LiveInterval.cpp 46.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
//===- LiveInterval.cpp - Live Interval Representation --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes.  Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live range for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation ranges can have holes,
// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
// individual segment is represented as an instance of LiveRange::Segment,
// and the whole range is represented as an instance of LiveRange.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveInterval.h"
#include "LiveRangeUtils.h"
#include "RegisterCoalescer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <utility>

using namespace llvm;

namespace {

//===----------------------------------------------------------------------===//
// Implementation of various methods necessary for calculation of live ranges.
// The implementation of the methods abstracts from the concrete type of the
// segment collection.
//
// Implementation of the class follows the Template design pattern. The base
// class contains generic algorithms that call collection-specific methods,
// which are provided in concrete subclasses. In order to avoid virtual calls
// these methods are provided by means of C++ template instantiation.
// The base class calls the methods of the subclass through method impl(),
// which casts 'this' pointer to the type of the subclass.
//
//===----------------------------------------------------------------------===//

template <typename ImplT, typename IteratorT, typename CollectionT>
class CalcLiveRangeUtilBase {
protected:
  LiveRange *LR;

protected:
  CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}

public:
  using Segment = LiveRange::Segment;
  using iterator = IteratorT;

  /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
  /// value defined at @p Def.
  /// If @p ForVNI is null, and there is no value defined at @p Def, a new
  /// value will be allocated using @p VNInfoAllocator.
  /// If @p ForVNI is null, the return value is the value defined at @p Def,
  /// either a pre-existing one, or the one newly created.
  /// If @p ForVNI is not null, then @p Def should be the location where
  /// @p ForVNI is defined. If the range does not have a value defined at
  /// @p Def, the value @p ForVNI will be used instead of allocating a new
  /// one. If the range already has a value defined at @p Def, it must be
  /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
  VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
                        VNInfo *ForVNI) {
    assert(!Def.isDead() && "Cannot define a value at the dead slot");
    assert((!ForVNI || ForVNI->def == Def) &&
           "If ForVNI is specified, it must match Def");
    iterator I = impl().find(Def);
    if (I == segments().end()) {
      VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
      impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
      return VNI;
    }

    Segment *S = segmentAt(I);
    if (SlotIndex::isSameInstr(Def, S->start)) {
      assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
      assert(S->valno->def == S->start && "Inconsistent existing value def");

      // It is possible to have both normal and early-clobber defs of the same
      // register on an instruction. It doesn't make a lot of sense, but it is
      // possible to specify in inline assembly.
      //
      // Just convert everything to early-clobber.
      Def = std::min(Def, S->start);
      if (Def != S->start)
        S->start = S->valno->def = Def;
      return S->valno;
    }
    assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
    VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
    segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
    return VNI;
  }

  VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
    if (segments().empty())
      return nullptr;
    iterator I =
      impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
    if (I == segments().begin())
      return nullptr;
    --I;
    if (I->end <= StartIdx)
      return nullptr;
    if (I->end < Use)
      extendSegmentEndTo(I, Use);
    return I->valno;
  }

  std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
      SlotIndex StartIdx, SlotIndex Use) {
    if (segments().empty())
      return std::make_pair(nullptr, false);
    SlotIndex BeforeUse = Use.getPrevSlot();
    iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
    if (I == segments().begin())
      return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
    --I;
    if (I->end <= StartIdx)
      return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
    if (I->end < Use) {
      if (LR->isUndefIn(Undefs, I->end, BeforeUse))
        return std::make_pair(nullptr, true);
      extendSegmentEndTo(I, Use);
    }
    return std::make_pair(I->valno, false);
  }

  /// This method is used when we want to extend the segment specified
  /// by I to end at the specified endpoint. To do this, we should
  /// merge and eliminate all segments that this will overlap
  /// with. The iterator is not invalidated.
  void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
    assert(I != segments().end() && "Not a valid segment!");
    Segment *S = segmentAt(I);
    VNInfo *ValNo = I->valno;

    // Search for the first segment that we can't merge with.
    iterator MergeTo = std::next(I);
    for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
      assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");

    // If NewEnd was in the middle of a segment, make sure to get its endpoint.
    S->end = std::max(NewEnd, std::prev(MergeTo)->end);

    // If the newly formed segment now touches the segment after it and if they
    // have the same value number, merge the two segments into one segment.
    if (MergeTo != segments().end() && MergeTo->start <= I->end &&
        MergeTo->valno == ValNo) {
      S->end = MergeTo->end;
      ++MergeTo;
    }

    // Erase any dead segments.
    segments().erase(std::next(I), MergeTo);
  }

  /// This method is used when we want to extend the segment specified
  /// by I to start at the specified endpoint.  To do this, we should
  /// merge and eliminate all segments that this will overlap with.
  iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
    assert(I != segments().end() && "Not a valid segment!");
    Segment *S = segmentAt(I);
    VNInfo *ValNo = I->valno;

    // Search for the first segment that we can't merge with.
    iterator MergeTo = I;
    do {
      if (MergeTo == segments().begin()) {
        S->start = NewStart;
        segments().erase(MergeTo, I);
        return I;
      }
      assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
      --MergeTo;
    } while (NewStart <= MergeTo->start);

    // If we start in the middle of another segment, just delete a range and
    // extend that segment.
    if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
      segmentAt(MergeTo)->end = S->end;
    } else {
      // Otherwise, extend the segment right after.
      ++MergeTo;
      Segment *MergeToSeg = segmentAt(MergeTo);
      MergeToSeg->start = NewStart;
      MergeToSeg->end = S->end;
    }

    segments().erase(std::next(MergeTo), std::next(I));
    return MergeTo;
  }

  iterator addSegment(Segment S) {
    SlotIndex Start = S.start, End = S.end;
    iterator I = impl().findInsertPos(S);

    // If the inserted segment starts in the middle or right at the end of
    // another segment, just extend that segment to contain the segment of S.
    if (I != segments().begin()) {
      iterator B = std::prev(I);
      if (S.valno == B->valno) {
        if (B->start <= Start && B->end >= Start) {
          extendSegmentEndTo(B, End);
          return B;
        }
      } else {
        // Check to make sure that we are not overlapping two live segments with
        // different valno's.
        assert(B->end <= Start &&
               "Cannot overlap two segments with differing ValID's"
               " (did you def the same reg twice in a MachineInstr?)");
      }
    }

    // Otherwise, if this segment ends in the middle of, or right next
    // to, another segment, merge it into that segment.
    if (I != segments().end()) {
      if (S.valno == I->valno) {
        if (I->start <= End) {
          I = extendSegmentStartTo(I, Start);

          // If S is a complete superset of a segment, we may need to grow its
          // endpoint as well.
          if (End > I->end)
            extendSegmentEndTo(I, End);
          return I;
        }
      } else {
        // Check to make sure that we are not overlapping two live segments with
        // different valno's.
        assert(I->start >= End &&
               "Cannot overlap two segments with differing ValID's");
      }
    }

    // Otherwise, this is just a new segment that doesn't interact with
    // anything.
    // Insert it.
    return segments().insert(I, S);
  }

private:
  ImplT &impl() { return *static_cast<ImplT *>(this); }

  CollectionT &segments() { return impl().segmentsColl(); }

  Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
};

//===----------------------------------------------------------------------===//
//   Instantiation of the methods for calculation of live ranges
//   based on a segment vector.
//===----------------------------------------------------------------------===//

class CalcLiveRangeUtilVector;
using CalcLiveRangeUtilVectorBase =
    CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
                          LiveRange::Segments>;

class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
public:
  CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}

private:
  friend CalcLiveRangeUtilVectorBase;

  LiveRange::Segments &segmentsColl() { return LR->segments; }

  void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }

  iterator find(SlotIndex Pos) { return LR->find(Pos); }

  iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); }
};

//===----------------------------------------------------------------------===//
//   Instantiation of the methods for calculation of live ranges
//   based on a segment set.
//===----------------------------------------------------------------------===//

class CalcLiveRangeUtilSet;
using CalcLiveRangeUtilSetBase =
    CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
                          LiveRange::SegmentSet>;

class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
public:
  CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}

private:
  friend CalcLiveRangeUtilSetBase;

  LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }

  void insertAtEnd(const Segment &S) {
    LR->segmentSet->insert(LR->segmentSet->end(), S);
  }

  iterator find(SlotIndex Pos) {
    iterator I =
        LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
    if (I == LR->segmentSet->begin())
      return I;
    iterator PrevI = std::prev(I);
    if (Pos < (*PrevI).end)
      return PrevI;
    return I;
  }

  iterator findInsertPos(Segment S) {
    iterator I = LR->segmentSet->upper_bound(S);
    if (I != LR->segmentSet->end() && !(S.start < *I))
      ++I;
    return I;
  }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//   LiveRange methods
//===----------------------------------------------------------------------===//

LiveRange::iterator LiveRange::find(SlotIndex Pos) {
  // This algorithm is basically std::upper_bound.
  // Unfortunately, std::upper_bound cannot be used with mixed types until we
  // adopt C++0x. Many libraries can do it, but not all.
  if (empty() || Pos >= endIndex())
    return end();
  iterator I = begin();
  size_t Len = size();
  do {
    size_t Mid = Len >> 1;
    if (Pos < I[Mid].end) {
      Len = Mid;
    } else {
      I += Mid + 1;
      Len -= Mid + 1;
    }
  } while (Len);
  return I;
}

VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
  // Use the segment set, if it is available.
  if (segmentSet != nullptr)
    return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
  // Otherwise use the segment vector.
  return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
}

VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
  // Use the segment set, if it is available.
  if (segmentSet != nullptr)
    return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
  // Otherwise use the segment vector.
  return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
}

// overlaps - Return true if the intersection of the two live ranges is
// not empty.
//
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live ranges should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
//
bool LiveRange::overlapsFrom(const LiveRange& other,
                             const_iterator StartPos) const {
  assert(!empty() && "empty range");
  const_iterator i = begin();
  const_iterator ie = end();
  const_iterator j = StartPos;
  const_iterator je = other.end();

  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
         StartPos != other.end() && "Bogus start position hint!");

  if (i->start < j->start) {
    i = std::upper_bound(i, ie, j->start);
    if (i != begin()) --i;
  } else if (j->start < i->start) {
    ++StartPos;
    if (StartPos != other.end() && StartPos->start <= i->start) {
      assert(StartPos < other.end() && i < end());
      j = std::upper_bound(j, je, i->start);
      if (j != other.begin()) --j;
    }
  } else {
    return true;
  }

  if (j == je) return false;

  while (i != ie) {
    if (i->start > j->start) {
      std::swap(i, j);
      std::swap(ie, je);
    }

    if (i->end > j->start)
      return true;
    ++i;
  }

  return false;
}

bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
                         const SlotIndexes &Indexes) const {
  assert(!empty() && "empty range");
  if (Other.empty())
    return false;

  // Use binary searches to find initial positions.
  const_iterator I = find(Other.beginIndex());
  const_iterator IE = end();
  if (I == IE)
    return false;
  const_iterator J = Other.find(I->start);
  const_iterator JE = Other.end();
  if (J == JE)
    return false;

  while (true) {
    // J has just been advanced to satisfy:
    assert(J->end >= I->start);
    // Check for an overlap.
    if (J->start < I->end) {
      // I and J are overlapping. Find the later start.
      SlotIndex Def = std::max(I->start, J->start);
      // Allow the overlap if Def is a coalescable copy.
      if (Def.isBlock() ||
          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
        return true;
    }
    // Advance the iterator that ends first to check for more overlaps.
    if (J->end > I->end) {
      std::swap(I, J);
      std::swap(IE, JE);
    }
    // Advance J until J->end >= I->start.
    do
      if (++J == JE)
        return false;
    while (J->end < I->start);
  }
}

/// overlaps - Return true if the live range overlaps an interval specified
/// by [Start, End).
bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
  assert(Start < End && "Invalid range");
  const_iterator I = std::lower_bound(begin(), end(), End);
  return I != begin() && (--I)->end > Start;
}

bool LiveRange::covers(const LiveRange &Other) const {
  if (empty())
    return Other.empty();

  const_iterator I = begin();
  for (const Segment &O : Other.segments) {
    I = advanceTo(I, O.start);
    if (I == end() || I->start > O.start)
      return false;

    // Check adjacent live segments and see if we can get behind O.end.
    while (I->end < O.end) {
      const_iterator Last = I;
      // Get next segment and abort if it was not adjacent.
      ++I;
      if (I == end() || Last->end != I->start)
        return false;
    }
  }
  return true;
}

/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
/// it can be nuked later.
void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
  if (ValNo->id == getNumValNums()-1) {
    do {
      valnos.pop_back();
    } while (!valnos.empty() && valnos.back()->isUnused());
  } else {
    ValNo->markUnused();
  }
}

/// RenumberValues - Renumber all values in order of appearance and delete the
/// remaining unused values.
void LiveRange::RenumberValues() {
  SmallPtrSet<VNInfo*, 8> Seen;
  valnos.clear();
  for (const Segment &S : segments) {
    VNInfo *VNI = S.valno;
    if (!Seen.insert(VNI).second)
      continue;
    assert(!VNI->isUnused() && "Unused valno used by live segment");
    VNI->id = (unsigned)valnos.size();
    valnos.push_back(VNI);
  }
}

void LiveRange::addSegmentToSet(Segment S) {
  CalcLiveRangeUtilSet(this).addSegment(S);
}

LiveRange::iterator LiveRange::addSegment(Segment S) {
  // Use the segment set, if it is available.
  if (segmentSet != nullptr) {
    addSegmentToSet(S);
    return end();
  }
  // Otherwise use the segment vector.
  return CalcLiveRangeUtilVector(this).addSegment(S);
}

void LiveRange::append(const Segment S) {
  // Check that the segment belongs to the back of the list.
  assert(segments.empty() || segments.back().end <= S.start);
  segments.push_back(S);
}

std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
    SlotIndex StartIdx, SlotIndex Kill) {
  // Use the segment set, if it is available.
  if (segmentSet != nullptr)
    return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
  // Otherwise use the segment vector.
  return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
}

VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
  // Use the segment set, if it is available.
  if (segmentSet != nullptr)
    return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
  // Otherwise use the segment vector.
  return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
}

/// Remove the specified segment from this range.  Note that the segment must
/// be in a single Segment in its entirety.
void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
                              bool RemoveDeadValNo) {
  // Find the Segment containing this span.
  iterator I = find(Start);
  assert(I != end() && "Segment is not in range!");
  assert(I->containsInterval(Start, End)
         && "Segment is not entirely in range!");

  // If the span we are removing is at the start of the Segment, adjust it.
  VNInfo *ValNo = I->valno;
  if (I->start == Start) {
    if (I->end == End) {
      if (RemoveDeadValNo) {
        // Check if val# is dead.
        bool isDead = true;
        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
          if (II != I && II->valno == ValNo) {
            isDead = false;
            break;
          }
        if (isDead) {
          // Now that ValNo is dead, remove it.
          markValNoForDeletion(ValNo);
        }
      }

      segments.erase(I);  // Removed the whole Segment.
    } else
      I->start = End;
    return;
  }

  // Otherwise if the span we are removing is at the end of the Segment,
  // adjust the other way.
  if (I->end == End) {
    I->end = Start;
    return;
  }

  // Otherwise, we are splitting the Segment into two pieces.
  SlotIndex OldEnd = I->end;
  I->end = Start;   // Trim the old segment.

  // Insert the new one.
  segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
}

/// removeValNo - Remove all the segments defined by the specified value#.
/// Also remove the value# from value# list.
void LiveRange::removeValNo(VNInfo *ValNo) {
  if (empty()) return;
  segments.erase(remove_if(*this, [ValNo](const Segment &S) {
    return S.valno == ValNo;
  }), end());
  // Now that ValNo is dead, remove it.
  markValNoForDeletion(ValNo);
}

void LiveRange::join(LiveRange &Other,
                     const int *LHSValNoAssignments,
                     const int *RHSValNoAssignments,
                     SmallVectorImpl<VNInfo *> &NewVNInfo) {
  verify();

  // Determine if any of our values are mapped.  This is uncommon, so we want
  // to avoid the range scan if not.
  bool MustMapCurValNos = false;
  unsigned NumVals = getNumValNums();
  unsigned NumNewVals = NewVNInfo.size();
  for (unsigned i = 0; i != NumVals; ++i) {
    unsigned LHSValID = LHSValNoAssignments[i];
    if (i != LHSValID ||
        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
      MustMapCurValNos = true;
      break;
    }
  }

  // If we have to apply a mapping to our base range assignment, rewrite it now.
  if (MustMapCurValNos && !empty()) {
    // Map the first live range.

    iterator OutIt = begin();
    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
    for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
      assert(nextValNo && "Huh?");

      // If this live range has the same value # as its immediate predecessor,
      // and if they are neighbors, remove one Segment.  This happens when we
      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
        OutIt->end = I->end;
      } else {
        // Didn't merge. Move OutIt to the next segment,
        ++OutIt;
        OutIt->valno = nextValNo;
        if (OutIt != I) {
          OutIt->start = I->start;
          OutIt->end = I->end;
        }
      }
    }
    // If we merge some segments, chop off the end.
    ++OutIt;
    segments.erase(OutIt, end());
  }

  // Rewrite Other values before changing the VNInfo ids.
  // This can leave Other in an invalid state because we're not coalescing
  // touching segments that now have identical values. That's OK since Other is
  // not supposed to be valid after calling join();
  for (Segment &S : Other.segments)
    S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];

  // Update val# info. Renumber them and make sure they all belong to this
  // LiveRange now. Also remove dead val#'s.
  unsigned NumValNos = 0;
  for (unsigned i = 0; i < NumNewVals; ++i) {
    VNInfo *VNI = NewVNInfo[i];
    if (VNI) {
      if (NumValNos >= NumVals)
        valnos.push_back(VNI);
      else
        valnos[NumValNos] = VNI;
      VNI->id = NumValNos++;  // Renumber val#.
    }
  }
  if (NumNewVals < NumVals)
    valnos.resize(NumNewVals);  // shrinkify

  // Okay, now insert the RHS live segments into the LHS.
  LiveRangeUpdater Updater(this);
  for (Segment &S : Other.segments)
    Updater.add(S);
}

/// Merge all of the segments in RHS into this live range as the specified
/// value number.  The segments in RHS are allowed to overlap with segments in
/// the current range, but only if the overlapping segments have the
/// specified value number.
void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
                                       VNInfo *LHSValNo) {
  LiveRangeUpdater Updater(this);
  for (const Segment &S : RHS.segments)
    Updater.add(S.start, S.end, LHSValNo);
}

/// MergeValueInAsValue - Merge all of the live segments of a specific val#
/// in RHS into this live range as the specified value number.
/// The segments in RHS are allowed to overlap with segments in the
/// current range, it will replace the value numbers of the overlaped
/// segments with the specified value number.
void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
                                    const VNInfo *RHSValNo,
                                    VNInfo *LHSValNo) {
  LiveRangeUpdater Updater(this);
  for (const Segment &S : RHS.segments)
    if (S.valno == RHSValNo)
      Updater.add(S.start, S.end, LHSValNo);
}

/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent.  This eliminates V1, replacing all
/// segments with the V1 value number with the V2 value number.  This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
  assert(V1 != V2 && "Identical value#'s are always equivalent!");

  // This code actually merges the (numerically) larger value number into the
  // smaller value number, which is likely to allow us to compactify the value
  // space.  The only thing we have to be careful of is to preserve the
  // instruction that defines the result value.

  // Make sure V2 is smaller than V1.
  if (V1->id < V2->id) {
    V1->copyFrom(*V2);
    std::swap(V1, V2);
  }

  // Merge V1 segments into V2.
  for (iterator I = begin(); I != end(); ) {
    iterator S = I++;
    if (S->valno != V1) continue;  // Not a V1 Segment.

    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
    // range, extend it.
    if (S != begin()) {
      iterator Prev = S-1;
      if (Prev->valno == V2 && Prev->end == S->start) {
        Prev->end = S->end;

        // Erase this live-range.
        segments.erase(S);
        I = Prev+1;
        S = Prev;
      }
    }

    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
    // Ensure that it is a V2 live-range.
    S->valno = V2;

    // If we can merge it into later V2 segments, do so now.  We ignore any
    // following V1 segments, as they will be merged in subsequent iterations
    // of the loop.
    if (I != end()) {
      if (I->start == S->end && I->valno == V2) {
        S->end = I->end;
        segments.erase(I);
        I = S+1;
      }
    }
  }

  // Now that V1 is dead, remove it.
  markValNoForDeletion(V1);

  return V2;
}

void LiveRange::flushSegmentSet() {
  assert(segmentSet != nullptr && "segment set must have been created");
  assert(
      segments.empty() &&
      "segment set can be used only initially before switching to the array");
  segments.append(segmentSet->begin(), segmentSet->end());
  segmentSet = nullptr;
  verify();
}

bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
  ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();

  // If there are no regmask slots, we have nothing to search.
  if (SlotI == SlotE)
    return false;

  // Start our search at the first segment that ends after the first slot.
  const_iterator SegmentI = find(*SlotI);
  const_iterator SegmentE = end();

  // If there are no segments that end after the first slot, we're done.
  if (SegmentI == SegmentE)
    return false;

  // Look for each slot in the live range.
  for ( ; SlotI != SlotE; ++SlotI) {
    // Go to the next segment that ends after the current slot.
    // The slot may be within a hole in the range.
    SegmentI = advanceTo(SegmentI, *SlotI);
    if (SegmentI == SegmentE)
      return false;

    // If this segment contains the slot, we're done.
    if (SegmentI->contains(*SlotI))
      return true;
    // Otherwise, look for the next slot.
  }

  // We didn't find a segment containing any of the slots.
  return false;
}

void LiveInterval::freeSubRange(SubRange *S) {
  S->~SubRange();
  // Memory was allocated with BumpPtr allocator and is not freed here.
}

void LiveInterval::removeEmptySubRanges() {
  SubRange **NextPtr = &SubRanges;
  SubRange *I = *NextPtr;
  while (I != nullptr) {
    if (!I->empty()) {
      NextPtr = &I->Next;
      I = *NextPtr;
      continue;
    }
    // Skip empty subranges until we find the first nonempty one.
    do {
      SubRange *Next = I->Next;
      freeSubRange(I);
      I = Next;
    } while (I != nullptr && I->empty());
    *NextPtr = I;
  }
}

void LiveInterval::clearSubRanges() {
  for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
    Next = I->Next;
    freeSubRange(I);
  }
  SubRanges = nullptr;
}

/// For each VNI in \p SR, check whether or not that value defines part
/// of the mask describe by \p LaneMask and if not, remove that value
/// from \p SR.
static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR,
                                       LaneBitmask LaneMask,
                                       const SlotIndexes &Indexes,
                                       const TargetRegisterInfo &TRI,
                                       unsigned ComposeSubRegIdx) {
  // Phys reg should not be tracked at subreg level.
  // Same for noreg (Reg == 0).
  if (!Register::isVirtualRegister(Reg) || !Reg)
    return;
  // Remove the values that don't define those lanes.
  SmallVector<VNInfo *, 8> ToBeRemoved;
  for (VNInfo *VNI : SR.valnos) {
    if (VNI->isUnused())
      continue;
    // PHI definitions don't have MI attached, so there is nothing
    // we can use to strip the VNI.
    if (VNI->isPHIDef())
      continue;
    const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def);
    assert(MI && "Cannot find the definition of a value");
    bool hasDef = false;
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
      if (!MOI->isReg() || !MOI->isDef())
        continue;
      if (MOI->getReg() != Reg)
        continue;
      LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg());
      LaneBitmask ExpectedDefMask =
          ComposeSubRegIdx
              ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask)
              : OrigMask;
      if ((ExpectedDefMask & LaneMask).none())
        continue;
      hasDef = true;
      break;
    }

    if (!hasDef)
      ToBeRemoved.push_back(VNI);
  }
  for (VNInfo *VNI : ToBeRemoved)
    SR.removeValNo(VNI);

  // If the subrange is empty at this point, the MIR is invalid. Do not assert
  // and let the verifier catch this case.
}

void LiveInterval::refineSubRanges(
    BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
    std::function<void(LiveInterval::SubRange &)> Apply,
    const SlotIndexes &Indexes, const TargetRegisterInfo &TRI,
    unsigned ComposeSubRegIdx) {
  LaneBitmask ToApply = LaneMask;
  for (SubRange &SR : subranges()) {
    LaneBitmask SRMask = SR.LaneMask;
    LaneBitmask Matching = SRMask & LaneMask;
    if (Matching.none())
      continue;

    SubRange *MatchingRange;
    if (SRMask == Matching) {
      // The subrange fits (it does not cover bits outside \p LaneMask).
      MatchingRange = &SR;
    } else {
      // We have to split the subrange into a matching and non-matching part.
      // Reduce lanemask of existing lane to non-matching part.
      SR.LaneMask = SRMask & ~Matching;
      // Create a new subrange for the matching part
      MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
      // Now that the subrange is split in half, make sure we
      // only keep in the subranges the VNIs that touch the related half.
      stripValuesNotDefiningMask(reg, *MatchingRange, Matching, Indexes, TRI,
                                 ComposeSubRegIdx);
      stripValuesNotDefiningMask(reg, SR, SR.LaneMask, Indexes, TRI,
                                 ComposeSubRegIdx);
    }
    Apply(*MatchingRange);
    ToApply &= ~Matching;
  }
  // Create a new subrange if there are uncovered bits left.
  if (ToApply.any()) {
    SubRange *NewRange = createSubRange(Allocator, ToApply);
    Apply(*NewRange);
  }
}

unsigned LiveInterval::getSize() const {
  unsigned Sum = 0;
  for (const Segment &S : segments)
    Sum += S.start.distance(S.end);
  return Sum;
}

void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
                                         LaneBitmask LaneMask,
                                         const MachineRegisterInfo &MRI,
                                         const SlotIndexes &Indexes) const {
  assert(Register::isVirtualRegister(reg));
  LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg);
  assert((VRegMask & LaneMask).any());
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  for (const MachineOperand &MO : MRI.def_operands(reg)) {
    if (!MO.isUndef())
      continue;
    unsigned SubReg = MO.getSubReg();
    assert(SubReg != 0 && "Undef should only be set on subreg defs");
    LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
    LaneBitmask UndefMask = VRegMask & ~DefMask;
    if ((UndefMask & LaneMask).any()) {
      const MachineInstr &MI = *MO.getParent();
      bool EarlyClobber = MO.isEarlyClobber();
      SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
      Undefs.push_back(Pos);
    }
  }
}

raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
  return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
  dbgs() << *this << '\n';
}
#endif

void LiveRange::print(raw_ostream &OS) const {
  if (empty())
    OS << "EMPTY";
  else {
    for (const Segment &S : segments) {
      OS << S;
      assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
    }
  }

  // Print value number info.
  if (getNumValNums()) {
    OS << "  ";
    unsigned vnum = 0;
    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
         ++i, ++vnum) {
      const VNInfo *vni = *i;
      if (vnum) OS << ' ';
      OS << vnum << '@';
      if (vni->isUnused()) {
        OS << 'x';
      } else {
        OS << vni->def;
        if (vni->isPHIDef())
          OS << "-phi";
      }
    }
  }
}

void LiveInterval::SubRange::print(raw_ostream &OS) const {
  OS << " L" << PrintLaneMask(LaneMask) << ' '
     << static_cast<const LiveRange&>(*this);
}

void LiveInterval::print(raw_ostream &OS) const {
  OS << printReg(reg) << ' ';
  super::print(OS);
  // Print subranges
  for (const SubRange &SR : subranges())
    OS << SR;
  OS << " weight:" << weight;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveRange::dump() const {
  dbgs() << *this << '\n';
}

LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
  dbgs() << *this << '\n';
}

LLVM_DUMP_METHOD void LiveInterval::dump() const {
  dbgs() << *this << '\n';
}
#endif

#ifndef NDEBUG
void LiveRange::verify() const {
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    assert(I->start.isValid());
    assert(I->end.isValid());
    assert(I->start < I->end);
    assert(I->valno != nullptr);
    assert(I->valno->id < valnos.size());
    assert(I->valno == valnos[I->valno->id]);
    if (std::next(I) != E) {
      assert(I->end <= std::next(I)->start);
      if (I->end == std::next(I)->start)
        assert(I->valno != std::next(I)->valno);
    }
  }
}

void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
  super::verify();

  // Make sure SubRanges are fine and LaneMasks are disjunct.
  LaneBitmask Mask;
  LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg)
                                       : LaneBitmask::getAll();
  for (const SubRange &SR : subranges()) {
    // Subrange lanemask should be disjunct to any previous subrange masks.
    assert((Mask & SR.LaneMask).none());
    Mask |= SR.LaneMask;

    // subrange mask should not contained in maximum lane mask for the vreg.
    assert((Mask & ~MaxMask).none());
    // empty subranges must be removed.
    assert(!SR.empty());

    SR.verify();
    // Main liverange should cover subrange.
    assert(covers(SR));
  }
}
#endif

//===----------------------------------------------------------------------===//
//                           LiveRangeUpdater class
//===----------------------------------------------------------------------===//
//
// The LiveRangeUpdater class always maintains these invariants:
//
// - When LastStart is invalid, Spills is empty and the iterators are invalid.
//   This is the initial state, and the state created by flush().
//   In this state, isDirty() returns false.
//
// Otherwise, segments are kept in three separate areas:
//
// 1. [begin; WriteI) at the front of LR.
// 2. [ReadI; end) at the back of LR.
// 3. Spills.
//
// - LR.begin() <= WriteI <= ReadI <= LR.end().
// - Segments in all three areas are fully ordered and coalesced.
// - Segments in area 1 precede and can't coalesce with segments in area 2.
// - Segments in Spills precede and can't coalesce with segments in area 2.
// - No coalescing is possible between segments in Spills and segments in area
//   1, and there are no overlapping segments.
//
// The segments in Spills are not ordered with respect to the segments in area
// 1. They need to be merged.
//
// When they exist, Spills.back().start <= LastStart,
//                 and WriteI[-1].start <= LastStart.

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LiveRangeUpdater::print(raw_ostream &OS) const {
  if (!isDirty()) {
    if (LR)
      OS << "Clean updater: " << *LR << '\n';
    else
      OS << "Null updater.\n";
    return;
  }
  assert(LR && "Can't have null LR in dirty updater.");
  OS << " updater with gap = " << (ReadI - WriteI)
     << ", last start = " << LastStart
     << ":\n  Area 1:";
  for (const auto &S : make_range(LR->begin(), WriteI))
    OS << ' ' << S;
  OS << "\n  Spills:";
  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
    OS << ' ' << Spills[I];
  OS << "\n  Area 2:";
  for (const auto &S : make_range(ReadI, LR->end()))
    OS << ' ' << S;
  OS << '\n';
}

LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
  print(errs());
}
#endif

// Determine if A and B should be coalesced.
static inline bool coalescable(const LiveRange::Segment &A,
                               const LiveRange::Segment &B) {
  assert(A.start <= B.start && "Unordered live segments.");
  if (A.end == B.start)
    return A.valno == B.valno;
  if (A.end < B.start)
    return false;
  assert(A.valno == B.valno && "Cannot overlap different values");
  return true;
}

void LiveRangeUpdater::add(LiveRange::Segment Seg) {
  assert(LR && "Cannot add to a null destination");

  // Fall back to the regular add method if the live range
  // is using the segment set instead of the segment vector.
  if (LR->segmentSet != nullptr) {
    LR->addSegmentToSet(Seg);
    return;
  }

  // Flush the state if Start moves backwards.
  if (!LastStart.isValid() || LastStart > Seg.start) {
    if (isDirty())
      flush();
    // This brings us to an uninitialized state. Reinitialize.
    assert(Spills.empty() && "Leftover spilled segments");
    WriteI = ReadI = LR->begin();
  }

  // Remember start for next time.
  LastStart = Seg.start;

  // Advance ReadI until it ends after Seg.start.
  LiveRange::iterator E = LR->end();
  if (ReadI != E && ReadI->end <= Seg.start) {
    // First try to close the gap between WriteI and ReadI with spills.
    if (ReadI != WriteI)
      mergeSpills();
    // Then advance ReadI.
    if (ReadI == WriteI)
      ReadI = WriteI = LR->find(Seg.start);
    else
      while (ReadI != E && ReadI->end <= Seg.start)
        *WriteI++ = *ReadI++;
  }

  assert(ReadI == E || ReadI->end > Seg.start);

  // Check if the ReadI segment begins early.
  if (ReadI != E && ReadI->start <= Seg.start) {
    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
    // Bail if Seg is completely contained in ReadI.
    if (ReadI->end >= Seg.end)
      return;
    // Coalesce into Seg.
    Seg.start = ReadI->start;
    ++ReadI;
  }

  // Coalesce as much as possible from ReadI into Seg.
  while (ReadI != E && coalescable(Seg, *ReadI)) {
    Seg.end = std::max(Seg.end, ReadI->end);
    ++ReadI;
  }

  // Try coalescing Spills.back() into Seg.
  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
    Seg.start = Spills.back().start;
    Seg.end = std::max(Spills.back().end, Seg.end);
    Spills.pop_back();
  }

  // Try coalescing Seg into WriteI[-1].
  if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
    return;
  }

  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
  if (WriteI != ReadI) {
    *WriteI++ = Seg;
    return;
  }

  // Finally, append to LR or Spills.
  if (WriteI == E) {
    LR->segments.push_back(Seg);
    WriteI = ReadI = LR->end();
  } else
    Spills.push_back(Seg);
}

// Merge as many spilled segments as possible into the gap between WriteI
// and ReadI. Advance WriteI to reflect the inserted instructions.
void LiveRangeUpdater::mergeSpills() {
  // Perform a backwards merge of Spills and [SpillI;WriteI).
  size_t GapSize = ReadI - WriteI;
  size_t NumMoved = std::min(Spills.size(), GapSize);
  LiveRange::iterator Src = WriteI;
  LiveRange::iterator Dst = Src + NumMoved;
  LiveRange::iterator SpillSrc = Spills.end();
  LiveRange::iterator B = LR->begin();

  // This is the new WriteI position after merging spills.
  WriteI = Dst;

  // Now merge Src and Spills backwards.
  while (Src != Dst) {
    if (Src != B && Src[-1].start > SpillSrc[-1].start)
      *--Dst = *--Src;
    else
      *--Dst = *--SpillSrc;
  }
  assert(NumMoved == size_t(Spills.end() - SpillSrc));
  Spills.erase(SpillSrc, Spills.end());
}

void LiveRangeUpdater::flush() {
  if (!isDirty())
    return;
  // Clear the dirty state.
  LastStart = SlotIndex();

  assert(LR && "Cannot add to a null destination");

  // Nothing to merge?
  if (Spills.empty()) {
    LR->segments.erase(WriteI, ReadI);
    LR->verify();
    return;
  }

  // Resize the WriteI - ReadI gap to match Spills.
  size_t GapSize = ReadI - WriteI;
  if (GapSize < Spills.size()) {
    // The gap is too small. Make some room.
    size_t WritePos = WriteI - LR->begin();
    LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
    // This also invalidated ReadI, but it is recomputed below.
    WriteI = LR->begin() + WritePos;
  } else {
    // Shrink the gap if necessary.
    LR->segments.erase(WriteI + Spills.size(), ReadI);
  }
  ReadI = WriteI + Spills.size();
  mergeSpills();
  LR->verify();
}

unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
  // Create initial equivalence classes.
  EqClass.clear();
  EqClass.grow(LR.getNumValNums());

  const VNInfo *used = nullptr, *unused = nullptr;

  // Determine connections.
  for (const VNInfo *VNI : LR.valnos) {
    // Group all unused values into one class.
    if (VNI->isUnused()) {
      if (unused)
        EqClass.join(unused->id, VNI->id);
      unused = VNI;
      continue;
    }
    used = VNI;
    if (VNI->isPHIDef()) {
      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
      assert(MBB && "Phi-def has no defining MBB");
      // Connect to values live out of predecessors.
      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
           PE = MBB->pred_end(); PI != PE; ++PI)
        if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
          EqClass.join(VNI->id, PVNI->id);
    } else {
      // Normal value defined by an instruction. Check for two-addr redef.
      // FIXME: This could be coincidental. Should we really check for a tied
      // operand constraint?
      // Note that VNI->def may be a use slot for an early clobber def.
      if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
        EqClass.join(VNI->id, UVNI->id);
    }
  }

  // Lump all the unused values in with the last used value.
  if (used && unused)
    EqClass.join(used->id, unused->id);

  EqClass.compress();
  return EqClass.getNumClasses();
}

void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
                                          MachineRegisterInfo &MRI) {
  // Rewrite instructions.
  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
       RE = MRI.reg_end(); RI != RE;) {
    MachineOperand &MO = *RI;
    MachineInstr *MI = RI->getParent();
    ++RI;
    const VNInfo *VNI;
    if (MI->isDebugValue()) {
      // DBG_VALUE instructions don't have slot indexes, so get the index of
      // the instruction before them. The value is defined there too.
      SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
      VNI = LI.Query(Idx).valueOut();
    } else {
      SlotIndex Idx = LIS.getInstructionIndex(*MI);
      LiveQueryResult LRQ = LI.Query(Idx);
      VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
    }
    // In the case of an <undef> use that isn't tied to any def, VNI will be
    // NULL. If the use is tied to a def, VNI will be the defined value.
    if (!VNI)
      continue;
    if (unsigned EqClass = getEqClass(VNI))
      MO.setReg(LIV[EqClass-1]->reg);
  }

  // Distribute subregister liveranges.
  if (LI.hasSubRanges()) {
    unsigned NumComponents = EqClass.getNumClasses();
    SmallVector<unsigned, 8> VNIMapping;
    SmallVector<LiveInterval::SubRange*, 8> SubRanges;
    BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
    for (LiveInterval::SubRange &SR : LI.subranges()) {
      // Create new subranges in the split intervals and construct a mapping
      // for the VNInfos in the subrange.
      unsigned NumValNos = SR.valnos.size();
      VNIMapping.clear();
      VNIMapping.reserve(NumValNos);
      SubRanges.clear();
      SubRanges.resize(NumComponents-1, nullptr);
      for (unsigned I = 0; I < NumValNos; ++I) {
        const VNInfo &VNI = *SR.valnos[I];
        unsigned ComponentNum;
        if (VNI.isUnused()) {
          ComponentNum = 0;
        } else {
          const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
          assert(MainRangeVNI != nullptr
                 && "SubRange def must have corresponding main range def");
          ComponentNum = getEqClass(MainRangeVNI);
          if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
            SubRanges[ComponentNum-1]
              = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
          }
        }
        VNIMapping.push_back(ComponentNum);
      }
      DistributeRange(SR, SubRanges.data(), VNIMapping);
    }
    LI.removeEmptySubRanges();
  }

  // Distribute main liverange.
  DistributeRange(LI, LIV, EqClass);
}