LegalizerInfo.cpp
28.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implement an interface to specify and query how an illegal operation on a
// given type should be expanded.
//
// Issues to be resolved:
// + Make it fast.
// + Support weird types like i3, <7 x i3>, ...
// + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <map>
using namespace llvm;
using namespace LegalizeActions;
#define DEBUG_TYPE "legalizer-info"
cl::opt<bool> llvm::DisableGISelLegalityCheck(
"disable-gisel-legality-check",
cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
cl::Hidden);
raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
switch (Action) {
case Legal:
OS << "Legal";
break;
case NarrowScalar:
OS << "NarrowScalar";
break;
case WidenScalar:
OS << "WidenScalar";
break;
case FewerElements:
OS << "FewerElements";
break;
case MoreElements:
OS << "MoreElements";
break;
case Lower:
OS << "Lower";
break;
case Libcall:
OS << "Libcall";
break;
case Custom:
OS << "Custom";
break;
case Unsupported:
OS << "Unsupported";
break;
case NotFound:
OS << "NotFound";
break;
case UseLegacyRules:
OS << "UseLegacyRules";
break;
}
return OS;
}
raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
OS << Opcode << ", Tys={";
for (const auto &Type : Types) {
OS << Type << ", ";
}
OS << "}, Opcode=";
OS << Opcode << ", MMOs={";
for (const auto &MMODescr : MMODescrs) {
OS << MMODescr.SizeInBits << ", ";
}
OS << "}";
return OS;
}
#ifndef NDEBUG
// Make sure the rule won't (trivially) loop forever.
static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
const std::pair<unsigned, LLT> &Mutation) {
switch (Rule.getAction()) {
case Custom:
case Lower:
case MoreElements:
case FewerElements:
break;
default:
return Q.Types[Mutation.first] != Mutation.second;
}
return true;
}
// Make sure the returned mutation makes sense for the match type.
static bool mutationIsSane(const LegalizeRule &Rule,
const LegalityQuery &Q,
std::pair<unsigned, LLT> Mutation) {
// If the user wants a custom mutation, then we can't really say much about
// it. Return true, and trust that they're doing the right thing.
if (Rule.getAction() == Custom)
return true;
const unsigned TypeIdx = Mutation.first;
const LLT OldTy = Q.Types[TypeIdx];
const LLT NewTy = Mutation.second;
switch (Rule.getAction()) {
case FewerElements:
if (!OldTy.isVector())
return false;
LLVM_FALLTHROUGH;
case MoreElements: {
// MoreElements can go from scalar to vector.
const unsigned OldElts = OldTy.isVector() ? OldTy.getNumElements() : 1;
if (NewTy.isVector()) {
if (Rule.getAction() == FewerElements) {
// Make sure the element count really decreased.
if (NewTy.getNumElements() >= OldElts)
return false;
} else {
// Make sure the element count really increased.
if (NewTy.getNumElements() <= OldElts)
return false;
}
}
// Make sure the element type didn't change.
return NewTy.getScalarType() == OldTy.getScalarType();
}
case NarrowScalar:
case WidenScalar: {
if (OldTy.isVector()) {
// Number of elements should not change.
if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
return false;
} else {
// Both types must be vectors
if (NewTy.isVector())
return false;
}
if (Rule.getAction() == NarrowScalar) {
// Make sure the size really decreased.
if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
return false;
} else {
// Make sure the size really increased.
if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
return false;
}
return true;
}
default:
return true;
}
}
#endif
LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
dbgs() << "\n");
if (Rules.empty()) {
LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
return {LegalizeAction::UseLegacyRules, 0, LLT{}};
}
for (const LegalizeRule &Rule : Rules) {
if (Rule.match(Query)) {
LLVM_DEBUG(dbgs() << ".. match\n");
std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
<< Mutation.first << ", " << Mutation.second << "\n");
assert(mutationIsSane(Rule, Query, Mutation) &&
"legality mutation invalid for match");
assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
return {Rule.getAction(), Mutation.first, Mutation.second};
} else
LLVM_DEBUG(dbgs() << ".. no match\n");
}
LLVM_DEBUG(dbgs() << ".. unsupported\n");
return {LegalizeAction::Unsupported, 0, LLT{}};
}
bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
#ifndef NDEBUG
if (Rules.empty()) {
LLVM_DEBUG(
dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
return true;
}
const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
if (FirstUncovered < 0) {
LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
" user-defined predicate detected\n");
return true;
}
const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
if (NumTypeIdxs > 0)
LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
<< ", " << (AllCovered ? "OK" : "FAIL") << "\n");
return AllCovered;
#else
return true;
#endif
}
bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const {
#ifndef NDEBUG
if (Rules.empty()) {
LLVM_DEBUG(
dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n");
return true;
}
const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset();
if (FirstUncovered < 0) {
LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:"
" user-defined predicate detected\n");
return true;
}
const bool AllCovered = (FirstUncovered >= NumImmIdxs);
LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered
<< ", " << (AllCovered ? "OK" : "FAIL") << "\n");
return AllCovered;
#else
return true;
#endif
}
LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
// Set defaults.
// FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
// fundamental load/store Jakob proposed. Once loads & stores are supported.
setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
}
void LegalizerInfo::computeTables() {
assert(TablesInitialized == false);
for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
const unsigned Opcode = FirstOp + OpcodeIdx;
for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
++TypeIdx) {
// 0. Collect information specified through the setAction API, i.e.
// for specific bit sizes.
// For scalar types:
SizeAndActionsVec ScalarSpecifiedActions;
// For pointer types:
std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
// For vector types:
std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
const LLT Type = LLT2Action.first;
const LegalizeAction Action = LLT2Action.second;
auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
if (Type.isPointer())
AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
SizeAction);
else if (Type.isVector())
ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
.push_back(SizeAction);
else
ScalarSpecifiedActions.push_back(SizeAction);
}
// 1. Handle scalar types
{
// Decide how to handle bit sizes for which no explicit specification
// was given.
SizeChangeStrategy S = &unsupportedForDifferentSizes;
if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
llvm::sort(ScalarSpecifiedActions);
checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
}
// 2. Handle pointer types
for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
llvm::sort(PointerSpecifiedActions.second);
checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
// For pointer types, we assume that there isn't a meaningfull way
// to change the number of bits used in the pointer.
setPointerAction(
Opcode, TypeIdx, PointerSpecifiedActions.first,
unsupportedForDifferentSizes(PointerSpecifiedActions.second));
}
// 3. Handle vector types
SizeAndActionsVec ElementSizesSeen;
for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
llvm::sort(VectorSpecifiedActions.second);
const uint16_t ElementSize = VectorSpecifiedActions.first;
ElementSizesSeen.push_back({ElementSize, Legal});
checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
// For vector types, we assume that the best way to adapt the number
// of elements is to the next larger number of elements type for which
// the vector type is legal, unless there is no such type. In that case,
// legalize towards a vector type with a smaller number of elements.
SizeAndActionsVec NumElementsActions;
for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
assert(BitsizeAndAction.first % ElementSize == 0);
const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
}
setVectorNumElementAction(
Opcode, TypeIdx, ElementSize,
moreToWiderTypesAndLessToWidest(NumElementsActions));
}
llvm::sort(ElementSizesSeen);
SizeChangeStrategy VectorElementSizeChangeStrategy =
&unsupportedForDifferentSizes;
if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
VectorElementSizeChangeStrategy =
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
setScalarInVectorAction(
Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
}
}
TablesInitialized = true;
}
// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
// probably going to need specialized lookup structures for various types before
// we have any hope of doing well with something like <13 x i3>. Even the common
// cases should do better than what we have now.
std::pair<LegalizeAction, LLT>
LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
assert(TablesInitialized && "backend forgot to call computeTables");
// These *have* to be implemented for now, they're the fundamental basis of
// how everything else is transformed.
if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
return findScalarLegalAction(Aspect);
assert(Aspect.Type.isVector());
return findVectorLegalAction(Aspect);
}
/// Helper function to get LLT for the given type index.
static LLT getTypeFromTypeIdx(const MachineInstr &MI,
const MachineRegisterInfo &MRI, unsigned OpIdx,
unsigned TypeIdx) {
assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
// G_UNMERGE_VALUES has variable number of operands, but there is only
// one source type and one destination type as all destinations must be the
// same type. So, get the last operand if TypeIdx == 1.
if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
return MRI.getType(MI.getOperand(OpIdx).getReg());
}
unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
return Opcode - FirstOp;
}
unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
<< "\n");
OpcodeIdx = getOpcodeIdxForOpcode(Alias);
assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
}
return OpcodeIdx;
}
const LegalizeRuleSet &
LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
return RulesForOpcode[OpcodeIdx];
}
LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
auto &Result = RulesForOpcode[OpcodeIdx];
assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
return Result;
}
LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
std::initializer_list<unsigned> Opcodes) {
unsigned Representative = *Opcodes.begin();
assert(!llvm::empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
"Initializer list must have at least two opcodes");
for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
aliasActionDefinitions(Representative, *I);
auto &Return = getActionDefinitionsBuilder(Representative);
Return.setIsAliasedByAnother();
return Return;
}
void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
unsigned OpcodeFrom) {
assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
}
LegalizeActionStep
LegalizerInfo::getAction(const LegalityQuery &Query) const {
LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
if (Step.Action != LegalizeAction::UseLegacyRules) {
return Step;
}
for (unsigned i = 0; i < Query.Types.size(); ++i) {
auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
if (Action.first != Legal) {
LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
<< Action.first << ", " << Action.second << "\n");
return {Action.first, i, Action.second};
} else
LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
}
LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
return {Legal, 0, LLT{}};
}
LegalizeActionStep
LegalizerInfo::getAction(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const {
SmallVector<LLT, 2> Types;
SmallBitVector SeenTypes(8);
const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
// FIXME: probably we'll need to cache the results here somehow?
for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
if (!OpInfo[i].isGenericType())
continue;
// We must only record actions once for each TypeIdx; otherwise we'd
// try to legalize operands multiple times down the line.
unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
if (SeenTypes[TypeIdx])
continue;
SeenTypes.set(TypeIdx);
LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
Types.push_back(Ty);
}
SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
for (const auto &MMO : MI.memoperands())
MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
8 * MMO->getAlignment(),
MMO->getOrdering()});
return getAction({MI.getOpcode(), Types, MemDescrs});
}
bool LegalizerInfo::isLegal(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const {
return getAction(MI, MRI).Action == Legal;
}
bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const {
auto Action = getAction(MI, MRI).Action;
// If the action is custom, it may not necessarily modify the instruction,
// so we have to assume it's legal.
return Action == Legal || Action == Custom;
}
bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder,
GISelChangeObserver &Observer) const {
return false;
}
LegalizerInfo::SizeAndActionsVec
LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
LegalizeAction DecreaseAction) {
SizeAndActionsVec result;
unsigned LargestSizeSoFar = 0;
if (v.size() >= 1 && v[0].first != 1)
result.push_back({1, IncreaseAction});
for (size_t i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
LargestSizeSoFar = v[i].first;
if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
result.push_back({LargestSizeSoFar + 1, IncreaseAction});
LargestSizeSoFar = v[i].first + 1;
}
}
result.push_back({LargestSizeSoFar + 1, DecreaseAction});
return result;
}
LegalizerInfo::SizeAndActionsVec
LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
LegalizeAction IncreaseAction) {
SizeAndActionsVec result;
if (v.size() == 0 || v[0].first != 1)
result.push_back({1, IncreaseAction});
for (size_t i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
result.push_back({v[i].first + 1, DecreaseAction});
}
}
return result;
}
LegalizerInfo::SizeAndAction
LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
assert(Size >= 1);
// Find the last element in Vec that has a bitsize equal to or smaller than
// the requested bit size.
// That is the element just before the first element that is bigger than Size.
auto It = partition_point(
Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
assert(It != Vec.begin() && "Does Vec not start with size 1?");
int VecIdx = It - Vec.begin() - 1;
LegalizeAction Action = Vec[VecIdx].second;
switch (Action) {
case Legal:
case Lower:
case Libcall:
case Custom:
return {Size, Action};
case FewerElements:
// FIXME: is this special case still needed and correct?
// Special case for scalarization:
if (Vec == SizeAndActionsVec({{1, FewerElements}}))
return {1, FewerElements};
LLVM_FALLTHROUGH;
case NarrowScalar: {
// The following needs to be a loop, as for now, we do allow needing to
// go over "Unsupported" bit sizes before finding a legalizable bit size.
// e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
// we need to iterate over s9, and then to s32 to return (s32, Legal).
// If we want to get rid of the below loop, we should have stronger asserts
// when building the SizeAndActionsVecs, probably not allowing
// "Unsupported" unless at the ends of the vector.
for (int i = VecIdx - 1; i >= 0; --i)
if (!needsLegalizingToDifferentSize(Vec[i].second) &&
Vec[i].second != Unsupported)
return {Vec[i].first, Action};
llvm_unreachable("");
}
case WidenScalar:
case MoreElements: {
// See above, the following needs to be a loop, at least for now.
for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
if (!needsLegalizingToDifferentSize(Vec[i].second) &&
Vec[i].second != Unsupported)
return {Vec[i].first, Action};
llvm_unreachable("");
}
case Unsupported:
return {Size, Unsupported};
case NotFound:
case UseLegacyRules:
llvm_unreachable("NotFound");
}
llvm_unreachable("Action has an unknown enum value");
}
std::pair<LegalizeAction, LLT>
LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
return {NotFound, LLT()};
const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
if (Aspect.Type.isPointer() &&
AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
AddrSpace2PointerActions[OpcodeIdx].end()) {
return {NotFound, LLT()};
}
const SmallVector<SizeAndActionsVec, 1> &Actions =
Aspect.Type.isPointer()
? AddrSpace2PointerActions[OpcodeIdx]
.find(Aspect.Type.getAddressSpace())
->second
: ScalarActions[OpcodeIdx];
if (Aspect.Idx >= Actions.size())
return {NotFound, LLT()};
const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
// FIXME: speed up this search, e.g. by using a results cache for repeated
// queries?
auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
return {SizeAndAction.second,
Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
: LLT::pointer(Aspect.Type.getAddressSpace(),
SizeAndAction.first)};
}
std::pair<LegalizeAction, LLT>
LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
assert(Aspect.Type.isVector());
// First legalize the vector element size, then legalize the number of
// lanes in the vector.
if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
return {NotFound, Aspect.Type};
const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
const unsigned TypeIdx = Aspect.Idx;
if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
return {NotFound, Aspect.Type};
const SizeAndActionsVec &ElemSizeVec =
ScalarInVectorActions[OpcodeIdx][TypeIdx];
LLT IntermediateType;
auto ElementSizeAndAction =
findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
IntermediateType =
LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
if (ElementSizeAndAction.second != Legal)
return {ElementSizeAndAction.second, IntermediateType};
auto i = NumElements2Actions[OpcodeIdx].find(
IntermediateType.getScalarSizeInBits());
if (i == NumElements2Actions[OpcodeIdx].end()) {
return {NotFound, IntermediateType};
}
const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
auto NumElementsAndAction =
findAction(NumElementsVec, IntermediateType.getNumElements());
return {NumElementsAndAction.second,
LLT::vector(NumElementsAndAction.first,
IntermediateType.getScalarSizeInBits())};
}
bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
return true;
}
unsigned LegalizerInfo::getExtOpcodeForWideningConstant(LLT SmallTy) const {
return SmallTy.isByteSized() ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
}
/// \pre Type indices of every opcode form a dense set starting from 0.
void LegalizerInfo::verify(const MCInstrInfo &MII) const {
#ifndef NDEBUG
std::vector<unsigned> FailedOpcodes;
for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
const MCInstrDesc &MCID = MII.get(Opcode);
const unsigned NumTypeIdxs = std::accumulate(
MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
[](unsigned Acc, const MCOperandInfo &OpInfo) {
return OpInfo.isGenericType()
? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
: Acc;
});
const unsigned NumImmIdxs = std::accumulate(
MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
[](unsigned Acc, const MCOperandInfo &OpInfo) {
return OpInfo.isGenericImm()
? std::max(OpInfo.getGenericImmIndex() + 1U, Acc)
: Acc;
});
LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
<< "): " << NumTypeIdxs << " type ind"
<< (NumTypeIdxs == 1 ? "ex" : "ices") << ", "
<< NumImmIdxs << " imm ind"
<< (NumImmIdxs == 1 ? "ex" : "ices") << "\n");
const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
FailedOpcodes.push_back(Opcode);
else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs))
FailedOpcodes.push_back(Opcode);
}
if (!FailedOpcodes.empty()) {
errs() << "The following opcodes have ill-defined legalization rules:";
for (unsigned Opcode : FailedOpcodes)
errs() << " " << MII.getName(Opcode);
errs() << "\n";
report_fatal_error("ill-defined LegalizerInfo"
", try -debug-only=legalizer-info for details");
}
#endif
}
#ifndef NDEBUG
// FIXME: This should be in the MachineVerifier, but it can't use the
// LegalizerInfo as it's currently in the separate GlobalISel library.
// Note that RegBankSelected property already checked in the verifier
// has the same layering problem, but we only use inline methods so
// end up not needing to link against the GlobalISel library.
const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (const MachineBasicBlock &MBB : MF)
for (const MachineInstr &MI : MBB)
if (isPreISelGenericOpcode(MI.getOpcode()) &&
!MLI->isLegalOrCustom(MI, MRI))
return &MI;
}
return nullptr;
}
#endif