpc == TargetOpcode::SUBREG_TO_REG) {
      MVT VT = PN->getSimpleValueType(0);
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
      continue;
    }
    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
    for (unsigned i = 0; i != NumDefs; ++i) {
      MVT VT = PN->getSimpleValueType(i);
      if (!PN->hasAnyUseOfValue(i))
        continue;
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
        // Register pressure tracking is imprecise. This can happen.
        RegPressure[RCId] = 0;
      else
        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
    }
  }

  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
  // may transfer data dependencies to CopyToReg.
  if (SU->NumSuccs && N->isMachineOpcode()) {
    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
      MVT VT = N->getSimpleValueType(i);
      if (VT == MVT::Glue || VT == MVT::Other)
        continue;
      if (!N->hasAnyUseOfValue(i))
        continue;
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
    }
  }

  LLVM_DEBUG(dumpRegPressure());
}

//===----------------------------------------------------------------------===//
//           Dynamic Node Priority for Register Pressure Reduction
//===----------------------------------------------------------------------===//

/// closestSucc - Returns the scheduled cycle of the successor which is
/// closest to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
  unsigned MaxHeight = 0;
  for (const SDep &Succ : SU->Succs) {
    if (Succ.isCtrl()) continue;  // ignore chain succs
    unsigned Height = Succ.getSUnit()->getHeight();
    // If there are bunch of CopyToRegs stacked up, they should be considered
    // to be at the same position.
    if (Succ.getSUnit()->getNode() &&
        Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
      Height = closestSucc(Succ.getSUnit())+1;
    if (Height > MaxHeight)
      MaxHeight = Height;
  }
  return MaxHeight;
}

/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers, i.e. number of data dependencies.
static unsigned calcMaxScratches(const SUnit *SU) {
  unsigned Scratches = 0;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;  // ignore chain preds
    Scratches++;
  }
  return Scratches;
}

/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
/// CopyFromReg from a virtual register.
static bool hasOnlyLiveInOpers(const SUnit *SU) {
  bool RetVal = false;
  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;
    const SUnit *PredSU = Pred.getSUnit();
    if (PredSU->getNode() &&
        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
      unsigned Reg =
        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
      if (Register::isVirtualRegister(Reg)) {
        RetVal = true;
        continue;
      }
    }
    return false;
  }
  return RetVal;
}

/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
/// CopyToReg to a virtual register. This SU def is probably a liveout and
/// it has no other use. It should be scheduled closer to the terminator.
static bool hasOnlyLiveOutUses(const SUnit *SU) {
  bool RetVal = false;
  for (const SDep &Succ : SU->Succs) {
    if (Succ.isCtrl()) continue;
    const SUnit *SuccSU = Succ.getSUnit();
    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
      unsigned Reg =
        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
      if (Register::isVirtualRegister(Reg)) {
        RetVal = true;
        continue;
      }
    }
    return false;
  }
  return RetVal;
}

// Set isVRegCycle for a node with only live in opers and live out uses. Also
// set isVRegCycle for its CopyFromReg operands.
//
// This is only relevant for single-block loops, in which case the VRegCycle
// node is likely an induction variable in which the operand and target virtual
// registers should be coalesced (e.g. pre/post increment values). Setting the
// isVRegCycle flag helps the scheduler prioritize other uses of the same
// CopyFromReg so that this node becomes the virtual register "kill". This
// avoids interference between the values live in and out of the block and
// eliminates a copy inside the loop.
static void initVRegCycle(SUnit *SU) {
  if (DisableSchedVRegCycle)
    return;

  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
    return;

  LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");

  SU->isVRegCycle = true;

  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;
    Pred.getSUnit()->isVRegCycle = true;
  }
}

// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
// CopyFromReg operands. We should no longer penalize other uses of this VReg.
static void resetVRegCycle(SUnit *SU) {
  if (!SU->isVRegCycle)
    return;

  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;  // ignore chain preds
    SUnit *PredSU = Pred.getSUnit();
    if (PredSU->isVRegCycle) {
      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
             "VRegCycle def must be CopyFromReg");
      Pred.getSUnit()->isVRegCycle = false;
    }
  }
}

// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
// means a node that defines the VRegCycle has not been scheduled yet.
static bool hasVRegCycleUse(const SUnit *SU) {
  // If this SU also defines the VReg, don't hoist it as a "use".
  if (SU->isVRegCycle)
    return false;

  for (const SDep &Pred : SU->Preds) {
    if (Pred.isCtrl()) continue;  // ignore chain preds
    if (Pred.getSUnit()->isVRegCycle &&
        Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
      LLVM_DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
      return true;
    }
  }
  return false;
}

// Check for either a dependence (latency) or resource (hazard) stall.
//
// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
  if ((int)SPQ->getCurCycle() < Height) return true;
  if (SPQ->getHazardRec()->getHazardType(SU, 0)
      != ScheduleHazardRecognizer::NoHazard)
    return true;
  return false;
}

// Return -1 if left has higher priority, 1 if right has higher priority.
// Return 0 if latency-based priority is equivalent.
static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
                            RegReductionPQBase *SPQ) {
  // Scheduling an instruction that uses a VReg whose postincrement has not yet
  // been scheduled will induce a copy. Model this as an extra cycle of latency.
  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
  int LHeight = (int)left->getHeight() + LPenalty;
  int RHeight = (int)right->getHeight() + RPenalty;

  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
    BUHasStall(left, LHeight, SPQ);
  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
    BUHasStall(right, RHeight, SPQ);

  // If scheduling one of the node will cause a pipeline stall, delay it.
  // If scheduling either one of the node will cause a pipeline stall, sort
  // them according to their height.
  if (LStall) {
    if (!RStall)
      return 1;
    if (LHeight != RHeight)
      return LHeight > RHeight ? 1 : -1;
  } else if (RStall)
    return -1;

  // If either node is scheduling for latency, sort them by height/depth
  // and latency.
  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
                     right->SchedulingPref == Sched::ILP)) {
    // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
    // is enabled, grouping instructions by cycle, then its height is already
    // covered so only its depth matters. We also reach this point if both stall
    // but have the same height.
    if (!SPQ->getHazardRec()->isEnabled()) {
      if (LHeight != RHeight)
        return LHeight > RHeight ? 1 : -1;
    }
    int LDepth = left->getDepth() - LPenalty;
    int RDepth = right->getDepth() - RPenalty;
    if (LDepth != RDepth) {
      LLVM_DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
                        << ") depth " << LDepth << " vs SU (" << right->NodeNum
                        << ") depth " << RDepth << "\n");
      return LDepth < RDepth ? 1 : -1;
    }
    if (left->Latency != right->Latency)
      return left->Latency > right->Latency ? 1 : -1;
  }
  return 0;
}

static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
  // Schedule physical register definitions close to their use. This is
  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
  // long as shortening physreg live ranges is generally good, we can defer
  // creating a subtarget hook.
  if (!DisableSchedPhysRegJoin) {
    bool LHasPhysReg = left->hasPhysRegDefs;
    bool RHasPhysReg = right->hasPhysRegDefs;
    if (LHasPhysReg != RHasPhysReg) {
      #ifndef NDEBUG
      static const char *const PhysRegMsg[] = { " has no physreg",
                                                " defines a physreg" };
      #endif
      LLVM_DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
                        << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum
                        << ") " << PhysRegMsg[RHasPhysReg] << "\n");
      return LHasPhysReg < RHasPhysReg;
    }
  }

  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
  unsigned LPriority = SPQ->getNodePriority(left);
  unsigned RPriority = SPQ->getNodePriority(right);

  // Be really careful about hoisting call operands above previous calls.
  // Only allows it if it would reduce register pressure.
  if (left->isCall && right->isCallOp) {
    unsigned RNumVals = right->getNode()->getNumValues();
    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
  }
  if (right->isCall && left->isCallOp) {
    unsigned LNumVals = left->getNode()->getNumValues();
    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
  }

  if (LPriority != RPriority)
    return LPriority > RPriority;

  // One or both of the nodes are calls and their sethi-ullman numbers are the
  // same, then keep source order.
  if (left->isCall || right->isCall) {
    unsigned LOrder = SPQ->getNodeOrdering(left);
    unsigned ROrder = SPQ->getNodeOrdering(right);

    // Prefer an ordering where the lower the non-zero order number, the higher
    // the preference.
    if ((LOrder || ROrder) && LOrder != ROrder)
      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
  }

  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
  // e.g.
  // t1 = op t2, c1
  // t3 = op t4, c2
  //
  // and the following instructions are both ready.
  // t2 = op c3
  // t4 = op c4
  //
  // Then schedule t2 = op first.
  // i.e.
  // t4 = op c4
  // t2 = op c3
  // t1 = op t2, c1
  // t3 = op t4, c2
  //
  // This creates more short live intervals.
  unsigned LDist = closestSucc(left);
  unsigned RDist = closestSucc(right);
  if (LDist != RDist)
    return LDist < RDist;

  // How many registers becomes live when the node is scheduled.
  unsigned LScratch = calcMaxScratches(left);
  unsigned RScratch = calcMaxScratches(right);
  if (LScratch != RScratch)
    return LScratch > RScratch;

  // Comparing latency against a call makes little sense unless the node
  // is register pressure-neutral.
  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
    return (left->NodeQueueId > right->NodeQueueId);

  // Do not compare latencies when one or both of the nodes are calls.
  if (!DisableSchedCycles &&
      !(left->isCall || right->isCall)) {
    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
    if (result != 0)
      return result > 0;
  }
  else {
    if (left->getHeight() != right->getHeight())
      return left->getHeight() > right->getHeight();

    if (left->getDepth() != right->getDepth())
      return left->getDepth() < right->getDepth();
  }

  assert(left->NodeQueueId && right->NodeQueueId &&
         "NodeQueueId cannot be zero");
  return (left->NodeQueueId > right->NodeQueueId);
}

// Bottom up
bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;

  return BURRSort(left, right, SPQ);
}

// Source order, otherwise bottom up.
bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;

  unsigned LOrder = SPQ->getNodeOrdering(left);
  unsigned ROrder = SPQ->getNodeOrdering(right);

  // Prefer an ordering where the lower the non-zero order number, the higher
  // the preference.
  if ((LOrder || ROrder) && LOrder != ROrder)
    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);

  return BURRSort(left, right, SPQ);
}

// If the time between now and when the instruction will be ready can cover
// the spill code, then avoid adding it to the ready queue. This gives long
// stalls highest priority and allows hoisting across calls. It should also
// speed up processing the available queue.
bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
  static const unsigned ReadyDelay = 3;

  if (SPQ->MayReduceRegPressure(SU)) return true;

  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;

  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
      != ScheduleHazardRecognizer::NoHazard)
    return false;

  return true;
}

// Return true if right should be scheduled with higher priority than left.
bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;

  if (left->isCall || right->isCall)
    // No way to compute latency of calls.
    return BURRSort(left, right, SPQ);

  bool LHigh = SPQ->HighRegPressure(left);
  bool RHigh = SPQ->HighRegPressure(right);
  // Avoid causing spills. If register pressure is high, schedule for
  // register pressure reduction.
  if (LHigh && !RHigh) {
    LLVM_DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
                      << right->NodeNum << ")\n");
    return true;
  }
  else if (!LHigh && RHigh) {
    LLVM_DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
                      << left->NodeNum << ")\n");
    return false;
  }
  if (!LHigh && !RHigh) {
    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
    if (result != 0)
      return result > 0;
  }
  return BURRSort(left, right, SPQ);
}

// Schedule as many instructions in each cycle as possible. So don't make an
// instruction available unless it is ready in the current cycle.
bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
  if (SU->getHeight() > CurCycle) return false;

  if (SPQ->getHazardRec()->getHazardType(SU, 0)
      != ScheduleHazardRecognizer::NoHazard)
    return false;

  return true;
}

static bool canEnableCoalescing(SUnit *SU) {
  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
    // CopyToReg should be close to its uses to facilitate coalescing and
    // avoid spilling.
    return true;

  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
      Opc == TargetOpcode::SUBREG_TO_REG ||
      Opc == TargetOpcode::INSERT_SUBREG)
    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
    // close to their uses to facilitate coalescing.
    return true;

  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
    // If SU does not have a register def, schedule it close to its uses
    // because it does not lengthen any live ranges.
    return true;

  return false;
}

// list-ilp is currently an experimental scheduler that allows various
// heuristics to be enabled prior to the normal register reduction logic.
bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;

  if (left->isCall || right->isCall)
    // No way to compute latency of calls.
    return BURRSort(left, right, SPQ);

  unsigned LLiveUses = 0, RLiveUses = 0;
  int LPDiff = 0, RPDiff = 0;
  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
  }
  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
    LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum
                      << "): " << LPDiff << " != SU(" << right->NodeNum
                      << "): " << RPDiff << "\n");
    return LPDiff > RPDiff;
  }

  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
    bool LReduce = canEnableCoalescing(left);
    bool RReduce = canEnableCoalescing(right);
    if (LReduce && !RReduce) return false;
    if (RReduce && !LReduce) return true;
  }

  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
    LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
                      << " != SU(" << right->NodeNum << "): " << RLiveUses
                      << "\n");
    return LLiveUses < RLiveUses;
  }

  if (!DisableSchedStalls) {
    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
    if (LStall != RStall)
      return left->getHeight() > right->getHeight();
  }

  if (!DisableSchedCriticalPath) {
    int spread = (int)left->getDepth() - (int)right->getDepth();
    if (std::abs(spread) > MaxReorderWindow) {
      LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
                        << left->getDepth() << " != SU(" << right->NodeNum
                        << "): " << right->getDepth() << "\n");
      return left->getDepth() < right->getDepth();
    }
  }

  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
    int spread = (int)left->getHeight() - (int)right->getHeight();
    if (std::abs(spread) > MaxReorderWindow)
      return left->getHeight() > right->getHeight();
  }

  return BURRSort(left, right, SPQ);
}

void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
  SUnits = &sunits;
  // Add pseudo dependency edges for two-address nodes.
  if (!Disable2AddrHack)
    AddPseudoTwoAddrDeps();
  // Reroute edges to nodes with multiple uses.
  if (!TracksRegPressure && !SrcOrder)
    PrescheduleNodesWithMultipleUses();
  // Calculate node priorities.
  CalculateSethiUllmanNumbers();

  // For single block loops, mark nodes that look like canonical IV increments.
  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
    for (SUnit &SU : sunits)
      initVRegCycle(&SU);
}

//===----------------------------------------------------------------------===//
//                    Preschedule for Register Pressure
//===----------------------------------------------------------------------===//

bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
  if (SU->isTwoAddress) {
    unsigned Opc = SU->getNode()->getMachineOpcode();
    const MCInstrDesc &MCID = TII->get(Opc);
    unsigned NumRes = MCID.getNumDefs();
    unsigned NumOps = MCID.getNumOperands() - NumRes;
    for (unsigned i = 0; i != NumOps; ++i) {
      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
        SDNode *DU = SU->getNode()->getOperand(i).getNode();
        if (DU->getNodeId() != -1 &&
            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
          return true;
      }
    }
  }
  return false;
}

/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
/// successor's explicit physregs whose definition can reach DepSU.
/// i.e. DepSU should not be scheduled above SU.
static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
                                         ScheduleDAGRRList *scheduleDAG,
                                         const TargetInstrInfo *TII,
                                         const TargetRegisterInfo *TRI) {
  const MCPhysReg *ImpDefs
    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
  const uint32_t *RegMask = getNodeRegMask(SU->getNode());
  if(!ImpDefs && !RegMask)
    return false;

  for (const SDep &Succ : SU->Succs) {
    SUnit *SuccSU = Succ.getSUnit();
    for (const SDep &SuccPred : SuccSU->Preds) {
      if (!SuccPred.isAssignedRegDep())
        continue;

      if (RegMask &&
          MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
          scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
        return true;

      if (ImpDefs)
        for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
          // Return true if SU clobbers this physical register use and the
          // definition of the register reaches from DepSU. IsReachable queries
          // a topological forward sort of the DAG (following the successors).
          if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
              scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
            return true;
    }
  }
  return false;
}

/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
/// physical register defs.
static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
                                  const TargetInstrInfo *TII,
                                  const TargetRegisterInfo *TRI) {
  SDNode *N = SuccSU->getNode();
  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
  assert(ImpDefs && "Caller should check hasPhysRegDefs");
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (!SUNode->isMachineOpcode())
      continue;
    const MCPhysReg *SUImpDefs =
      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
    const uint32_t *SURegMask = getNodeRegMask(SUNode);
    if (!SUImpDefs && !SURegMask)
      continue;
    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
      MVT VT = N->getSimpleValueType(i);
      if (VT == MVT::Glue || VT == MVT::Other)
        continue;
      if (!N->hasAnyUseOfValue(i))
        continue;
      unsigned Reg = ImpDefs[i - NumDefs];
      if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
        return true;
      if (!SUImpDefs)
        continue;
      for (;*SUImpDefs; ++SUImpDefs) {
        unsigned SUReg = *SUImpDefs;
        if (TRI->regsOverlap(Reg, SUReg))
          return true;
      }
    }
  }
  return false;
}

/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
/// are not handled well by the general register pressure reduction
/// heuristics. When presented with code like this:
///
///      N
///    / |
///   /  |
///  U  store
///  |
/// ...
///
/// the heuristics tend to push the store up, but since the
/// operand of the store has another use (U), this would increase
/// the length of that other use (the U->N edge).
///
/// This function transforms code like the above to route U's
/// dependence through the store when possible, like this:
///
///      N
///      ||
///      ||
///     store
///       |
///       U
///       |
///      ...
///
/// This results in the store being scheduled immediately
/// after N, which shortens the U->N live range, reducing
/// register pressure.
void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
  // Visit all the nodes in topological order, working top-down.
  for (SUnit &SU : *SUnits) {
    // For now, only look at nodes with no data successors, such as stores.
    // These are especially important, due to the heuristics in
    // getNodePriority for nodes with no data successors.
    if (SU.NumSuccs != 0)
      continue;
    // For now, only look at nodes with exactly one data predecessor.
    if (SU.NumPreds != 1)
      continue;
    // Avoid prescheduling copies to virtual registers, which don't behave
    // like other nodes from the perspective of scheduling heuristics.
    if (SDNode *N = SU.getNode())
      if (N->getOpcode() == ISD::CopyToReg &&
          Register::isVirtualRegister(
              cast<RegisterSDNode>(N->getOperand(1))->getReg()))
        continue;

    SDNode *PredFrameSetup = nullptr;
    for (const SDep &Pred : SU.Preds)
      if (Pred.isCtrl() && Pred.getSUnit()) {
        // Find the predecessor which is not data dependence.
        SDNode *PredND = Pred.getSUnit()->getNode();

        // If PredND is FrameSetup, we should not pre-scheduled the node,
        // or else, when bottom up scheduling, ADJCALLSTACKDOWN and
        // ADJCALLSTACKUP may hold CallResource too long and make other
        // calls can't be scheduled. If there's no other available node
        // to schedule, the schedular will try to rename the register by
        // creating copy to avoid the conflict which will fail because
        // CallResource is not a real physical register.
        if (PredND && PredND->isMachineOpcode() &&
            (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) {
          PredFrameSetup = PredND;
          break;
        }
      }
    // Skip the node has FrameSetup parent.
    if (PredFrameSetup != nullptr)
      continue;

    // Locate the single data predecessor.
    SUnit *PredSU = nullptr;
    for (const SDep &Pred : SU.Preds)
      if (!Pred.isCtrl()) {
        PredSU = Pred.getSUnit();
        break;
      }
    assert(PredSU);

    // Don't rewrite edges that carry physregs, because that requires additional
    // support infrastructure.
    if (PredSU->hasPhysRegDefs)
      continue;
    // Short-circuit the case where SU is PredSU's only data successor.
    if (PredSU->NumSuccs == 1)
      continue;
    // Avoid prescheduling to copies from virtual registers, which don't behave
    // like other nodes from the perspective of scheduling heuristics.
    if (SDNode *N = SU.getNode())
      if (N->getOpcode() == ISD::CopyFromReg &&
          Register::isVirtualRegister(
              cast<RegisterSDNode>(N->getOperand(1))->getReg()))
        continue;

    // Perform checks on the successors of PredSU.
    for (const SDep &PredSucc : PredSU->Succs) {
      SUnit *PredSuccSU = PredSucc.getSUnit();
      if (PredSuccSU == &SU) continue;
      // If PredSU has another successor with no data successors, for
      // now don't attempt to choose either over the other.
      if (PredSuccSU->NumSuccs == 0)
        goto outer_loop_continue;
      // Don't break physical register dependencies.
      if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
        if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
          goto outer_loop_continue;
      // Don't introduce graph cycles.
      if (scheduleDAG->IsReachable(&SU, PredSuccSU))
        goto outer_loop_continue;
    }

    // Ok, the transformation is safe and the heuristics suggest it is
    // profitable. Update the graph.
    LLVM_DEBUG(
        dbgs() << "    Prescheduling SU #" << SU.NodeNum << " next to PredSU #"
               << PredSU->NodeNum
               << " to guide scheduling in the presence of multiple uses\n");
    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
      SDep Edge = PredSU->Succs[i];
      assert(!Edge.isAssignedRegDep());
      SUnit *SuccSU = Edge.getSUnit();
      if (SuccSU != &SU) {
        Edge.setSUnit(PredSU);
        scheduleDAG->RemovePred(SuccSU, Edge);
        scheduleDAG->AddPredQueued(&SU, Edge);
        Edge.setSUnit(&SU);
        scheduleDAG->AddPredQueued(SuccSU, Edge);
        --i;
      }
    }
  outer_loop_continue:;
  }
}

/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
/// it as a def&use operand. Add a pseudo control edge from it to the other
/// node (if it won't create a cycle) so the two-address one will be scheduled
/// first (lower in the schedule). If both nodes are two-address, favor the
/// one that has a CopyToReg use (more likely to be a loop induction update).
/// If both are two-address, but one is commutable while the other is not
/// commutable, favor the one that's not commutable.
void RegReductionPQBase::AddPseudoTwoAddrDeps() {
  for (SUnit &SU : *SUnits) {
    if (!SU.isTwoAddress)
      continue;

    SDNode *Node = SU.getNode();
    if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
      continue;

    bool isLiveOut = hasOnlyLiveOutUses(&SU);
    unsigned Opc = Node->getMachineOpcode();
    const MCInstrDesc &MCID = TII->get(Opc);
    unsigned NumRes = MCID.getNumDefs();
    unsigned NumOps = MCID.getNumOperands() - NumRes;
    for (unsigned j = 0; j != NumOps; ++j) {
      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
        continue;
      SDNode *DU = SU.getNode()->getOperand(j).getNode();
      if (DU->getNodeId() == -1)
        continue;
      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
      if (!DUSU)
        continue;
      for (const SDep &Succ : DUSU->Succs) {
        if (Succ.isCtrl())
          continue;
        SUnit *SuccSU = Succ.getSUnit();
        if (SuccSU == &SU)
          continue;
        // Be conservative. Ignore if nodes aren't at roughly the same
        // depth and height.
        if (SuccSU->getHeight() < SU.getHeight() &&
            (SU.getHeight() - SuccSU->getHeight()) > 1)
          continue;
        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
        // constrains whatever is using the copy, instead of the copy
        // itself. In the case that the copy is coalesced, this
        // preserves the intent of the pseudo two-address heurietics.
        while (SuccSU->Succs.size() == 1 &&
               SuccSU->getNode()->isMachineOpcode() &&
               SuccSU->getNode()->getMachineOpcode() ==
                 TargetOpcode::COPY_TO_REGCLASS)
          SuccSU = SuccSU->Succs.front().getSUnit();
        // Don't constrain non-instruction nodes.
        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
          continue;
        // Don't constrain nodes with physical register defs if the
        // predecessor can clobber them.
        if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
          if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
            continue;
        }
        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
        // these may be coalesced away. We want them close to their uses.
        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
            SuccOpc == TargetOpcode::INSERT_SUBREG ||
            SuccOpc == TargetOpcode::SUBREG_TO_REG)
          continue;
        if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
            (!canClobber(SuccSU, DUSU) ||
             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
             (!SU.isCommutable && SuccSU->isCommutable)) &&
            !scheduleDAG->IsReachable(SuccSU, &SU)) {
          LLVM_DEBUG(dbgs()
                     << "    Adding a pseudo-two-addr edge from SU #"
                     << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
          scheduleDAG->AddPredQueued(&SU, SDep(SuccSU, SDep::Artificial));
        }
      }
    }
  }
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

ScheduleDAGSDNodes *
llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
                                 CodeGenOpt::Level OptLevel) {
  const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();

  BURegReductionPriorityQueue *PQ =
    new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}

ScheduleDAGSDNodes *
llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
                                   CodeGenOpt::Level OptLevel) {
  const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();

  SrcRegReductionPriorityQueue *PQ =
    new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}

ScheduleDAGSDNodes *
llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
                                   CodeGenOpt::Level OptLevel) {
  const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  const TargetLowering *TLI = IS->TLI;

  HybridBURRPriorityQueue *PQ =
    new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);

  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}

ScheduleDAGSDNodes *
llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
                                CodeGenOpt::Level OptLevel) {
  const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
  const TargetInstrInfo *TII = STI.getInstrInfo();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  const TargetLowering *TLI = IS->TLI;

  ILPBURRPriorityQueue *PQ =
    new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}