ScalarEvolution.cpp
480 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution analysis
// engine, which is used primarily to analyze expressions involving induction
// variables in loops.
//
// There are several aspects to this library. First is the representation of
// scalar expressions, which are represented as subclasses of the SCEV class.
// These classes are used to represent certain types of subexpressions that we
// can handle. We only create one SCEV of a particular shape, so
// pointer-comparisons for equality are legal.
//
// One important aspect of the SCEV objects is that they are never cyclic, even
// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
// the PHI node is one of the idioms that we can represent (e.g., a polynomial
// recurrence) then we represent it directly as a recurrence node, otherwise we
// represent it as a SCEVUnknown node.
//
// In addition to being able to represent expressions of various types, we also
// have folders that are used to build the *canonical* representation for a
// particular expression. These folders are capable of using a variety of
// rewrite rules to simplify the expressions.
//
// Once the folders are defined, we can implement the more interesting
// higher-level code, such as the code that recognizes PHI nodes of various
// types, computes the execution count of a loop, etc.
//
// TODO: We should use these routines and value representations to implement
// dependence analysis!
//
//===----------------------------------------------------------------------===//
//
// There are several good references for the techniques used in this analysis.
//
// Chains of recurrences -- a method to expedite the evaluation
// of closed-form functions
// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
//
// On computational properties of chains of recurrences
// Eugene V. Zima
//
// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
// Robert A. van Engelen
//
// Efficient Symbolic Analysis for Optimizing Compilers
// Robert A. van Engelen
//
// Using the chains of recurrences algebra for data dependence testing and
// induction variable substitution
// MS Thesis, Johnie Birch
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <map>
#include <memory>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "scalar-evolution"
STATISTIC(NumArrayLenItCounts,
"Number of trip counts computed with array length");
STATISTIC(NumTripCountsComputed,
"Number of loops with predictable loop counts");
STATISTIC(NumTripCountsNotComputed,
"Number of loops without predictable loop counts");
STATISTIC(NumBruteForceTripCountsComputed,
"Number of loops with trip counts computed by force");
static cl::opt<unsigned>
MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
cl::ZeroOrMore,
cl::desc("Maximum number of iterations SCEV will "
"symbolically execute a constant "
"derived loop"),
cl::init(100));
// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
static cl::opt<bool> VerifySCEV(
"verify-scev", cl::Hidden,
cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
static cl::opt<bool> VerifySCEVStrict(
"verify-scev-strict", cl::Hidden,
cl::desc("Enable stricter verification with -verify-scev is passed"));
static cl::opt<bool>
VerifySCEVMap("verify-scev-maps", cl::Hidden,
cl::desc("Verify no dangling value in ScalarEvolution's "
"ExprValueMap (slow)"));
static cl::opt<bool> VerifyIR(
"scev-verify-ir", cl::Hidden,
cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
cl::init(false));
static cl::opt<unsigned> MulOpsInlineThreshold(
"scev-mulops-inline-threshold", cl::Hidden,
cl::desc("Threshold for inlining multiplication operands into a SCEV"),
cl::init(32));
static cl::opt<unsigned> AddOpsInlineThreshold(
"scev-addops-inline-threshold", cl::Hidden,
cl::desc("Threshold for inlining addition operands into a SCEV"),
cl::init(500));
static cl::opt<unsigned> MaxSCEVCompareDepth(
"scalar-evolution-max-scev-compare-depth", cl::Hidden,
cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
cl::init(32));
static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
"scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
cl::init(2));
static cl::opt<unsigned> MaxValueCompareDepth(
"scalar-evolution-max-value-compare-depth", cl::Hidden,
cl::desc("Maximum depth of recursive value complexity comparisons"),
cl::init(2));
static cl::opt<unsigned>
MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
cl::desc("Maximum depth of recursive arithmetics"),
cl::init(32));
static cl::opt<unsigned> MaxConstantEvolvingDepth(
"scalar-evolution-max-constant-evolving-depth", cl::Hidden,
cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
static cl::opt<unsigned>
MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
cl::init(8));
static cl::opt<unsigned>
MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
cl::desc("Max coefficients in AddRec during evolving"),
cl::init(8));
static cl::opt<unsigned>
HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
cl::desc("Size of the expression which is considered huge"),
cl::init(4096));
static cl::opt<bool>
ClassifyExpressions("scalar-evolution-classify-expressions",
cl::Hidden, cl::init(true),
cl::desc("When printing analysis, include information on every instruction"));
//===----------------------------------------------------------------------===//
// SCEV class definitions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Implementation of the SCEV class.
//
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SCEV::dump() const {
print(dbgs());
dbgs() << '\n';
}
#endif
void SCEV::print(raw_ostream &OS) const {
switch (static_cast<SCEVTypes>(getSCEVType())) {
case scConstant:
cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
return;
case scTruncate: {
const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
const SCEV *Op = Trunc->getOperand();
OS << "(trunc " << *Op->getType() << " " << *Op << " to "
<< *Trunc->getType() << ")";
return;
}
case scZeroExtend: {
const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
const SCEV *Op = ZExt->getOperand();
OS << "(zext " << *Op->getType() << " " << *Op << " to "
<< *ZExt->getType() << ")";
return;
}
case scSignExtend: {
const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
const SCEV *Op = SExt->getOperand();
OS << "(sext " << *Op->getType() << " " << *Op << " to "
<< *SExt->getType() << ")";
return;
}
case scAddRecExpr: {
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
OS << "{" << *AR->getOperand(0);
for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
OS << ",+," << *AR->getOperand(i);
OS << "}<";
if (AR->hasNoUnsignedWrap())
OS << "nuw><";
if (AR->hasNoSignedWrap())
OS << "nsw><";
if (AR->hasNoSelfWrap() &&
!AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
OS << "nw><";
AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ">";
return;
}
case scAddExpr:
case scMulExpr:
case scUMaxExpr:
case scSMaxExpr:
case scUMinExpr:
case scSMinExpr: {
const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
const char *OpStr = nullptr;
switch (NAry->getSCEVType()) {
case scAddExpr: OpStr = " + "; break;
case scMulExpr: OpStr = " * "; break;
case scUMaxExpr: OpStr = " umax "; break;
case scSMaxExpr: OpStr = " smax "; break;
case scUMinExpr:
OpStr = " umin ";
break;
case scSMinExpr:
OpStr = " smin ";
break;
}
OS << "(";
for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
I != E; ++I) {
OS << **I;
if (std::next(I) != E)
OS << OpStr;
}
OS << ")";
switch (NAry->getSCEVType()) {
case scAddExpr:
case scMulExpr:
if (NAry->hasNoUnsignedWrap())
OS << "<nuw>";
if (NAry->hasNoSignedWrap())
OS << "<nsw>";
}
return;
}
case scUDivExpr: {
const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
return;
}
case scUnknown: {
const SCEVUnknown *U = cast<SCEVUnknown>(this);
Type *AllocTy;
if (U->isSizeOf(AllocTy)) {
OS << "sizeof(" << *AllocTy << ")";
return;
}
if (U->isAlignOf(AllocTy)) {
OS << "alignof(" << *AllocTy << ")";
return;
}
Type *CTy;
Constant *FieldNo;
if (U->isOffsetOf(CTy, FieldNo)) {
OS << "offsetof(" << *CTy << ", ";
FieldNo->printAsOperand(OS, false);
OS << ")";
return;
}
// Otherwise just print it normally.
U->getValue()->printAsOperand(OS, false);
return;
}
case scCouldNotCompute:
OS << "***COULDNOTCOMPUTE***";
return;
}
llvm_unreachable("Unknown SCEV kind!");
}
Type *SCEV::getType() const {
switch (static_cast<SCEVTypes>(getSCEVType())) {
case scConstant:
return cast<SCEVConstant>(this)->getType();
case scTruncate:
case scZeroExtend:
case scSignExtend:
return cast<SCEVCastExpr>(this)->getType();
case scAddRecExpr:
case scMulExpr:
case scUMaxExpr:
case scSMaxExpr:
case scUMinExpr:
case scSMinExpr:
return cast<SCEVNAryExpr>(this)->getType();
case scAddExpr:
return cast<SCEVAddExpr>(this)->getType();
case scUDivExpr:
return cast<SCEVUDivExpr>(this)->getType();
case scUnknown:
return cast<SCEVUnknown>(this)->getType();
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
}
llvm_unreachable("Unknown SCEV kind!");
}
bool SCEV::isZero() const {
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
return SC->getValue()->isZero();
return false;
}
bool SCEV::isOne() const {
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
return SC->getValue()->isOne();
return false;
}
bool SCEV::isAllOnesValue() const {
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
return SC->getValue()->isMinusOne();
return false;
}
bool SCEV::isNonConstantNegative() const {
const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
if (!Mul) return false;
// If there is a constant factor, it will be first.
const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
if (!SC) return false;
// Return true if the value is negative, this matches things like (-42 * V).
return SC->getAPInt().isNegative();
}
SCEVCouldNotCompute::SCEVCouldNotCompute() :
SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
bool SCEVCouldNotCompute::classof(const SCEV *S) {
return S->getSCEVType() == scCouldNotCompute;
}
const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
FoldingSetNodeID ID;
ID.AddInteger(scConstant);
ID.AddPointer(V);
void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
return getConstant(ConstantInt::get(getContext(), Val));
}
const SCEV *
ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
return getConstant(ConstantInt::get(ITy, V, isSigned));
}
SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
unsigned SCEVTy, const SCEV *op, Type *ty)
: SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty)
: SCEVCastExpr(ID, scTruncate, op, ty) {
assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot truncate non-integer value!");
}
SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty)
: SCEVCastExpr(ID, scZeroExtend, op, ty) {
assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot zero extend non-integer value!");
}
SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
const SCEV *op, Type *ty)
: SCEVCastExpr(ID, scSignExtend, op, ty) {
assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot sign extend non-integer value!");
}
void SCEVUnknown::deleted() {
// Clear this SCEVUnknown from various maps.
SE->forgetMemoizedResults(this);
// Remove this SCEVUnknown from the uniquing map.
SE->UniqueSCEVs.RemoveNode(this);
// Release the value.
setValPtr(nullptr);
}
void SCEVUnknown::allUsesReplacedWith(Value *New) {
// Remove this SCEVUnknown from the uniquing map.
SE->UniqueSCEVs.RemoveNode(this);
// Update this SCEVUnknown to point to the new value. This is needed
// because there may still be outstanding SCEVs which still point to
// this SCEVUnknown.
setValPtr(New);
}
bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
if (VCE->getOpcode() == Instruction::PtrToInt)
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
if (CE->getOpcode() == Instruction::GetElementPtr &&
CE->getOperand(0)->isNullValue() &&
CE->getNumOperands() == 2)
if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
if (CI->isOne()) {
AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
->getElementType();
return true;
}
return false;
}
bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
if (VCE->getOpcode() == Instruction::PtrToInt)
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
if (CE->getOpcode() == Instruction::GetElementPtr &&
CE->getOperand(0)->isNullValue()) {
Type *Ty =
cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
if (StructType *STy = dyn_cast<StructType>(Ty))
if (!STy->isPacked() &&
CE->getNumOperands() == 3 &&
CE->getOperand(1)->isNullValue()) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
if (CI->isOne() &&
STy->getNumElements() == 2 &&
STy->getElementType(0)->isIntegerTy(1)) {
AllocTy = STy->getElementType(1);
return true;
}
}
}
return false;
}
bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
if (VCE->getOpcode() == Instruction::PtrToInt)
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
if (CE->getOpcode() == Instruction::GetElementPtr &&
CE->getNumOperands() == 3 &&
CE->getOperand(0)->isNullValue() &&
CE->getOperand(1)->isNullValue()) {
Type *Ty =
cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
// Ignore vector types here so that ScalarEvolutionExpander doesn't
// emit getelementptrs that index into vectors.
if (Ty->isStructTy() || Ty->isArrayTy()) {
CTy = Ty;
FieldNo = CE->getOperand(2);
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// SCEV Utilities
//===----------------------------------------------------------------------===//
/// Compare the two values \p LV and \p RV in terms of their "complexity" where
/// "complexity" is a partial (and somewhat ad-hoc) relation used to order
/// operands in SCEV expressions. \p EqCache is a set of pairs of values that
/// have been previously deemed to be "equally complex" by this routine. It is
/// intended to avoid exponential time complexity in cases like:
///
/// %a = f(%x, %y)
/// %b = f(%a, %a)
/// %c = f(%b, %b)
///
/// %d = f(%x, %y)
/// %e = f(%d, %d)
/// %f = f(%e, %e)
///
/// CompareValueComplexity(%f, %c)
///
/// Since we do not continue running this routine on expression trees once we
/// have seen unequal values, there is no need to track them in the cache.
static int
CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
const LoopInfo *const LI, Value *LV, Value *RV,
unsigned Depth) {
if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
return 0;
// Order pointer values after integer values. This helps SCEVExpander form
// GEPs.
bool LIsPointer = LV->getType()->isPointerTy(),
RIsPointer = RV->getType()->isPointerTy();
if (LIsPointer != RIsPointer)
return (int)LIsPointer - (int)RIsPointer;
// Compare getValueID values.
unsigned LID = LV->getValueID(), RID = RV->getValueID();
if (LID != RID)
return (int)LID - (int)RID;
// Sort arguments by their position.
if (const auto *LA = dyn_cast<Argument>(LV)) {
const auto *RA = cast<Argument>(RV);
unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
return (int)LArgNo - (int)RArgNo;
}
if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
const auto *RGV = cast<GlobalValue>(RV);
const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
auto LT = GV->getLinkage();
return !(GlobalValue::isPrivateLinkage(LT) ||
GlobalValue::isInternalLinkage(LT));
};
// Use the names to distinguish the two values, but only if the
// names are semantically important.
if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
return LGV->getName().compare(RGV->getName());
}
// For instructions, compare their loop depth, and their operand count. This
// is pretty loose.
if (const auto *LInst = dyn_cast<Instruction>(LV)) {
const auto *RInst = cast<Instruction>(RV);
// Compare loop depths.
const BasicBlock *LParent = LInst->getParent(),
*RParent = RInst->getParent();
if (LParent != RParent) {
unsigned LDepth = LI->getLoopDepth(LParent),
RDepth = LI->getLoopDepth(RParent);
if (LDepth != RDepth)
return (int)LDepth - (int)RDepth;
}
// Compare the number of operands.
unsigned LNumOps = LInst->getNumOperands(),
RNumOps = RInst->getNumOperands();
if (LNumOps != RNumOps)
return (int)LNumOps - (int)RNumOps;
for (unsigned Idx : seq(0u, LNumOps)) {
int Result =
CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
RInst->getOperand(Idx), Depth + 1);
if (Result != 0)
return Result;
}
}
EqCacheValue.unionSets(LV, RV);
return 0;
}
// Return negative, zero, or positive, if LHS is less than, equal to, or greater
// than RHS, respectively. A three-way result allows recursive comparisons to be
// more efficient.
static int CompareSCEVComplexity(
EquivalenceClasses<const SCEV *> &EqCacheSCEV,
EquivalenceClasses<const Value *> &EqCacheValue,
const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
DominatorTree &DT, unsigned Depth = 0) {
// Fast-path: SCEVs are uniqued so we can do a quick equality check.
if (LHS == RHS)
return 0;
// Primarily, sort the SCEVs by their getSCEVType().
unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
if (LType != RType)
return (int)LType - (int)RType;
if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
return 0;
// Aside from the getSCEVType() ordering, the particular ordering
// isn't very important except that it's beneficial to be consistent,
// so that (a + b) and (b + a) don't end up as different expressions.
switch (static_cast<SCEVTypes>(LType)) {
case scUnknown: {
const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
RU->getValue(), Depth + 1);
if (X == 0)
EqCacheSCEV.unionSets(LHS, RHS);
return X;
}
case scConstant: {
const SCEVConstant *LC = cast<SCEVConstant>(LHS);
const SCEVConstant *RC = cast<SCEVConstant>(RHS);
// Compare constant values.
const APInt &LA = LC->getAPInt();
const APInt &RA = RC->getAPInt();
unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
if (LBitWidth != RBitWidth)
return (int)LBitWidth - (int)RBitWidth;
return LA.ult(RA) ? -1 : 1;
}
case scAddRecExpr: {
const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
// There is always a dominance between two recs that are used by one SCEV,
// so we can safely sort recs by loop header dominance. We require such
// order in getAddExpr.
const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
if (LLoop != RLoop) {
const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
assert(LHead != RHead && "Two loops share the same header?");
if (DT.dominates(LHead, RHead))
return 1;
else
assert(DT.dominates(RHead, LHead) &&
"No dominance between recurrences used by one SCEV?");
return -1;
}
// Addrec complexity grows with operand count.
unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
if (LNumOps != RNumOps)
return (int)LNumOps - (int)RNumOps;
// Lexicographically compare.
for (unsigned i = 0; i != LNumOps; ++i) {
int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
LA->getOperand(i), RA->getOperand(i), DT,
Depth + 1);
if (X != 0)
return X;
}
EqCacheSCEV.unionSets(LHS, RHS);
return 0;
}
case scAddExpr:
case scMulExpr:
case scSMaxExpr:
case scUMaxExpr:
case scSMinExpr:
case scUMinExpr: {
const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
// Lexicographically compare n-ary expressions.
unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
if (LNumOps != RNumOps)
return (int)LNumOps - (int)RNumOps;
for (unsigned i = 0; i != LNumOps; ++i) {
int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
LC->getOperand(i), RC->getOperand(i), DT,
Depth + 1);
if (X != 0)
return X;
}
EqCacheSCEV.unionSets(LHS, RHS);
return 0;
}
case scUDivExpr: {
const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
// Lexicographically compare udiv expressions.
int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
RC->getLHS(), DT, Depth + 1);
if (X != 0)
return X;
X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
RC->getRHS(), DT, Depth + 1);
if (X == 0)
EqCacheSCEV.unionSets(LHS, RHS);
return X;
}
case scTruncate:
case scZeroExtend:
case scSignExtend: {
const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
// Compare cast expressions by operand.
int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
LC->getOperand(), RC->getOperand(), DT,
Depth + 1);
if (X == 0)
EqCacheSCEV.unionSets(LHS, RHS);
return X;
}
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
}
llvm_unreachable("Unknown SCEV kind!");
}
/// Given a list of SCEV objects, order them by their complexity, and group
/// objects of the same complexity together by value. When this routine is
/// finished, we know that any duplicates in the vector are consecutive and that
/// complexity is monotonically increasing.
///
/// Note that we go take special precautions to ensure that we get deterministic
/// results from this routine. In other words, we don't want the results of
/// this to depend on where the addresses of various SCEV objects happened to
/// land in memory.
static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
LoopInfo *LI, DominatorTree &DT) {
if (Ops.size() < 2) return; // Noop
EquivalenceClasses<const SCEV *> EqCacheSCEV;
EquivalenceClasses<const Value *> EqCacheValue;
if (Ops.size() == 2) {
// This is the common case, which also happens to be trivially simple.
// Special case it.
const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
std::swap(LHS, RHS);
return;
}
// Do the rough sort by complexity.
llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
0;
});
// Now that we are sorted by complexity, group elements of the same
// complexity. Note that this is, at worst, N^2, but the vector is likely to
// be extremely short in practice. Note that we take this approach because we
// do not want to depend on the addresses of the objects we are grouping.
for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
const SCEV *S = Ops[i];
unsigned Complexity = S->getSCEVType();
// If there are any objects of the same complexity and same value as this
// one, group them.
for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
if (Ops[j] == S) { // Found a duplicate.
// Move it to immediately after i'th element.
std::swap(Ops[i+1], Ops[j]);
++i; // no need to rescan it.
if (i == e-2) return; // Done!
}
}
}
}
// Returns the size of the SCEV S.
static inline int sizeOfSCEV(const SCEV *S) {
struct FindSCEVSize {
int Size = 0;
FindSCEVSize() = default;
bool follow(const SCEV *S) {
++Size;
// Keep looking at all operands of S.
return true;
}
bool isDone() const {
return false;
}
};
FindSCEVSize F;
SCEVTraversal<FindSCEVSize> ST(F);
ST.visitAll(S);
return F.Size;
}
/// Returns true if the subtree of \p S contains at least HugeExprThreshold
/// nodes.
static bool isHugeExpression(const SCEV *S) {
return S->getExpressionSize() >= HugeExprThreshold;
}
/// Returns true of \p Ops contains a huge SCEV (see definition above).
static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
return any_of(Ops, isHugeExpression);
}
namespace {
struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
public:
// Computes the Quotient and Remainder of the division of Numerator by
// Denominator.
static void divide(ScalarEvolution &SE, const SCEV *Numerator,
const SCEV *Denominator, const SCEV **Quotient,
const SCEV **Remainder) {
assert(Numerator && Denominator && "Uninitialized SCEV");
SCEVDivision D(SE, Numerator, Denominator);
// Check for the trivial case here to avoid having to check for it in the
// rest of the code.
if (Numerator == Denominator) {
*Quotient = D.One;
*Remainder = D.Zero;
return;
}
if (Numerator->isZero()) {
*Quotient = D.Zero;
*Remainder = D.Zero;
return;
}
// A simple case when N/1. The quotient is N.
if (Denominator->isOne()) {
*Quotient = Numerator;
*Remainder = D.Zero;
return;
}
// Split the Denominator when it is a product.
if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
const SCEV *Q, *R;
*Quotient = Numerator;
for (const SCEV *Op : T->operands()) {
divide(SE, *Quotient, Op, &Q, &R);
*Quotient = Q;
// Bail out when the Numerator is not divisible by one of the terms of
// the Denominator.
if (!R->isZero()) {
*Quotient = D.Zero;
*Remainder = Numerator;
return;
}
}
*Remainder = D.Zero;
return;
}
D.visit(Numerator);
*Quotient = D.Quotient;
*Remainder = D.Remainder;
}
// Except in the trivial case described above, we do not know how to divide
// Expr by Denominator for the following functions with empty implementation.
void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
void visitUnknown(const SCEVUnknown *Numerator) {}
void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
void visitConstant(const SCEVConstant *Numerator) {
if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
APInt NumeratorVal = Numerator->getAPInt();
APInt DenominatorVal = D->getAPInt();
uint32_t NumeratorBW = NumeratorVal.getBitWidth();
uint32_t DenominatorBW = DenominatorVal.getBitWidth();
if (NumeratorBW > DenominatorBW)
DenominatorVal = DenominatorVal.sext(NumeratorBW);
else if (NumeratorBW < DenominatorBW)
NumeratorVal = NumeratorVal.sext(DenominatorBW);
APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
Quotient = SE.getConstant(QuotientVal);
Remainder = SE.getConstant(RemainderVal);
return;
}
}
void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
const SCEV *StartQ, *StartR, *StepQ, *StepR;
if (!Numerator->isAffine())
return cannotDivide(Numerator);
divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
// Bail out if the types do not match.
Type *Ty = Denominator->getType();
if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Ty != StepQ->getType() || Ty != StepR->getType())
return cannotDivide(Numerator);
Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
Numerator->getNoWrapFlags());
Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
Numerator->getNoWrapFlags());
}
void visitAddExpr(const SCEVAddExpr *Numerator) {
SmallVector<const SCEV *, 2> Qs, Rs;
Type *Ty = Denominator->getType();
for (const SCEV *Op : Numerator->operands()) {
const SCEV *Q, *R;
divide(SE, Op, Denominator, &Q, &R);
// Bail out if types do not match.
if (Ty != Q->getType() || Ty != R->getType())
return cannotDivide(Numerator);
Qs.push_back(Q);
Rs.push_back(R);
}
if (Qs.size() == 1) {
Quotient = Qs[0];
Remainder = Rs[0];
return;
}
Quotient = SE.getAddExpr(Qs);
Remainder = SE.getAddExpr(Rs);
}
void visitMulExpr(const SCEVMulExpr *Numerator) {
SmallVector<const SCEV *, 2> Qs;
Type *Ty = Denominator->getType();
bool FoundDenominatorTerm = false;
for (const SCEV *Op : Numerator->operands()) {
// Bail out if types do not match.
if (Ty != Op->getType())
return cannotDivide(Numerator);
if (FoundDenominatorTerm) {
Qs.push_back(Op);
continue;
}
// Check whether Denominator divides one of the product operands.
const SCEV *Q, *R;
divide(SE, Op, Denominator, &Q, &R);
if (!R->isZero()) {
Qs.push_back(Op);
continue;
}
// Bail out if types do not match.
if (Ty != Q->getType())
return cannotDivide(Numerator);
FoundDenominatorTerm = true;
Qs.push_back(Q);
}
if (FoundDenominatorTerm) {
Remainder = Zero;
if (Qs.size() == 1)
Quotient = Qs[0];
else
Quotient = SE.getMulExpr(Qs);
return;
}
if (!isa<SCEVUnknown>(Denominator))
return cannotDivide(Numerator);
// The Remainder is obtained by replacing Denominator by 0 in Numerator.
ValueToValueMap RewriteMap;
RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
cast<SCEVConstant>(Zero)->getValue();
Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
if (Remainder->isZero()) {
// The Quotient is obtained by replacing Denominator by 1 in Numerator.
RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
cast<SCEVConstant>(One)->getValue();
Quotient =
SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
return;
}
// Quotient is (Numerator - Remainder) divided by Denominator.
const SCEV *Q, *R;
const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
// This SCEV does not seem to simplify: fail the division here.
if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
return cannotDivide(Numerator);
divide(SE, Diff, Denominator, &Q, &R);
if (R != Zero)
return cannotDivide(Numerator);
Quotient = Q;
}
private:
SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
const SCEV *Denominator)
: SE(S), Denominator(Denominator) {
Zero = SE.getZero(Denominator->getType());
One = SE.getOne(Denominator->getType());
// We generally do not know how to divide Expr by Denominator. We
// initialize the division to a "cannot divide" state to simplify the rest
// of the code.
cannotDivide(Numerator);
}
// Convenience function for giving up on the division. We set the quotient to
// be equal to zero and the remainder to be equal to the numerator.
void cannotDivide(const SCEV *Numerator) {
Quotient = Zero;
Remainder = Numerator;
}
ScalarEvolution &SE;
const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Simple SCEV method implementations
//===----------------------------------------------------------------------===//
/// Compute BC(It, K). The result has width W. Assume, K > 0.
static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
ScalarEvolution &SE,
Type *ResultTy) {
// Handle the simplest case efficiently.
if (K == 1)
return SE.getTruncateOrZeroExtend(It, ResultTy);
// We are using the following formula for BC(It, K):
//
// BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
//
// Suppose, W is the bitwidth of the return value. We must be prepared for
// overflow. Hence, we must assure that the result of our computation is
// equal to the accurate one modulo 2^W. Unfortunately, division isn't
// safe in modular arithmetic.
//
// However, this code doesn't use exactly that formula; the formula it uses
// is something like the following, where T is the number of factors of 2 in
// K! (i.e. trailing zeros in the binary representation of K!), and ^ is
// exponentiation:
//
// BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
//
// This formula is trivially equivalent to the previous formula. However,
// this formula can be implemented much more efficiently. The trick is that
// K! / 2^T is odd, and exact division by an odd number *is* safe in modular
// arithmetic. To do exact division in modular arithmetic, all we have
// to do is multiply by the inverse. Therefore, this step can be done at
// width W.
//
// The next issue is how to safely do the division by 2^T. The way this
// is done is by doing the multiplication step at a width of at least W + T
// bits. This way, the bottom W+T bits of the product are accurate. Then,
// when we perform the division by 2^T (which is equivalent to a right shift
// by T), the bottom W bits are accurate. Extra bits are okay; they'll get
// truncated out after the division by 2^T.
//
// In comparison to just directly using the first formula, this technique
// is much more efficient; using the first formula requires W * K bits,
// but this formula less than W + K bits. Also, the first formula requires
// a division step, whereas this formula only requires multiplies and shifts.
//
// It doesn't matter whether the subtraction step is done in the calculation
// width or the input iteration count's width; if the subtraction overflows,
// the result must be zero anyway. We prefer here to do it in the width of
// the induction variable because it helps a lot for certain cases; CodeGen
// isn't smart enough to ignore the overflow, which leads to much less
// efficient code if the width of the subtraction is wider than the native
// register width.
//
// (It's possible to not widen at all by pulling out factors of 2 before
// the multiplication; for example, K=2 can be calculated as
// It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
// extra arithmetic, so it's not an obvious win, and it gets
// much more complicated for K > 3.)
// Protection from insane SCEVs; this bound is conservative,
// but it probably doesn't matter.
if (K > 1000)
return SE.getCouldNotCompute();
unsigned W = SE.getTypeSizeInBits(ResultTy);
// Calculate K! / 2^T and T; we divide out the factors of two before
// multiplying for calculating K! / 2^T to avoid overflow.
// Other overflow doesn't matter because we only care about the bottom
// W bits of the result.
APInt OddFactorial(W, 1);
unsigned T = 1;
for (unsigned i = 3; i <= K; ++i) {
APInt Mult(W, i);
unsigned TwoFactors = Mult.countTrailingZeros();
T += TwoFactors;
Mult.lshrInPlace(TwoFactors);
OddFactorial *= Mult;
}
// We need at least W + T bits for the multiplication step
unsigned CalculationBits = W + T;
// Calculate 2^T, at width T+W.
APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
// Calculate the multiplicative inverse of K! / 2^T;
// this multiplication factor will perform the exact division by
// K! / 2^T.
APInt Mod = APInt::getSignedMinValue(W+1);
APInt MultiplyFactor = OddFactorial.zext(W+1);
MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
MultiplyFactor = MultiplyFactor.trunc(W);
// Calculate the product, at width T+W
IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
CalculationBits);
const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
for (unsigned i = 1; i != K; ++i) {
const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Dividend = SE.getMulExpr(Dividend,
SE.getTruncateOrZeroExtend(S, CalculationTy));
}
// Divide by 2^T
const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
// Truncate the result, and divide by K! / 2^T.
return SE.getMulExpr(SE.getConstant(MultiplyFactor),
SE.getTruncateOrZeroExtend(DivResult, ResultTy));
}
/// Return the value of this chain of recurrences at the specified iteration
/// number. We can evaluate this recurrence by multiplying each element in the
/// chain by the binomial coefficient corresponding to it. In other words, we
/// can evaluate {A,+,B,+,C,+,D} as:
///
/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
///
/// where BC(It, k) stands for binomial coefficient.
const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
ScalarEvolution &SE) const {
const SCEV *Result = getStart();
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
// The computation is correct in the face of overflow provided that the
// multiplication is performed _after_ the evaluation of the binomial
// coefficient.
const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
if (isa<SCEVCouldNotCompute>(Coeff))
return Coeff;
Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
}
return Result;
}
//===----------------------------------------------------------------------===//
// SCEV Expression folder implementations
//===----------------------------------------------------------------------===//
const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
unsigned Depth) {
assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
"This is not a truncating conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
FoldingSetNodeID ID;
ID.AddInteger(scTruncate);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
// trunc(trunc(x)) --> trunc(x)
if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
// trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
// trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
if (Depth > MaxCastDepth) {
SCEV *S =
new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
return S;
}
// trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
// trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
// if after transforming we have at most one truncate, not counting truncates
// that replace other casts.
if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
auto *CommOp = cast<SCEVCommutativeExpr>(Op);
SmallVector<const SCEV *, 4> Operands;
unsigned numTruncs = 0;
for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
++i) {
const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
numTruncs++;
Operands.push_back(S);
}
if (numTruncs < 2) {
if (isa<SCEVAddExpr>(Op))
return getAddExpr(Operands);
else if (isa<SCEVMulExpr>(Op))
return getMulExpr(Operands);
else
llvm_unreachable("Unexpected SCEV type for Op.");
}
// Although we checked in the beginning that ID is not in the cache, it is
// possible that during recursion and different modification ID was inserted
// into the cache. So if we find it, just return it.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
return S;
}
// If the input value is a chrec scev, truncate the chrec's operands.
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
SmallVector<const SCEV *, 4> Operands;
for (const SCEV *Op : AddRec->operands())
Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
}
// The cast wasn't folded; create an explicit cast node. We can reuse
// the existing insert position since if we get here, we won't have
// made any changes which would invalidate it.
SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
return S;
}
// Get the limit of a recurrence such that incrementing by Step cannot cause
// signed overflow as long as the value of the recurrence within the
// loop does not exceed this limit before incrementing.
static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
ICmpInst::Predicate *Pred,
ScalarEvolution *SE) {
unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
if (SE->isKnownPositive(Step)) {
*Pred = ICmpInst::ICMP_SLT;
return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
SE->getSignedRangeMax(Step));
}
if (SE->isKnownNegative(Step)) {
*Pred = ICmpInst::ICMP_SGT;
return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
SE->getSignedRangeMin(Step));
}
return nullptr;
}
// Get the limit of a recurrence such that incrementing by Step cannot cause
// unsigned overflow as long as the value of the recurrence within the loop does
// not exceed this limit before incrementing.
static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
ICmpInst::Predicate *Pred,
ScalarEvolution *SE) {
unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
*Pred = ICmpInst::ICMP_ULT;
return SE->getConstant(APInt::getMinValue(BitWidth) -
SE->getUnsignedRangeMax(Step));
}
namespace {
struct ExtendOpTraitsBase {
typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
unsigned);
};
// Used to make code generic over signed and unsigned overflow.
template <typename ExtendOp> struct ExtendOpTraits {
// Members present:
//
// static const SCEV::NoWrapFlags WrapType;
//
// static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
//
// static const SCEV *getOverflowLimitForStep(const SCEV *Step,
// ICmpInst::Predicate *Pred,
// ScalarEvolution *SE);
};
template <>
struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
static const GetExtendExprTy GetExtendExpr;
static const SCEV *getOverflowLimitForStep(const SCEV *Step,
ICmpInst::Predicate *Pred,
ScalarEvolution *SE) {
return getSignedOverflowLimitForStep(Step, Pred, SE);
}
};
const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
template <>
struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
static const GetExtendExprTy GetExtendExpr;
static const SCEV *getOverflowLimitForStep(const SCEV *Step,
ICmpInst::Predicate *Pred,
ScalarEvolution *SE) {
return getUnsignedOverflowLimitForStep(Step, Pred, SE);
}
};
const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
} // end anonymous namespace
// The recurrence AR has been shown to have no signed/unsigned wrap or something
// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
// easily prove NSW/NUW for its preincrement or postincrement sibling. This
// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
// expression "Step + sext/zext(PreIncAR)" is congruent with
// "sext/zext(PostIncAR)"
template <typename ExtendOpTy>
static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
ScalarEvolution *SE, unsigned Depth) {
auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
const Loop *L = AR->getLoop();
const SCEV *Start = AR->getStart();
const SCEV *Step = AR->getStepRecurrence(*SE);
// Check for a simple looking step prior to loop entry.
const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
if (!SA)
return nullptr;
// Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
// subtraction is expensive. For this purpose, perform a quick and dirty
// difference, by checking for Step in the operand list.
SmallVector<const SCEV *, 4> DiffOps;
for (const SCEV *Op : SA->operands())
if (Op != Step)
DiffOps.push_back(Op);
if (DiffOps.size() == SA->getNumOperands())
return nullptr;
// Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
// `Step`:
// 1. NSW/NUW flags on the step increment.
auto PreStartFlags =
ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
// "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
// "S+X does not sign/unsign-overflow".
//
const SCEV *BECount = SE->getBackedgeTakenCount(L);
if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
!isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
return PreStart;
// 2. Direct overflow check on the step operation's expression.
unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
const SCEV *OperandExtendedStart =
SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
(SE->*GetExtendExpr)(Step, WideTy, Depth));
if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
if (PreAR && AR->getNoWrapFlags(WrapType)) {
// If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
// or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
// `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
}
return PreStart;
}
// 3. Loop precondition.
ICmpInst::Predicate Pred;
const SCEV *OverflowLimit =
ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
if (OverflowLimit &&
SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
return PreStart;
return nullptr;
}
// Get the normalized zero or sign extended expression for this AddRec's Start.
template <typename ExtendOpTy>
static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
ScalarEvolution *SE,
unsigned Depth) {
auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
if (!PreStart)
return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
Depth),
(SE->*GetExtendExpr)(PreStart, Ty, Depth));
}
// Try to prove away overflow by looking at "nearby" add recurrences. A
// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
//
// Formally:
//
// {S,+,X} == {S-T,+,X} + T
// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
//
// If ({S-T,+,X} + T) does not overflow ... (1)
//
// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
//
// If {S-T,+,X} does not overflow ... (2)
//
// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
// == {Ext(S-T)+Ext(T),+,Ext(X)}
//
// If (S-T)+T does not overflow ... (3)
//
// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
// == {Ext(S),+,Ext(X)} == LHS
//
// Thus, if (1), (2) and (3) are true for some T, then
// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
//
// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
// does not overflow" restricted to the 0th iteration. Therefore we only need
// to check for (1) and (2).
//
// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
// is `Delta` (defined below).
template <typename ExtendOpTy>
bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
const SCEV *Step,
const Loop *L) {
auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
// We restrict `Start` to a constant to prevent SCEV from spending too much
// time here. It is correct (but more expensive) to continue with a
// non-constant `Start` and do a general SCEV subtraction to compute
// `PreStart` below.
const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
if (!StartC)
return false;
APInt StartAI = StartC->getAPInt();
for (unsigned Delta : {-2, -1, 1, 2}) {
const SCEV *PreStart = getConstant(StartAI - Delta);
FoldingSetNodeID ID;
ID.AddInteger(scAddRecExpr);
ID.AddPointer(PreStart);
ID.AddPointer(Step);
ID.AddPointer(L);
void *IP = nullptr;
const auto *PreAR =
static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
// Give up if we don't already have the add recurrence we need because
// actually constructing an add recurrence is relatively expensive.
if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
DeltaS, &Pred, this);
if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
return true;
}
}
return false;
}
// Finds an integer D for an expression (C + x + y + ...) such that the top
// level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
// unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
// maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
// the (C + x + y + ...) expression is \p WholeAddExpr.
static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
const SCEVConstant *ConstantTerm,
const SCEVAddExpr *WholeAddExpr) {
const APInt C = ConstantTerm->getAPInt();
const unsigned BitWidth = C.getBitWidth();
// Find number of trailing zeros of (x + y + ...) w/o the C first:
uint32_t TZ = BitWidth;
for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
if (TZ) {
// Set D to be as many least significant bits of C as possible while still
// guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
}
return APInt(BitWidth, 0);
}
// Finds an integer D for an affine AddRec expression {C,+,x} such that the top
// level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
// number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
// ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
const APInt &ConstantStart,
const SCEV *Step) {
const unsigned BitWidth = ConstantStart.getBitWidth();
const uint32_t TZ = SE.GetMinTrailingZeros(Step);
if (TZ)
return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
: ConstantStart;
return APInt(BitWidth, 0);
}
const SCEV *
ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
// zext(zext(x)) --> zext(x)
if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
// Before doing any expensive analysis, check to see if we've already
// computed a SCEV for this Op and Ty.
FoldingSetNodeID ID;
ID.AddInteger(scZeroExtend);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
if (Depth > MaxCastDepth) {
SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
return S;
}
// zext(trunc(x)) --> zext(x) or x or trunc(x)
if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
// It's possible the bits taken off by the truncate were all zero bits. If
// so, we should be able to simplify this further.
const SCEV *X = ST->getOperand();
ConstantRange CR = getUnsignedRange(X);
unsigned TruncBits = getTypeSizeInBits(ST->getType());
unsigned NewBits = getTypeSizeInBits(Ty);
if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
CR.zextOrTrunc(NewBits)))
return getTruncateOrZeroExtend(X, Ty, Depth);
}
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can zero extend all of the
// operands (often constants). This allows analysis of something like
// this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
if (AR->isAffine()) {
const SCEV *Start = AR->getStart();
const SCEV *Step = AR->getStepRecurrence(*this);
unsigned BitWidth = getTypeSizeInBits(AR->getType());
const Loop *L = AR->getLoop();
if (!AR->hasNoUnsignedWrap()) {
auto NewFlags = proveNoWrapViaConstantRanges(AR);
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
}
// If we have special knowledge that this addrec won't overflow,
// we don't need to do any further analysis.
if (AR->hasNoUnsignedWrap())
return getAddRecExpr(
getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
// Check whether the backedge-taken count is SCEVCouldNotCompute.
// Note that this serves two purposes: It filters out loops that are
// simply not analyzable, and it covers the case where this code is
// being called from within backedge-taken count analysis, such that
// attempting to ask for the backedge-taken count would likely result
// in infinite recursion. In the later case, the analysis code will
// cope with a conservative value, and it will take care to purge
// that value once it has finished.
const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
// Manually compute the final value for AR, checking for
// overflow.
// Check whether the backedge-taken count can be losslessly casted to
// the addrec's type. The count is always unsigned.
const SCEV *CastedMaxBECount =
getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
CastedMaxBECount, MaxBECount->getType(), Depth);
if (MaxBECount == RecastedMaxBECount) {
Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
// Check whether Start+Step*MaxBECount has no unsigned overflow.
const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
SCEV::FlagAnyWrap, Depth + 1);
const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
SCEV::FlagAnyWrap,
Depth + 1),
WideTy, Depth + 1);
const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
const SCEV *WideMaxBECount =
getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
const SCEV *OperandExtendedAdd =
getAddExpr(WideStart,
getMulExpr(WideMaxBECount,
getZeroExtendExpr(Step, WideTy, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1);
if (ZAdd == OperandExtendedAdd) {
// Cache knowledge of AR NUW, which is propagated to this AddRec.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
// Return the expression with the addrec on the outside.
return getAddRecExpr(
getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
Depth + 1),
getZeroExtendExpr(Step, Ty, Depth + 1), L,
AR->getNoWrapFlags());
}
// Similar to above, only this time treat the step value as signed.
// This covers loops that count down.
OperandExtendedAdd =
getAddExpr(WideStart,
getMulExpr(WideMaxBECount,
getSignExtendExpr(Step, WideTy, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1);
if (ZAdd == OperandExtendedAdd) {
// Cache knowledge of AR NW, which is propagated to this AddRec.
// Negative step causes unsigned wrap, but it still can't self-wrap.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
// Return the expression with the addrec on the outside.
return getAddRecExpr(
getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
Depth + 1),
getSignExtendExpr(Step, Ty, Depth + 1), L,
AR->getNoWrapFlags());
}
}
}
// Normally, in the cases we can prove no-overflow via a
// backedge guarding condition, we can also compute a backedge
// taken count for the loop. The exceptions are assumptions and
// guards present in the loop -- SCEV is not great at exploiting
// these to compute max backedge taken counts, but can still use
// these to prove lack of overflow. Use this fact to avoid
// doing extra work that may not pay off.
if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
!AC.assumptions().empty()) {
// If the backedge is guarded by a comparison with the pre-inc
// value the addrec is safe. Also, if the entry is guarded by
// a comparison with the start value and the backedge is
// guarded by a comparison with the post-inc value, the addrec
// is safe.
if (isKnownPositive(Step)) {
const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
getUnsignedRangeMax(Step));
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
// Cache knowledge of AR NUW, which is propagated to this
// AddRec.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
// Return the expression with the addrec on the outside.
return getAddRecExpr(
getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
Depth + 1),
getZeroExtendExpr(Step, Ty, Depth + 1), L,
AR->getNoWrapFlags());
}
} else if (isKnownNegative(Step)) {
const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
getSignedRangeMin(Step));
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
// Cache knowledge of AR NW, which is propagated to this
// AddRec. Negative step causes unsigned wrap, but it
// still can't self-wrap.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
// Return the expression with the addrec on the outside.
return getAddRecExpr(
getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
Depth + 1),
getSignExtendExpr(Step, Ty, Depth + 1), L,
AR->getNoWrapFlags());
}
}
}
// zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
// if D + (C - D + Step * n) could be proven to not unsigned wrap
// where D maximizes the number of trailing zeros of (C - D + Step * n)
if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
const APInt &C = SC->getAPInt();
const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
if (D != 0) {
const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
const SCEV *SResidual =
getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
return getAddExpr(SZExtD, SZExtR,
(SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
Depth + 1);
}
}
if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
return getAddRecExpr(
getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
}
}
// zext(A % B) --> zext(A) % zext(B)
{
const SCEV *LHS;
const SCEV *RHS;
if (matchURem(Op, LHS, RHS))
return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
getZeroExtendExpr(RHS, Ty, Depth + 1));
}
// zext(A / B) --> zext(A) / zext(B).
if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
// zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
if (SA->hasNoUnsignedWrap()) {
// If the addition does not unsign overflow then we can, by definition,
// commute the zero extension with the addition operation.
SmallVector<const SCEV *, 4> Ops;
for (const auto *Op : SA->operands())
Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
}
// zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
// if D + (C - D + x + y + ...) could be proven to not unsigned wrap
// where D maximizes the number of trailing zeros of (C - D + x + y + ...)
//
// Often address arithmetics contain expressions like
// (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
// This transformation is useful while proving that such expressions are
// equal or differ by a small constant amount, see LoadStoreVectorizer pass.
if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
if (D != 0) {
const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
const SCEV *SResidual =
getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
return getAddExpr(SZExtD, SZExtR,
(SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
Depth + 1);
}
}
}
if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
// zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
if (SM->hasNoUnsignedWrap()) {
// If the multiply does not unsign overflow then we can, by definition,
// commute the zero extension with the multiply operation.
SmallVector<const SCEV *, 4> Ops;
for (const auto *Op : SM->operands())
Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
}
// zext(2^K * (trunc X to iN)) to iM ->
// 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
//
// Proof:
//
// zext(2^K * (trunc X to iN)) to iM
// = zext((trunc X to iN) << K) to iM
// = zext((trunc X to i{N-K}) << K)<nuw> to iM
// (because shl removes the top K bits)
// = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
// = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
//
if (SM->getNumOperands() == 2)
if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
if (MulLHS->getAPInt().isPowerOf2())
if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
MulLHS->getAPInt().logBase2();
Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
return getMulExpr(
getZeroExtendExpr(MulLHS, Ty),
getZeroExtendExpr(
getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
SCEV::FlagNUW, Depth + 1);
}
}
// The cast wasn't folded; create an explicit cast node.
// Recompute the insert position, as it may have been invalidated.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
return S;
}
const SCEV *
ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
// sext(sext(x)) --> sext(x)
if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
// sext(zext(x)) --> zext(x)
if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
// Before doing any expensive analysis, check to see if we've already
// computed a SCEV for this Op and Ty.
FoldingSetNodeID ID;
ID.AddInteger(scSignExtend);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
// Limit recursion depth.
if (Depth > MaxCastDepth) {
SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
return S;
}
// sext(trunc(x)) --> sext(x) or x or trunc(x)
if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
// It's possible the bits taken off by the truncate were all sign bits. If
// so, we should be able to simplify this further.
const SCEV *X = ST->getOperand();
ConstantRange CR = getSignedRange(X);
unsigned TruncBits = getTypeSizeInBits(ST->getType());
unsigned NewBits = getTypeSizeInBits(Ty);
if (CR.truncate(TruncBits).signExtend(NewBits).contains(
CR.sextOrTrunc(NewBits)))
return getTruncateOrSignExtend(X, Ty, Depth);
}
if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
// sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
if (SA->hasNoSignedWrap()) {
// If the addition does not sign overflow then we can, by definition,
// commute the sign extension with the addition operation.
SmallVector<const SCEV *, 4> Ops;
for (const auto *Op : SA->operands())
Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
}
// sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
// if D + (C - D + x + y + ...) could be proven to not signed wrap
// where D maximizes the number of trailing zeros of (C - D + x + y + ...)
//
// For instance, this will bring two seemingly different expressions:
// 1 + sext(5 + 20 * %x + 24 * %y) and
// sext(6 + 20 * %x + 24 * %y)
// to the same form:
// 2 + sext(4 + 20 * %x + 24 * %y)
if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
if (D != 0) {
const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
const SCEV *SResidual =
getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
return getAddExpr(SSExtD, SSExtR,
(SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
Depth + 1);
}
}
}
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can sign extend all of the
// operands (often constants). This allows analysis of something like
// this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
if (AR->isAffine()) {
const SCEV *Start = AR->getStart();
const SCEV *Step = AR->getStepRecurrence(*this);
unsigned BitWidth = getTypeSizeInBits(AR->getType());
const Loop *L = AR->getLoop();
if (!AR->hasNoSignedWrap()) {
auto NewFlags = proveNoWrapViaConstantRanges(AR);
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
}
// If we have special knowledge that this addrec won't overflow,
// we don't need to do any further analysis.
if (AR->hasNoSignedWrap())
return getAddRecExpr(
getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
// Check whether the backedge-taken count is SCEVCouldNotCompute.
// Note that this serves two purposes: It filters out loops that are
// simply not analyzable, and it covers the case where this code is
// being called from within backedge-taken count analysis, such that
// attempting to ask for the backedge-taken count would likely result
// in infinite recursion. In the later case, the analysis code will
// cope with a conservative value, and it will take care to purge
// that value once it has finished.
const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
// Manually compute the final value for AR, checking for
// overflow.
// Check whether the backedge-taken count can be losslessly casted to
// the addrec's type. The count is always unsigned.
const SCEV *CastedMaxBECount =
getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
CastedMaxBECount, MaxBECount->getType(), Depth);
if (MaxBECount == RecastedMaxBECount) {
Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
// Check whether Start+Step*MaxBECount has no signed overflow.
const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
SCEV::FlagAnyWrap, Depth + 1);
const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
SCEV::FlagAnyWrap,
Depth + 1),
WideTy, Depth + 1);
const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
const SCEV *WideMaxBECount =
getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
const SCEV *OperandExtendedAdd =
getAddExpr(WideStart,
getMulExpr(WideMaxBECount,
getSignExtendExpr(Step, WideTy, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1);
if (SAdd == OperandExtendedAdd) {
// Cache knowledge of AR NSW, which is propagated to this AddRec.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
// Return the expression with the addrec on the outside.
return getAddRecExpr(
getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
Depth + 1),
getSignExtendExpr(Step, Ty, Depth + 1), L,
AR->getNoWrapFlags());
}
// Similar to above, only this time treat the step value as unsigned.
// This covers loops that count up with an unsigned step.
OperandExtendedAdd =
getAddExpr(WideStart,
getMulExpr(WideMaxBECount,
getZeroExtendExpr(Step, WideTy, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1);
if (SAdd == OperandExtendedAdd) {
// If AR wraps around then
//
// abs(Step) * MaxBECount > unsigned-max(AR->getType())
// => SAdd != OperandExtendedAdd
//
// Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
// (SAdd == OperandExtendedAdd => AR is NW)
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
// Return the expression with the addrec on the outside.
return getAddRecExpr(
getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
Depth + 1),
getZeroExtendExpr(Step, Ty, Depth + 1), L,
AR->getNoWrapFlags());
}
}
}
// Normally, in the cases we can prove no-overflow via a
// backedge guarding condition, we can also compute a backedge
// taken count for the loop. The exceptions are assumptions and
// guards present in the loop -- SCEV is not great at exploiting
// these to compute max backedge taken counts, but can still use
// these to prove lack of overflow. Use this fact to avoid
// doing extra work that may not pay off.
if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
!AC.assumptions().empty()) {
// If the backedge is guarded by a comparison with the pre-inc
// value the addrec is safe. Also, if the entry is guarded by
// a comparison with the start value and the backedge is
// guarded by a comparison with the post-inc value, the addrec
// is safe.
ICmpInst::Predicate Pred;
const SCEV *OverflowLimit =
getSignedOverflowLimitForStep(Step, &Pred, this);
if (OverflowLimit &&
(isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
// Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
return getAddRecExpr(
getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
}
}
// sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
// if D + (C - D + Step * n) could be proven to not signed wrap
// where D maximizes the number of trailing zeros of (C - D + Step * n)
if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
const APInt &C = SC->getAPInt();
const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
if (D != 0) {
const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
const SCEV *SResidual =
getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
return getAddExpr(SSExtD, SSExtR,
(SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
Depth + 1);
}
}
if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
return getAddRecExpr(
getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
}
}
// If the input value is provably positive and we could not simplify
// away the sext build a zext instead.
if (isKnownNonNegative(Op))
return getZeroExtendExpr(Op, Ty, Depth + 1);
// The cast wasn't folded; create an explicit cast node.
// Recompute the insert position, as it may have been invalidated.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
return S;
}
/// getAnyExtendExpr - Return a SCEV for the given operand extended with
/// unspecified bits out to the given type.
const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
// Sign-extend negative constants.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
if (SC->getAPInt().isNegative())
return getSignExtendExpr(Op, Ty);
// Peel off a truncate cast.
if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
const SCEV *NewOp = T->getOperand();
if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
return getAnyExtendExpr(NewOp, Ty);
return getTruncateOrNoop(NewOp, Ty);
}
// Next try a zext cast. If the cast is folded, use it.
const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
if (!isa<SCEVZeroExtendExpr>(ZExt))
return ZExt;
// Next try a sext cast. If the cast is folded, use it.
const SCEV *SExt = getSignExtendExpr(Op, Ty);
if (!isa<SCEVSignExtendExpr>(SExt))
return SExt;
// Force the cast to be folded into the operands of an addrec.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
SmallVector<const SCEV *, 4> Ops;
for (const SCEV *Op : AR->operands())
Ops.push_back(getAnyExtendExpr(Op, Ty));
return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
}
// If the expression is obviously signed, use the sext cast value.
if (isa<SCEVSMaxExpr>(Op))
return SExt;
// Absent any other information, use the zext cast value.
return ZExt;
}
/// Process the given Ops list, which is a list of operands to be added under
/// the given scale, update the given map. This is a helper function for
/// getAddRecExpr. As an example of what it does, given a sequence of operands
/// that would form an add expression like this:
///
/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
///
/// where A and B are constants, update the map with these values:
///
/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
///
/// and add 13 + A*B*29 to AccumulatedConstant.
/// This will allow getAddRecExpr to produce this:
///
/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
///
/// This form often exposes folding opportunities that are hidden in
/// the original operand list.
///
/// Return true iff it appears that any interesting folding opportunities
/// may be exposed. This helps getAddRecExpr short-circuit extra work in
/// the common case where no interesting opportunities are present, and
/// is also used as a check to avoid infinite recursion.
static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
SmallVectorImpl<const SCEV *> &NewOps,
APInt &AccumulatedConstant,
const SCEV *const *Ops, size_t NumOperands,
const APInt &Scale,
ScalarEvolution &SE) {
bool Interesting = false;
// Iterate over the add operands. They are sorted, with constants first.
unsigned i = 0;
while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
++i;
// Pull a buried constant out to the outside.
if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
Interesting = true;
AccumulatedConstant += Scale * C->getAPInt();
}
// Next comes everything else. We're especially interested in multiplies
// here, but they're in the middle, so just visit the rest with one loop.
for (; i != NumOperands; ++i) {
const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
APInt NewScale =
Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
// A multiplication of a constant with another add; recurse.
const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Interesting |=
CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Add->op_begin(), Add->getNumOperands(),
NewScale, SE);
} else {
// A multiplication of a constant with some other value. Update
// the map.
SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
const SCEV *Key = SE.getMulExpr(MulOps);
auto Pair = M.insert({Key, NewScale});
if (Pair.second) {
NewOps.push_back(Pair.first->first);
} else {
Pair.first->second += NewScale;
// The map already had an entry for this value, which may indicate
// a folding opportunity.
Interesting = true;
}
}
} else {
// An ordinary operand. Update the map.
std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
M.insert({Ops[i], Scale});
if (Pair.second) {
NewOps.push_back(Pair.first->first);
} else {
Pair.first->second += Scale;
// The map already had an entry for this value, which may indicate
// a folding opportunity.
Interesting = true;
}
}
}
return Interesting;
}
// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
// can't-overflow flags for the operation if possible.
static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
const ArrayRef<const SCEV *> Ops,
SCEV::NoWrapFlags Flags) {
using namespace std::placeholders;
using OBO = OverflowingBinaryOperator;
bool CanAnalyze =
Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
(void)CanAnalyze;
assert(CanAnalyze && "don't call from other places!");
int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
SCEV::NoWrapFlags SignOrUnsignWrap =
ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
// If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
auto IsKnownNonNegative = [&](const SCEV *S) {
return SE->isKnownNonNegative(S);
};
if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Flags =
ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
if (SignOrUnsignWrap != SignOrUnsignMask &&
(Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
isa<SCEVConstant>(Ops[0])) {
auto Opcode = [&] {
switch (Type) {
case scAddExpr:
return Instruction::Add;
case scMulExpr:
return Instruction::Mul;
default:
llvm_unreachable("Unexpected SCEV op.");
}
}();
const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
// (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
Opcode, C, OBO::NoSignedWrap);
if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
}
// (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
Opcode, C, OBO::NoUnsignedWrap);
if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
}
}
return Flags;
}
bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
}
/// Get a canonical add expression, or something simpler if possible.
const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
SCEV::NoWrapFlags Flags,
unsigned Depth) {
assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
"only nuw or nsw allowed");
assert(!Ops.empty() && "Cannot get empty add!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVAddExpr operand types don't match!");
#endif
// Sort by complexity, this groups all similar expression types together.
GroupByComplexity(Ops, &LI, DT);
Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
// If there are any constants, fold them together.
unsigned Idx = 0;
if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
++Idx;
assert(Idx < Ops.size());
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
if (Ops.size() == 2) return Ops[0];
Ops.erase(Ops.begin()+1); // Erase the folded element
LHSC = cast<SCEVConstant>(Ops[0]);
}
// If we are left with a constant zero being added, strip it off.
if (LHSC->getValue()->isZero()) {
Ops.erase(Ops.begin());
--Idx;
}
if (Ops.size() == 1) return Ops[0];
}
// Limit recursion calls depth.
if (Depth > MaxArithDepth || hasHugeExpression(Ops))
return getOrCreateAddExpr(Ops, Flags);
// Okay, check to see if the same value occurs in the operand list more than
// once. If so, merge them together into an multiply expression. Since we
// sorted the list, these values are required to be adjacent.
Type *Ty = Ops[0]->getType();
bool FoundMatch = false;
for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
// Scan ahead to count how many equal operands there are.
unsigned Count = 2;
while (i+Count != e && Ops[i+Count] == Ops[i])
++Count;
// Merge the values into a multiply.
const SCEV *Scale = getConstant(Ty, Count);
const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
if (Ops.size() == Count)
return Mul;
Ops[i] = Mul;
Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
--i; e -= Count - 1;
FoundMatch = true;
}
if (FoundMatch)
return getAddExpr(Ops, Flags, Depth + 1);
// Check for truncates. If all the operands are truncated from the same
// type, see if factoring out the truncate would permit the result to be
// folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
// if the contents of the resulting outer trunc fold to something simple.
auto FindTruncSrcType = [&]() -> Type * {
// We're ultimately looking to fold an addrec of truncs and muls of only
// constants and truncs, so if we find any other types of SCEV
// as operands of the addrec then we bail and return nullptr here.
// Otherwise, we return the type of the operand of a trunc that we find.
if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
return T->getOperand()->getType();
if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
return T->getOperand()->getType();
}
return nullptr;
};
if (auto *SrcType = FindTruncSrcType()) {
SmallVector<const SCEV *, 8> LargeOps;
bool Ok = true;
// Check all the operands to see if they can be represented in the
// source type of the truncate.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
if (T->getOperand()->getType() != SrcType) {
Ok = false;
break;
}
LargeOps.push_back(T->getOperand());
} else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
LargeOps.push_back(getAnyExtendExpr(C, SrcType));
} else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
SmallVector<const SCEV *, 8> LargeMulOps;
for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
if (const SCEVTruncateExpr *T =
dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
if (T->getOperand()->getType() != SrcType) {
Ok = false;
break;
}
LargeMulOps.push_back(T->getOperand());
} else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
} else {
Ok = false;
break;
}
}
if (Ok)
LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
} else {
Ok = false;
break;
}
}
if (Ok) {
// Evaluate the expression in the larger type.
const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
// If it folds to something simple, use it. Otherwise, don't.
if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
return getTruncateExpr(Fold, Ty);
}
}
// Skip past any other cast SCEVs.
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
++Idx;
// If there are add operands they would be next.
if (Idx < Ops.size()) {
bool DeletedAdd = false;
while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
if (Ops.size() > AddOpsInlineThreshold ||
Add->getNumOperands() > AddOpsInlineThreshold)
break;
// If we have an add, expand the add operands onto the end of the operands
// list.
Ops.erase(Ops.begin()+Idx);
Ops.append(Add->op_begin(), Add->op_end());
DeletedAdd = true;
}
// If we deleted at least one add, we added operands to the end of the list,
// and they are not necessarily sorted. Recurse to resort and resimplify
// any operands we just acquired.
if (DeletedAdd)
return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
// Skip over the add expression until we get to a multiply.
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
++Idx;
// Check to see if there are any folding opportunities present with
// operands multiplied by constant values.
if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
uint64_t BitWidth = getTypeSizeInBits(Ty);
DenseMap<const SCEV *, APInt> M;
SmallVector<const SCEV *, 8> NewOps;
APInt AccumulatedConstant(BitWidth, 0);
if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Ops.data(), Ops.size(),
APInt(BitWidth, 1), *this)) {
struct APIntCompare {
bool operator()(const APInt &LHS, const APInt &RHS) const {
return LHS.ult(RHS);
}
};
// Some interesting folding opportunity is present, so its worthwhile to
// re-generate the operands list. Group the operands by constant scale,
// to avoid multiplying by the same constant scale multiple times.
std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
for (const SCEV *NewOp : NewOps)
MulOpLists[M.find(NewOp)->second].push_back(NewOp);
// Re-generate the operands list.
Ops.clear();
if (AccumulatedConstant != 0)
Ops.push_back(getConstant(AccumulatedConstant));
for (auto &MulOp : MulOpLists)
if (MulOp.first != 0)
Ops.push_back(getMulExpr(
getConstant(MulOp.first),
getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1));
if (Ops.empty())
return getZero(Ty);
if (Ops.size() == 1)
return Ops[0];
return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
}
// If we are adding something to a multiply expression, make sure the
// something is not already an operand of the multiply. If so, merge it into
// the multiply.
for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
if (isa<SCEVConstant>(MulOpSCEV))
continue;
for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
if (MulOpSCEV == Ops[AddOp]) {
// Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
if (Mul->getNumOperands() != 2) {
// If the multiply has more than two operands, we must get the
// Y*Z term.
SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Mul->op_begin()+MulOp);
MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
}
SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
SCEV::FlagAnyWrap, Depth + 1);
if (Ops.size() == 2) return OuterMul;
if (AddOp < Idx) {
Ops.erase(Ops.begin()+AddOp);
Ops.erase(Ops.begin()+Idx-1);
} else {
Ops.erase(Ops.begin()+Idx);
Ops.erase(Ops.begin()+AddOp-1);
}
Ops.push_back(OuterMul);
return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
// Check this multiply against other multiplies being added together.
for (unsigned OtherMulIdx = Idx+1;
OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
++OtherMulIdx) {
const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
// If MulOp occurs in OtherMul, we can fold the two multiplies
// together.
for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
OMulOp != e; ++OMulOp)
if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
// Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
if (Mul->getNumOperands() != 2) {
SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Mul->op_begin()+MulOp);
MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
}
const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
if (OtherMul->getNumOperands() != 2) {
SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
OtherMul->op_begin()+OMulOp);
MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
}
SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
const SCEV *InnerMulSum =
getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
SCEV::FlagAnyWrap, Depth + 1);
if (Ops.size() == 2) return OuterMul;
Ops.erase(Ops.begin()+Idx);
Ops.erase(Ops.begin()+OtherMulIdx-1);
Ops.push_back(OuterMul);
return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
}
}
}
// If there are any add recurrences in the operands list, see if any other
// added values are loop invariant. If so, we can fold them into the
// recurrence.
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
++Idx;
// Scan over all recurrences, trying to fold loop invariants into them.
for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
// Scan all of the other operands to this add and add them to the vector if
// they are loop invariant w.r.t. the recurrence.
SmallVector<const SCEV *, 8> LIOps;
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
const Loop *AddRecLoop = AddRec->getLoop();
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
LIOps.push_back(Ops[i]);
Ops.erase(Ops.begin()+i);
--i; --e;
}
// If we found some loop invariants, fold them into the recurrence.
if (!LIOps.empty()) {
// NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
LIOps.push_back(AddRec->getStart());
SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
AddRec->op_end());
// This follows from the fact that the no-wrap flags on the outer add
// expression are applicable on the 0th iteration, when the add recurrence
// will be equal to its start value.
AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
// Build the new addrec. Propagate the NUW and NSW flags if both the
// outer add and the inner addrec are guaranteed to have no overflow.
// Always propagate NW.
Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
// If all of the other operands were loop invariant, we are done.
if (Ops.size() == 1) return NewRec;
// Otherwise, add the folded AddRec by the non-invariant parts.
for (unsigned i = 0;; ++i)
if (Ops[i] == AddRec) {
Ops[i] = NewRec;
break;
}
return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
// Okay, if there weren't any loop invariants to be folded, check to see if
// there are multiple AddRec's with the same loop induction variable being
// added together. If so, we can fold them.
for (unsigned OtherIdx = Idx+1;
OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
++OtherIdx) {
// We expect the AddRecExpr's to be sorted in reverse dominance order,
// so that the 1st found AddRecExpr is dominated by all others.
assert(DT.dominates(
cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
AddRec->getLoop()->getHeader()) &&
"AddRecExprs are not sorted in reverse dominance order?");
if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
// Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
AddRec->op_end());
for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
++OtherIdx) {
const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
if (OtherAddRec->getLoop() == AddRecLoop) {
for (unsigned i = 0, e = OtherAddRec->getNumOperands();
i != e; ++i) {
if (i >= AddRecOps.size()) {
AddRecOps.append(OtherAddRec->op_begin()+i,
OtherAddRec->op_end());
break;
}
SmallVector<const SCEV *, 2> TwoOps = {
AddRecOps[i], OtherAddRec->getOperand(i)};
AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
}
Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
}
}
// Step size has changed, so we cannot guarantee no self-wraparound.
Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
}
// Otherwise couldn't fold anything into this recurrence. Move onto the
// next one.
}
// Okay, it looks like we really DO need an add expr. Check to see if we
// already have one, otherwise create a new one.
return getOrCreateAddExpr(Ops, Flags);
}
const SCEV *
ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
SCEV::NoWrapFlags Flags) {
FoldingSetNodeID ID;
ID.AddInteger(scAddExpr);
for (const SCEV *Op : Ops)
ID.AddPointer(Op);
void *IP = nullptr;
SCEVAddExpr *S =
static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
if (!S) {
const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
std::uninitialized_copy(Ops.begin(), Ops.end(), O);
S = new (SCEVAllocator)
SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
}
S->setNoWrapFlags(Flags);
return S;
}
const SCEV *
ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
const Loop *L, SCEV::NoWrapFlags Flags) {
FoldingSetNodeID ID;
ID.AddInteger(scAddRecExpr);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
ID.AddPointer(L);
void *IP = nullptr;
SCEVAddRecExpr *S =
static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
if (!S) {
const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
std::uninitialized_copy(Ops.begin(), Ops.end(), O);
S = new (SCEVAllocator)
SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
}
S->setNoWrapFlags(Flags);
return S;
}
const SCEV *
ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
SCEV::NoWrapFlags Flags) {
FoldingSetNodeID ID;
ID.AddInteger(scMulExpr);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
void *IP = nullptr;
SCEVMulExpr *S =
static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
if (!S) {
const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
std::uninitialized_copy(Ops.begin(), Ops.end(), O);
S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
O, Ops.size());
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
}
S->setNoWrapFlags(Flags);
return S;
}
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
uint64_t k = i*j;
if (j > 1 && k / j != i) Overflow = true;
return k;
}
/// Compute the result of "n choose k", the binomial coefficient. If an
/// intermediate computation overflows, Overflow will be set and the return will
/// be garbage. Overflow is not cleared on absence of overflow.
static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
// We use the multiplicative formula:
// n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
// At each iteration, we take the n-th term of the numeral and divide by the
// (k-n)th term of the denominator. This division will always produce an
// integral result, and helps reduce the chance of overflow in the
// intermediate computations. However, we can still overflow even when the
// final result would fit.
if (n == 0 || n == k) return 1;
if (k > n) return 0;
if (k > n/2)
k = n-k;
uint64_t r = 1;
for (uint64_t i = 1; i <= k; ++i) {
r = umul_ov(r, n-(i-1), Overflow);
r /= i;
}
return r;
}
/// Determine if any of the operands in this SCEV are a constant or if
/// any of the add or multiply expressions in this SCEV contain a constant.
static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
struct FindConstantInAddMulChain {
bool FoundConstant = false;
bool follow(const SCEV *S) {
FoundConstant |= isa<SCEVConstant>(S);
return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
}
bool isDone() const {
return FoundConstant;
}
};
FindConstantInAddMulChain F;
SCEVTraversal<FindConstantInAddMulChain> ST(F);
ST.visitAll(StartExpr);
return F.FoundConstant;
}
/// Get a canonical multiply expression, or something simpler if possible.
const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
SCEV::NoWrapFlags Flags,
unsigned Depth) {
assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
"only nuw or nsw allowed");
assert(!Ops.empty() && "Cannot get empty mul!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVMulExpr operand types don't match!");
#endif
// Sort by complexity, this groups all similar expression types together.
GroupByComplexity(Ops, &LI, DT);
Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
// Limit recursion calls depth.
if (Depth > MaxArithDepth || hasHugeExpression(Ops))
return getOrCreateMulExpr(Ops, Flags);
// If there are any constants, fold them together.
unsigned Idx = 0;
if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
if (Ops.size() == 2)
// C1*(C2+V) -> C1*C2 + C1*V
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
// If any of Add's ops are Adds or Muls with a constant, apply this
// transformation as well.
//
// TODO: There are some cases where this transformation is not
// profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
// this transformation should be narrowed down.
if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
SCEV::FlagAnyWrap, Depth + 1),
getMulExpr(LHSC, Add->getOperand(1),
SCEV::FlagAnyWrap, Depth + 1),
SCEV::FlagAnyWrap, Depth + 1);
++Idx;
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
ConstantInt *Fold =
ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
Ops[0] = getConstant(Fold);
Ops.erase(Ops.begin()+1); // Erase the folded element
if (Ops.size() == 1) return Ops[0];
LHSC = cast<SCEVConstant>(Ops[0]);
}
// If we are left with a constant one being multiplied, strip it off.
if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
Ops.erase(Ops.begin());
--Idx;
} else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
// If we have a multiply of zero, it will always be zero.
return Ops[0];
} else if (Ops[0]->isAllOnesValue()) {
// If we have a mul by -1 of an add, try distributing the -1 among the
// add operands.
if (Ops.size() == 2) {
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
SmallVector<const SCEV *, 4> NewOps;
bool AnyFolded = false;
for (const SCEV *AddOp : Add->operands()) {
const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
Depth + 1);
if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
NewOps.push_back(Mul);
}
if (AnyFolded)
return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
} else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
// Negation preserves a recurrence's no self-wrap property.
SmallVector<const SCEV *, 4> Operands;
for (const SCEV *AddRecOp : AddRec->operands())
Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
Depth + 1));
return getAddRecExpr(Operands, AddRec->getLoop(),
AddRec->getNoWrapFlags(SCEV::FlagNW));
}
}
}
if (Ops.size() == 1)
return Ops[0];
}
// Skip over the add expression until we get to a multiply.
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
++Idx;
// If there are mul operands inline them all into this expression.
if (Idx < Ops.size()) {
bool DeletedMul = false;
while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
if (Ops.size() > MulOpsInlineThreshold)
break;
// If we have an mul, expand the mul operands onto the end of the
// operands list.
Ops.erase(Ops.begin()+Idx);
Ops.append(Mul->op_begin(), Mul->op_end());
DeletedMul = true;
}
// If we deleted at least one mul, we added operands to the end of the
// list, and they are not necessarily sorted. Recurse to resort and
// resimplify any operands we just acquired.
if (DeletedMul)
return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
// If there are any add recurrences in the operands list, see if any other
// added values are loop invariant. If so, we can fold them into the
// recurrence.
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
++Idx;
// Scan over all recurrences, trying to fold loop invariants into them.
for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
// Scan all of the other operands to this mul and add them to the vector
// if they are loop invariant w.r.t. the recurrence.
SmallVector<const SCEV *, 8> LIOps;
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
const Loop *AddRecLoop = AddRec->getLoop();
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
LIOps.push_back(Ops[i]);
Ops.erase(Ops.begin()+i);
--i; --e;
}
// If we found some loop invariants, fold them into the recurrence.
if (!LIOps.empty()) {
// NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
SmallVector<const SCEV *, 4> NewOps;
NewOps.reserve(AddRec->getNumOperands());
const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
SCEV::FlagAnyWrap, Depth + 1));
// Build the new addrec. Propagate the NUW and NSW flags if both the
// outer mul and the inner addrec are guaranteed to have no overflow.
//
// No self-wrap cannot be guaranteed after changing the step size, but
// will be inferred if either NUW or NSW is true.
Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
// If all of the other operands were loop invariant, we are done.
if (Ops.size() == 1) return NewRec;
// Otherwise, multiply the folded AddRec by the non-invariant parts.
for (unsigned i = 0;; ++i)
if (Ops[i] == AddRec) {
Ops[i] = NewRec;
break;
}
return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
// Okay, if there weren't any loop invariants to be folded, check to see
// if there are multiple AddRec's with the same loop induction variable
// being multiplied together. If so, we can fold them.
// {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
// = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
// choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
// ]]],+,...up to x=2n}.
// Note that the arguments to choose() are always integers with values
// known at compile time, never SCEV objects.
//
// The implementation avoids pointless extra computations when the two
// addrec's are of different length (mathematically, it's equivalent to
// an infinite stream of zeros on the right).
bool OpsModified = false;
for (unsigned OtherIdx = Idx+1;
OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
++OtherIdx) {
const SCEVAddRecExpr *OtherAddRec =
dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
continue;
// Limit max number of arguments to avoid creation of unreasonably big
// SCEVAddRecs with very complex operands.
if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
MaxAddRecSize || isHugeExpression(AddRec) ||
isHugeExpression(OtherAddRec))
continue;
bool Overflow = false;
Type *Ty = AddRec->getType();
bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
SmallVector<const SCEV*, 7> AddRecOps;
for (int x = 0, xe = AddRec->getNumOperands() +
OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
SmallVector <const SCEV *, 7> SumOps;
for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
z < ze && !Overflow; ++z) {
uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
uint64_t Coeff;
if (LargerThan64Bits)
Coeff = umul_ov(Coeff1, Coeff2, Overflow);
else
Coeff = Coeff1*Coeff2;
const SCEV *CoeffTerm = getConstant(Ty, Coeff);
const SCEV *Term1 = AddRec->getOperand(y-z);
const SCEV *Term2 = OtherAddRec->getOperand(z);
SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
SCEV::FlagAnyWrap, Depth + 1));
}
}
if (SumOps.empty())
SumOps.push_back(getZero(Ty));
AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
}
if (!Overflow) {
const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
SCEV::FlagAnyWrap);
if (Ops.size() == 2) return NewAddRec;
Ops[Idx] = NewAddRec;
Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
OpsModified = true;
AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
if (!AddRec)
break;
}
}
if (OpsModified)
return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
// Otherwise couldn't fold anything into this recurrence. Move onto the
// next one.
}
// Okay, it looks like we really DO need an mul expr. Check to see if we
// already have one, otherwise create a new one.
return getOrCreateMulExpr(Ops, Flags);
}
/// Represents an unsigned remainder expression based on unsigned division.
const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
const SCEV *RHS) {
assert(getEffectiveSCEVType(LHS->getType()) ==
getEffectiveSCEVType(RHS->getType()) &&
"SCEVURemExpr operand types don't match!");
// Short-circuit easy cases
if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
// If constant is one, the result is trivial
if (RHSC->getValue()->isOne())
return getZero(LHS->getType()); // X urem 1 --> 0
// If constant is a power of two, fold into a zext(trunc(LHS)).
if (RHSC->getAPInt().isPowerOf2()) {
Type *FullTy = LHS->getType();
Type *TruncTy =
IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
}
}
// Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
const SCEV *UDiv = getUDivExpr(LHS, RHS);
const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
}
/// Get a canonical unsigned division expression, or something simpler if
/// possible.
const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
const SCEV *RHS) {
assert(getEffectiveSCEVType(LHS->getType()) ==
getEffectiveSCEVType(RHS->getType()) &&
"SCEVUDivExpr operand types don't match!");
if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
if (RHSC->getValue()->isOne())
return LHS; // X udiv 1 --> x
// If the denominator is zero, the result of the udiv is undefined. Don't
// try to analyze it, because the resolution chosen here may differ from
// the resolution chosen in other parts of the compiler.
if (!RHSC->getValue()->isZero()) {
// Determine if the division can be folded into the operands of
// its operands.
// TODO: Generalize this to non-constants by using known-bits information.
Type *Ty = LHS->getType();
unsigned LZ = RHSC->getAPInt().countLeadingZeros();
unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
// For non-power-of-two values, effectively round the value up to the
// nearest power of two.
if (!RHSC->getAPInt().isPowerOf2())
++MaxShiftAmt;
IntegerType *ExtTy =
IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
if (const SCEVConstant *Step =
dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
// {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
const APInt &StepInt = Step->getAPInt();
const APInt &DivInt = RHSC->getAPInt();
if (!StepInt.urem(DivInt) &&
getZeroExtendExpr(AR, ExtTy) ==
getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
getZeroExtendExpr(Step, ExtTy),
AR->getLoop(), SCEV::FlagAnyWrap)) {
SmallVector<const SCEV *, 4> Operands;
for (const SCEV *Op : AR->operands())
Operands.push_back(getUDivExpr(Op, RHS));
return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
}
/// Get a canonical UDivExpr for a recurrence.
/// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
// We can currently only fold X%N if X is constant.
const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
if (StartC && !DivInt.urem(StepInt) &&
getZeroExtendExpr(AR, ExtTy) ==
getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
getZeroExtendExpr(Step, ExtTy),
AR->getLoop(), SCEV::FlagAnyWrap)) {
const APInt &StartInt = StartC->getAPInt();
const APInt &StartRem = StartInt.urem(StepInt);
if (StartRem != 0)
LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
AR->getLoop(), SCEV::FlagNW);
}
}
// (A*B)/C --> A*(B/C) if safe and B/C can be folded.
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
SmallVector<const SCEV *, 4> Operands;
for (const SCEV *Op : M->operands())
Operands.push_back(getZeroExtendExpr(Op, ExtTy));
if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
// Find an operand that's safely divisible.
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
const SCEV *Op = M->getOperand(i);
const SCEV *Div = getUDivExpr(Op, RHSC);
if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
M->op_end());
Operands[i] = Div;
return getMulExpr(Operands);
}
}
}
// (A/B)/C --> A/(B*C) if safe and B*C can be folded.
if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
if (auto *DivisorConstant =
dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
bool Overflow = false;
APInt NewRHS =
DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
if (Overflow) {
return getConstant(RHSC->getType(), 0, false);
}
return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
}
}
// (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
SmallVector<const SCEV *, 4> Operands;
for (const SCEV *Op : A->operands())
Operands.push_back(getZeroExtendExpr(Op, ExtTy));
if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
Operands.clear();
for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
if (isa<SCEVUDivExpr>(Op) ||
getMulExpr(Op, RHS) != A->getOperand(i))
break;
Operands.push_back(Op);
}
if (Operands.size() == A->getNumOperands())
return getAddExpr(Operands);
}
}
// Fold if both operands are constant.
if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Constant *LHSCV = LHSC->getValue();
Constant *RHSCV = RHSC->getValue();
return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
RHSCV)));
}
}
}
FoldingSetNodeID ID;
ID.AddInteger(scUDivExpr);
ID.AddPointer(LHS);
ID.AddPointer(RHS);
void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
LHS, RHS);
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
return S;
}
static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
APInt A = C1->getAPInt().abs();
APInt B = C2->getAPInt().abs();
uint32_t ABW = A.getBitWidth();
uint32_t BBW = B.getBitWidth();
if (ABW > BBW)
B = B.zext(ABW);
else if (ABW < BBW)
A = A.zext(BBW);
return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
}
/// Get a canonical unsigned division expression, or something simpler if
/// possible. There is no representation for an exact udiv in SCEV IR, but we
/// can attempt to remove factors from the LHS and RHS. We can't do this when
/// it's not exact because the udiv may be clearing bits.
const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
const SCEV *RHS) {
// TODO: we could try to find factors in all sorts of things, but for now we
// just deal with u/exact (multiply, constant). See SCEVDivision towards the
// end of this file for inspiration.
const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
if (!Mul || !Mul->hasNoUnsignedWrap())
return getUDivExpr(LHS, RHS);
if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
// If the mulexpr multiplies by a constant, then that constant must be the
// first element of the mulexpr.
if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
if (LHSCst == RHSCst) {
SmallVector<const SCEV *, 2> Operands;
Operands.append(Mul->op_begin() + 1, Mul->op_end());
return getMulExpr(Operands);
}
// We can't just assume that LHSCst divides RHSCst cleanly, it could be
// that there's a factor provided by one of the other terms. We need to
// check.
APInt Factor = gcd(LHSCst, RHSCst);
if (!Factor.isIntN(1)) {
LHSCst =
cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
RHSCst =
cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
SmallVector<const SCEV *, 2> Operands;
Operands.push_back(LHSCst);
Operands.append(Mul->op_begin() + 1, Mul->op_end());
LHS = getMulExpr(Operands);
RHS = RHSCst;
Mul = dyn_cast<SCEVMulExpr>(LHS);
if (!Mul)
return getUDivExactExpr(LHS, RHS);
}
}
}
for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
if (Mul->getOperand(i) == RHS) {
SmallVector<const SCEV *, 2> Operands;
Operands.append(Mul->op_begin(), Mul->op_begin() + i);
Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
return getMulExpr(Operands);
}
}
return getUDivExpr(LHS, RHS);
}
/// Get an add recurrence expression for the specified loop. Simplify the
/// expression as much as possible.
const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
const Loop *L,
SCEV::NoWrapFlags Flags) {
SmallVector<const SCEV *, 4> Operands;
Operands.push_back(Start);
if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
if (StepChrec->getLoop() == L) {
Operands.append(StepChrec->op_begin(), StepChrec->op_end());
return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
}
Operands.push_back(Step);
return getAddRecExpr(Operands, L, Flags);
}
/// Get an add recurrence expression for the specified loop. Simplify the
/// expression as much as possible.
const SCEV *
ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
const Loop *L, SCEV::NoWrapFlags Flags) {
if (Operands.size() == 1) return Operands[0];
#ifndef NDEBUG
Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
"SCEVAddRecExpr operand types don't match!");
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
assert(isLoopInvariant(Operands[i], L) &&
"SCEVAddRecExpr operand is not loop-invariant!");
#endif
if (Operands.back()->isZero()) {
Operands.pop_back();
return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
}
// It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
// use that information to infer NUW and NSW flags. However, computing a
// BE count requires calling getAddRecExpr, so we may not yet have a
// meaningful BE count at this point (and if we don't, we'd be stuck
// with a SCEVCouldNotCompute as the cached BE count).
Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
// Canonicalize nested AddRecs in by nesting them in order of loop depth.
if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
const Loop *NestedLoop = NestedAR->getLoop();
if (L->contains(NestedLoop)
? (L->getLoopDepth() < NestedLoop->getLoopDepth())
: (!NestedLoop->contains(L) &&
DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
NestedAR->op_end());
Operands[0] = NestedAR->getStart();
// AddRecs require their operands be loop-invariant with respect to their
// loops. Don't perform this transformation if it would break this
// requirement.
bool AllInvariant = all_of(
Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
if (AllInvariant) {
// Create a recurrence for the outer loop with the same step size.
//
// The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
// inner recurrence has the same property.
SCEV::NoWrapFlags OuterFlags =
maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
return isLoopInvariant(Op, NestedLoop);
});
if (AllInvariant) {
// Ok, both add recurrences are valid after the transformation.
//
// The inner recurrence keeps its NW flag but only keeps NUW/NSW if
// the outer recurrence has the same property.
SCEV::NoWrapFlags InnerFlags =
maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
}
}
// Reset Operands to its original state.
Operands[0] = NestedAR;
}
}
// Okay, it looks like we really DO need an addrec expr. Check to see if we
// already have one, otherwise create a new one.
return getOrCreateAddRecExpr(Operands, L, Flags);
}
const SCEV *
ScalarEvolution::getGEPExpr(GEPOperator *GEP,
const SmallVectorImpl<const SCEV *> &IndexExprs) {
const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
// getSCEV(Base)->getType() has the same address space as Base->getType()
// because SCEV::getType() preserves the address space.
Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
// FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
// instruction to its SCEV, because the Instruction may be guarded by control
// flow and the no-overflow bits may not be valid for the expression in any
// context. This can be fixed similarly to how these flags are handled for
// adds.
SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
: SCEV::FlagAnyWrap;
const SCEV *TotalOffset = getZero(IntIdxTy);
// The array size is unimportant. The first thing we do on CurTy is getting
// its element type.
Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
for (const SCEV *IndexExpr : IndexExprs) {
// Compute the (potentially symbolic) offset in bytes for this index.
if (StructType *STy = dyn_cast<StructType>(CurTy)) {
// For a struct, add the member offset.
ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
unsigned FieldNo = Index->getZExtValue();
const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
// Add the field offset to the running total offset.
TotalOffset = getAddExpr(TotalOffset, FieldOffset);
// Update CurTy to the type of the field at Index.
CurTy = STy->getTypeAtIndex(Index);
} else {
// Update CurTy to its element type.
CurTy = cast<SequentialType>(CurTy)->getElementType();
// For an array, add the element offset, explicitly scaled.
const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
// Getelementptr indices are signed.
IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
// Multiply the index by the element size to compute the element offset.
const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
// Add the element offset to the running total offset.
TotalOffset = getAddExpr(TotalOffset, LocalOffset);
}
}
// Add the total offset from all the GEP indices to the base.
return getAddExpr(BaseExpr, TotalOffset, Wrap);
}
std::tuple<const SCEV *, FoldingSetNodeID, void *>
ScalarEvolution::findExistingSCEVInCache(int SCEVType,
ArrayRef<const SCEV *> Ops) {
FoldingSetNodeID ID;
void *IP = nullptr;
ID.AddInteger(SCEVType);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
}
const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
SmallVectorImpl<const SCEV *> &Ops) {
assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"Operand types don't match!");
#endif
bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
// Sort by complexity, this groups all similar expression types together.
GroupByComplexity(Ops, &LI, DT);
// Check if we have created the same expression before.
if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
return S;
}
// If there are any constants, fold them together.
unsigned Idx = 0;
if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
++Idx;
assert(Idx < Ops.size());
auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
if (Kind == scSMaxExpr)
return APIntOps::smax(LHS, RHS);
else if (Kind == scSMinExpr)
return APIntOps::smin(LHS, RHS);
else if (Kind == scUMaxExpr)
return APIntOps::umax(LHS, RHS);
else if (Kind == scUMinExpr)
return APIntOps::umin(LHS, RHS);
llvm_unreachable("Unknown SCEV min/max opcode");
};
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
ConstantInt *Fold = ConstantInt::get(
getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
Ops[0] = getConstant(Fold);
Ops.erase(Ops.begin()+1); // Erase the folded element
if (Ops.size() == 1) return Ops[0];
LHSC = cast<SCEVConstant>(Ops[0]);
}
bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
if (IsMax ? IsMinV : IsMaxV) {
// If we are left with a constant minimum(/maximum)-int, strip it off.
Ops.erase(Ops.begin());
--Idx;
} else if (IsMax ? IsMaxV : IsMinV) {
// If we have a max(/min) with a constant maximum(/minimum)-int,
// it will always be the extremum.
return LHSC;
}
if (Ops.size() == 1) return Ops[0];
}
// Find the first operation of the same kind
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
++Idx;
// Check to see if one of the operands is of the same kind. If so, expand its
// operands onto our operand list, and recurse to simplify.
if (Idx < Ops.size()) {
bool DeletedAny = false;
while (Ops[Idx]->getSCEVType() == Kind) {
const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
Ops.erase(Ops.begin()+Idx);
Ops.append(SMME->op_begin(), SMME->op_end());
DeletedAny = true;
}
if (DeletedAny)
return getMinMaxExpr(Kind, Ops);
}
// Okay, check to see if the same value occurs in the operand list twice. If
// so, delete one. Since we sorted the list, these values are required to
// be adjacent.
llvm::CmpInst::Predicate GEPred =
IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
llvm::CmpInst::Predicate LEPred =
IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
if (Ops[i] == Ops[i + 1] ||
isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
// X op Y op Y --> X op Y
// X op Y --> X, if we know X, Y are ordered appropriately
Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
--i;
--e;
} else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
Ops[i + 1])) {
// X op Y --> Y, if we know X, Y are ordered appropriately
Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
--i;
--e;
}
}
if (Ops.size() == 1) return Ops[0];
assert(!Ops.empty() && "Reduced smax down to nothing!");
// Okay, it looks like we really DO need an expr. Check to see if we
// already have one, otherwise create a new one.
const SCEV *ExistingSCEV;
FoldingSetNodeID ID;
void *IP;
std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
if (ExistingSCEV)
return ExistingSCEV;
const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
std::uninitialized_copy(Ops.begin(), Ops.end(), O);
SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
UniqueSCEVs.InsertNode(S, IP);
addToLoopUseLists(S);
return S;
}
const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
return getSMaxExpr(Ops);
}
const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
return getMinMaxExpr(scSMaxExpr, Ops);
}
const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
return getUMaxExpr(Ops);
}
const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
return getMinMaxExpr(scUMaxExpr, Ops);
}
const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
const SCEV *RHS) {
SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
return getSMinExpr(Ops);
}
const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
return getMinMaxExpr(scSMinExpr, Ops);
}
const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
const SCEV *RHS) {
SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
return getUMinExpr(Ops);
}
const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
return getMinMaxExpr(scUMinExpr, Ops);
}
const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
// We can bypass creating a target-independent
// constant expression and then folding it back into a ConstantInt.
// This is just a compile-time optimization.
return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
}
const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
StructType *STy,
unsigned FieldNo) {
// We can bypass creating a target-independent
// constant expression and then folding it back into a ConstantInt.
// This is just a compile-time optimization.
return getConstant(
IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
}
const SCEV *ScalarEvolution::getUnknown(Value *V) {
// Don't attempt to do anything other than create a SCEVUnknown object
// here. createSCEV only calls getUnknown after checking for all other
// interesting possibilities, and any other code that calls getUnknown
// is doing so in order to hide a value from SCEV canonicalization.
FoldingSetNodeID ID;
ID.AddInteger(scUnknown);
ID.AddPointer(V);
void *IP = nullptr;
if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
assert(cast<SCEVUnknown>(S)->getValue() == V &&
"Stale SCEVUnknown in uniquing map!");
return S;
}
SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
FirstUnknown);
FirstUnknown = cast<SCEVUnknown>(S);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
//===----------------------------------------------------------------------===//
// Basic SCEV Analysis and PHI Idiom Recognition Code
//
/// Test if values of the given type are analyzable within the SCEV
/// framework. This primarily includes integer types, and it can optionally
/// include pointer types if the ScalarEvolution class has access to
/// target-specific information.
bool ScalarEvolution::isSCEVable(Type *Ty) const {
// Integers and pointers are always SCEVable.
return Ty->isIntOrPtrTy();
}
/// Return the size in bits of the specified type, for which isSCEVable must
/// return true.
uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
assert(isSCEVable(Ty) && "Type is not SCEVable!");
if (Ty->isPointerTy())
return getDataLayout().getIndexTypeSizeInBits(Ty);
return getDataLayout().getTypeSizeInBits(Ty);
}
/// Return a type with the same bitwidth as the given type and which represents
/// how SCEV will treat the given type, for which isSCEVable must return
/// true. For pointer types, this is the pointer index sized integer type.
Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
assert(isSCEVable(Ty) && "Type is not SCEVable!");
if (Ty->isIntegerTy())
return Ty;
// The only other support type is pointer.
assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
return getDataLayout().getIndexType(Ty);
}
Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
}
const SCEV *ScalarEvolution::getCouldNotCompute() {
return CouldNotCompute.get();
}
bool ScalarEvolution::checkValidity(const SCEV *S) const {
bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
auto *SU = dyn_cast<SCEVUnknown>(S);
return SU && SU->getValue() == nullptr;
});
return !ContainsNulls;
}
bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
HasRecMapType::iterator I = HasRecMap.find(S);
if (I != HasRecMap.end())
return I->second;
bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
HasRecMap.insert({S, FoundAddRec});
return FoundAddRec;
}
/// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
/// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
/// offset I, then return {S', I}, else return {\p S, nullptr}.
static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
const auto *Add = dyn_cast<SCEVAddExpr>(S);
if (!Add)
return {S, nullptr};
if (Add->getNumOperands() != 2)
return {S, nullptr};
auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
if (!ConstOp)
return {S, nullptr};
return {Add->getOperand(1), ConstOp->getValue()};
}
/// Return the ValueOffsetPair set for \p S. \p S can be represented
/// by the value and offset from any ValueOffsetPair in the set.
SetVector<ScalarEvolution::ValueOffsetPair> *
ScalarEvolution::getSCEVValues(const SCEV *S) {
ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
if (SI == ExprValueMap.end())
return nullptr;
#ifndef NDEBUG
if (VerifySCEVMap) {
// Check there is no dangling Value in the set returned.
for (const auto &VE : SI->second)
assert(ValueExprMap.count(VE.first));
}
#endif
return &SI->second;
}
/// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
/// cannot be used separately. eraseValueFromMap should be used to remove
/// V from ValueExprMap and ExprValueMap at the same time.
void ScalarEvolution::eraseValueFromMap(Value *V) {
ValueExprMapType::iterator I = ValueExprMap.find_as(V);
if (I != ValueExprMap.end()) {
const SCEV *S = I->second;
// Remove {V, 0} from the set of ExprValueMap[S]
if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
SV->remove({V, nullptr});
// Remove {V, Offset} from the set of ExprValueMap[Stripped]
const SCEV *Stripped;
ConstantInt *Offset;
std::tie(Stripped, Offset) = splitAddExpr(S);
if (Offset != nullptr) {
if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
SV->remove({V, Offset});
}
ValueExprMap.erase(V);
}
}
/// Check whether value has nuw/nsw/exact set but SCEV does not.
/// TODO: In reality it is better to check the poison recursively
/// but this is better than nothing.
static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
if (auto *I = dyn_cast<Instruction>(V)) {
if (isa<OverflowingBinaryOperator>(I)) {
if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
return true;
if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
return true;
}
} else if (isa<PossiblyExactOperator>(I) && I->isExact())
return true;
}
return false;
}
/// Return an existing SCEV if it exists, otherwise analyze the expression and
/// create a new one.
const SCEV *ScalarEvolution::getSCEV(Value *V) {
assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
const SCEV *S = getExistingSCEV(V);
if (S == nullptr) {
S = createSCEV(V);
// During PHI resolution, it is possible to create two SCEVs for the same
// V, so it is needed to double check whether V->S is inserted into
// ValueExprMap before insert S->{V, 0} into ExprValueMap.
std::pair<ValueExprMapType::iterator, bool> Pair =
ValueExprMap.insert({SCEVCallbackVH(V, this), S});
if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
ExprValueMap[S].insert({V, nullptr});
// If S == Stripped + Offset, add Stripped -> {V, Offset} into
// ExprValueMap.
const SCEV *Stripped = S;
ConstantInt *Offset = nullptr;
std::tie(Stripped, Offset) = splitAddExpr(S);
// If stripped is SCEVUnknown, don't bother to save
// Stripped -> {V, offset}. It doesn't simplify and sometimes even
// increase the complexity of the expansion code.
// If V is GetElementPtrInst, don't save Stripped -> {V, offset}
// because it may generate add/sub instead of GEP in SCEV expansion.
if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
!isa<GetElementPtrInst>(V))
ExprValueMap[Stripped].insert({V, Offset});
}
}
return S;
}
const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
ValueExprMapType::iterator I = ValueExprMap.find_as(V);
if (I != ValueExprMap.end()) {
const SCEV *S = I->second;
if (checkValidity(S))
return S;
eraseValueFromMap(V);
forgetMemoizedResults(S);
}
return nullptr;
}
/// Return a SCEV corresponding to -V = -1*V
const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
SCEV::NoWrapFlags Flags) {
if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
return getConstant(
cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Type *Ty = V->getType();
Ty = getEffectiveSCEVType(Ty);
return getMulExpr(
V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
}
/// If Expr computes ~A, return A else return nullptr
static const SCEV *MatchNotExpr(const SCEV *Expr) {
const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
if (!Add || Add->getNumOperands() != 2 ||
!Add->getOperand(0)->isAllOnesValue())
return nullptr;
const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
if (!AddRHS || AddRHS->getNumOperands() != 2 ||
!AddRHS->getOperand(0)->isAllOnesValue())
return nullptr;
return AddRHS->getOperand(1);
}
/// Return a SCEV corresponding to ~V = -1-V
const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
return getConstant(
cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
// Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
SmallVector<const SCEV *, 2> MatchedOperands;
for (const SCEV *Operand : MME->operands()) {
const SCEV *Matched = MatchNotExpr(Operand);
if (!Matched)
return (const SCEV *)nullptr;
MatchedOperands.push_back(Matched);
}
return getMinMaxExpr(
SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
MatchedOperands);
};
if (const SCEV *Replaced = MatchMinMaxNegation(MME))
return Replaced;
}
Type *Ty = V->getType();
Ty = getEffectiveSCEVType(Ty);
const SCEV *AllOnes =
getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
return getMinusSCEV(AllOnes, V);
}
const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags,
unsigned Depth) {
// Fast path: X - X --> 0.
if (LHS == RHS)
return getZero(LHS->getType());
// We represent LHS - RHS as LHS + (-1)*RHS. This transformation
// makes it so that we cannot make much use of NUW.
auto AddFlags = SCEV::FlagAnyWrap;
const bool RHSIsNotMinSigned =
!getSignedRangeMin(RHS).isMinSignedValue();
if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
// Let M be the minimum representable signed value. Then (-1)*RHS
// signed-wraps if and only if RHS is M. That can happen even for
// a NSW subtraction because e.g. (-1)*M signed-wraps even though
// -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
// (-1)*RHS, we need to prove that RHS != M.
//
// If LHS is non-negative and we know that LHS - RHS does not
// signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
// either by proving that RHS > M or that LHS >= 0.
if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
AddFlags = SCEV::FlagNSW;
}
}
// FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
// RHS is NSW and LHS >= 0.
//
// The difficulty here is that the NSW flag may have been proven
// relative to a loop that is to be found in a recurrence in LHS and
// not in RHS. Applying NSW to (-1)*M may then let the NSW have a
// larger scope than intended.
auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
}
const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
unsigned Depth) {
Type *SrcTy = V->getType();
assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot truncate or zero extend with non-integer arguments!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
return getTruncateExpr(V, Ty, Depth);
return getZeroExtendExpr(V, Ty, Depth);
}
const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
unsigned Depth) {
Type *SrcTy = V->getType();
assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot truncate or zero extend with non-integer arguments!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
return getTruncateExpr(V, Ty, Depth);
return getSignExtendExpr(V, Ty, Depth);
}
const SCEV *
ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
Type *SrcTy = V->getType();
assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot noop or zero extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrZeroExtend cannot truncate!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
return getZeroExtendExpr(V, Ty);
}
const SCEV *
ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
Type *SrcTy = V->getType();
assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot noop or sign extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrSignExtend cannot truncate!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
return getSignExtendExpr(V, Ty);
}
const SCEV *
ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
Type *SrcTy = V->getType();
assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot noop or any extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrAnyExtend cannot truncate!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
return getAnyExtendExpr(V, Ty);
}
const SCEV *
ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
Type *SrcTy = V->getType();
assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
"Cannot truncate or noop with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
"getTruncateOrNoop cannot extend!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
return getTruncateExpr(V, Ty);
}
const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS) {
const SCEV *PromotedLHS = LHS;
const SCEV *PromotedRHS = RHS;
if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
else
PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
return getUMaxExpr(PromotedLHS, PromotedRHS);
}
const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS) {
SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
return getUMinFromMismatchedTypes(Ops);
}
const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
SmallVectorImpl<const SCEV *> &Ops) {
assert(!Ops.empty() && "At least one operand must be!");
// Trivial case.
if (Ops.size() == 1)
return Ops[0];
// Find the max type first.
Type *MaxType = nullptr;
for (auto *S : Ops)
if (MaxType)
MaxType = getWiderType(MaxType, S->getType());
else
MaxType = S->getType();
// Extend all ops to max type.
SmallVector<const SCEV *, 2> PromotedOps;
for (auto *S : Ops)
PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
// Generate umin.
return getUMinExpr(PromotedOps);
}
const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
// A pointer operand may evaluate to a nonpointer expression, such as null.
if (!V->getType()->isPointerTy())
return V;
if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
return getPointerBase(Cast->getOperand());
} else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
const SCEV *PtrOp = nullptr;
for (const SCEV *NAryOp : NAry->operands()) {
if (NAryOp->getType()->isPointerTy()) {
// Cannot find the base of an expression with multiple pointer operands.
if (PtrOp)
return V;
PtrOp = NAryOp;
}
}
if (!PtrOp)
return V;
return getPointerBase(PtrOp);
}
return V;
}
/// Push users of the given Instruction onto the given Worklist.
static void
PushDefUseChildren(Instruction *I,
SmallVectorImpl<Instruction *> &Worklist) {
// Push the def-use children onto the Worklist stack.
for (User *U : I->users())
Worklist.push_back(cast<Instruction>(U));
}
void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
SmallVector<Instruction *, 16> Worklist;
PushDefUseChildren(PN, Worklist);
SmallPtrSet<Instruction *, 8> Visited;
Visited.insert(PN);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
if (!Visited.insert(I).second)
continue;
auto It = ValueExprMap.find_as(static_cast<Value *>(I));
if (It != ValueExprMap.end()) {
const SCEV *Old = It->second;
// Short-circuit the def-use traversal if the symbolic name
// ceases to appear in expressions.
if (Old != SymName && !hasOperand(Old, SymName))
continue;
// SCEVUnknown for a PHI either means that it has an unrecognized
// structure, it's a PHI that's in the progress of being computed
// by createNodeForPHI, or it's a single-value PHI. In the first case,
// additional loop trip count information isn't going to change anything.
// In the second case, createNodeForPHI will perform the necessary
// updates on its own when it gets to that point. In the third, we do
// want to forget the SCEVUnknown.
if (!isa<PHINode>(I) ||
!isa<SCEVUnknown>(Old) ||
(I != PN && Old == SymName)) {
eraseValueFromMap(It->first);
forgetMemoizedResults(Old);
}
}
PushDefUseChildren(I, Worklist);
}
}
namespace {
/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
/// expression in case its Loop is L. If it is not L then
/// if IgnoreOtherLoops is true then use AddRec itself
/// otherwise rewrite cannot be done.
/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
public:
static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
bool IgnoreOtherLoops = true) {
SCEVInitRewriter Rewriter(L, SE);
const SCEV *Result = Rewriter.visit(S);
if (Rewriter.hasSeenLoopVariantSCEVUnknown())
return SE.getCouldNotCompute();
return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
? SE.getCouldNotCompute()
: Result;
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
if (!SE.isLoopInvariant(Expr, L))
SeenLoopVariantSCEVUnknown = true;
return Expr;
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
// Only re-write AddRecExprs for this loop.
if (Expr->getLoop() == L)
return Expr->getStart();
SeenOtherLoops = true;
return Expr;
}
bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
bool hasSeenOtherLoops() { return SeenOtherLoops; }
private:
explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
: SCEVRewriteVisitor(SE), L(L) {}
const Loop *L;
bool SeenLoopVariantSCEVUnknown = false;
bool SeenOtherLoops = false;
};
/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
/// increment expression in case its Loop is L. If it is not L then
/// use AddRec itself.
/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
public:
static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
SCEVPostIncRewriter Rewriter(L, SE);
const SCEV *Result = Rewriter.visit(S);
return Rewriter.hasSeenLoopVariantSCEVUnknown()
? SE.getCouldNotCompute()
: Result;
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
if (!SE.isLoopInvariant(Expr, L))
SeenLoopVariantSCEVUnknown = true;
return Expr;
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
// Only re-write AddRecExprs for this loop.
if (Expr->getLoop() == L)
return Expr->getPostIncExpr(SE);
SeenOtherLoops = true;
return Expr;
}
bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
bool hasSeenOtherLoops() { return SeenOtherLoops; }
private:
explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
: SCEVRewriteVisitor(SE), L(L) {}
const Loop *L;
bool SeenLoopVariantSCEVUnknown = false;
bool SeenOtherLoops = false;
};
/// This class evaluates the compare condition by matching it against the
/// condition of loop latch. If there is a match we assume a true value
/// for the condition while building SCEV nodes.
class SCEVBackedgeConditionFolder
: public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
public:
static const SCEV *rewrite(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
bool IsPosBECond = false;
Value *BECond = nullptr;
if (BasicBlock *Latch = L->getLoopLatch()) {
BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
if (BI && BI->isConditional()) {
assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
"Both outgoing branches should not target same header!");
BECond = BI->getCondition();
IsPosBECond = BI->getSuccessor(0) == L->getHeader();
} else {
return S;
}
}
SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
return Rewriter.visit(S);
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
const SCEV *Result = Expr;
bool InvariantF = SE.isLoopInvariant(Expr, L);
if (!InvariantF) {
Instruction *I = cast<Instruction>(Expr->getValue());
switch (I->getOpcode()) {
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
Optional<const SCEV *> Res =
compareWithBackedgeCondition(SI->getCondition());
if (Res.hasValue()) {
bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
}
break;
}
default: {
Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
if (Res.hasValue())
Result = Res.getValue();
break;
}
}
}
return Result;
}
private:
explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
bool IsPosBECond, ScalarEvolution &SE)
: SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
IsPositiveBECond(IsPosBECond) {}
Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
const Loop *L;
/// Loop back condition.
Value *BackedgeCond = nullptr;
/// Set to true if loop back is on positive branch condition.
bool IsPositiveBECond;
};
Optional<const SCEV *>
SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
// If value matches the backedge condition for loop latch,
// then return a constant evolution node based on loopback
// branch taken.
if (BackedgeCond == IC)
return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
: SE.getZero(Type::getInt1Ty(SE.getContext()));
return None;
}
class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
public:
static const SCEV *rewrite(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
SCEVShiftRewriter Rewriter(L, SE);
const SCEV *Result = Rewriter.visit(S);
return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
// Only allow AddRecExprs for this loop.
if (!SE.isLoopInvariant(Expr, L))
Valid = false;
return Expr;
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
if (Expr->getLoop() == L && Expr->isAffine())
return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
Valid = false;
return Expr;
}
bool isValid() { return Valid; }
private:
explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
: SCEVRewriteVisitor(SE), L(L) {}
const Loop *L;
bool Valid = true;
};
} // end anonymous namespace
SCEV::NoWrapFlags
ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
if (!AR->isAffine())
return SCEV::FlagAnyWrap;
using OBO = OverflowingBinaryOperator;
SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
if (!AR->hasNoSignedWrap()) {
ConstantRange AddRecRange = getSignedRange(AR);
ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, IncRange, OBO::NoSignedWrap);
if (NSWRegion.contains(AddRecRange))
Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
}
if (!AR->hasNoUnsignedWrap()) {
ConstantRange AddRecRange = getUnsignedRange(AR);
ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, IncRange, OBO::NoUnsignedWrap);
if (NUWRegion.contains(AddRecRange))
Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
}
return Result;
}
namespace {
/// Represents an abstract binary operation. This may exist as a
/// normal instruction or constant expression, or may have been
/// derived from an expression tree.
struct BinaryOp {
unsigned Opcode;
Value *LHS;
Value *RHS;
bool IsNSW = false;
bool IsNUW = false;
/// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
/// constant expression.
Operator *Op = nullptr;
explicit BinaryOp(Operator *Op)
: Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
Op(Op) {
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
IsNSW = OBO->hasNoSignedWrap();
IsNUW = OBO->hasNoUnsignedWrap();
}
}
explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
bool IsNUW = false)
: Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
};
} // end anonymous namespace
/// Try to map \p V into a BinaryOp, and return \c None on failure.
static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
auto *Op = dyn_cast<Operator>(V);
if (!Op)
return None;
// Implementation detail: all the cleverness here should happen without
// creating new SCEV expressions -- our caller knowns tricks to avoid creating
// SCEV expressions when possible, and we should not break that.
switch (Op->getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::URem:
case Instruction::And:
case Instruction::Or:
case Instruction::AShr:
case Instruction::Shl:
return BinaryOp(Op);
case Instruction::Xor:
if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
// If the RHS of the xor is a signmask, then this is just an add.
// Instcombine turns add of signmask into xor as a strength reduction step.
if (RHSC->getValue().isSignMask())
return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
return BinaryOp(Op);
case Instruction::LShr:
// Turn logical shift right of a constant into a unsigned divide.
if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
// If the shift count is not less than the bitwidth, the result of
// the shift is undefined. Don't try to analyze it, because the
// resolution chosen here may differ from the resolution chosen in
// other parts of the compiler.
if (SA->getValue().ult(BitWidth)) {
Constant *X =
ConstantInt::get(SA->getContext(),
APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
}
}
return BinaryOp(Op);
case Instruction::ExtractValue: {
auto *EVI = cast<ExtractValueInst>(Op);
if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
break;
auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
if (!WO)
break;
Instruction::BinaryOps BinOp = WO->getBinaryOp();
bool Signed = WO->isSigned();
// TODO: Should add nuw/nsw flags for mul as well.
if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
// Now that we know that all uses of the arithmetic-result component of
// CI are guarded by the overflow check, we can go ahead and pretend
// that the arithmetic is non-overflowing.
return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
/* IsNSW = */ Signed, /* IsNUW = */ !Signed);
}
default:
break;
}
// Recognise intrinsic loop.decrement.reg, and as this has exactly the same
// semantics as a Sub, return a binary sub expression.
if (auto *II = dyn_cast<IntrinsicInst>(V))
if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
return None;
}
/// Helper function to createAddRecFromPHIWithCasts. We have a phi
/// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
/// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
/// way. This function checks if \p Op, an operand of this SCEVAddExpr,
/// follows one of the following patterns:
/// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
/// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
/// If the SCEV expression of \p Op conforms with one of the expected patterns
/// we return the type of the truncation operation, and indicate whether the
/// truncated type should be treated as signed/unsigned by setting
/// \p Signed to true/false, respectively.
static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
bool &Signed, ScalarEvolution &SE) {
// The case where Op == SymbolicPHI (that is, with no type conversions on
// the way) is handled by the regular add recurrence creating logic and
// would have already been triggered in createAddRecForPHI. Reaching it here
// means that createAddRecFromPHI had failed for this PHI before (e.g.,
// because one of the other operands of the SCEVAddExpr updating this PHI is
// not invariant).
//
// Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
// this case predicates that allow us to prove that Op == SymbolicPHI will
// be added.
if (Op == SymbolicPHI)
return nullptr;
unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
if (SourceBits != NewBits)
return nullptr;
const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
if (!SExt && !ZExt)
return nullptr;
const SCEVTruncateExpr *Trunc =
SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
: dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
if (!Trunc)
return nullptr;
const SCEV *X = Trunc->getOperand();
if (X != SymbolicPHI)
return nullptr;
Signed = SExt != nullptr;
return Trunc->getType();
}
static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
if (!PN->getType()->isIntegerTy())
return nullptr;
const Loop *L = LI.getLoopFor(PN->getParent());
if (!L || L->getHeader() != PN->getParent())
return nullptr;
return L;
}
// Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
// computation that updates the phi follows the following pattern:
// (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
// which correspond to a phi->trunc->sext/zext->add->phi update chain.
// If so, try to see if it can be rewritten as an AddRecExpr under some
// Predicates. If successful, return them as a pair. Also cache the results
// of the analysis.
//
// Example usage scenario:
// Say the Rewriter is called for the following SCEV:
// 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
// where:
// %X = phi i64 (%Start, %BEValue)
// It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
// and call this function with %SymbolicPHI = %X.
//
// The analysis will find that the value coming around the backedge has
// the following SCEV:
// BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
// Upon concluding that this matches the desired pattern, the function
// will return the pair {NewAddRec, SmallPredsVec} where:
// NewAddRec = {%Start,+,%Step}
// SmallPredsVec = {P1, P2, P3} as follows:
// P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
// P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
// P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
// The returned pair means that SymbolicPHI can be rewritten into NewAddRec
// under the predicates {P1,P2,P3}.
// This predicated rewrite will be cached in PredicatedSCEVRewrites:
// PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
//
// TODO's:
//
// 1) Extend the Induction descriptor to also support inductions that involve
// casts: When needed (namely, when we are called in the context of the
// vectorizer induction analysis), a Set of cast instructions will be
// populated by this method, and provided back to isInductionPHI. This is
// needed to allow the vectorizer to properly record them to be ignored by
// the cost model and to avoid vectorizing them (otherwise these casts,
// which are redundant under the runtime overflow checks, will be
// vectorized, which can be costly).
//
// 2) Support additional induction/PHISCEV patterns: We also want to support
// inductions where the sext-trunc / zext-trunc operations (partly) occur
// after the induction update operation (the induction increment):
//
// (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
// which correspond to a phi->add->trunc->sext/zext->phi update chain.
//
// (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
// which correspond to a phi->trunc->add->sext/zext->phi update chain.
//
// 3) Outline common code with createAddRecFromPHI to avoid duplication.
Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
SmallVector<const SCEVPredicate *, 3> Predicates;
// *** Part1: Analyze if we have a phi-with-cast pattern for which we can
// return an AddRec expression under some predicate.
auto *PN = cast<PHINode>(SymbolicPHI->getValue());
const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
assert(L && "Expecting an integer loop header phi");
// The loop may have multiple entrances or multiple exits; we can analyze
// this phi as an addrec if it has a unique entry value and a unique
// backedge value.
Value *BEValueV = nullptr, *StartValueV = nullptr;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *V = PN->getIncomingValue(i);
if (L->contains(PN->getIncomingBlock(i))) {
if (!BEValueV) {
BEValueV = V;
} else if (BEValueV != V) {
BEValueV = nullptr;
break;
}
} else if (!StartValueV) {
StartValueV = V;
} else if (StartValueV != V) {
StartValueV = nullptr;
break;
}
}
if (!BEValueV || !StartValueV)
return None;
const SCEV *BEValue = getSCEV(BEValueV);
// If the value coming around the backedge is an add with the symbolic
// value we just inserted, possibly with casts that we can ignore under
// an appropriate runtime guard, then we found a simple induction variable!
const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
if (!Add)
return None;
// If there is a single occurrence of the symbolic value, possibly
// casted, replace it with a recurrence.
unsigned FoundIndex = Add->getNumOperands();
Type *TruncTy = nullptr;
bool Signed;
for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
if ((TruncTy =
isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
if (FoundIndex == e) {
FoundIndex = i;
break;
}
if (FoundIndex == Add->getNumOperands())
return None;
// Create an add with everything but the specified operand.
SmallVector<const SCEV *, 8> Ops;
for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
if (i != FoundIndex)
Ops.push_back(Add->getOperand(i));
const SCEV *Accum = getAddExpr(Ops);
// The runtime checks will not be valid if the step amount is
// varying inside the loop.
if (!isLoopInvariant(Accum, L))
return None;
// *** Part2: Create the predicates
// Analysis was successful: we have a phi-with-cast pattern for which we
// can return an AddRec expression under the following predicates:
//
// P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
// fits within the truncated type (does not overflow) for i = 0 to n-1.
// P2: An Equal predicate that guarantees that
// Start = (Ext ix (Trunc iy (Start) to ix) to iy)
// P3: An Equal predicate that guarantees that
// Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
//
// As we next prove, the above predicates guarantee that:
// Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
//
//
// More formally, we want to prove that:
// Expr(i+1) = Start + (i+1) * Accum
// = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
//
// Given that:
// 1) Expr(0) = Start
// 2) Expr(1) = Start + Accum
// = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
// 3) Induction hypothesis (step i):
// Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
//
// Proof:
// Expr(i+1) =
// = Start + (i+1)*Accum
// = (Start + i*Accum) + Accum
// = Expr(i) + Accum
// = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
// :: from step i
//
// = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
//
// = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
// + (Ext ix (Trunc iy (Accum) to ix) to iy)
// + Accum :: from P3
//
// = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
// + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
//
// = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
// = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
//
// By induction, the same applies to all iterations 1<=i<n:
//
// Create a truncated addrec for which we will add a no overflow check (P1).
const SCEV *StartVal = getSCEV(StartValueV);
const SCEV *PHISCEV =
getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
// PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
// ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
// will be constant.
//
// If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
// add P1.
if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
Signed ? SCEVWrapPredicate::IncrementNSSW
: SCEVWrapPredicate::IncrementNUSW;
const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
Predicates.push_back(AddRecPred);
}
// Create the Equal Predicates P2,P3:
// It is possible that the predicates P2 and/or P3 are computable at
// compile time due to StartVal and/or Accum being constants.
// If either one is, then we can check that now and escape if either P2
// or P3 is false.
// Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
// for each of StartVal and Accum
auto getExtendedExpr = [&](const SCEV *Expr,
bool CreateSignExtend) -> const SCEV * {
assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
const SCEV *ExtendedExpr =
CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
: getZeroExtendExpr(TruncatedExpr, Expr->getType());
return ExtendedExpr;
};
// Given:
// ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
// = getExtendedExpr(Expr)
// Determine whether the predicate P: Expr == ExtendedExpr
// is known to be false at compile time
auto PredIsKnownFalse = [&](const SCEV *Expr,
const SCEV *ExtendedExpr) -> bool {
return Expr != ExtendedExpr &&
isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
};
const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
if (PredIsKnownFalse(StartVal, StartExtended)) {
LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
return None;
}
// The Step is always Signed (because the overflow checks are either
// NSSW or NUSW)
const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
if (PredIsKnownFalse(Accum, AccumExtended)) {
LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
return None;
}
auto AppendPredicate = [&](const SCEV *Expr,
const SCEV *ExtendedExpr) -> void {
if (Expr != ExtendedExpr &&
!isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
Predicates.push_back(Pred);
}
};
AppendPredicate(StartVal, StartExtended);
AppendPredicate(Accum, AccumExtended);
// *** Part3: Predicates are ready. Now go ahead and create the new addrec in
// which the casts had been folded away. The caller can rewrite SymbolicPHI
// into NewAR if it will also add the runtime overflow checks specified in
// Predicates.
auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
std::make_pair(NewAR, Predicates);
// Remember the result of the analysis for this SCEV at this locayyytion.
PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
return PredRewrite;
}
Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
auto *PN = cast<PHINode>(SymbolicPHI->getValue());
const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
if (!L)
return None;
// Check to see if we already analyzed this PHI.
auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
if (I != PredicatedSCEVRewrites.end()) {
std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
I->second;
// Analysis was done before and failed to create an AddRec:
if (Rewrite.first == SymbolicPHI)
return None;
// Analysis was done before and succeeded to create an AddRec under
// a predicate:
assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
assert(!(Rewrite.second).empty() && "Expected to find Predicates");
return Rewrite;
}
Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
// Record in the cache that the analysis failed
if (!Rewrite) {
SmallVector<const SCEVPredicate *, 3> Predicates;
PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
return None;
}
return Rewrite;
}
// FIXME: This utility is currently required because the Rewriter currently
// does not rewrite this expression:
// {0, +, (sext ix (trunc iy to ix) to iy)}
// into {0, +, %step},
// even when the following Equal predicate exists:
// "%step == (sext ix (trunc iy to ix) to iy)".
bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
if (AR1 == AR2)
return true;
auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
!Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
return false;
return true;
};
if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
!areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
return false;
return true;
}
/// A helper function for createAddRecFromPHI to handle simple cases.
///
/// This function tries to find an AddRec expression for the simplest (yet most
/// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
/// If it fails, createAddRecFromPHI will use a more general, but slow,
/// technique for finding the AddRec expression.
const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
Value *BEValueV,
Value *StartValueV) {
const Loop *L = LI.getLoopFor(PN->getParent());
assert(L && L->getHeader() == PN->getParent());
assert(BEValueV && StartValueV);
auto BO = MatchBinaryOp(BEValueV, DT);
if (!BO)
return nullptr;
if (BO->Opcode != Instruction::Add)
return nullptr;
const SCEV *Accum = nullptr;
if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
Accum = getSCEV(BO->RHS);
else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
Accum = getSCEV(BO->LHS);
if (!Accum)
return nullptr;
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
if (BO->IsNUW)
Flags = setFlags(Flags, SCEV::FlagNUW);
if (BO->IsNSW)
Flags = setFlags(Flags, SCEV::FlagNSW);
const SCEV *StartVal = getSCEV(StartValueV);
const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
// We can add Flags to the post-inc expression only if we
// know that it is *undefined behavior* for BEValueV to
// overflow.
if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
(void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
return PHISCEV;
}
const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
const Loop *L = LI.getLoopFor(PN->getParent());
if (!L || L->getHeader() != PN->getParent())
return nullptr;
// The loop may have multiple entrances or multiple exits; we can analyze
// this phi as an addrec if it has a unique entry value and a unique
// backedge value.
Value *BEValueV = nullptr, *StartValueV = nullptr;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *V = PN->getIncomingValue(i);
if (L->contains(PN->getIncomingBlock(i))) {
if (!BEValueV) {
BEValueV = V;
} else if (BEValueV != V) {
BEValueV = nullptr;
break;
}
} else if (!StartValueV) {
StartValueV = V;
} else if (StartValueV != V) {
StartValueV = nullptr;
break;
}
}
if (!BEValueV || !StartValueV)
return nullptr;
assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
"PHI node already processed?");
// First, try to find AddRec expression without creating a fictituos symbolic
// value for PN.
if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
return S;
// Handle PHI node value symbolically.
const SCEV *SymbolicName = getUnknown(PN);
ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
// Using this symbolic name for the PHI, analyze the value coming around
// the back-edge.
const SCEV *BEValue = getSCEV(BEValueV);
// NOTE: If BEValue is loop invariant, we know that the PHI node just
// has a special value for the first iteration of the loop.
// If the value coming around the backedge is an add with the symbolic
// value we just inserted, then we found a simple induction variable!
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
// If there is a single occurrence of the symbolic value, replace it
// with a recurrence.
unsigned FoundIndex = Add->getNumOperands();
for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
if (Add->getOperand(i) == SymbolicName)
if (FoundIndex == e) {
FoundIndex = i;
break;
}
if (FoundIndex != Add->getNumOperands()) {
// Create an add with everything but the specified operand.
SmallVector<const SCEV *, 8> Ops;
for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
if (i != FoundIndex)
Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
L, *this));
const SCEV *Accum = getAddExpr(Ops);
// This is not a valid addrec if the step amount is varying each
// loop iteration, but is not itself an addrec in this loop.
if (isLoopInvariant(Accum, L) ||
(isa<SCEVAddRecExpr>(Accum) &&
cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
if (auto BO = MatchBinaryOp(BEValueV, DT)) {
if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
if (BO->IsNUW)
Flags = setFlags(Flags, SCEV::FlagNUW);
if (BO->IsNSW)
Flags = setFlags(Flags, SCEV::FlagNSW);
}
} else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
// If the increment is an inbounds GEP, then we know the address
// space cannot be wrapped around. We cannot make any guarantee
// about signed or unsigned overflow because pointers are
// unsigned but we may have a negative index from the base
// pointer. We can guarantee that no unsigned wrap occurs if the
// indices form a positive value.
if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
Flags = setFlags(Flags, SCEV::FlagNW);
const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
Flags = setFlags(Flags, SCEV::FlagNUW);
}
// We cannot transfer nuw and nsw flags from subtraction
// operations -- sub nuw X, Y is not the same as add nuw X, -Y
// for instance.
}
const SCEV *StartVal = getSCEV(StartValueV);
const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
// Okay, for the entire analysis of this edge we assumed the PHI
// to be symbolic. We now need to go back and purge all of the
// entries for the scalars that use the symbolic expression.
forgetSymbolicName(PN, SymbolicName);
ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
// We can add Flags to the post-inc expression only if we
// know that it is *undefined behavior* for BEValueV to
// overflow.
if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
(void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
return PHISCEV;
}
}
} else {
// Otherwise, this could be a loop like this:
// i = 0; for (j = 1; ..; ++j) { .... i = j; }
// In this case, j = {1,+,1} and BEValue is j.
// Because the other in-value of i (0) fits the evolution of BEValue
// i really is an addrec evolution.
//
// We can generalize this saying that i is the shifted value of BEValue
// by one iteration:
// PHI(f(0), f({1,+,1})) --> f({0,+,1})
const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
if (Shifted != getCouldNotCompute() &&
Start != getCouldNotCompute()) {
const SCEV *StartVal = getSCEV(StartValueV);
if (Start == StartVal) {
// Okay, for the entire analysis of this edge we assumed the PHI
// to be symbolic. We now need to go back and purge all of the
// entries for the scalars that use the symbolic expression.
forgetSymbolicName(PN, SymbolicName);
ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
return Shifted;
}
}
}
// Remove the temporary PHI node SCEV that has been inserted while intending
// to create an AddRecExpr for this PHI node. We can not keep this temporary
// as it will prevent later (possibly simpler) SCEV expressions to be added
// to the ValueExprMap.
eraseValueFromMap(PN);
return nullptr;
}
// Checks if the SCEV S is available at BB. S is considered available at BB
// if S can be materialized at BB without introducing a fault.
static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
BasicBlock *BB) {
struct CheckAvailable {
bool TraversalDone = false;
bool Available = true;
const Loop *L = nullptr; // The loop BB is in (can be nullptr)
BasicBlock *BB = nullptr;
DominatorTree &DT;
CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
: L(L), BB(BB), DT(DT) {}
bool setUnavailable() {
TraversalDone = true;
Available = false;
return false;
}
bool follow(const SCEV *S) {
switch (S->getSCEVType()) {
case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
case scUMinExpr:
case scSMinExpr:
// These expressions are available if their operand(s) is/are.
return true;
case scAddRecExpr: {
// We allow add recurrences that are on the loop BB is in, or some
// outer loop. This guarantees availability because the value of the
// add recurrence at BB is simply the "current" value of the induction
// variable. We can relax this in the future; for instance an add
// recurrence on a sibling dominating loop is also available at BB.
const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
if (L && (ARLoop == L || ARLoop->contains(L)))
return true;
return setUnavailable();
}
case scUnknown: {
// For SCEVUnknown, we check for simple dominance.
const auto *SU = cast<SCEVUnknown>(S);
Value *V = SU->getValue();
if (isa<Argument>(V))
return false;
if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
return false;
return setUnavailable();
}
case scUDivExpr:
case scCouldNotCompute:
// We do not try to smart about these at all.
return setUnavailable();
}
llvm_unreachable("switch should be fully covered!");
}
bool isDone() { return TraversalDone; }
};
CheckAvailable CA(L, BB, DT);
SCEVTraversal<CheckAvailable> ST(CA);
ST.visitAll(S);
return CA.Available;
}
// Try to match a control flow sequence that branches out at BI and merges back
// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
// match.
static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
Value *&C, Value *&LHS, Value *&RHS) {
C = BI->getCondition();
BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
if (!LeftEdge.isSingleEdge())
return false;
assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
Use &LeftUse = Merge->getOperandUse(0);
Use &RightUse = Merge->getOperandUse(1);
if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
LHS = LeftUse;
RHS = RightUse;
return true;
}
if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
LHS = RightUse;
RHS = LeftUse;
return true;
}
return false;
}
const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
auto IsReachable =
[&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
const Loop *L = LI.getLoopFor(PN->getParent());
// We don't want to break LCSSA, even in a SCEV expression tree.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
return nullptr;
// Try to match
//
// br %cond, label %left, label %right
// left:
// br label %merge
// right:
// br label %merge
// merge:
// V = phi [ %x, %left ], [ %y, %right ]
//
// as "select %cond, %x, %y"
BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
assert(IDom && "At least the entry block should dominate PN");
auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
if (BI && BI->isConditional() &&
BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
}
return nullptr;
}
const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
if (const SCEV *S = createAddRecFromPHI(PN))
return S;
if (const SCEV *S = createNodeFromSelectLikePHI(PN))
return S;
// If the PHI has a single incoming value, follow that value, unless the
// PHI's incoming blocks are in a different loop, in which case doing so
// risks breaking LCSSA form. Instcombine would normally zap these, but
// it doesn't have DominatorTree information, so it may miss cases.
if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
if (LI.replacementPreservesLCSSAForm(PN, V))
return getSCEV(V);
// If it's not a loop phi, we can't handle it yet.
return getUnknown(PN);
}
const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
Value *Cond,
Value *TrueVal,
Value *FalseVal) {
// Handle "constant" branch or select. This can occur for instance when a
// loop pass transforms an inner loop and moves on to process the outer loop.
if (auto *CI = dyn_cast<ConstantInt>(Cond))
return getSCEV(CI->isOne() ? TrueVal : FalseVal);
// Try to match some simple smax or umax patterns.
auto *ICI = dyn_cast<ICmpInst>(Cond);
if (!ICI)
return getUnknown(I);
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
switch (ICI->getPredicate()) {
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
// a >s b ? a+x : b+x -> smax(a, b)+x
// a >s b ? b+x : a+x -> smin(a, b)+x
if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
const SCEV *LA = getSCEV(TrueVal);
const SCEV *RA = getSCEV(FalseVal);
const SCEV *LDiff = getMinusSCEV(LA, LS);
const SCEV *RDiff = getMinusSCEV(RA, RS);
if (LDiff == RDiff)
return getAddExpr(getSMaxExpr(LS, RS), LDiff);
LDiff = getMinusSCEV(LA, RS);
RDiff = getMinusSCEV(RA, LS);
if (LDiff == RDiff)
return getAddExpr(getSMinExpr(LS, RS), LDiff);
}
break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
// a >u b ? a+x : b+x -> umax(a, b)+x
// a >u b ? b+x : a+x -> umin(a, b)+x
if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
const SCEV *LA = getSCEV(TrueVal);
const SCEV *RA = getSCEV(FalseVal);
const SCEV *LDiff = getMinusSCEV(LA, LS);
const SCEV *RDiff = getMinusSCEV(RA, RS);
if (LDiff == RDiff)
return getAddExpr(getUMaxExpr(LS, RS), LDiff);
LDiff = getMinusSCEV(LA, RS);
RDiff = getMinusSCEV(RA, LS);
if (LDiff == RDiff)
return getAddExpr(getUMinExpr(LS, RS), LDiff);
}
break;
case ICmpInst::ICMP_NE:
// n != 0 ? n+x : 1+x -> umax(n, 1)+x
if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
const SCEV *One = getOne(I->getType());
const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
const SCEV *LA = getSCEV(TrueVal);
const SCEV *RA = getSCEV(FalseVal);
const SCEV *LDiff = getMinusSCEV(LA, LS);
const SCEV *RDiff = getMinusSCEV(RA, One);
if (LDiff == RDiff)
return getAddExpr(getUMaxExpr(One, LS), LDiff);
}
break;
case ICmpInst::ICMP_EQ:
// n == 0 ? 1+x : n+x -> umax(n, 1)+x
if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
const SCEV *One = getOne(I->getType());
const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
const SCEV *LA = getSCEV(TrueVal);
const SCEV *RA = getSCEV(FalseVal);
const SCEV *LDiff = getMinusSCEV(LA, One);
const SCEV *RDiff = getMinusSCEV(RA, LS);
if (LDiff == RDiff)
return getAddExpr(getUMaxExpr(One, LS), LDiff);
}
break;
default:
break;
}
return getUnknown(I);
}
/// Expand GEP instructions into add and multiply operations. This allows them
/// to be analyzed by regular SCEV code.
const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
// Don't attempt to analyze GEPs over unsized objects.
if (!GEP->getSourceElementType()->isSized())
return getUnknown(GEP);
SmallVector<const SCEV *, 4> IndexExprs;
for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
IndexExprs.push_back(getSCEV(*Index));
return getGEPExpr(GEP, IndexExprs);
}
uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
return C->getAPInt().countTrailingZeros();
if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
return std::min(GetMinTrailingZeros(T->getOperand()),
(uint32_t)getTypeSizeInBits(T->getType()));
if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
return OpRes == getTypeSizeInBits(E->getOperand()->getType())
? getTypeSizeInBits(E->getType())
: OpRes;
}
if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
return OpRes == getTypeSizeInBits(E->getOperand()->getType())
? getTypeSizeInBits(E->getType())
: OpRes;
}
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
// The result is the min of all operands results.
uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
return MinOpRes;
}
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
// The result is the sum of all operands results.
uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
uint32_t BitWidth = getTypeSizeInBits(M->getType());
for (unsigned i = 1, e = M->getNumOperands();
SumOpRes != BitWidth && i != e; ++i)
SumOpRes =
std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
return SumOpRes;
}
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
// The result is the min of all operands results.
uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
return MinOpRes;
}
if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
// The result is the min of all operands results.
uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
return MinOpRes;
}
if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
// The result is the min of all operands results.
uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
return MinOpRes;
}
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
return Known.countMinTrailingZeros();
}
// SCEVUDivExpr
return 0;
}
uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
auto I = MinTrailingZerosCache.find(S);
if (I != MinTrailingZerosCache.end())
return I->second;
uint32_t Result = GetMinTrailingZerosImpl(S);
auto InsertPair = MinTrailingZerosCache.insert({S, Result});
assert(InsertPair.second && "Should insert a new key");
return InsertPair.first->second;
}
/// Helper method to assign a range to V from metadata present in the IR.
static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
return getConstantRangeFromMetadata(*MD);
return None;
}
/// Determine the range for a particular SCEV. If SignHint is
/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
/// with a "cleaner" unsigned (resp. signed) representation.
const ConstantRange &
ScalarEvolution::getRangeRef(const SCEV *S,
ScalarEvolution::RangeSignHint SignHint) {
DenseMap<const SCEV *, ConstantRange> &Cache =
SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
: SignedRanges;
ConstantRange::PreferredRangeType RangeType =
SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
? ConstantRange::Unsigned : ConstantRange::Signed;
// See if we've computed this range already.
DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
if (I != Cache.end())
return I->second;
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
return setRange(C, SignHint, ConstantRange(C->getAPInt()));
unsigned BitWidth = getTypeSizeInBits(S->getType());
ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
using OBO = OverflowingBinaryOperator;
// If the value has known zeros, the maximum value will have those known zeros
// as well.
uint32_t TZ = GetMinTrailingZeros(S);
if (TZ != 0) {
if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
ConservativeResult =
ConstantRange(APInt::getMinValue(BitWidth),
APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
else
ConservativeResult = ConstantRange(
APInt::getSignedMinValue(BitWidth),
APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
}
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
unsigned WrapType = OBO::AnyWrap;
if (Add->hasNoSignedWrap())
WrapType |= OBO::NoSignedWrap;
if (Add->hasNoUnsignedWrap())
WrapType |= OBO::NoUnsignedWrap;
for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
WrapType, RangeType);
return setRange(Add, SignHint,
ConservativeResult.intersectWith(X, RangeType));
}
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
return setRange(Mul, SignHint,
ConservativeResult.intersectWith(X, RangeType));
}
if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
return setRange(SMax, SignHint,
ConservativeResult.intersectWith(X, RangeType));
}
if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
return setRange(UMax, SignHint,
ConservativeResult.intersectWith(X, RangeType));
}
if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
return setRange(SMin, SignHint,
ConservativeResult.intersectWith(X, RangeType));
}
if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
return setRange(UMin, SignHint,
ConservativeResult.intersectWith(X, RangeType));
}
if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
return setRange(UDiv, SignHint,
ConservativeResult.intersectWith(X.udiv(Y), RangeType));
}
if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
return setRange(ZExt, SignHint,
ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
RangeType));
}
if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
return setRange(SExt, SignHint,
ConservativeResult.intersectWith(X.signExtend(BitWidth),
RangeType));
}
if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
return setRange(Trunc, SignHint,
ConservativeResult.intersectWith(X.truncate(BitWidth),
RangeType));
}
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
// If there's no unsigned wrap, the value will never be less than its
// initial value.
if (AddRec->hasNoUnsignedWrap()) {
APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
if (!UnsignedMinValue.isNullValue())
ConservativeResult = ConservativeResult.intersectWith(
ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
}
// If there's no signed wrap, and all the operands except initial value have
// the same sign or zero, the value won't ever be:
// 1: smaller than initial value if operands are non negative,
// 2: bigger than initial value if operands are non positive.
// For both cases, value can not cross signed min/max boundary.
if (AddRec->hasNoSignedWrap()) {
bool AllNonNeg = true;
bool AllNonPos = true;
for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
if (!isKnownNonNegative(AddRec->getOperand(i)))
AllNonNeg = false;
if (!isKnownNonPositive(AddRec->getOperand(i)))
AllNonPos = false;
}
if (AllNonNeg)
ConservativeResult = ConservativeResult.intersectWith(
ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
APInt::getSignedMinValue(BitWidth)),
RangeType);
else if (AllNonPos)
ConservativeResult = ConservativeResult.intersectWith(
ConstantRange::getNonEmpty(
APInt::getSignedMinValue(BitWidth),
getSignedRangeMax(AddRec->getStart()) + 1),
RangeType);
}
// TODO: non-affine addrec
if (AddRec->isAffine()) {
const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
auto RangeFromAffine = getRangeForAffineAR(
AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
BitWidth);
if (!RangeFromAffine.isFullSet())
ConservativeResult =
ConservativeResult.intersectWith(RangeFromAffine, RangeType);
auto RangeFromFactoring = getRangeViaFactoring(
AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
BitWidth);
if (!RangeFromFactoring.isFullSet())
ConservativeResult =
ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
}
}
return setRange(AddRec, SignHint, std::move(ConservativeResult));
}
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// Check if the IR explicitly contains !range metadata.
Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
if (MDRange.hasValue())
ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
RangeType);
// Split here to avoid paying the compile-time cost of calling both
// computeKnownBits and ComputeNumSignBits. This restriction can be lifted
// if needed.
const DataLayout &DL = getDataLayout();
if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
// For a SCEVUnknown, ask ValueTracking.
KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
if (Known.getBitWidth() != BitWidth)
Known = Known.zextOrTrunc(BitWidth, true);
// If Known does not result in full-set, intersect with it.
if (Known.getMinValue() != Known.getMaxValue() + 1)
ConservativeResult = ConservativeResult.intersectWith(
ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
RangeType);
} else {
assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
"generalize as needed!");
unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
// If the pointer size is larger than the index size type, this can cause
// NS to be larger than BitWidth. So compensate for this.
if (U->getType()->isPointerTy()) {
unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
int ptrIdxDiff = ptrSize - BitWidth;
if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
NS -= ptrIdxDiff;
}
if (NS > 1)
ConservativeResult = ConservativeResult.intersectWith(
ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
RangeType);
}
// A range of Phi is a subset of union of all ranges of its input.
if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
// Make sure that we do not run over cycled Phis.
if (PendingPhiRanges.insert(Phi).second) {
ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
for (auto &Op : Phi->operands()) {
auto OpRange = getRangeRef(getSCEV(Op), SignHint);
RangeFromOps = RangeFromOps.unionWith(OpRange);
// No point to continue if we already have a full set.
if (RangeFromOps.isFullSet())
break;
}
ConservativeResult =
ConservativeResult.intersectWith(RangeFromOps, RangeType);
bool Erased = PendingPhiRanges.erase(Phi);
assert(Erased && "Failed to erase Phi properly?");
(void) Erased;
}
}
return setRange(U, SignHint, std::move(ConservativeResult));
}
return setRange(S, SignHint, std::move(ConservativeResult));
}
// Given a StartRange, Step and MaxBECount for an expression compute a range of
// values that the expression can take. Initially, the expression has a value
// from StartRange and then is changed by Step up to MaxBECount times. Signed
// argument defines if we treat Step as signed or unsigned.
static ConstantRange getRangeForAffineARHelper(APInt Step,
const ConstantRange &StartRange,
const APInt &MaxBECount,
unsigned BitWidth, bool Signed) {
// If either Step or MaxBECount is 0, then the expression won't change, and we
// just need to return the initial range.
if (Step == 0 || MaxBECount == 0)
return StartRange;
// If we don't know anything about the initial value (i.e. StartRange is
// FullRange), then we don't know anything about the final range either.
// Return FullRange.
if (StartRange.isFullSet())
return ConstantRange::getFull(BitWidth);
// If Step is signed and negative, then we use its absolute value, but we also
// note that we're moving in the opposite direction.
bool Descending = Signed && Step.isNegative();
if (Signed)
// This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
// abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
// This equations hold true due to the well-defined wrap-around behavior of
// APInt.
Step = Step.abs();
// Check if Offset is more than full span of BitWidth. If it is, the
// expression is guaranteed to overflow.
if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
return ConstantRange::getFull(BitWidth);
// Offset is by how much the expression can change. Checks above guarantee no
// overflow here.
APInt Offset = Step * MaxBECount;
// Minimum value of the final range will match the minimal value of StartRange
// if the expression is increasing and will be decreased by Offset otherwise.
// Maximum value of the final range will match the maximal value of StartRange
// if the expression is decreasing and will be increased by Offset otherwise.
APInt StartLower = StartRange.getLower();
APInt StartUpper = StartRange.getUpper() - 1;
APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
: (StartUpper + std::move(Offset));
// It's possible that the new minimum/maximum value will fall into the initial
// range (due to wrap around). This means that the expression can take any
// value in this bitwidth, and we have to return full range.
if (StartRange.contains(MovedBoundary))
return ConstantRange::getFull(BitWidth);
APInt NewLower =
Descending ? std::move(MovedBoundary) : std::move(StartLower);
APInt NewUpper =
Descending ? std::move(StartUpper) : std::move(MovedBoundary);
NewUpper += 1;
// No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
}
ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
const SCEV *Step,
const SCEV *MaxBECount,
unsigned BitWidth) {
assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
"Precondition!");
MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
// First, consider step signed.
ConstantRange StartSRange = getSignedRange(Start);
ConstantRange StepSRange = getSignedRange(Step);
// If Step can be both positive and negative, we need to find ranges for the
// maximum absolute step values in both directions and union them.
ConstantRange SR =
getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
MaxBECountValue, BitWidth, /* Signed = */ true);
SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
StartSRange, MaxBECountValue,
BitWidth, /* Signed = */ true));
// Next, consider step unsigned.
ConstantRange UR = getRangeForAffineARHelper(
getUnsignedRangeMax(Step), getUnsignedRange(Start),
MaxBECountValue, BitWidth, /* Signed = */ false);
// Finally, intersect signed and unsigned ranges.
return SR.intersectWith(UR, ConstantRange::Smallest);
}
ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
const SCEV *Step,
const SCEV *MaxBECount,
unsigned BitWidth) {
// RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
// == RangeOf({A,+,P}) union RangeOf({B,+,Q})
struct SelectPattern {
Value *Condition = nullptr;
APInt TrueValue;
APInt FalseValue;
explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
const SCEV *S) {
Optional<unsigned> CastOp;
APInt Offset(BitWidth, 0);
assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
"Should be!");
// Peel off a constant offset:
if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
// In the future we could consider being smarter here and handle
// {Start+Step,+,Step} too.
if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
return;
Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
S = SA->getOperand(1);
}
// Peel off a cast operation
if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
CastOp = SCast->getSCEVType();
S = SCast->getOperand();
}
using namespace llvm::PatternMatch;
auto *SU = dyn_cast<SCEVUnknown>(S);
const APInt *TrueVal, *FalseVal;
if (!SU ||
!match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
m_APInt(FalseVal)))) {
Condition = nullptr;
return;
}
TrueValue = *TrueVal;
FalseValue = *FalseVal;
// Re-apply the cast we peeled off earlier
if (CastOp.hasValue())
switch (*CastOp) {
default:
llvm_unreachable("Unknown SCEV cast type!");
case scTruncate:
TrueValue = TrueValue.trunc(BitWidth);
FalseValue = FalseValue.trunc(BitWidth);
break;
case scZeroExtend:
TrueValue = TrueValue.zext(BitWidth);
FalseValue = FalseValue.zext(BitWidth);
break;
case scSignExtend:
TrueValue = TrueValue.sext(BitWidth);
FalseValue = FalseValue.sext(BitWidth);
break;
}
// Re-apply the constant offset we peeled off earlier
TrueValue += Offset;
FalseValue += Offset;
}
bool isRecognized() { return Condition != nullptr; }
};
SelectPattern StartPattern(*this, BitWidth, Start);
if (!StartPattern.isRecognized())
return ConstantRange::getFull(BitWidth);
SelectPattern StepPattern(*this, BitWidth, Step);
if (!StepPattern.isRecognized())
return ConstantRange::getFull(BitWidth);
if (StartPattern.Condition != StepPattern.Condition) {
// We don't handle this case today; but we could, by considering four
// possibilities below instead of two. I'm not sure if there are cases where
// that will help over what getRange already does, though.
return ConstantRange::getFull(BitWidth);
}
// NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
// construct arbitrary general SCEV expressions here. This function is called
// from deep in the call stack, and calling getSCEV (on a sext instruction,
// say) can end up caching a suboptimal value.
// FIXME: without the explicit `this` receiver below, MSVC errors out with
// C2352 and C2512 (otherwise it isn't needed).
const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
ConstantRange TrueRange =
this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
ConstantRange FalseRange =
this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
return TrueRange.unionWith(FalseRange);
}
SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
const BinaryOperator *BinOp = cast<BinaryOperator>(V);
// Return early if there are no flags to propagate to the SCEV.
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
if (BinOp->hasNoUnsignedWrap())
Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
if (BinOp->hasNoSignedWrap())
Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
if (Flags == SCEV::FlagAnyWrap)
return SCEV::FlagAnyWrap;
return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
}
bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
// Here we check that I is in the header of the innermost loop containing I,
// since we only deal with instructions in the loop header. The actual loop we
// need to check later will come from an add recurrence, but getting that
// requires computing the SCEV of the operands, which can be expensive. This
// check we can do cheaply to rule out some cases early.
Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
if (InnermostContainingLoop == nullptr ||
InnermostContainingLoop->getHeader() != I->getParent())
return false;
// Only proceed if we can prove that I does not yield poison.
if (!programUndefinedIfFullPoison(I))
return false;
// At this point we know that if I is executed, then it does not wrap
// according to at least one of NSW or NUW. If I is not executed, then we do
// not know if the calculation that I represents would wrap. Multiple
// instructions can map to the same SCEV. If we apply NSW or NUW from I to
// the SCEV, we must guarantee no wrapping for that SCEV also when it is
// derived from other instructions that map to the same SCEV. We cannot make
// that guarantee for cases where I is not executed. So we need to find the
// loop that I is considered in relation to and prove that I is executed for
// every iteration of that loop. That implies that the value that I
// calculates does not wrap anywhere in the loop, so then we can apply the
// flags to the SCEV.
//
// We check isLoopInvariant to disambiguate in case we are adding recurrences
// from different loops, so that we know which loop to prove that I is
// executed in.
for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
// I could be an extractvalue from a call to an overflow intrinsic.
// TODO: We can do better here in some cases.
if (!isSCEVable(I->getOperand(OpIndex)->getType()))
return false;
const SCEV *Op = getSCEV(I->getOperand(OpIndex));
if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
bool AllOtherOpsLoopInvariant = true;
for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
++OtherOpIndex) {
if (OtherOpIndex != OpIndex) {
const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
AllOtherOpsLoopInvariant = false;
break;
}
}
}
if (AllOtherOpsLoopInvariant &&
isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
return true;
}
}
return false;
}
bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
// If we know that \c I can never be poison period, then that's enough.
if (isSCEVExprNeverPoison(I))
return true;
// For an add recurrence specifically, we assume that infinite loops without
// side effects are undefined behavior, and then reason as follows:
//
// If the add recurrence is poison in any iteration, it is poison on all
// future iterations (since incrementing poison yields poison). If the result
// of the add recurrence is fed into the loop latch condition and the loop
// does not contain any throws or exiting blocks other than the latch, we now
// have the ability to "choose" whether the backedge is taken or not (by
// choosing a sufficiently evil value for the poison feeding into the branch)
// for every iteration including and after the one in which \p I first became
// poison. There are two possibilities (let's call the iteration in which \p
// I first became poison as K):
//
// 1. In the set of iterations including and after K, the loop body executes
// no side effects. In this case executing the backege an infinte number
// of times will yield undefined behavior.
//
// 2. In the set of iterations including and after K, the loop body executes
// at least one side effect. In this case, that specific instance of side
// effect is control dependent on poison, which also yields undefined
// behavior.
auto *ExitingBB = L->getExitingBlock();
auto *LatchBB = L->getLoopLatch();
if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
return false;
SmallPtrSet<const Instruction *, 16> Pushed;
SmallVector<const Instruction *, 8> PoisonStack;
// We start by assuming \c I, the post-inc add recurrence, is poison. Only
// things that are known to be fully poison under that assumption go on the
// PoisonStack.
Pushed.insert(I);
PoisonStack.push_back(I);
bool LatchControlDependentOnPoison = false;
while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
const Instruction *Poison = PoisonStack.pop_back_val();
for (auto *PoisonUser : Poison->users()) {
if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
PoisonStack.push_back(cast<Instruction>(PoisonUser));
} else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
assert(BI->isConditional() && "Only possibility!");
if (BI->getParent() == LatchBB) {
LatchControlDependentOnPoison = true;
break;
}
}
}
}
return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
}
ScalarEvolution::LoopProperties
ScalarEvolution::getLoopProperties(const Loop *L) {
using LoopProperties = ScalarEvolution::LoopProperties;
auto Itr = LoopPropertiesCache.find(L);
if (Itr == LoopPropertiesCache.end()) {
auto HasSideEffects = [](Instruction *I) {
if (auto *SI = dyn_cast<StoreInst>(I))
return !SI->isSimple();
return I->mayHaveSideEffects();
};
LoopProperties LP = {/* HasNoAbnormalExits */ true,
/*HasNoSideEffects*/ true};
for (auto *BB : L->getBlocks())
for (auto &I : *BB) {
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
LP.HasNoAbnormalExits = false;
if (HasSideEffects(&I))
LP.HasNoSideEffects = false;
if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
break; // We're already as pessimistic as we can get.
}
auto InsertPair = LoopPropertiesCache.insert({L, LP});
assert(InsertPair.second && "We just checked!");
Itr = InsertPair.first;
}
return Itr->second;
}
const SCEV *ScalarEvolution::createSCEV(Value *V) {
if (!isSCEVable(V->getType()))
return getUnknown(V);
if (Instruction *I = dyn_cast<Instruction>(V)) {
// Don't attempt to analyze instructions in blocks that aren't
// reachable. Such instructions don't matter, and they aren't required
// to obey basic rules for definitions dominating uses which this
// analysis depends on.
if (!DT.isReachableFromEntry(I->getParent()))
return getUnknown(UndefValue::get(V->getType()));
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
return getConstant(CI);
else if (isa<ConstantPointerNull>(V))
return getZero(V->getType());
else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
else if (!isa<ConstantExpr>(V))
return getUnknown(V);
Operator *U = cast<Operator>(V);
if (auto BO = MatchBinaryOp(U, DT)) {
switch (BO->Opcode) {
case Instruction::Add: {
// The simple thing to do would be to just call getSCEV on both operands
// and call getAddExpr with the result. However if we're looking at a
// bunch of things all added together, this can be quite inefficient,
// because it leads to N-1 getAddExpr calls for N ultimate operands.
// Instead, gather up all the operands and make a single getAddExpr call.
// LLVM IR canonical form means we need only traverse the left operands.
SmallVector<const SCEV *, 4> AddOps;
do {
if (BO->Op) {
if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
AddOps.push_back(OpSCEV);
break;
}
// If a NUW or NSW flag can be applied to the SCEV for this
// addition, then compute the SCEV for this addition by itself
// with a separate call to getAddExpr. We need to do that
// instead of pushing the operands of the addition onto AddOps,
// since the flags are only known to apply to this particular
// addition - they may not apply to other additions that can be
// formed with operands from AddOps.
const SCEV *RHS = getSCEV(BO->RHS);
SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
if (Flags != SCEV::FlagAnyWrap) {
const SCEV *LHS = getSCEV(BO->LHS);
if (BO->Opcode == Instruction::Sub)
AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
else
AddOps.push_back(getAddExpr(LHS, RHS, Flags));
break;
}
}
if (BO->Opcode == Instruction::Sub)
AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
else
AddOps.push_back(getSCEV(BO->RHS));
auto NewBO = MatchBinaryOp(BO->LHS, DT);
if (!NewBO || (NewBO->Opcode != Instruction::Add &&
NewBO->Opcode != Instruction::Sub)) {
AddOps.push_back(getSCEV(BO->LHS));
break;
}
BO = NewBO;
} while (true);
return getAddExpr(AddOps);
}
case Instruction::Mul: {
SmallVector<const SCEV *, 4> MulOps;
do {
if (BO->Op) {
if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
MulOps.push_back(OpSCEV);
break;
}
SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
if (Flags != SCEV::FlagAnyWrap) {
MulOps.push_back(
getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
break;
}
}
MulOps.push_back(getSCEV(BO->RHS));
auto NewBO = MatchBinaryOp(BO->LHS, DT);
if (!NewBO || NewBO->Opcode != Instruction::Mul) {
MulOps.push_back(getSCEV(BO->LHS));
break;
}
BO = NewBO;
} while (true);
return getMulExpr(MulOps);
}
case Instruction::UDiv:
return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
case Instruction::URem:
return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
case Instruction::Sub: {
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
if (BO->Op)
Flags = getNoWrapFlagsFromUB(BO->Op);
return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
}
case Instruction::And:
// For an expression like x&255 that merely masks off the high bits,
// use zext(trunc(x)) as the SCEV expression.
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
if (CI->isZero())
return getSCEV(BO->RHS);
if (CI->isMinusOne())
return getSCEV(BO->LHS);
const APInt &A = CI->getValue();
// Instcombine's ShrinkDemandedConstant may strip bits out of
// constants, obscuring what would otherwise be a low-bits mask.
// Use computeKnownBits to compute what ShrinkDemandedConstant
// knew about to reconstruct a low-bits mask value.
unsigned LZ = A.countLeadingZeros();
unsigned TZ = A.countTrailingZeros();
unsigned BitWidth = A.getBitWidth();
KnownBits Known(BitWidth);
computeKnownBits(BO->LHS, Known, getDataLayout(),
0, &AC, nullptr, &DT);
APInt EffectiveMask =
APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
const SCEV *LHS = getSCEV(BO->LHS);
const SCEV *ShiftedLHS = nullptr;
if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
// For an expression like (x * 8) & 8, simplify the multiply.
unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
unsigned GCD = std::min(MulZeros, TZ);
APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
SmallVector<const SCEV*, 4> MulOps;
MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
}
}
if (!ShiftedLHS)
ShiftedLHS = getUDivExpr(LHS, MulCount);
return getMulExpr(
getZeroExtendExpr(
getTruncateExpr(ShiftedLHS,
IntegerType::get(getContext(), BitWidth - LZ - TZ)),
BO->LHS->getType()),
MulCount);
}
}
break;
case Instruction::Or:
// If the RHS of the Or is a constant, we may have something like:
// X*4+1 which got turned into X*4|1. Handle this as an Add so loop
// optimizations will transparently handle this case.
//
// In order for this transformation to be safe, the LHS must be of the
// form X*(2^n) and the Or constant must be less than 2^n.
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
const SCEV *LHS = getSCEV(BO->LHS);
const APInt &CIVal = CI->getValue();
if (GetMinTrailingZeros(LHS) >=
(CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
// Build a plain add SCEV.
const SCEV *S = getAddExpr(LHS, getSCEV(CI));
// If the LHS of the add was an addrec and it has no-wrap flags,
// transfer the no-wrap flags, since an or won't introduce a wrap.
if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
OldAR->getNoWrapFlags());
}
return S;
}
}
break;
case Instruction::Xor:
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
// If the RHS of xor is -1, then this is a not operation.
if (CI->isMinusOne())
return getNotSCEV(getSCEV(BO->LHS));
// Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
// This is a variant of the check for xor with -1, and it handles
// the case where instcombine has trimmed non-demanded bits out
// of an xor with -1.
if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
if (LBO->getOpcode() == Instruction::And &&
LCI->getValue() == CI->getValue())
if (const SCEVZeroExtendExpr *Z =
dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
Type *UTy = BO->LHS->getType();
const SCEV *Z0 = Z->getOperand();
Type *Z0Ty = Z0->getType();
unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
// If C is a low-bits mask, the zero extend is serving to
// mask off the high bits. Complement the operand and
// re-apply the zext.
if (CI->getValue().isMask(Z0TySize))
return getZeroExtendExpr(getNotSCEV(Z0), UTy);
// If C is a single bit, it may be in the sign-bit position
// before the zero-extend. In this case, represent the xor
// using an add, which is equivalent, and re-apply the zext.
APInt Trunc = CI->getValue().trunc(Z0TySize);
if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Trunc.isSignMask())
return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
UTy);
}
}
break;
case Instruction::Shl:
// Turn shift left of a constant amount into a multiply.
if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
// If the shift count is not less than the bitwidth, the result of
// the shift is undefined. Don't try to analyze it, because the
// resolution chosen here may differ from the resolution chosen in
// other parts of the compiler.
if (SA->getValue().uge(BitWidth))
break;
// It is currently not resolved how to interpret NSW for left
// shift by BitWidth - 1, so we avoid applying flags in that
// case. Remove this check (or this comment) once the situation
// is resolved. See
// http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
// and http://reviews.llvm.org/D8890 .
auto Flags = SCEV::FlagAnyWrap;
if (BO->Op && SA->getValue().ult(BitWidth - 1))
Flags = getNoWrapFlagsFromUB(BO->Op);
Constant *X = ConstantInt::get(
getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
}
break;
case Instruction::AShr: {
// AShr X, C, where C is a constant.
ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
if (!CI)
break;
Type *OuterTy = BO->LHS->getType();
uint64_t BitWidth = getTypeSizeInBits(OuterTy);
// If the shift count is not less than the bitwidth, the result of
// the shift is undefined. Don't try to analyze it, because the
// resolution chosen here may differ from the resolution chosen in
// other parts of the compiler.
if (CI->getValue().uge(BitWidth))
break;
if (CI->isZero())
return getSCEV(BO->LHS); // shift by zero --> noop
uint64_t AShrAmt = CI->getZExtValue();
Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
Operator *L = dyn_cast<Operator>(BO->LHS);
if (L && L->getOpcode() == Instruction::Shl) {
// X = Shl A, n
// Y = AShr X, m
// Both n and m are constant.
const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
if (L->getOperand(1) == BO->RHS)
// For a two-shift sext-inreg, i.e. n = m,
// use sext(trunc(x)) as the SCEV expression.
return getSignExtendExpr(
getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
uint64_t ShlAmt = ShlAmtCI->getZExtValue();
if (ShlAmt > AShrAmt) {
// When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
// expression. We already checked that ShlAmt < BitWidth, so
// the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
// ShlAmt - AShrAmt < Amt.
APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
ShlAmt - AShrAmt);
return getSignExtendExpr(
getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
getConstant(Mul)), OuterTy);
}
}
}
break;
}
}
}
switch (U->getOpcode()) {
case Instruction::Trunc:
return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
case Instruction::ZExt:
return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
case Instruction::SExt:
if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
// The NSW flag of a subtract does not always survive the conversion to
// A + (-1)*B. By pushing sign extension onto its operands we are much
// more likely to preserve NSW and allow later AddRec optimisations.
//
// NOTE: This is effectively duplicating this logic from getSignExtend:
// sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
// but by that point the NSW information has potentially been lost.
if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
Type *Ty = U->getType();
auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
return getMinusSCEV(V1, V2, SCEV::FlagNSW);
}
}
return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
case Instruction::BitCast:
// BitCasts are no-op casts so we just eliminate the cast.
if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
return getSCEV(U->getOperand(0));
break;
// It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
// lead to pointer expressions which cannot safely be expanded to GEPs,
// because ScalarEvolution doesn't respect the GEP aliasing rules when
// simplifying integer expressions.
case Instruction::GetElementPtr:
return createNodeForGEP(cast<GEPOperator>(U));
case Instruction::PHI:
return createNodeForPHI(cast<PHINode>(U));
case Instruction::Select:
// U can also be a select constant expr, which let fall through. Since
// createNodeForSelect only works for a condition that is an `ICmpInst`, and
// constant expressions cannot have instructions as operands, we'd have
// returned getUnknown for a select constant expressions anyway.
if (isa<Instruction>(U))
return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
U->getOperand(1), U->getOperand(2));
break;
case Instruction::Call:
case Instruction::Invoke:
if (Value *RV = CallSite(U).getReturnedArgOperand())
return getSCEV(RV);
break;
}
return getUnknown(V);
}
//===----------------------------------------------------------------------===//
// Iteration Count Computation Code
//
static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
if (!ExitCount)
return 0;
ConstantInt *ExitConst = ExitCount->getValue();
// Guard against huge trip counts.
if (ExitConst->getValue().getActiveBits() > 32)
return 0;
// In case of integer overflow, this returns 0, which is correct.
return ((unsigned)ExitConst->getZExtValue()) + 1;
}
unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
if (BasicBlock *ExitingBB = L->getExitingBlock())
return getSmallConstantTripCount(L, ExitingBB);
// No trip count information for multiple exits.
return 0;
}
unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
BasicBlock *ExitingBlock) {
assert(ExitingBlock && "Must pass a non-null exiting block!");
assert(L->isLoopExiting(ExitingBlock) &&
"Exiting block must actually branch out of the loop!");
const SCEVConstant *ExitCount =
dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
return getConstantTripCount(ExitCount);
}
unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
const auto *MaxExitCount =
dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
return getConstantTripCount(MaxExitCount);
}
unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
if (BasicBlock *ExitingBB = L->getExitingBlock())
return getSmallConstantTripMultiple(L, ExitingBB);
// No trip multiple information for multiple exits.
return 0;
}
/// Returns the largest constant divisor of the trip count of this loop as a
/// normal unsigned value, if possible. This means that the actual trip count is
/// always a multiple of the returned value (don't forget the trip count could
/// very well be zero as well!).
///
/// Returns 1 if the trip count is unknown or not guaranteed to be the
/// multiple of a constant (which is also the case if the trip count is simply
/// constant, use getSmallConstantTripCount for that case), Will also return 1
/// if the trip count is very large (>= 2^32).
///
/// As explained in the comments for getSmallConstantTripCount, this assumes
/// that control exits the loop via ExitingBlock.
unsigned
ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
BasicBlock *ExitingBlock) {
assert(ExitingBlock && "Must pass a non-null exiting block!");
assert(L->isLoopExiting(ExitingBlock) &&
"Exiting block must actually branch out of the loop!");
const SCEV *ExitCount = getExitCount(L, ExitingBlock);
if (ExitCount == getCouldNotCompute())
return 1;
// Get the trip count from the BE count by adding 1.
const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
if (!TC)
// Attempt to factor more general cases. Returns the greatest power of
// two divisor. If overflow happens, the trip count expression is still
// divisible by the greatest power of 2 divisor returned.
return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
ConstantInt *Result = TC->getValue();
// Guard against huge trip counts (this requires checking
// for zero to handle the case where the trip count == -1 and the
// addition wraps).
if (!Result || Result->getValue().getActiveBits() > 32 ||
Result->getValue().getActiveBits() == 0)
return 1;
return (unsigned)Result->getZExtValue();
}
const SCEV *ScalarEvolution::getExitCount(const Loop *L,
BasicBlock *ExitingBlock,
ExitCountKind Kind) {
switch (Kind) {
case Exact:
return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
case ConstantMaximum:
return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
};
llvm_unreachable("Invalid ExitCountKind!");
}
const SCEV *
ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
SCEVUnionPredicate &Preds) {
return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
}
const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
ExitCountKind Kind) {
switch (Kind) {
case Exact:
return getBackedgeTakenInfo(L).getExact(L, this);
case ConstantMaximum:
return getBackedgeTakenInfo(L).getMax(this);
};
llvm_unreachable("Invalid ExitCountKind!");
}
bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
return getBackedgeTakenInfo(L).isMaxOrZero(this);
}
/// Push PHI nodes in the header of the given loop onto the given Worklist.
static void
PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
BasicBlock *Header = L->getHeader();
// Push all Loop-header PHIs onto the Worklist stack.
for (PHINode &PN : Header->phis())
Worklist.push_back(&PN);
}
const ScalarEvolution::BackedgeTakenInfo &
ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
auto &BTI = getBackedgeTakenInfo(L);
if (BTI.hasFullInfo())
return BTI;
auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
if (!Pair.second)
return Pair.first->second;
BackedgeTakenInfo Result =
computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
}
const ScalarEvolution::BackedgeTakenInfo &
ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
// Initially insert an invalid entry for this loop. If the insertion
// succeeds, proceed to actually compute a backedge-taken count and
// update the value. The temporary CouldNotCompute value tells SCEV
// code elsewhere that it shouldn't attempt to request a new
// backedge-taken count, which could result in infinite recursion.
std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
if (!Pair.second)
return Pair.first->second;
// computeBackedgeTakenCount may allocate memory for its result. Inserting it
// into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
// must be cleared in this scope.
BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
// In product build, there are no usage of statistic.
(void)NumTripCountsComputed;
(void)NumTripCountsNotComputed;
#if LLVM_ENABLE_STATS || !defined(NDEBUG)
const SCEV *BEExact = Result.getExact(L, this);
if (BEExact != getCouldNotCompute()) {
assert(isLoopInvariant(BEExact, L) &&
isLoopInvariant(Result.getMax(this), L) &&
"Computed backedge-taken count isn't loop invariant for loop!");
++NumTripCountsComputed;
}
else if (Result.getMax(this) == getCouldNotCompute() &&
isa<PHINode>(L->getHeader()->begin())) {
// Only count loops that have phi nodes as not being computable.
++NumTripCountsNotComputed;
}
#endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
// Now that we know more about the trip count for this loop, forget any
// existing SCEV values for PHI nodes in this loop since they are only
// conservative estimates made without the benefit of trip count
// information. This is similar to the code in forgetLoop, except that
// it handles SCEVUnknown PHI nodes specially.
if (Result.hasAnyInfo()) {
SmallVector<Instruction *, 16> Worklist;
PushLoopPHIs(L, Worklist);
SmallPtrSet<Instruction *, 8> Discovered;
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
ValueExprMapType::iterator It =
ValueExprMap.find_as(static_cast<Value *>(I));
if (It != ValueExprMap.end()) {
const SCEV *Old = It->second;
// SCEVUnknown for a PHI either means that it has an unrecognized
// structure, or it's a PHI that's in the progress of being computed
// by createNodeForPHI. In the former case, additional loop trip
// count information isn't going to change anything. In the later
// case, createNodeForPHI will perform the necessary updates on its
// own when it gets to that point.
if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
eraseValueFromMap(It->first);
forgetMemoizedResults(Old);
}
if (PHINode *PN = dyn_cast<PHINode>(I))
ConstantEvolutionLoopExitValue.erase(PN);
}
// Since we don't need to invalidate anything for correctness and we're
// only invalidating to make SCEV's results more precise, we get to stop
// early to avoid invalidating too much. This is especially important in
// cases like:
//
// %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
// loop0:
// %pn0 = phi
// ...
// loop1:
// %pn1 = phi
// ...
//
// where both loop0 and loop1's backedge taken count uses the SCEV
// expression for %v. If we don't have the early stop below then in cases
// like the above, getBackedgeTakenInfo(loop1) will clear out the trip
// count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
// count for loop1, effectively nullifying SCEV's trip count cache.
for (auto *U : I->users())
if (auto *I = dyn_cast<Instruction>(U)) {
auto *LoopForUser = LI.getLoopFor(I->getParent());
if (LoopForUser && L->contains(LoopForUser) &&
Discovered.insert(I).second)
Worklist.push_back(I);
}
}
}
// Re-lookup the insert position, since the call to
// computeBackedgeTakenCount above could result in a
// recusive call to getBackedgeTakenInfo (on a different
// loop), which would invalidate the iterator computed
// earlier.
return BackedgeTakenCounts.find(L)->second = std::move(Result);
}
void ScalarEvolution::forgetAllLoops() {
// This method is intended to forget all info about loops. It should
// invalidate caches as if the following happened:
// - The trip counts of all loops have changed arbitrarily
// - Every llvm::Value has been updated in place to produce a different
// result.
BackedgeTakenCounts.clear();
PredicatedBackedgeTakenCounts.clear();
LoopPropertiesCache.clear();
ConstantEvolutionLoopExitValue.clear();
ValueExprMap.clear();
ValuesAtScopes.clear();
LoopDispositions.clear();
BlockDispositions.clear();
UnsignedRanges.clear();
SignedRanges.clear();
ExprValueMap.clear();
HasRecMap.clear();
MinTrailingZerosCache.clear();
PredicatedSCEVRewrites.clear();
}
void ScalarEvolution::forgetLoop(const Loop *L) {
// Drop any stored trip count value.
auto RemoveLoopFromBackedgeMap =
[](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
auto BTCPos = Map.find(L);
if (BTCPos != Map.end()) {
BTCPos->second.clear();
Map.erase(BTCPos);
}
};
SmallVector<const Loop *, 16> LoopWorklist(1, L);
SmallVector<Instruction *, 32> Worklist;
SmallPtrSet<Instruction *, 16> Visited;
// Iterate over all the loops and sub-loops to drop SCEV information.
while (!LoopWorklist.empty()) {
auto *CurrL = LoopWorklist.pop_back_val();
RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
// Drop information about predicated SCEV rewrites for this loop.
for (auto I = PredicatedSCEVRewrites.begin();
I != PredicatedSCEVRewrites.end();) {
std::pair<const SCEV *, const Loop *> Entry = I->first;
if (Entry.second == CurrL)
PredicatedSCEVRewrites.erase(I++);
else
++I;
}
auto LoopUsersItr = LoopUsers.find(CurrL);
if (LoopUsersItr != LoopUsers.end()) {
for (auto *S : LoopUsersItr->second)
forgetMemoizedResults(S);
LoopUsers.erase(LoopUsersItr);
}
// Drop information about expressions based on loop-header PHIs.
PushLoopPHIs(CurrL, Worklist);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
if (!Visited.insert(I).second)
continue;
ValueExprMapType::iterator It =
ValueExprMap.find_as(static_cast<Value *>(I));
if (It != ValueExprMap.end()) {
eraseValueFromMap(It->first);
forgetMemoizedResults(It->second);
if (PHINode *PN = dyn_cast<PHINode>(I))
ConstantEvolutionLoopExitValue.erase(PN);
}
PushDefUseChildren(I, Worklist);
}
LoopPropertiesCache.erase(CurrL);
// Forget all contained loops too, to avoid dangling entries in the
// ValuesAtScopes map.
LoopWorklist.append(CurrL->begin(), CurrL->end());
}
}
void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
while (Loop *Parent = L->getParentLoop())
L = Parent;
forgetLoop(L);
}
void ScalarEvolution::forgetValue(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return;
// Drop information about expressions based on loop-header PHIs.
SmallVector<Instruction *, 16> Worklist;
Worklist.push_back(I);
SmallPtrSet<Instruction *, 8> Visited;
while (!Worklist.empty()) {
I = Worklist.pop_back_val();
if (!Visited.insert(I).second)
continue;
ValueExprMapType::iterator It =
ValueExprMap.find_as(static_cast<Value *>(I));
if (It != ValueExprMap.end()) {
eraseValueFromMap(It->first);
forgetMemoizedResults(It->second);
if (PHINode *PN = dyn_cast<PHINode>(I))
ConstantEvolutionLoopExitValue.erase(PN);
}
PushDefUseChildren(I, Worklist);
}
}
/// Get the exact loop backedge taken count considering all loop exits. A
/// computable result can only be returned for loops with all exiting blocks
/// dominating the latch. howFarToZero assumes that the limit of each loop test
/// is never skipped. This is a valid assumption as long as the loop exits via
/// that test. For precise results, it is the caller's responsibility to specify
/// the relevant loop exiting block using getExact(ExitingBlock, SE).
const SCEV *
ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
SCEVUnionPredicate *Preds) const {
// If any exits were not computable, the loop is not computable.
if (!isComplete() || ExitNotTaken.empty())
return SE->getCouldNotCompute();
const BasicBlock *Latch = L->getLoopLatch();
// All exiting blocks we have collected must dominate the only backedge.
if (!Latch)
return SE->getCouldNotCompute();
// All exiting blocks we have gathered dominate loop's latch, so exact trip
// count is simply a minimum out of all these calculated exit counts.
SmallVector<const SCEV *, 2> Ops;
for (auto &ENT : ExitNotTaken) {
const SCEV *BECount = ENT.ExactNotTaken;
assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
"We should only have known counts for exiting blocks that dominate "
"latch!");
Ops.push_back(BECount);
if (Preds && !ENT.hasAlwaysTruePredicate())
Preds->add(ENT.Predicate.get());
assert((Preds || ENT.hasAlwaysTruePredicate()) &&
"Predicate should be always true!");
}
return SE->getUMinFromMismatchedTypes(Ops);
}
/// Get the exact not taken count for this loop exit.
const SCEV *
ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
ScalarEvolution *SE) const {
for (auto &ENT : ExitNotTaken)
if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
return ENT.ExactNotTaken;
return SE->getCouldNotCompute();
}
const SCEV *
ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock,
ScalarEvolution *SE) const {
for (auto &ENT : ExitNotTaken)
if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
return ENT.MaxNotTaken;
return SE->getCouldNotCompute();
}
/// getMax - Get the max backedge taken count for the loop.
const SCEV *
ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
return !ENT.hasAlwaysTruePredicate();
};
if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
return SE->getCouldNotCompute();
assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
"No point in having a non-constant max backedge taken count!");
return getMax();
}
bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
return !ENT.hasAlwaysTruePredicate();
};
return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
}
bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
ScalarEvolution *SE) const {
if (getMax() && getMax() != SE->getCouldNotCompute() &&
SE->hasOperand(getMax(), S))
return true;
for (auto &ENT : ExitNotTaken)
if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
SE->hasOperand(ENT.ExactNotTaken, S))
return true;
return false;
}
ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
: ExactNotTaken(E), MaxNotTaken(E) {
assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
isa<SCEVConstant>(MaxNotTaken)) &&
"No point in having a non-constant max backedge taken count!");
}
ScalarEvolution::ExitLimit::ExitLimit(
const SCEV *E, const SCEV *M, bool MaxOrZero,
ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
: ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
!isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
"Exact is not allowed to be less precise than Max");
assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
isa<SCEVConstant>(MaxNotTaken)) &&
"No point in having a non-constant max backedge taken count!");
for (auto *PredSet : PredSetList)
for (auto *P : *PredSet)
addPredicate(P);
}
ScalarEvolution::ExitLimit::ExitLimit(
const SCEV *E, const SCEV *M, bool MaxOrZero,
const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
: ExitLimit(E, M, MaxOrZero, {&PredSet}) {
assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
isa<SCEVConstant>(MaxNotTaken)) &&
"No point in having a non-constant max backedge taken count!");
}
ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
bool MaxOrZero)
: ExitLimit(E, M, MaxOrZero, None) {
assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
isa<SCEVConstant>(MaxNotTaken)) &&
"No point in having a non-constant max backedge taken count!");
}
/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
/// computable exit into a persistent ExitNotTakenInfo array.
ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
ExitCounts,
bool Complete, const SCEV *MaxCount, bool MaxOrZero)
: MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
ExitNotTaken.reserve(ExitCounts.size());
std::transform(
ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
[&](const EdgeExitInfo &EEI) {
BasicBlock *ExitBB = EEI.first;
const ExitLimit &EL = EEI.second;
if (EL.Predicates.empty())
return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
nullptr);
std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
for (auto *Pred : EL.Predicates)
Predicate->add(Pred);
return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
std::move(Predicate));
});
assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
"No point in having a non-constant max backedge taken count!");
}
/// Invalidate this result and free the ExitNotTakenInfo array.
void ScalarEvolution::BackedgeTakenInfo::clear() {
ExitNotTaken.clear();
}
/// Compute the number of times the backedge of the specified loop will execute.
ScalarEvolution::BackedgeTakenInfo
ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
bool AllowPredicates) {
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
SmallVector<EdgeExitInfo, 4> ExitCounts;
bool CouldComputeBECount = true;
BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
const SCEV *MustExitMaxBECount = nullptr;
const SCEV *MayExitMaxBECount = nullptr;
bool MustExitMaxOrZero = false;
// Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
// and compute maxBECount.
// Do a union of all the predicates here.
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BasicBlock *ExitBB = ExitingBlocks[i];
// We canonicalize untaken exits to br (constant), ignore them so that
// proving an exit untaken doesn't negatively impact our ability to reason
// about the loop as whole.
if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
continue;
}
ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
assert((AllowPredicates || EL.Predicates.empty()) &&
"Predicated exit limit when predicates are not allowed!");
// 1. For each exit that can be computed, add an entry to ExitCounts.
// CouldComputeBECount is true only if all exits can be computed.
if (EL.ExactNotTaken == getCouldNotCompute())
// We couldn't compute an exact value for this exit, so
// we won't be able to compute an exact value for the loop.
CouldComputeBECount = false;
else
ExitCounts.emplace_back(ExitBB, EL);
// 2. Derive the loop's MaxBECount from each exit's max number of
// non-exiting iterations. Partition the loop exits into two kinds:
// LoopMustExits and LoopMayExits.
//
// If the exit dominates the loop latch, it is a LoopMustExit otherwise it
// is a LoopMayExit. If any computable LoopMustExit is found, then
// MaxBECount is the minimum EL.MaxNotTaken of computable
// LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
// EL.MaxNotTaken, where CouldNotCompute is considered greater than any
// computable EL.MaxNotTaken.
if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
DT.dominates(ExitBB, Latch)) {
if (!MustExitMaxBECount) {
MustExitMaxBECount = EL.MaxNotTaken;
MustExitMaxOrZero = EL.MaxOrZero;
} else {
MustExitMaxBECount =
getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
}
} else if (MayExitMaxBECount != getCouldNotCompute()) {
if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
MayExitMaxBECount = EL.MaxNotTaken;
else {
MayExitMaxBECount =
getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
}
}
}
const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
(MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
// The loop backedge will be taken the maximum or zero times if there's
// a single exit that must be taken the maximum or zero times.
bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
MaxBECount, MaxOrZero);
}
ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
bool AllowPredicates) {
assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
// If our exiting block does not dominate the latch, then its connection with
// loop's exit limit may be far from trivial.
const BasicBlock *Latch = L->getLoopLatch();
if (!Latch || !DT.dominates(ExitingBlock, Latch))
return getCouldNotCompute();
bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Instruction *Term = ExitingBlock->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
assert(BI->isConditional() && "If unconditional, it can't be in loop!");
bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
"It should have one successor in loop and one exit block!");
// Proceed to the next level to examine the exit condition expression.
return computeExitLimitFromCond(
L, BI->getCondition(), ExitIfTrue,
/*ControlsExit=*/IsOnlyExit, AllowPredicates);
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
// For switch, make sure that there is a single exit from the loop.
BasicBlock *Exit = nullptr;
for (auto *SBB : successors(ExitingBlock))
if (!L->contains(SBB)) {
if (Exit) // Multiple exit successors.
return getCouldNotCompute();
Exit = SBB;
}
assert(Exit && "Exiting block must have at least one exit");
return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
/*ControlsExit=*/IsOnlyExit);
}
return getCouldNotCompute();
}
ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
const Loop *L, Value *ExitCond, bool ExitIfTrue,
bool ControlsExit, bool AllowPredicates) {
ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
ControlsExit, AllowPredicates);
}
Optional<ScalarEvolution::ExitLimit>
ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
bool ExitIfTrue, bool ControlsExit,
bool AllowPredicates) {
(void)this->L;
(void)this->ExitIfTrue;
(void)this->AllowPredicates;
assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
this->AllowPredicates == AllowPredicates &&
"Variance in assumed invariant key components!");
auto Itr = TripCountMap.find({ExitCond, ControlsExit});
if (Itr == TripCountMap.end())
return None;
return Itr->second;
}
void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
bool ExitIfTrue,
bool ControlsExit,
bool AllowPredicates,
const ExitLimit &EL) {
assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
this->AllowPredicates == AllowPredicates &&
"Variance in assumed invariant key components!");
auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
assert(InsertResult.second && "Expected successful insertion!");
(void)InsertResult;
(void)ExitIfTrue;
}
ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
bool ControlsExit, bool AllowPredicates) {
if (auto MaybeEL =
Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
return *MaybeEL;
ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
ControlsExit, AllowPredicates);
Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
return EL;
}
ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
bool ControlsExit, bool AllowPredicates) {
// Check if the controlling expression for this loop is an And or Or.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
if (BO->getOpcode() == Instruction::And) {
// Recurse on the operands of the and.
bool EitherMayExit = !ExitIfTrue;
ExitLimit EL0 = computeExitLimitFromCondCached(
Cache, L, BO->getOperand(0), ExitIfTrue,
ControlsExit && !EitherMayExit, AllowPredicates);
ExitLimit EL1 = computeExitLimitFromCondCached(
Cache, L, BO->getOperand(1), ExitIfTrue,
ControlsExit && !EitherMayExit, AllowPredicates);
// Be robust against unsimplified IR for the form "and i1 X, true"
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
return CI->isOne() ? EL0 : EL1;
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
return CI->isOne() ? EL1 : EL0;
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
if (EitherMayExit) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
if (EL0.ExactNotTaken == getCouldNotCompute() ||
EL1.ExactNotTaken == getCouldNotCompute())
BECount = getCouldNotCompute();
else
BECount =
getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
if (EL0.MaxNotTaken == getCouldNotCompute())
MaxBECount = EL1.MaxNotTaken;
else if (EL1.MaxNotTaken == getCouldNotCompute())
MaxBECount = EL0.MaxNotTaken;
else
MaxBECount =
getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
} else {
// Both conditions must be true at the same time for the loop to exit.
// For now, be conservative.
if (EL0.MaxNotTaken == EL1.MaxNotTaken)
MaxBECount = EL0.MaxNotTaken;
if (EL0.ExactNotTaken == EL1.ExactNotTaken)
BECount = EL0.ExactNotTaken;
}
// There are cases (e.g. PR26207) where computeExitLimitFromCond is able
// to be more aggressive when computing BECount than when computing
// MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
// EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
// to not.
if (isa<SCEVCouldNotCompute>(MaxBECount) &&
!isa<SCEVCouldNotCompute>(BECount))
MaxBECount = getConstant(getUnsignedRangeMax(BECount));
return ExitLimit(BECount, MaxBECount, false,
{&EL0.Predicates, &EL1.Predicates});
}
if (BO->getOpcode() == Instruction::Or) {
// Recurse on the operands of the or.
bool EitherMayExit = ExitIfTrue;
ExitLimit EL0 = computeExitLimitFromCondCached(
Cache, L, BO->getOperand(0), ExitIfTrue,
ControlsExit && !EitherMayExit, AllowPredicates);
ExitLimit EL1 = computeExitLimitFromCondCached(
Cache, L, BO->getOperand(1), ExitIfTrue,
ControlsExit && !EitherMayExit, AllowPredicates);
// Be robust against unsimplified IR for the form "or i1 X, true"
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
return CI->isZero() ? EL0 : EL1;
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
return CI->isZero() ? EL1 : EL0;
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
if (EitherMayExit) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
if (EL0.ExactNotTaken == getCouldNotCompute() ||
EL1.ExactNotTaken == getCouldNotCompute())
BECount = getCouldNotCompute();
else
BECount =
getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
if (EL0.MaxNotTaken == getCouldNotCompute())
MaxBECount = EL1.MaxNotTaken;
else if (EL1.MaxNotTaken == getCouldNotCompute())
MaxBECount = EL0.MaxNotTaken;
else
MaxBECount =
getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
} else {
// Both conditions must be false at the same time for the loop to exit.
// For now, be conservative.
if (EL0.MaxNotTaken == EL1.MaxNotTaken)
MaxBECount = EL0.MaxNotTaken;
if (EL0.ExactNotTaken == EL1.ExactNotTaken)
BECount = EL0.ExactNotTaken;
}
// There are cases (e.g. PR26207) where computeExitLimitFromCond is able
// to be more aggressive when computing BECount than when computing
// MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
// EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
// to not.
if (isa<SCEVCouldNotCompute>(MaxBECount) &&
!isa<SCEVCouldNotCompute>(BECount))
MaxBECount = getConstant(getUnsignedRangeMax(BECount));
return ExitLimit(BECount, MaxBECount, false,
{&EL0.Predicates, &EL1.Predicates});
}
}
// With an icmp, it may be feasible to compute an exact backedge-taken count.
// Proceed to the next level to examine the icmp.
if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
ExitLimit EL =
computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
if (EL.hasFullInfo() || !AllowPredicates)
return EL;
// Try again, but use SCEV predicates this time.
return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
/*AllowPredicates=*/true);
}
// Check for a constant condition. These are normally stripped out by
// SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
// preserve the CFG and is temporarily leaving constant conditions
// in place.
if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
if (ExitIfTrue == !CI->getZExtValue())
// The backedge is always taken.
return getCouldNotCompute();
else
// The backedge is never taken.
return getZero(CI->getType());
}
// If it's not an integer or pointer comparison then compute it the hard way.
return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
}
ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
bool ExitIfTrue,
bool ControlsExit,
bool AllowPredicates) {
// If the condition was exit on true, convert the condition to exit on false
ICmpInst::Predicate Pred;
if (!ExitIfTrue)
Pred = ExitCond->getPredicate();
else
Pred = ExitCond->getInversePredicate();
const ICmpInst::Predicate OriginalPred = Pred;
// Handle common loops like: for (X = "string"; *X; ++X)
if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
ExitLimit ItCnt =
computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
if (ItCnt.hasAnyInfo())
return ItCnt;
}
const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
// Try to evaluate any dependencies out of the loop.
LHS = getSCEVAtScope(LHS, L);
RHS = getSCEVAtScope(RHS, L);
// At this point, we would like to compute how many iterations of the
// loop the predicate will return true for these inputs.
if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
// If there is a loop-invariant, force it into the RHS.
std::swap(LHS, RHS);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
// Simplify the operands before analyzing them.
(void)SimplifyICmpOperands(Pred, LHS, RHS);
// If we have a comparison of a chrec against a constant, try to use value
// ranges to answer this query.
if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
if (AddRec->getLoop() == L) {
// Form the constant range.
ConstantRange CompRange =
ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
}
switch (Pred) {
case ICmpInst::ICMP_NE: { // while (X != Y)
// Convert to: while (X-Y != 0)
ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
AllowPredicates);
if (EL.hasAnyInfo()) return EL;
break;
}
case ICmpInst::ICMP_EQ: { // while (X == Y)
// Convert to: while (X-Y == 0)
ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
if (EL.hasAnyInfo()) return EL;
break;
}
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT: { // while (X < Y)
bool IsSigned = Pred == ICmpInst::ICMP_SLT;
ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
AllowPredicates);
if (EL.hasAnyInfo()) return EL;
break;
}
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT: { // while (X > Y)
bool IsSigned = Pred == ICmpInst::ICMP_SGT;
ExitLimit EL =
howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
AllowPredicates);
if (EL.hasAnyInfo()) return EL;
break;
}
default:
break;
}
auto *ExhaustiveCount =
computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
return ExhaustiveCount;
return computeShiftCompareExitLimit(ExitCond->getOperand(0),
ExitCond->getOperand(1), L, OriginalPred);
}
ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
SwitchInst *Switch,
BasicBlock *ExitingBlock,
bool ControlsExit) {
assert(!L->contains(ExitingBlock) && "Not an exiting block!");
// Give up if the exit is the default dest of a switch.
if (Switch->getDefaultDest() == ExitingBlock)
return getCouldNotCompute();
assert(L->contains(Switch->getDefaultDest()) &&
"Default case must not exit the loop!");
const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
// while (X != Y) --> while (X-Y != 0)
ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
if (EL.hasAnyInfo())
return EL;
return getCouldNotCompute();
}
static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
ScalarEvolution &SE) {
const SCEV *InVal = SE.getConstant(C);
const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
assert(isa<SCEVConstant>(Val) &&
"Evaluation of SCEV at constant didn't fold correctly?");
return cast<SCEVConstant>(Val)->getValue();
}
/// Given an exit condition of 'icmp op load X, cst', try to see if we can
/// compute the backedge execution count.
ScalarEvolution::ExitLimit
ScalarEvolution::computeLoadConstantCompareExitLimit(
LoadInst *LI,
Constant *RHS,
const Loop *L,
ICmpInst::Predicate predicate) {
if (LI->isVolatile()) return getCouldNotCompute();
// Check to see if the loaded pointer is a getelementptr of a global.
// TODO: Use SCEV instead of manually grubbing with GEPs.
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
if (!GEP) return getCouldNotCompute();
// Make sure that it is really a constant global we are gepping, with an
// initializer, and make sure the first IDX is really 0.
GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
!cast<Constant>(GEP->getOperand(1))->isNullValue())
return getCouldNotCompute();
// Okay, we allow one non-constant index into the GEP instruction.
Value *VarIdx = nullptr;
std::vector<Constant*> Indexes;
unsigned VarIdxNum = 0;
for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
Indexes.push_back(CI);
} else if (!isa<ConstantInt>(GEP->getOperand(i))) {
if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
VarIdx = GEP->getOperand(i);
VarIdxNum = i-2;
Indexes.push_back(nullptr);
}
// Loop-invariant loads may be a byproduct of loop optimization. Skip them.
if (!VarIdx)
return getCouldNotCompute();
// Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
// Check to see if X is a loop variant variable value now.
const SCEV *Idx = getSCEV(VarIdx);
Idx = getSCEVAtScope(Idx, L);
// We can only recognize very limited forms of loop index expressions, in
// particular, only affine AddRec's like {C1,+,C2}.
const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
!isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
!isa<SCEVConstant>(IdxExpr->getOperand(1)))
return getCouldNotCompute();
unsigned MaxSteps = MaxBruteForceIterations;
for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
ConstantInt *ItCst = ConstantInt::get(
cast<IntegerType>(IdxExpr->getType()), IterationNum);
ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
// Form the GEP offset.
Indexes[VarIdxNum] = Val;
Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
Indexes);
if (!Result) break; // Cannot compute!
// Evaluate the condition for this iteration.
Result = ConstantExpr::getICmp(predicate, Result, RHS);
if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
++NumArrayLenItCounts;
return getConstant(ItCst); // Found terminating iteration!
}
}
return getCouldNotCompute();
}
ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
if (!RHS)
return getCouldNotCompute();
const BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return getCouldNotCompute();
const BasicBlock *Predecessor = L->getLoopPredecessor();
if (!Predecessor)
return getCouldNotCompute();
// Return true if V is of the form "LHS `shift_op` <positive constant>".
// Return LHS in OutLHS and shift_opt in OutOpCode.
auto MatchPositiveShift =
[](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
using namespace PatternMatch;
ConstantInt *ShiftAmt;
if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
OutOpCode = Instruction::LShr;
else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
OutOpCode = Instruction::AShr;
else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
OutOpCode = Instruction::Shl;
else
return false;
return ShiftAmt->getValue().isStrictlyPositive();
};
// Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
//
// loop:
// %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
// %iv.shifted = lshr i32 %iv, <positive constant>
//
// Return true on a successful match. Return the corresponding PHI node (%iv
// above) in PNOut and the opcode of the shift operation in OpCodeOut.
auto MatchShiftRecurrence =
[&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
Optional<Instruction::BinaryOps> PostShiftOpCode;
{
Instruction::BinaryOps OpC;
Value *V;
// If we encounter a shift instruction, "peel off" the shift operation,
// and remember that we did so. Later when we inspect %iv's backedge
// value, we will make sure that the backedge value uses the same
// operation.
//
// Note: the peeled shift operation does not have to be the same
// instruction as the one feeding into the PHI's backedge value. We only
// really care about it being the same *kind* of shift instruction --
// that's all that is required for our later inferences to hold.
if (MatchPositiveShift(LHS, V, OpC)) {
PostShiftOpCode = OpC;
LHS = V;
}
}
PNOut = dyn_cast<PHINode>(LHS);
if (!PNOut || PNOut->getParent() != L->getHeader())
return false;
Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
Value *OpLHS;
return
// The backedge value for the PHI node must be a shift by a positive
// amount
MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
// of the PHI node itself
OpLHS == PNOut &&
// and the kind of shift should be match the kind of shift we peeled
// off, if any.
(!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
};
PHINode *PN;
Instruction::BinaryOps OpCode;
if (!MatchShiftRecurrence(LHS, PN, OpCode))
return getCouldNotCompute();
const DataLayout &DL = getDataLayout();
// The key rationale for this optimization is that for some kinds of shift
// recurrences, the value of the recurrence "stabilizes" to either 0 or -1
// within a finite number of iterations. If the condition guarding the
// backedge (in the sense that the backedge is taken if the condition is true)
// is false for the value the shift recurrence stabilizes to, then we know
// that the backedge is taken only a finite number of times.
ConstantInt *StableValue = nullptr;
switch (OpCode) {
default:
llvm_unreachable("Impossible case!");
case Instruction::AShr: {
// {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
// bitwidth(K) iterations.
Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
Predecessor->getTerminator(), &DT);
auto *Ty = cast<IntegerType>(RHS->getType());
if (Known.isNonNegative())
StableValue = ConstantInt::get(Ty, 0);
else if (Known.isNegative())
StableValue = ConstantInt::get(Ty, -1, true);
else
return getCouldNotCompute();
break;
}
case Instruction::LShr:
case Instruction::Shl:
// Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
// stabilize to 0 in at most bitwidth(K) iterations.
StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
break;
}
auto *Result =
ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
assert(Result->getType()->isIntegerTy(1) &&
"Otherwise cannot be an operand to a branch instruction");
if (Result->isZeroValue()) {
unsigned BitWidth = getTypeSizeInBits(RHS->getType());
const SCEV *UpperBound =
getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
return ExitLimit(getCouldNotCompute(), UpperBound, false);
}
return getCouldNotCompute();
}
/// Return true if we can constant fold an instruction of the specified type,
/// assuming that all operands were constants.
static bool CanConstantFold(const Instruction *I) {
if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
isa<LoadInst>(I) || isa<ExtractValueInst>(I))
return true;
if (const CallInst *CI = dyn_cast<CallInst>(I))
if (const Function *F = CI->getCalledFunction())
return canConstantFoldCallTo(CI, F);
return false;
}
/// Determine whether this instruction can constant evolve within this loop
/// assuming its operands can all constant evolve.
static bool canConstantEvolve(Instruction *I, const Loop *L) {
// An instruction outside of the loop can't be derived from a loop PHI.
if (!L->contains(I)) return false;
if (isa<PHINode>(I)) {
// We don't currently keep track of the control flow needed to evaluate
// PHIs, so we cannot handle PHIs inside of loops.
return L->getHeader() == I->getParent();
}
// If we won't be able to constant fold this expression even if the operands
// are constants, bail early.
return CanConstantFold(I);
}
/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
/// recursing through each instruction operand until reaching a loop header phi.
static PHINode *
getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
DenseMap<Instruction *, PHINode *> &PHIMap,
unsigned Depth) {
if (Depth > MaxConstantEvolvingDepth)
return nullptr;
// Otherwise, we can evaluate this instruction if all of its operands are
// constant or derived from a PHI node themselves.
PHINode *PHI = nullptr;
for (Value *Op : UseInst->operands()) {
if (isa<Constant>(Op)) continue;
Instruction *OpInst = dyn_cast<Instruction>(Op);
if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
PHINode *P = dyn_cast<PHINode>(OpInst);
if (!P)
// If this operand is already visited, reuse the prior result.
// We may have P != PHI if this is the deepest point at which the
// inconsistent paths meet.
P = PHIMap.lookup(OpInst);
if (!P) {
// Recurse and memoize the results, whether a phi is found or not.
// This recursive call invalidates pointers into PHIMap.
P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
PHIMap[OpInst] = P;
}
if (!P)
return nullptr; // Not evolving from PHI
if (PHI && PHI != P)
return nullptr; // Evolving from multiple different PHIs.
PHI = P;
}
// This is a expression evolving from a constant PHI!
return PHI;
}
/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
/// in the loop that V is derived from. We allow arbitrary operations along the
/// way, but the operands of an operation must either be constants or a value
/// derived from a constant PHI. If this expression does not fit with these
/// constraints, return null.
static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I || !canConstantEvolve(I, L)) return nullptr;
if (PHINode *PN = dyn_cast<PHINode>(I))
return PN;
// Record non-constant instructions contained by the loop.
DenseMap<Instruction *, PHINode *> PHIMap;
return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
}
/// EvaluateExpression - Given an expression that passes the
/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
/// in the loop has the value PHIVal. If we can't fold this expression for some
/// reason, return null.
static Constant *EvaluateExpression(Value *V, const Loop *L,
DenseMap<Instruction *, Constant *> &Vals,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// Convenient constant check, but redundant for recursive calls.
if (Constant *C = dyn_cast<Constant>(V)) return C;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return nullptr;
if (Constant *C = Vals.lookup(I)) return C;
// An instruction inside the loop depends on a value outside the loop that we
// weren't given a mapping for, or a value such as a call inside the loop.
if (!canConstantEvolve(I, L)) return nullptr;
// An unmapped PHI can be due to a branch or another loop inside this loop,
// or due to this not being the initial iteration through a loop where we
// couldn't compute the evolution of this particular PHI last time.
if (isa<PHINode>(I)) return nullptr;
std::vector<Constant*> Operands(I->getNumOperands());
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
if (!Operand) {
Operands[i] = dyn_cast<Constant>(I->getOperand(i));
if (!Operands[i]) return nullptr;
continue;
}
Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Vals[Operand] = C;
if (!C) return nullptr;
Operands[i] = C;
}
if (CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Operands[1], DL, TLI);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!LI->isVolatile())
return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
}
return ConstantFoldInstOperands(I, Operands, DL, TLI);
}
// If every incoming value to PN except the one for BB is a specific Constant,
// return that, else return nullptr.
static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
Constant *IncomingVal = nullptr;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (PN->getIncomingBlock(i) == BB)
continue;
auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
if (!CurrentVal)
return nullptr;
if (IncomingVal != CurrentVal) {
if (IncomingVal)
return nullptr;
IncomingVal = CurrentVal;
}
}
return IncomingVal;
}
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
/// in the header of its containing loop, we know the loop executes a
/// constant number of times, and the PHI node is just a recurrence
/// involving constants, fold it.
Constant *
ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
const APInt &BEs,
const Loop *L) {
auto I = ConstantEvolutionLoopExitValue.find(PN);
if (I != ConstantEvolutionLoopExitValue.end())
return I->second;
if (BEs.ugt(MaxBruteForceIterations))
return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
DenseMap<Instruction *, Constant *> CurrentIterVals;
BasicBlock *Header = L->getHeader();
assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return nullptr;
for (PHINode &PHI : Header->phis()) {
if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
CurrentIterVals[&PHI] = StartCST;
}
if (!CurrentIterVals.count(PN))
return RetVal = nullptr;
Value *BEValue = PN->getIncomingValueForBlock(Latch);
// Execute the loop symbolically to determine the exit value.
assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
"BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
unsigned NumIterations = BEs.getZExtValue(); // must be in range
unsigned IterationNum = 0;
const DataLayout &DL = getDataLayout();
for (; ; ++IterationNum) {
if (IterationNum == NumIterations)
return RetVal = CurrentIterVals[PN]; // Got exit value!
// Compute the value of the PHIs for the next iteration.
// EvaluateExpression adds non-phi values to the CurrentIterVals map.
DenseMap<Instruction *, Constant *> NextIterVals;
Constant *NextPHI =
EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
if (!NextPHI)
return nullptr; // Couldn't evaluate!
NextIterVals[PN] = NextPHI;
bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
// Also evaluate the other PHI nodes. However, we don't get to stop if we
// cease to be able to evaluate one of them or if they stop evolving,
// because that doesn't necessarily prevent us from computing PN.
SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
for (const auto &I : CurrentIterVals) {
PHINode *PHI = dyn_cast<PHINode>(I.first);
if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
PHIsToCompute.emplace_back(PHI, I.second);
}
// We use two distinct loops because EvaluateExpression may invalidate any
// iterators into CurrentIterVals.
for (const auto &I : PHIsToCompute) {
PHINode *PHI = I.first;
Constant *&NextPHI = NextIterVals[PHI];
if (!NextPHI) { // Not already computed.
Value *BEValue = PHI->getIncomingValueForBlock(Latch);
NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
}
if (NextPHI != I.second)
StoppedEvolving = false;
}
// If all entries in CurrentIterVals == NextIterVals then we can stop
// iterating, the loop can't continue to change.
if (StoppedEvolving)
return RetVal = CurrentIterVals[PN];
CurrentIterVals.swap(NextIterVals);
}
}
const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Value *Cond,
bool ExitWhen) {
PHINode *PN = getConstantEvolvingPHI(Cond, L);
if (!PN) return getCouldNotCompute();
// If the loop is canonicalized, the PHI will have exactly two entries.
// That's the only form we support here.
if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
DenseMap<Instruction *, Constant *> CurrentIterVals;
BasicBlock *Header = L->getHeader();
assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
BasicBlock *Latch = L->getLoopLatch();
assert(Latch && "Should follow from NumIncomingValues == 2!");
for (PHINode &PHI : Header->phis()) {
if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
CurrentIterVals[&PHI] = StartCST;
}
if (!CurrentIterVals.count(PN))
return getCouldNotCompute();
// Okay, we find a PHI node that defines the trip count of this loop. Execute
// the loop symbolically to determine when the condition gets a value of
// "ExitWhen".
unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
const DataLayout &DL = getDataLayout();
for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
auto *CondVal = dyn_cast_or_null<ConstantInt>(
EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
// Couldn't symbolically evaluate.
if (!CondVal) return getCouldNotCompute();
if (CondVal->getValue() == uint64_t(ExitWhen)) {
++NumBruteForceTripCountsComputed;
return getConstant(Type::getInt32Ty(getContext()), IterationNum);
}
// Update all the PHI nodes for the next iteration.
DenseMap<Instruction *, Constant *> NextIterVals;
// Create a list of which PHIs we need to compute. We want to do this before
// calling EvaluateExpression on them because that may invalidate iterators
// into CurrentIterVals.
SmallVector<PHINode *, 8> PHIsToCompute;
for (const auto &I : CurrentIterVals) {
PHINode *PHI = dyn_cast<PHINode>(I.first);
if (!PHI || PHI->getParent() != Header) continue;
PHIsToCompute.push_back(PHI);
}
for (PHINode *PHI : PHIsToCompute) {
Constant *&NextPHI = NextIterVals[PHI];
if (NextPHI) continue; // Already computed!
Value *BEValue = PHI->getIncomingValueForBlock(Latch);
NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
}
CurrentIterVals.swap(NextIterVals);
}
// Too many iterations were needed to evaluate.
return getCouldNotCompute();
}
const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
ValuesAtScopes[V];
// Check to see if we've folded this expression at this loop before.
for (auto &LS : Values)
if (LS.first == L)
return LS.second ? LS.second : V;
Values.emplace_back(L, nullptr);
// Otherwise compute it.
const SCEV *C = computeSCEVAtScope(V, L);
for (auto &LS : reverse(ValuesAtScopes[V]))
if (LS.first == L) {
LS.second = C;
break;
}
return C;
}
/// This builds up a Constant using the ConstantExpr interface. That way, we
/// will return Constants for objects which aren't represented by a
/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
/// Returns NULL if the SCEV isn't representable as a Constant.
static Constant *BuildConstantFromSCEV(const SCEV *V) {
switch (static_cast<SCEVTypes>(V->getSCEVType())) {
case scCouldNotCompute:
case scAddRecExpr:
break;
case scConstant:
return cast<SCEVConstant>(V)->getValue();
case scUnknown:
return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
case scSignExtend: {
const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
return ConstantExpr::getSExt(CastOp, SS->getType());
break;
}
case scZeroExtend: {
const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
return ConstantExpr::getZExt(CastOp, SZ->getType());
break;
}
case scTruncate: {
const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
return ConstantExpr::getTrunc(CastOp, ST->getType());
break;
}
case scAddExpr: {
const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
unsigned AS = PTy->getAddressSpace();
Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
C = ConstantExpr::getBitCast(C, DestPtrTy);
}
for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
if (!C2) return nullptr;
// First pointer!
if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
unsigned AS = C2->getType()->getPointerAddressSpace();
std::swap(C, C2);
Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
// The offsets have been converted to bytes. We can add bytes to an
// i8* by GEP with the byte count in the first index.
C = ConstantExpr::getBitCast(C, DestPtrTy);
}
// Don't bother trying to sum two pointers. We probably can't
// statically compute a load that results from it anyway.
if (C2->getType()->isPointerTy())
return nullptr;
if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
if (PTy->getElementType()->isStructTy())
C2 = ConstantExpr::getIntegerCast(
C2, Type::getInt32Ty(C->getContext()), true);
C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
} else
C = ConstantExpr::getAdd(C, C2);
}
return C;
}
break;
}
case scMulExpr: {
const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
// Don't bother with pointers at all.
if (C->getType()->isPointerTy()) return nullptr;
for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
if (!C2 || C2->getType()->isPointerTy()) return nullptr;
C = ConstantExpr::getMul(C, C2);
}
return C;
}
break;
}
case scUDivExpr: {
const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
if (LHS->getType() == RHS->getType())
return ConstantExpr::getUDiv(LHS, RHS);
break;
}
case scSMaxExpr:
case scUMaxExpr:
case scSMinExpr:
case scUMinExpr:
break; // TODO: smax, umax, smin, umax.
}
return nullptr;
}
const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
if (isa<SCEVConstant>(V)) return V;
// If this instruction is evolved from a constant-evolving PHI, compute the
// exit value from the loop without using SCEVs.
if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
const Loop *LI = this->LI[I->getParent()];
// Looking for loop exit value.
if (LI && LI->getParentLoop() == L &&
PN->getParent() == LI->getHeader()) {
// Okay, there is no closed form solution for the PHI node. Check
// to see if the loop that contains it has a known backedge-taken
// count. If so, we may be able to force computation of the exit
// value.
const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
// This trivial case can show up in some degenerate cases where
// the incoming IR has not yet been fully simplified.
if (BackedgeTakenCount->isZero()) {
Value *InitValue = nullptr;
bool MultipleInitValues = false;
for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
if (!LI->contains(PN->getIncomingBlock(i))) {
if (!InitValue)
InitValue = PN->getIncomingValue(i);
else if (InitValue != PN->getIncomingValue(i)) {
MultipleInitValues = true;
break;
}
}
}
if (!MultipleInitValues && InitValue)
return getSCEV(InitValue);
}
// Do we have a loop invariant value flowing around the backedge
// for a loop which must execute the backedge?
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
isKnownPositive(BackedgeTakenCount) &&
PN->getNumIncomingValues() == 2) {
unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred));
if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent()))
return OnBackedge;
}
if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
// Okay, we know how many times the containing loop executes. If
// this is a constant evolving PHI node, get the final value at
// the specified iteration number.
Constant *RV =
getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
if (RV) return getSCEV(RV);
}
}
// If there is a single-input Phi, evaluate it at our scope. If we can
// prove that this replacement does not break LCSSA form, use new value.
if (PN->getNumOperands() == 1) {
const SCEV *Input = getSCEV(PN->getOperand(0));
const SCEV *InputAtScope = getSCEVAtScope(Input, L);
// TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
// for the simplest case just support constants.
if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
}
}
// Okay, this is an expression that we cannot symbolically evaluate
// into a SCEV. Check to see if it's possible to symbolically evaluate
// the arguments into constants, and if so, try to constant propagate the
// result. This is particularly useful for computing loop exit values.
if (CanConstantFold(I)) {
SmallVector<Constant *, 4> Operands;
bool MadeImprovement = false;
for (Value *Op : I->operands()) {
if (Constant *C = dyn_cast<Constant>(Op)) {
Operands.push_back(C);
continue;
}
// If any of the operands is non-constant and if they are
// non-integer and non-pointer, don't even try to analyze them
// with scev techniques.
if (!isSCEVable(Op->getType()))
return V;
const SCEV *OrigV = getSCEV(Op);
const SCEV *OpV = getSCEVAtScope(OrigV, L);
MadeImprovement |= OrigV != OpV;
Constant *C = BuildConstantFromSCEV(OpV);
if (!C) return V;
if (C->getType() != Op->getType())
C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
Op->getType(),
false),
C, Op->getType());
Operands.push_back(C);
}
// Check to see if getSCEVAtScope actually made an improvement.
if (MadeImprovement) {
Constant *C = nullptr;
const DataLayout &DL = getDataLayout();
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Operands[1], DL, &TLI);
else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!LI->isVolatile())
C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
} else
C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
if (!C) return V;
return getSCEV(C);
}
}
}
// This is some other type of SCEVUnknown, just return it.
return V;
}
if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
// Avoid performing the look-up in the common case where the specified
// expression has no loop-variant portions.
for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
if (OpAtScope != Comm->getOperand(i)) {
// Okay, at least one of these operands is loop variant but might be
// foldable. Build a new instance of the folded commutative expression.
SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
Comm->op_begin()+i);
NewOps.push_back(OpAtScope);
for (++i; i != e; ++i) {
OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
NewOps.push_back(OpAtScope);
}
if (isa<SCEVAddExpr>(Comm))
return getAddExpr(NewOps, Comm->getNoWrapFlags());
if (isa<SCEVMulExpr>(Comm))
return getMulExpr(NewOps, Comm->getNoWrapFlags());
if (isa<SCEVMinMaxExpr>(Comm))
return getMinMaxExpr(Comm->getSCEVType(), NewOps);
llvm_unreachable("Unknown commutative SCEV type!");
}
}
// If we got here, all operands are loop invariant.
return Comm;
}
if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
if (LHS == Div->getLHS() && RHS == Div->getRHS())
return Div; // must be loop invariant
return getUDivExpr(LHS, RHS);
}
// If this is a loop recurrence for a loop that does not contain L, then we
// are dealing with the final value computed by the loop.
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
// First, attempt to evaluate each operand.
// Avoid performing the look-up in the common case where the specified
// expression has no loop-variant portions.
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
if (OpAtScope == AddRec->getOperand(i))
continue;
// Okay, at least one of these operands is loop variant but might be
// foldable. Build a new instance of the folded commutative expression.
SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
AddRec->op_begin()+i);
NewOps.push_back(OpAtScope);
for (++i; i != e; ++i)
NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
const SCEV *FoldedRec =
getAddRecExpr(NewOps, AddRec->getLoop(),
AddRec->getNoWrapFlags(SCEV::FlagNW));
AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
// The addrec may be folded to a nonrecurrence, for example, if the
// induction variable is multiplied by zero after constant folding. Go
// ahead and return the folded value.
if (!AddRec)
return FoldedRec;
break;
}
// If the scope is outside the addrec's loop, evaluate it by using the
// loop exit value of the addrec.
if (!AddRec->getLoop()->contains(L)) {
// To evaluate this recurrence, we need to know how many times the AddRec
// loop iterates. Compute this now.
const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
// Then, evaluate the AddRec.
return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
}
return AddRec;
}
if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getZeroExtendExpr(Op, Cast->getType());
}
if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getSignExtendExpr(Op, Cast->getType());
}
if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getTruncateExpr(Op, Cast->getType());
}
llvm_unreachable("Unknown SCEV type!");
}
const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
return getSCEVAtScope(getSCEV(V), L);
}
const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
return stripInjectiveFunctions(ZExt->getOperand());
if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
return stripInjectiveFunctions(SExt->getOperand());
return S;
}
/// Finds the minimum unsigned root of the following equation:
///
/// A * X = B (mod N)
///
/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
/// A and B isn't important.
///
/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
ScalarEvolution &SE) {
uint32_t BW = A.getBitWidth();
assert(BW == SE.getTypeSizeInBits(B->getType()));
assert(A != 0 && "A must be non-zero.");
// 1. D = gcd(A, N)
//
// The gcd of A and N may have only one prime factor: 2. The number of
// trailing zeros in A is its multiplicity
uint32_t Mult2 = A.countTrailingZeros();
// D = 2^Mult2
// 2. Check if B is divisible by D.
//
// B is divisible by D if and only if the multiplicity of prime factor 2 for B
// is not less than multiplicity of this prime factor for D.
if (SE.GetMinTrailingZeros(B) < Mult2)
return SE.getCouldNotCompute();
// 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
// modulo (N / D).
//
// If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
// (N / D) in general. The inverse itself always fits into BW bits, though,
// so we immediately truncate it.
APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
APInt Mod(BW + 1, 0);
Mod.setBit(BW - Mult2); // Mod = N / D
APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
// 4. Compute the minimum unsigned root of the equation:
// I * (B / D) mod (N / D)
// To simplify the computation, we factor out the divide by D:
// (I * B mod N) / D
const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
}
/// For a given quadratic addrec, generate coefficients of the corresponding
/// quadratic equation, multiplied by a common value to ensure that they are
/// integers.
/// The returned value is a tuple { A, B, C, M, BitWidth }, where
/// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
/// were multiplied by, and BitWidth is the bit width of the original addrec
/// coefficients.
/// This function returns None if the addrec coefficients are not compile-
/// time constants.
static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
<< *AddRec << '\n');
// We currently can only solve this if the coefficients are constants.
if (!LC || !MC || !NC) {
LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
return None;
}
APInt L = LC->getAPInt();
APInt M = MC->getAPInt();
APInt N = NC->getAPInt();
assert(!N.isNullValue() && "This is not a quadratic addrec");
unsigned BitWidth = LC->getAPInt().getBitWidth();
unsigned NewWidth = BitWidth + 1;
LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
<< BitWidth << '\n');
// The sign-extension (as opposed to a zero-extension) here matches the
// extension used in SolveQuadraticEquationWrap (with the same motivation).
N = N.sext(NewWidth);
M = M.sext(NewWidth);
L = L.sext(NewWidth);
// The increments are M, M+N, M+2N, ..., so the accumulated values are
// L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
// L+M, L+2M+N, L+3M+3N, ...
// After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
//
// The equation Acc = 0 is then
// L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
// In a quadratic form it becomes:
// N n^2 + (2M-N) n + 2L = 0.
APInt A = N;
APInt B = 2 * M - A;
APInt C = 2 * L;
APInt T = APInt(NewWidth, 2);
LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
<< "x + " << C << ", coeff bw: " << NewWidth
<< ", multiplied by " << T << '\n');
return std::make_tuple(A, B, C, T, BitWidth);
}
/// Helper function to compare optional APInts:
/// (a) if X and Y both exist, return min(X, Y),
/// (b) if neither X nor Y exist, return None,
/// (c) if exactly one of X and Y exists, return that value.
static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
if (X.hasValue() && Y.hasValue()) {
unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
APInt XW = X->sextOrSelf(W);
APInt YW = Y->sextOrSelf(W);
return XW.slt(YW) ? *X : *Y;
}
if (!X.hasValue() && !Y.hasValue())
return None;
return X.hasValue() ? *X : *Y;
}
/// Helper function to truncate an optional APInt to a given BitWidth.
/// When solving addrec-related equations, it is preferable to return a value
/// that has the same bit width as the original addrec's coefficients. If the
/// solution fits in the original bit width, truncate it (except for i1).
/// Returning a value of a different bit width may inhibit some optimizations.
///
/// In general, a solution to a quadratic equation generated from an addrec
/// may require BW+1 bits, where BW is the bit width of the addrec's
/// coefficients. The reason is that the coefficients of the quadratic
/// equation are BW+1 bits wide (to avoid truncation when converting from
/// the addrec to the equation).
static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
if (!X.hasValue())
return None;
unsigned W = X->getBitWidth();
if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
return X->trunc(BitWidth);
return X;
}
/// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
/// iterations. The values L, M, N are assumed to be signed, and they
/// should all have the same bit widths.
/// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
/// where BW is the bit width of the addrec's coefficients.
/// If the calculated value is a BW-bit integer (for BW > 1), it will be
/// returned as such, otherwise the bit width of the returned value may
/// be greater than BW.
///
/// This function returns None if
/// (a) the addrec coefficients are not constant, or
/// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
/// like x^2 = 5, no integer solutions exist, in other cases an integer
/// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
static Optional<APInt>
SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
APInt A, B, C, M;
unsigned BitWidth;
auto T = GetQuadraticEquation(AddRec);
if (!T.hasValue())
return None;
std::tie(A, B, C, M, BitWidth) = *T;
LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
if (!X.hasValue())
return None;
ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
if (!V->isZero())
return None;
return TruncIfPossible(X, BitWidth);
}
/// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
/// iterations. The values M, N are assumed to be signed, and they
/// should all have the same bit widths.
/// Find the least n such that c(n) does not belong to the given range,
/// while c(n-1) does.
///
/// This function returns None if
/// (a) the addrec coefficients are not constant, or
/// (b) SolveQuadraticEquationWrap was unable to find a solution for the
/// bounds of the range.
static Optional<APInt>
SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
const ConstantRange &Range, ScalarEvolution &SE) {
assert(AddRec->getOperand(0)->isZero() &&
"Starting value of addrec should be 0");
LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
<< Range << ", addrec " << *AddRec << '\n');
// This case is handled in getNumIterationsInRange. Here we can assume that
// we start in the range.
assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
"Addrec's initial value should be in range");
APInt A, B, C, M;
unsigned BitWidth;
auto T = GetQuadraticEquation(AddRec);
if (!T.hasValue())
return None;
// Be careful about the return value: there can be two reasons for not
// returning an actual number. First, if no solutions to the equations
// were found, and second, if the solutions don't leave the given range.
// The first case means that the actual solution is "unknown", the second
// means that it's known, but not valid. If the solution is unknown, we
// cannot make any conclusions.
// Return a pair: the optional solution and a flag indicating if the
// solution was found.
auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
// Solve for signed overflow and unsigned overflow, pick the lower
// solution.
LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
<< Bound << " (before multiplying by " << M << ")\n");
Bound *= M; // The quadratic equation multiplier.
Optional<APInt> SO = None;
if (BitWidth > 1) {
LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
"signed overflow\n");
SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
}
LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
"unsigned overflow\n");
Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
BitWidth+1);
auto LeavesRange = [&] (const APInt &X) {
ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
if (Range.contains(V0->getValue()))
return false;
// X should be at least 1, so X-1 is non-negative.
ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
if (Range.contains(V1->getValue()))
return true;
return false;
};
// If SolveQuadraticEquationWrap returns None, it means that there can
// be a solution, but the function failed to find it. We cannot treat it
// as "no solution".
if (!SO.hasValue() || !UO.hasValue())
return { None, false };
// Check the smaller value first to see if it leaves the range.
// At this point, both SO and UO must have values.
Optional<APInt> Min = MinOptional(SO, UO);
if (LeavesRange(*Min))
return { Min, true };
Optional<APInt> Max = Min == SO ? UO : SO;
if (LeavesRange(*Max))
return { Max, true };
// Solutions were found, but were eliminated, hence the "true".
return { None, true };
};
std::tie(A, B, C, M, BitWidth) = *T;
// Lower bound is inclusive, subtract 1 to represent the exiting value.
APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
auto SL = SolveForBoundary(Lower);
auto SU = SolveForBoundary(Upper);
// If any of the solutions was unknown, no meaninigful conclusions can
// be made.
if (!SL.second || !SU.second)
return None;
// Claim: The correct solution is not some value between Min and Max.
//
// Justification: Assuming that Min and Max are different values, one of
// them is when the first signed overflow happens, the other is when the
// first unsigned overflow happens. Crossing the range boundary is only
// possible via an overflow (treating 0 as a special case of it, modeling
// an overflow as crossing k*2^W for some k).
//
// The interesting case here is when Min was eliminated as an invalid
// solution, but Max was not. The argument is that if there was another
// overflow between Min and Max, it would also have been eliminated if
// it was considered.
//
// For a given boundary, it is possible to have two overflows of the same
// type (signed/unsigned) without having the other type in between: this
// can happen when the vertex of the parabola is between the iterations
// corresponding to the overflows. This is only possible when the two
// overflows cross k*2^W for the same k. In such case, if the second one
// left the range (and was the first one to do so), the first overflow
// would have to enter the range, which would mean that either we had left
// the range before or that we started outside of it. Both of these cases
// are contradictions.
//
// Claim: In the case where SolveForBoundary returns None, the correct
// solution is not some value between the Max for this boundary and the
// Min of the other boundary.
//
// Justification: Assume that we had such Max_A and Min_B corresponding
// to range boundaries A and B and such that Max_A < Min_B. If there was
// a solution between Max_A and Min_B, it would have to be caused by an
// overflow corresponding to either A or B. It cannot correspond to B,
// since Min_B is the first occurrence of such an overflow. If it
// corresponded to A, it would have to be either a signed or an unsigned
// overflow that is larger than both eliminated overflows for A. But
// between the eliminated overflows and this overflow, the values would
// cover the entire value space, thus crossing the other boundary, which
// is a contradiction.
return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
}
ScalarEvolution::ExitLimit
ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
bool AllowPredicates) {
// This is only used for loops with a "x != y" exit test. The exit condition
// is now expressed as a single expression, V = x-y. So the exit test is
// effectively V != 0. We know and take advantage of the fact that this
// expression only being used in a comparison by zero context.
SmallPtrSet<const SCEVPredicate *, 4> Predicates;
// If the value is a constant
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
// If the value is already zero, the branch will execute zero times.
if (C->getValue()->isZero()) return C;
return getCouldNotCompute(); // Otherwise it will loop infinitely.
}
const SCEVAddRecExpr *AddRec =
dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
if (!AddRec && AllowPredicates)
// Try to make this an AddRec using runtime tests, in the first X
// iterations of this loop, where X is the SCEV expression found by the
// algorithm below.
AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
if (!AddRec || AddRec->getLoop() != L)
return getCouldNotCompute();
// If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
// the quadratic equation to solve it.
if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
// We can only use this value if the chrec ends up with an exact zero
// value at this index. When solving for "X*X != 5", for example, we
// should not accept a root of 2.
if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
return ExitLimit(R, R, false, Predicates);
}
return getCouldNotCompute();
}
// Otherwise we can only handle this if it is affine.
if (!AddRec->isAffine())
return getCouldNotCompute();
// If this is an affine expression, the execution count of this branch is
// the minimum unsigned root of the following equation:
//
// Start + Step*N = 0 (mod 2^BW)
//
// equivalent to:
//
// Step*N = -Start (mod 2^BW)
//
// where BW is the common bit width of Start and Step.
// Get the initial value for the loop.
const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
// For now we handle only constant steps.
//
// TODO: Handle a nonconstant Step given AddRec<NUW>. If the
// AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
// to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
// We have not yet seen any such cases.
const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
if (!StepC || StepC->getValue()->isZero())
return getCouldNotCompute();
// For positive steps (counting up until unsigned overflow):
// N = -Start/Step (as unsigned)
// For negative steps (counting down to zero):
// N = Start/-Step
// First compute the unsigned distance from zero in the direction of Step.
bool CountDown = StepC->getAPInt().isNegative();
const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
// Handle unitary steps, which cannot wraparound.
// 1*N = -Start; -1*N = Start (mod 2^BW), so:
// N = Distance (as unsigned)
if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
APInt MaxBECount = getUnsignedRangeMax(Distance);
// When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
// we end up with a loop whose backedge-taken count is n - 1. Detect this
// case, and see if we can improve the bound.
//
// Explicitly handling this here is necessary because getUnsignedRange
// isn't context-sensitive; it doesn't know that we only care about the
// range inside the loop.
const SCEV *Zero = getZero(Distance->getType());
const SCEV *One = getOne(Distance->getType());
const SCEV *DistancePlusOne = getAddExpr(Distance, One);
if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
// If Distance + 1 doesn't overflow, we can compute the maximum distance
// as "unsigned_max(Distance + 1) - 1".
ConstantRange CR = getUnsignedRange(DistancePlusOne);
MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
}
return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
}
// If the condition controls loop exit (the loop exits only if the expression
// is true) and the addition is no-wrap we can use unsigned divide to
// compute the backedge count. In this case, the step may not divide the
// distance, but we don't care because if the condition is "missed" the loop
// will have undefined behavior due to wrapping.
if (ControlsExit && AddRec->hasNoSelfWrap() &&
loopHasNoAbnormalExits(AddRec->getLoop())) {
const SCEV *Exact =
getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
const SCEV *Max =
Exact == getCouldNotCompute()
? Exact
: getConstant(getUnsignedRangeMax(Exact));
return ExitLimit(Exact, Max, false, Predicates);
}
// Solve the general equation.
const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
getNegativeSCEV(Start), *this);
const SCEV *M = E == getCouldNotCompute()
? E
: getConstant(getUnsignedRangeMax(E));
return ExitLimit(E, M, false, Predicates);
}
ScalarEvolution::ExitLimit
ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
// Loops that look like: while (X == 0) are very strange indeed. We don't
// handle them yet except for the trivial case. This could be expanded in the
// future as needed.
// If the value is a constant, check to see if it is known to be non-zero
// already. If so, the backedge will execute zero times.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
if (!C->getValue()->isZero())
return getZero(C->getType());
return getCouldNotCompute(); // Otherwise it will loop infinitely.
}
// We could implement others, but I really doubt anyone writes loops like
// this, and if they did, they would already be constant folded.
return getCouldNotCompute();
}
std::pair<BasicBlock *, BasicBlock *>
ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
// If the block has a unique predecessor, then there is no path from the
// predecessor to the block that does not go through the direct edge
// from the predecessor to the block.
if (BasicBlock *Pred = BB->getSinglePredecessor())
return {Pred, BB};
// A loop's header is defined to be a block that dominates the loop.
// If the header has a unique predecessor outside the loop, it must be
// a block that has exactly one successor that can reach the loop.
if (Loop *L = LI.getLoopFor(BB))
return {L->getLoopPredecessor(), L->getHeader()};
return {nullptr, nullptr};
}
/// SCEV structural equivalence is usually sufficient for testing whether two
/// expressions are equal, however for the purposes of looking for a condition
/// guarding a loop, it can be useful to be a little more general, since a
/// front-end may have replicated the controlling expression.
static bool HasSameValue(const SCEV *A, const SCEV *B) {
// Quick check to see if they are the same SCEV.
if (A == B) return true;
auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
// Not all instructions that are "identical" compute the same value. For
// instance, two distinct alloca instructions allocating the same type are
// identical and do not read memory; but compute distinct values.
return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
};
// Otherwise, if they're both SCEVUnknown, it's possible that they hold
// two different instructions with the same value. Check for this case.
if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
if (ComputesEqualValues(AI, BI))
return true;
// Otherwise assume they may have a different value.
return false;
}
bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
const SCEV *&LHS, const SCEV *&RHS,
unsigned Depth) {
bool Changed = false;
// Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
// '0 != 0'.
auto TrivialCase = [&](bool TriviallyTrue) {
LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
return true;
};
// If we hit the max recursion limit bail out.
if (Depth >= 3)
return false;
// Canonicalize a constant to the right side.
if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
// Check for both operands constant.
if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
if (ConstantExpr::getICmp(Pred,
LHSC->getValue(),
RHSC->getValue())->isNullValue())
return TrivialCase(false);
else
return TrivialCase(true);
}
// Otherwise swap the operands to put the constant on the right.
std::swap(LHS, RHS);
Pred = ICmpInst::getSwappedPredicate(Pred);
Changed = true;
}
// If we're comparing an addrec with a value which is loop-invariant in the
// addrec's loop, put the addrec on the left. Also make a dominance check,
// as both operands could be addrecs loop-invariant in each other's loop.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
const Loop *L = AR->getLoop();
if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
std::swap(LHS, RHS);
Pred = ICmpInst::getSwappedPredicate(Pred);
Changed = true;
}
}
// If there's a constant operand, canonicalize comparisons with boundary
// cases, and canonicalize *-or-equal comparisons to regular comparisons.
if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
const APInt &RA = RC->getAPInt();
bool SimplifiedByConstantRange = false;
if (!ICmpInst::isEquality(Pred)) {
ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
if (ExactCR.isFullSet())
return TrivialCase(true);
else if (ExactCR.isEmptySet())
return TrivialCase(false);
APInt NewRHS;
CmpInst::Predicate NewPred;
if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
ICmpInst::isEquality(NewPred)) {
// We were able to convert an inequality to an equality.
Pred = NewPred;
RHS = getConstant(NewRHS);
Changed = SimplifiedByConstantRange = true;
}
}
if (!SimplifiedByConstantRange) {
switch (Pred) {
default:
break;
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE:
// Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
if (!RA)
if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
if (const SCEVMulExpr *ME =
dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
ME->getOperand(0)->isAllOnesValue()) {
RHS = AE->getOperand(1);
LHS = ME->getOperand(1);
Changed = true;
}
break;
// The "Should have been caught earlier!" messages refer to the fact
// that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
// should have fired on the corresponding cases, and canonicalized the
// check to trivial case.
case ICmpInst::ICMP_UGE:
assert(!RA.isMinValue() && "Should have been caught earlier!");
Pred = ICmpInst::ICMP_UGT;
RHS = getConstant(RA - 1);
Changed = true;
break;
case ICmpInst::ICMP_ULE:
assert(!RA.isMaxValue() && "Should have been caught earlier!");
Pred = ICmpInst::ICMP_ULT;
RHS = getConstant(RA + 1);
Changed = true;
break;
case ICmpInst::ICMP_SGE:
assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
Pred = ICmpInst::ICMP_SGT;
RHS = getConstant(RA - 1);
Changed = true;
break;
case ICmpInst::ICMP_SLE:
assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
Pred = ICmpInst::ICMP_SLT;
RHS = getConstant(RA + 1);
Changed = true;
break;
}
}
}
// Check for obvious equality.
if (HasSameValue(LHS, RHS)) {
if (ICmpInst::isTrueWhenEqual(Pred))
return TrivialCase(true);
if (ICmpInst::isFalseWhenEqual(Pred))
return TrivialCase(false);
}
// If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
// adding or subtracting 1 from one of the operands.
switch (Pred) {
case ICmpInst::ICMP_SLE:
if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
SCEV::FlagNSW);
Pred = ICmpInst::ICMP_SLT;
Changed = true;
} else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
SCEV::FlagNSW);
Pred = ICmpInst::ICMP_SLT;
Changed = true;
}
break;
case ICmpInst::ICMP_SGE:
if (!getSignedRangeMin(RHS).isMinSignedValue()) {
RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
SCEV::FlagNSW);
Pred = ICmpInst::ICMP_SGT;
Changed = true;
} else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
SCEV::FlagNSW);
Pred = ICmpInst::ICMP_SGT;
Changed = true;
}
break;
case ICmpInst::ICMP_ULE:
if (!getUnsignedRangeMax(RHS).isMaxValue()) {
RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
SCEV::FlagNUW);
Pred = ICmpInst::ICMP_ULT;
Changed = true;
} else if (!getUnsignedRangeMin(LHS).isMinValue()) {
LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Pred = ICmpInst::ICMP_ULT;
Changed = true;
}
break;
case ICmpInst::ICMP_UGE:
if (!getUnsignedRangeMin(RHS).isMinValue()) {
RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Pred = ICmpInst::ICMP_UGT;
Changed = true;
} else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
SCEV::FlagNUW);
Pred = ICmpInst::ICMP_UGT;
Changed = true;
}
break;
default:
break;
}
// TODO: More simplifications are possible here.
// Recursively simplify until we either hit a recursion limit or nothing
// changes.
if (Changed)
return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
return Changed;
}
bool ScalarEvolution::isKnownNegative(const SCEV *S) {
return getSignedRangeMax(S).isNegative();
}
bool ScalarEvolution::isKnownPositive(const SCEV *S) {
return getSignedRangeMin(S).isStrictlyPositive();
}
bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
return !getSignedRangeMin(S).isNegative();
}
bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
return !getSignedRangeMax(S).isStrictlyPositive();
}
bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
return isKnownNegative(S) || isKnownPositive(S);
}
std::pair<const SCEV *, const SCEV *>
ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
// Compute SCEV on entry of loop L.
const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
if (Start == getCouldNotCompute())
return { Start, Start };
// Compute post increment SCEV for loop L.
const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
return { Start, PostInc };
}
bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// First collect all loops.
SmallPtrSet<const Loop *, 8> LoopsUsed;
getUsedLoops(LHS, LoopsUsed);
getUsedLoops(RHS, LoopsUsed);
if (LoopsUsed.empty())
return false;
// Domination relationship must be a linear order on collected loops.
#ifndef NDEBUG
for (auto *L1 : LoopsUsed)
for (auto *L2 : LoopsUsed)
assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
DT.dominates(L2->getHeader(), L1->getHeader())) &&
"Domination relationship is not a linear order");
#endif
const Loop *MDL =
*std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
[&](const Loop *L1, const Loop *L2) {
return DT.properlyDominates(L1->getHeader(), L2->getHeader());
});
// Get init and post increment value for LHS.
auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
// if LHS contains unknown non-invariant SCEV then bail out.
if (SplitLHS.first == getCouldNotCompute())
return false;
assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
// Get init and post increment value for RHS.
auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
// if RHS contains unknown non-invariant SCEV then bail out.
if (SplitRHS.first == getCouldNotCompute())
return false;
assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
// It is possible that init SCEV contains an invariant load but it does
// not dominate MDL and is not available at MDL loop entry, so we should
// check it here.
if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
!isAvailableAtLoopEntry(SplitRHS.first, MDL))
return false;
return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
SplitRHS.second);
}
bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// Canonicalize the inputs first.
(void)SimplifyICmpOperands(Pred, LHS, RHS);
if (isKnownViaInduction(Pred, LHS, RHS))
return true;
if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
return true;
// Otherwise see what can be done with some simple reasoning.
return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
}
bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
const SCEVAddRecExpr *LHS,
const SCEV *RHS) {
const Loop *L = LHS->getLoop();
return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
}
bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
ICmpInst::Predicate Pred,
bool &Increasing) {
bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
#ifndef NDEBUG
// Verify an invariant: inverting the predicate should turn a monotonically
// increasing change to a monotonically decreasing one, and vice versa.
bool IncreasingSwapped;
bool ResultSwapped = isMonotonicPredicateImpl(
LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
assert(Result == ResultSwapped && "should be able to analyze both!");
if (ResultSwapped)
assert(Increasing == !IncreasingSwapped &&
"monotonicity should flip as we flip the predicate");
#endif
return Result;
}
bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
ICmpInst::Predicate Pred,
bool &Increasing) {
// A zero step value for LHS means the induction variable is essentially a
// loop invariant value. We don't really depend on the predicate actually
// flipping from false to true (for increasing predicates, and the other way
// around for decreasing predicates), all we care about is that *if* the
// predicate changes then it only changes from false to true.
//
// A zero step value in itself is not very useful, but there may be places
// where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
// as general as possible.
switch (Pred) {
default:
return false; // Conservative answer
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
if (!LHS->hasNoUnsignedWrap())
return false;
Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
return true;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: {
if (!LHS->hasNoSignedWrap())
return false;
const SCEV *Step = LHS->getStepRecurrence(*this);
if (isKnownNonNegative(Step)) {
Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
return true;
}
if (isKnownNonPositive(Step)) {
Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
return true;
}
return false;
}
}
llvm_unreachable("switch has default clause!");
}
bool ScalarEvolution::isLoopInvariantPredicate(
ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
const SCEV *&InvariantRHS) {
// If there is a loop-invariant, force it into the RHS, otherwise bail out.
if (!isLoopInvariant(RHS, L)) {
if (!isLoopInvariant(LHS, L))
return false;
std::swap(LHS, RHS);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
if (!ArLHS || ArLHS->getLoop() != L)
return false;
bool Increasing;
if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
return false;
// If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
// true as the loop iterates, and the backedge is control dependent on
// "ArLHS `Pred` RHS" == true then we can reason as follows:
//
// * if the predicate was false in the first iteration then the predicate
// is never evaluated again, since the loop exits without taking the
// backedge.
// * if the predicate was true in the first iteration then it will
// continue to be true for all future iterations since it is
// monotonically increasing.
//
// For both the above possibilities, we can replace the loop varying
// predicate with its value on the first iteration of the loop (which is
// loop invariant).
//
// A similar reasoning applies for a monotonically decreasing predicate, by
// replacing true with false and false with true in the above two bullets.
auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
return false;
InvariantPred = Pred;
InvariantLHS = ArLHS->getStart();
InvariantRHS = RHS;
return true;
}
bool ScalarEvolution::isKnownPredicateViaConstantRanges(
ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
if (HasSameValue(LHS, RHS))
return ICmpInst::isTrueWhenEqual(Pred);
// This code is split out from isKnownPredicate because it is called from
// within isLoopEntryGuardedByCond.
auto CheckRanges =
[&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
.contains(RangeLHS);
};
// The check at the top of the function catches the case where the values are
// known to be equal.
if (Pred == CmpInst::ICMP_EQ)
return false;
if (Pred == CmpInst::ICMP_NE)
return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
isKnownNonZero(getMinusSCEV(LHS, RHS));
if (CmpInst::isSigned(Pred))
return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
}
bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
const SCEV *LHS,
const SCEV *RHS) {
// Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
// Return Y via OutY.
auto MatchBinaryAddToConst =
[this](const SCEV *Result, const SCEV *X, APInt &OutY,
SCEV::NoWrapFlags ExpectedFlags) {
const SCEV *NonConstOp, *ConstOp;
SCEV::NoWrapFlags FlagsPresent;
if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
!isa<SCEVConstant>(ConstOp) || NonConstOp != X)
return false;
OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
};
APInt C;
switch (Pred) {
default:
break;
case ICmpInst::ICMP_SGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SLE:
// X s<= (X + C)<nsw> if C >= 0
if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
return true;
// (X + C)<nsw> s<= X if C <= 0
if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
!C.isStrictlyPositive())
return true;
break;
case ICmpInst::ICMP_SGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SLT:
// X s< (X + C)<nsw> if C > 0
if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
C.isStrictlyPositive())
return true;
// (X + C)<nsw> s< X if C < 0
if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
return true;
break;
}
return false;
}
bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
const SCEV *LHS,
const SCEV *RHS) {
if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
return false;
// Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
// the stack can result in exponential time complexity.
SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
// If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
//
// To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
// isKnownPredicate. isKnownPredicate is more powerful, but also more
// expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
// interesting cases seen in practice. We can consider "upgrading" L >= 0 to
// use isKnownPredicate later if needed.
return isKnownNonNegative(RHS) &&
isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
}
bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// No need to even try if we know the module has no guards.
if (!HasGuards)
return false;
return any_of(*BB, [&](Instruction &I) {
using namespace llvm::PatternMatch;
Value *Condition;
return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
m_Value(Condition))) &&
isImpliedCond(Pred, LHS, RHS, Condition, false);
});
}
/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
/// protected by a conditional between LHS and RHS. This is used to
/// to eliminate casts.
bool
ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// Interpret a null as meaning no loop, where there is obviously no guard
// (interprocedural conditions notwithstanding).
if (!L) return true;
if (VerifyIR)
assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
"This cannot be done on broken IR!");
if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
return true;
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return false;
BranchInst *LoopContinuePredicate =
dyn_cast<BranchInst>(Latch->getTerminator());
if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
isImpliedCond(Pred, LHS, RHS,
LoopContinuePredicate->getCondition(),
LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
return true;
// We don't want more than one activation of the following loops on the stack
// -- that can lead to O(n!) time complexity.
if (WalkingBEDominatingConds)
return false;
SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
// See if we can exploit a trip count to prove the predicate.
const auto &BETakenInfo = getBackedgeTakenInfo(L);
const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
if (LatchBECount != getCouldNotCompute()) {
// We know that Latch branches back to the loop header exactly
// LatchBECount times. This means the backdege condition at Latch is
// equivalent to "{0,+,1} u< LatchBECount".
Type *Ty = LatchBECount->getType();
auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
const SCEV *LoopCounter =
getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
LatchBECount))
return true;
}
// Check conditions due to any @llvm.assume intrinsics.
for (auto &AssumeVH : AC.assumptions()) {
if (!AssumeVH)
continue;
auto *CI = cast<CallInst>(AssumeVH);
if (!DT.dominates(CI, Latch->getTerminator()))
continue;
if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
return true;
}
// If the loop is not reachable from the entry block, we risk running into an
// infinite loop as we walk up into the dom tree. These loops do not matter
// anyway, so we just return a conservative answer when we see them.
if (!DT.isReachableFromEntry(L->getHeader()))
return false;
if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
return true;
for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
DTN != HeaderDTN; DTN = DTN->getIDom()) {
assert(DTN && "should reach the loop header before reaching the root!");
BasicBlock *BB = DTN->getBlock();
if (isImpliedViaGuard(BB, Pred, LHS, RHS))
return true;
BasicBlock *PBB = BB->getSinglePredecessor();
if (!PBB)
continue;
BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
if (!ContinuePredicate || !ContinuePredicate->isConditional())
continue;
Value *Condition = ContinuePredicate->getCondition();
// If we have an edge `E` within the loop body that dominates the only
// latch, the condition guarding `E` also guards the backedge. This
// reasoning works only for loops with a single latch.
BasicBlockEdge DominatingEdge(PBB, BB);
if (DominatingEdge.isSingleEdge()) {
// We're constructively (and conservatively) enumerating edges within the
// loop body that dominate the latch. The dominator tree better agree
// with us on this:
assert(DT.dominates(DominatingEdge, Latch) && "should be!");
if (isImpliedCond(Pred, LHS, RHS, Condition,
BB != ContinuePredicate->getSuccessor(0)))
return true;
}
}
return false;
}
bool
ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// Interpret a null as meaning no loop, where there is obviously no guard
// (interprocedural conditions notwithstanding).
if (!L) return false;
if (VerifyIR)
assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
"This cannot be done on broken IR!");
// Both LHS and RHS must be available at loop entry.
assert(isAvailableAtLoopEntry(LHS, L) &&
"LHS is not available at Loop Entry");
assert(isAvailableAtLoopEntry(RHS, L) &&
"RHS is not available at Loop Entry");
if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
return true;
// If we cannot prove strict comparison (e.g. a > b), maybe we can prove
// the facts (a >= b && a != b) separately. A typical situation is when the
// non-strict comparison is known from ranges and non-equality is known from
// dominating predicates. If we are proving strict comparison, we always try
// to prove non-equality and non-strict comparison separately.
auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
bool ProvedNonStrictComparison = false;
bool ProvedNonEquality = false;
if (ProvingStrictComparison) {
ProvedNonStrictComparison =
isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
ProvedNonEquality =
isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
if (ProvedNonStrictComparison && ProvedNonEquality)
return true;
}
// Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
auto ProveViaGuard = [&](BasicBlock *Block) {
if (isImpliedViaGuard(Block, Pred, LHS, RHS))
return true;
if (ProvingStrictComparison) {
if (!ProvedNonStrictComparison)
ProvedNonStrictComparison =
isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
if (!ProvedNonEquality)
ProvedNonEquality =
isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
if (ProvedNonStrictComparison && ProvedNonEquality)
return true;
}
return false;
};
// Try to prove (Pred, LHS, RHS) using isImpliedCond.
auto ProveViaCond = [&](Value *Condition, bool Inverse) {
if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
return true;
if (ProvingStrictComparison) {
if (!ProvedNonStrictComparison)
ProvedNonStrictComparison =
isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
if (!ProvedNonEquality)
ProvedNonEquality =
isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
if (ProvedNonStrictComparison && ProvedNonEquality)
return true;
}
return false;
};
// Starting at the loop predecessor, climb up the predecessor chain, as long
// as there are predecessors that can be found that have unique successors
// leading to the original header.
for (std::pair<BasicBlock *, BasicBlock *>
Pair(L->getLoopPredecessor(), L->getHeader());
Pair.first;
Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
if (ProveViaGuard(Pair.first))
return true;
BranchInst *LoopEntryPredicate =
dyn_cast<BranchInst>(Pair.first->getTerminator());
if (!LoopEntryPredicate ||
LoopEntryPredicate->isUnconditional())
continue;
if (ProveViaCond(LoopEntryPredicate->getCondition(),
LoopEntryPredicate->getSuccessor(0) != Pair.second))
return true;
}
// Check conditions due to any @llvm.assume intrinsics.
for (auto &AssumeVH : AC.assumptions()) {
if (!AssumeVH)
continue;
auto *CI = cast<CallInst>(AssumeVH);
if (!DT.dominates(CI, L->getHeader()))
continue;
if (ProveViaCond(CI->getArgOperand(0), false))
return true;
}
return false;
}
bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
Value *FoundCondValue,
bool Inverse) {
if (!PendingLoopPredicates.insert(FoundCondValue).second)
return false;
auto ClearOnExit =
make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
// Recursively handle And and Or conditions.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
if (BO->getOpcode() == Instruction::And) {
if (!Inverse)
return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
} else if (BO->getOpcode() == Instruction::Or) {
if (Inverse)
return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
}
}
ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
if (!ICI) return false;
// Now that we found a conditional branch that dominates the loop or controls
// the loop latch. Check to see if it is the comparison we are looking for.
ICmpInst::Predicate FoundPred;
if (Inverse)
FoundPred = ICI->getInversePredicate();
else
FoundPred = ICI->getPredicate();
const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
}
bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS,
ICmpInst::Predicate FoundPred,
const SCEV *FoundLHS,
const SCEV *FoundRHS) {
// Balance the types.
if (getTypeSizeInBits(LHS->getType()) <
getTypeSizeInBits(FoundLHS->getType())) {
if (CmpInst::isSigned(Pred)) {
LHS = getSignExtendExpr(LHS, FoundLHS->getType());
RHS = getSignExtendExpr(RHS, FoundLHS->getType());
} else {
LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
}
} else if (getTypeSizeInBits(LHS->getType()) >
getTypeSizeInBits(FoundLHS->getType())) {
if (CmpInst::isSigned(FoundPred)) {
FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
} else {
FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
}
}
// Canonicalize the query to match the way instcombine will have
// canonicalized the comparison.
if (SimplifyICmpOperands(Pred, LHS, RHS))
if (LHS == RHS)
return CmpInst::isTrueWhenEqual(Pred);
if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
if (FoundLHS == FoundRHS)
return CmpInst::isFalseWhenEqual(FoundPred);
// Check to see if we can make the LHS or RHS match.
if (LHS == FoundRHS || RHS == FoundLHS) {
if (isa<SCEVConstant>(RHS)) {
std::swap(FoundLHS, FoundRHS);
FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
} else {
std::swap(LHS, RHS);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
}
// Check whether the found predicate is the same as the desired predicate.
if (FoundPred == Pred)
return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
// Check whether swapping the found predicate makes it the same as the
// desired predicate.
if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
if (isa<SCEVConstant>(RHS))
return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
else
return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
RHS, LHS, FoundLHS, FoundRHS);
}
// Unsigned comparison is the same as signed comparison when both the operands
// are non-negative.
if (CmpInst::isUnsigned(FoundPred) &&
CmpInst::getSignedPredicate(FoundPred) == Pred &&
isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
// Check if we can make progress by sharpening ranges.
if (FoundPred == ICmpInst::ICMP_NE &&
(isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
const SCEVConstant *C = nullptr;
const SCEV *V = nullptr;
if (isa<SCEVConstant>(FoundLHS)) {
C = cast<SCEVConstant>(FoundLHS);
V = FoundRHS;
} else {
C = cast<SCEVConstant>(FoundRHS);
V = FoundLHS;
}
// The guarding predicate tells us that C != V. If the known range
// of V is [C, t), we can sharpen the range to [C + 1, t). The
// range we consider has to correspond to same signedness as the
// predicate we're interested in folding.
APInt Min = ICmpInst::isSigned(Pred) ?
getSignedRangeMin(V) : getUnsignedRangeMin(V);
if (Min == C->getAPInt()) {
// Given (V >= Min && V != Min) we conclude V >= (Min + 1).
// This is true even if (Min + 1) wraps around -- in case of
// wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
APInt SharperMin = Min + 1;
switch (Pred) {
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE:
// We know V `Pred` SharperMin. If this implies LHS `Pred`
// RHS, we're done.
if (isImpliedCondOperands(Pred, LHS, RHS, V,
getConstant(SharperMin)))
return true;
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT:
// We know from the range information that (V `Pred` Min ||
// V == Min). We know from the guarding condition that !(V
// == Min). This gives us
//
// V `Pred` Min || V == Min && !(V == Min)
// => V `Pred` Min
//
// If V `Pred` Min implies LHS `Pred` RHS, we're done.
if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
return true;
LLVM_FALLTHROUGH;
default:
// No change
break;
}
}
}
// Check whether the actual condition is beyond sufficient.
if (FoundPred == ICmpInst::ICMP_EQ)
if (ICmpInst::isTrueWhenEqual(Pred))
if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
return true;
if (Pred == ICmpInst::ICMP_NE)
if (!ICmpInst::isTrueWhenEqual(FoundPred))
if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
return true;
// Otherwise assume the worst.
return false;
}
bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
const SCEV *&L, const SCEV *&R,
SCEV::NoWrapFlags &Flags) {
const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
if (!AE || AE->getNumOperands() != 2)
return false;
L = AE->getOperand(0);
R = AE->getOperand(1);
Flags = AE->getNoWrapFlags();
return true;
}
Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
const SCEV *Less) {
// We avoid subtracting expressions here because this function is usually
// fairly deep in the call stack (i.e. is called many times).
// X - X = 0.
if (More == Less)
return APInt(getTypeSizeInBits(More->getType()), 0);
if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
const auto *LAR = cast<SCEVAddRecExpr>(Less);
const auto *MAR = cast<SCEVAddRecExpr>(More);
if (LAR->getLoop() != MAR->getLoop())
return None;
// We look at affine expressions only; not for correctness but to keep
// getStepRecurrence cheap.
if (!LAR->isAffine() || !MAR->isAffine())
return None;
if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
return None;
Less = LAR->getStart();
More = MAR->getStart();
// fall through
}
if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
const auto &M = cast<SCEVConstant>(More)->getAPInt();
const auto &L = cast<SCEVConstant>(Less)->getAPInt();
return M - L;
}
SCEV::NoWrapFlags Flags;
const SCEV *LLess = nullptr, *RLess = nullptr;
const SCEV *LMore = nullptr, *RMore = nullptr;
const SCEVConstant *C1 = nullptr, *C2 = nullptr;
// Compare (X + C1) vs X.
if (splitBinaryAdd(Less, LLess, RLess, Flags))
if ((C1 = dyn_cast<SCEVConstant>(LLess)))
if (RLess == More)
return -(C1->getAPInt());
// Compare X vs (X + C2).
if (splitBinaryAdd(More, LMore, RMore, Flags))
if ((C2 = dyn_cast<SCEVConstant>(LMore)))
if (RMore == Less)
return C2->getAPInt();
// Compare (X + C1) vs (X + C2).
if (C1 && C2 && RLess == RMore)
return C2->getAPInt() - C1->getAPInt();
return None;
}
bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS, const SCEV *FoundRHS) {
if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
return false;
const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
if (!AddRecLHS)
return false;
const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
if (!AddRecFoundLHS)
return false;
// We'd like to let SCEV reason about control dependencies, so we constrain
// both the inequalities to be about add recurrences on the same loop. This
// way we can use isLoopEntryGuardedByCond later.
const Loop *L = AddRecFoundLHS->getLoop();
if (L != AddRecLHS->getLoop())
return false;
// FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
//
// FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
// ... (2)
//
// Informal proof for (2), assuming (1) [*]:
//
// We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
//
// Then
//
// FoundLHS s< FoundRHS s< INT_MIN - C
// <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
// <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
// <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
// (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
// <=> FoundLHS + C s< FoundRHS + C
//
// [*]: (1) can be proved by ruling out overflow.
//
// [**]: This can be proved by analyzing all the four possibilities:
// (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
// (A s>= 0, B s>= 0).
//
// Note:
// Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
// will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
// = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
// s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
// neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
// C)".
Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
if (!LDiff || !RDiff || *LDiff != *RDiff)
return false;
if (LDiff->isMinValue())
return true;
APInt FoundRHSLimit;
if (Pred == CmpInst::ICMP_ULT) {
FoundRHSLimit = -(*RDiff);
} else {
assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
}
// Try to prove (1) or (2), as needed.
return isAvailableAtLoopEntry(FoundRHS, L) &&
isLoopEntryGuardedByCond(L, Pred, FoundRHS,
getConstant(FoundRHSLimit));
}
bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS, unsigned Depth) {
const PHINode *LPhi = nullptr, *RPhi = nullptr;
auto ClearOnExit = make_scope_exit([&]() {
if (LPhi) {
bool Erased = PendingMerges.erase(LPhi);
assert(Erased && "Failed to erase LPhi!");
(void)Erased;
}
if (RPhi) {
bool Erased = PendingMerges.erase(RPhi);
assert(Erased && "Failed to erase RPhi!");
(void)Erased;
}
});
// Find respective Phis and check that they are not being pending.
if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
if (!PendingMerges.insert(Phi).second)
return false;
LPhi = Phi;
}
if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
// If we detect a loop of Phi nodes being processed by this method, for
// example:
//
// %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
// %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
//
// we don't want to deal with a case that complex, so return conservative
// answer false.
if (!PendingMerges.insert(Phi).second)
return false;
RPhi = Phi;
}
// If none of LHS, RHS is a Phi, nothing to do here.
if (!LPhi && !RPhi)
return false;
// If there is a SCEVUnknown Phi we are interested in, make it left.
if (!LPhi) {
std::swap(LHS, RHS);
std::swap(FoundLHS, FoundRHS);
std::swap(LPhi, RPhi);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
const BasicBlock *LBB = LPhi->getParent();
const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
};
if (RPhi && RPhi->getParent() == LBB) {
// Case one: RHS is also a SCEVUnknown Phi from the same basic block.
// If we compare two Phis from the same block, and for each entry block
// the predicate is true for incoming values from this block, then the
// predicate is also true for the Phis.
for (const BasicBlock *IncBB : predecessors(LBB)) {
const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
if (!ProvedEasily(L, R))
return false;
}
} else if (RAR && RAR->getLoop()->getHeader() == LBB) {
// Case two: RHS is also a Phi from the same basic block, and it is an
// AddRec. It means that there is a loop which has both AddRec and Unknown
// PHIs, for it we can compare incoming values of AddRec from above the loop
// and latch with their respective incoming values of LPhi.
// TODO: Generalize to handle loops with many inputs in a header.
if (LPhi->getNumIncomingValues() != 2) return false;
auto *RLoop = RAR->getLoop();
auto *Predecessor = RLoop->getLoopPredecessor();
assert(Predecessor && "Loop with AddRec with no predecessor?");
const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
if (!ProvedEasily(L1, RAR->getStart()))
return false;
auto *Latch = RLoop->getLoopLatch();
assert(Latch && "Loop with AddRec with no latch?");
const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
return false;
} else {
// In all other cases go over inputs of LHS and compare each of them to RHS,
// the predicate is true for (LHS, RHS) if it is true for all such pairs.
// At this point RHS is either a non-Phi, or it is a Phi from some block
// different from LBB.
for (const BasicBlock *IncBB : predecessors(LBB)) {
// Check that RHS is available in this block.
if (!dominates(RHS, IncBB))
return false;
const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
if (!ProvedEasily(L, RHS))
return false;
}
}
return true;
}
bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS) {
if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
return true;
if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
return true;
return isImpliedCondOperandsHelper(Pred, LHS, RHS,
FoundLHS, FoundRHS) ||
// ~x < ~y --> x > y
isImpliedCondOperandsHelper(Pred, LHS, RHS,
getNotSCEV(FoundRHS),
getNotSCEV(FoundLHS));
}
/// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
template <typename MinMaxExprType>
static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
const SCEV *Candidate) {
const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
if (!MinMaxExpr)
return false;
return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
}
static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// If both sides are affine addrecs for the same loop, with equal
// steps, and we know the recurrences don't wrap, then we only
// need to check the predicate on the starting values.
if (!ICmpInst::isRelational(Pred))
return false;
const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
if (!LAR)
return false;
const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
if (!RAR)
return false;
if (LAR->getLoop() != RAR->getLoop())
return false;
if (!LAR->isAffine() || !RAR->isAffine())
return false;
if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
return false;
SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
SCEV::FlagNSW : SCEV::FlagNUW;
if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
return false;
return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
}
/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
/// expression?
static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
switch (Pred) {
default:
return false;
case ICmpInst::ICMP_SGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SLE:
return
// min(A, ...) <= A
IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
// A <= max(A, ...)
IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
case ICmpInst::ICMP_UGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_ULE:
return
// min(A, ...) <= A
IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
// A <= max(A, ...)
IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
}
llvm_unreachable("covered switch fell through?!");
}
bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS,
unsigned Depth) {
assert(getTypeSizeInBits(LHS->getType()) ==
getTypeSizeInBits(RHS->getType()) &&
"LHS and RHS have different sizes?");
assert(getTypeSizeInBits(FoundLHS->getType()) ==
getTypeSizeInBits(FoundRHS->getType()) &&
"FoundLHS and FoundRHS have different sizes?");
// We want to avoid hurting the compile time with analysis of too big trees.
if (Depth > MaxSCEVOperationsImplicationDepth)
return false;
// We only want to work with ICMP_SGT comparison so far.
// TODO: Extend to ICMP_UGT?
if (Pred == ICmpInst::ICMP_SLT) {
Pred = ICmpInst::ICMP_SGT;
std::swap(LHS, RHS);
std::swap(FoundLHS, FoundRHS);
}
if (Pred != ICmpInst::ICMP_SGT)
return false;
auto GetOpFromSExt = [&](const SCEV *S) {
if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
return Ext->getOperand();
// TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
// the constant in some cases.
return S;
};
// Acquire values from extensions.
auto *OrigLHS = LHS;
auto *OrigFoundLHS = FoundLHS;
LHS = GetOpFromSExt(LHS);
FoundLHS = GetOpFromSExt(FoundLHS);
// Is the SGT predicate can be proved trivially or using the found context.
auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
FoundRHS, Depth + 1);
};
if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
// We want to avoid creation of any new non-constant SCEV. Since we are
// going to compare the operands to RHS, we should be certain that we don't
// need any size extensions for this. So let's decline all cases when the
// sizes of types of LHS and RHS do not match.
// TODO: Maybe try to get RHS from sext to catch more cases?
if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
return false;
// Should not overflow.
if (!LHSAddExpr->hasNoSignedWrap())
return false;
auto *LL = LHSAddExpr->getOperand(0);
auto *LR = LHSAddExpr->getOperand(1);
auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
// Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
};
// Try to prove the following rule:
// (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
// (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
return true;
} else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
Value *LL, *LR;
// FIXME: Once we have SDiv implemented, we can get rid of this matching.
using namespace llvm::PatternMatch;
if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
// Rules for division.
// We are going to perform some comparisons with Denominator and its
// derivative expressions. In general case, creating a SCEV for it may
// lead to a complex analysis of the entire graph, and in particular it
// can request trip count recalculation for the same loop. This would
// cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
// this, we only want to create SCEVs that are constants in this section.
// So we bail if Denominator is not a constant.
if (!isa<ConstantInt>(LR))
return false;
auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
// We want to make sure that LHS = FoundLHS / Denominator. If it is so,
// then a SCEV for the numerator already exists and matches with FoundLHS.
auto *Numerator = getExistingSCEV(LL);
if (!Numerator || Numerator->getType() != FoundLHS->getType())
return false;
// Make sure that the numerator matches with FoundLHS and the denominator
// is positive.
if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
return false;
auto *DTy = Denominator->getType();
auto *FRHSTy = FoundRHS->getType();
if (DTy->isPointerTy() != FRHSTy->isPointerTy())
// One of types is a pointer and another one is not. We cannot extend
// them properly to a wider type, so let us just reject this case.
// TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
// to avoid this check.
return false;
// Given that:
// FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
auto *WTy = getWiderType(DTy, FRHSTy);
auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
// Try to prove the following rule:
// (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
// For example, given that FoundLHS > 2. It means that FoundLHS is at
// least 3. If we divide it by Denominator < 4, we will have at least 1.
auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
if (isKnownNonPositive(RHS) &&
IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
return true;
// Try to prove the following rule:
// (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
// For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
// If we divide it by Denominator > 2, then:
// 1. If FoundLHS is negative, then the result is 0.
// 2. If FoundLHS is non-negative, then the result is non-negative.
// Anyways, the result is non-negative.
auto *MinusOne = getNegativeSCEV(getOne(WTy));
auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
if (isKnownNegative(RHS) &&
IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
return true;
}
}
// If our expression contained SCEVUnknown Phis, and we split it down and now
// need to prove something for them, try to prove the predicate for every
// possible incoming values of those Phis.
if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
return true;
return false;
}
static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
// zext x u<= sext x, sext x s<= zext x
switch (Pred) {
case ICmpInst::ICMP_SGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SLE: {
// If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
return true;
break;
}
case ICmpInst::ICMP_UGE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ICmpInst::ICMP_ULE: {
// If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
return true;
break;
}
default:
break;
};
return false;
}
bool
ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS) {
return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
}
bool
ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS) {
switch (Pred) {
default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE:
if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
return true;
break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
return true;
break;
}
// Maybe it can be proved via operations?
if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
return true;
return false;
}
bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
const SCEV *LHS,
const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS) {
if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
// The restriction on `FoundRHS` be lifted easily -- it exists only to
// reduce the compile time impact of this optimization.
return false;
Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
if (!Addend)
return false;
const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
// `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
// antecedent "`FoundLHS` `Pred` `FoundRHS`".
ConstantRange FoundLHSRange =
ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
// Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
// We can also compute the range of values for `LHS` that satisfy the
// consequent, "`LHS` `Pred` `RHS`":
const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
ConstantRange SatisfyingLHSRange =
ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
// The antecedent implies the consequent if every value of `LHS` that
// satisfies the antecedent also satisfies the consequent.
return SatisfyingLHSRange.contains(LHSRange);
}
bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
bool IsSigned, bool NoWrap) {
assert(isKnownPositive(Stride) && "Positive stride expected!");
if (NoWrap) return false;
unsigned BitWidth = getTypeSizeInBits(RHS->getType());
const SCEV *One = getOne(Stride->getType());
if (IsSigned) {
APInt MaxRHS = getSignedRangeMax(RHS);
APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
// SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
}
APInt MaxRHS = getUnsignedRangeMax(RHS);
APInt MaxValue = APInt::getMaxValue(BitWidth);
APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
// UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
}
bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
bool IsSigned, bool NoWrap) {
if (NoWrap) return false;
unsigned BitWidth = getTypeSizeInBits(RHS->getType());
const SCEV *One = getOne(Stride->getType());
if (IsSigned) {
APInt MinRHS = getSignedRangeMin(RHS);
APInt MinValue = APInt::getSignedMinValue(BitWidth);
APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
// SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
}
APInt MinRHS = getUnsignedRangeMin(RHS);
APInt MinValue = APInt::getMinValue(BitWidth);
APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
// UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
}
const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
bool Equality) {
const SCEV *One = getOne(Step->getType());
Delta = Equality ? getAddExpr(Delta, Step)
: getAddExpr(Delta, getMinusSCEV(Step, One));
return getUDivExpr(Delta, Step);
}
const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
const SCEV *Stride,
const SCEV *End,
unsigned BitWidth,
bool IsSigned) {
assert(!isKnownNonPositive(Stride) &&
"Stride is expected strictly positive!");
// Calculate the maximum backedge count based on the range of values
// permitted by Start, End, and Stride.
const SCEV *MaxBECount;
APInt MinStart =
IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
APInt StrideForMaxBECount =
IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
// We already know that the stride is positive, so we paper over conservatism
// in our range computation by forcing StrideForMaxBECount to be at least one.
// In theory this is unnecessary, but we expect MaxBECount to be a
// SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
// is nothing to constant fold it to).
APInt One(BitWidth, 1, IsSigned);
StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
: APInt::getMaxValue(BitWidth);
APInt Limit = MaxValue - (StrideForMaxBECount - 1);
// Although End can be a MAX expression we estimate MaxEnd considering only
// the case End = RHS of the loop termination condition. This is safe because
// in the other case (End - Start) is zero, leading to a zero maximum backedge
// taken count.
APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
: APIntOps::umin(getUnsignedRangeMax(End), Limit);
MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
getConstant(StrideForMaxBECount) /* Step */,
false /* Equality */);
return MaxBECount;
}
ScalarEvolution::ExitLimit
ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool IsSigned,
bool ControlsExit, bool AllowPredicates) {
SmallPtrSet<const SCEVPredicate *, 4> Predicates;
const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
bool PredicatedIV = false;
if (!IV && AllowPredicates) {
// Try to make this an AddRec using runtime tests, in the first X
// iterations of this loop, where X is the SCEV expression found by the
// algorithm below.
IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
PredicatedIV = true;
}
// Avoid weird loops
if (!IV || IV->getLoop() != L || !IV->isAffine())
return getCouldNotCompute();
bool NoWrap = ControlsExit &&
IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
const SCEV *Stride = IV->getStepRecurrence(*this);
bool PositiveStride = isKnownPositive(Stride);
// Avoid negative or zero stride values.
if (!PositiveStride) {
// We can compute the correct backedge taken count for loops with unknown
// strides if we can prove that the loop is not an infinite loop with side
// effects. Here's the loop structure we are trying to handle -
//
// i = start
// do {
// A[i] = i;
// i += s;
// } while (i < end);
//
// The backedge taken count for such loops is evaluated as -
// (max(end, start + stride) - start - 1) /u stride
//
// The additional preconditions that we need to check to prove correctness
// of the above formula is as follows -
//
// a) IV is either nuw or nsw depending upon signedness (indicated by the
// NoWrap flag).
// b) loop is single exit with no side effects.
//
//
// Precondition a) implies that if the stride is negative, this is a single
// trip loop. The backedge taken count formula reduces to zero in this case.
//
// Precondition b) implies that the unknown stride cannot be zero otherwise
// we have UB.
//
// The positive stride case is the same as isKnownPositive(Stride) returning
// true (original behavior of the function).
//
// We want to make sure that the stride is truly unknown as there are edge
// cases where ScalarEvolution propagates no wrap flags to the
// post-increment/decrement IV even though the increment/decrement operation
// itself is wrapping. The computed backedge taken count may be wrong in
// such cases. This is prevented by checking that the stride is not known to
// be either positive or non-positive. For example, no wrap flags are
// propagated to the post-increment IV of this loop with a trip count of 2 -
//
// unsigned char i;
// for(i=127; i<128; i+=129)
// A[i] = i;
//
if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
!loopHasNoSideEffects(L))
return getCouldNotCompute();
} else if (!Stride->isOne() &&
doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
// Avoid proven overflow cases: this will ensure that the backedge taken
// count will not generate any unsigned overflow. Relaxed no-overflow
// conditions exploit NoWrapFlags, allowing to optimize in presence of
// undefined behaviors like the case of C language.
return getCouldNotCompute();
ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT;
const SCEV *Start = IV->getStart();
const SCEV *End = RHS;
// When the RHS is not invariant, we do not know the end bound of the loop and
// cannot calculate the ExactBECount needed by ExitLimit. However, we can
// calculate the MaxBECount, given the start, stride and max value for the end
// bound of the loop (RHS), and the fact that IV does not overflow (which is
// checked above).
if (!isLoopInvariant(RHS, L)) {
const SCEV *MaxBECount = computeMaxBECountForLT(
Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
false /*MaxOrZero*/, Predicates);
}
// If the backedge is taken at least once, then it will be taken
// (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
// is the LHS value of the less-than comparison the first time it is evaluated
// and End is the RHS.
const SCEV *BECountIfBackedgeTaken =
computeBECount(getMinusSCEV(End, Start), Stride, false);
// If the loop entry is guarded by the result of the backedge test of the
// first loop iteration, then we know the backedge will be taken at least
// once and so the backedge taken count is as above. If not then we use the
// expression (max(End,Start)-Start)/Stride to describe the backedge count,
// as if the backedge is taken at least once max(End,Start) is End and so the
// result is as above, and if not max(End,Start) is Start so we get a backedge
// count of zero.
const SCEV *BECount;
if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
BECount = BECountIfBackedgeTaken;
else {
End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
}
const SCEV *MaxBECount;
bool MaxOrZero = false;
if (isa<SCEVConstant>(BECount))
MaxBECount = BECount;
else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
// If we know exactly how many times the backedge will be taken if it's
// taken at least once, then the backedge count will either be that or
// zero.
MaxBECount = BECountIfBackedgeTaken;
MaxOrZero = true;
} else {
MaxBECount = computeMaxBECountForLT(
Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
}
if (isa<SCEVCouldNotCompute>(MaxBECount) &&
!isa<SCEVCouldNotCompute>(BECount))
MaxBECount = getConstant(getUnsignedRangeMax(BECount));
return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
}
ScalarEvolution::ExitLimit
ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool IsSigned,
bool ControlsExit, bool AllowPredicates) {
SmallPtrSet<const SCEVPredicate *, 4> Predicates;
// We handle only IV > Invariant
if (!isLoopInvariant(RHS, L))
return getCouldNotCompute();
const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
if (!IV && AllowPredicates)
// Try to make this an AddRec using runtime tests, in the first X
// iterations of this loop, where X is the SCEV expression found by the
// algorithm below.
IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
// Avoid weird loops
if (!IV || IV->getLoop() != L || !IV->isAffine())
return getCouldNotCompute();
bool NoWrap = ControlsExit &&
IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
// Avoid negative or zero stride values
if (!isKnownPositive(Stride))
return getCouldNotCompute();
// Avoid proven overflow cases: this will ensure that the backedge taken count
// will not generate any unsigned overflow. Relaxed no-overflow conditions
// exploit NoWrapFlags, allowing to optimize in presence of undefined
// behaviors like the case of C language.
if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
return getCouldNotCompute();
ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT;
const SCEV *Start = IV->getStart();
const SCEV *End = RHS;
if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
: getUnsignedRangeMax(Start);
APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
: getUnsignedRangeMin(Stride);
unsigned BitWidth = getTypeSizeInBits(LHS->getType());
APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
: APInt::getMinValue(BitWidth) + (MinStride - 1);
// Although End can be a MIN expression we estimate MinEnd considering only
// the case End = RHS. This is safe because in the other case (Start - End)
// is zero, leading to a zero maximum backedge taken count.
APInt MinEnd =
IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
: APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
? BECount
: computeBECount(getConstant(MaxStart - MinEnd),
getConstant(MinStride), false);
if (isa<SCEVCouldNotCompute>(MaxBECount))
MaxBECount = BECount;
return ExitLimit(BECount, MaxBECount, false, Predicates);
}
const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
ScalarEvolution &SE) const {
if (Range.isFullSet()) // Infinite loop.
return SE.getCouldNotCompute();
// If the start is a non-zero constant, shift the range to simplify things.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
if (!SC->getValue()->isZero()) {
SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Operands[0] = SE.getZero(SC->getType());
const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
getNoWrapFlags(FlagNW));
if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
return ShiftedAddRec->getNumIterationsInRange(
Range.subtract(SC->getAPInt()), SE);
// This is strange and shouldn't happen.
return SE.getCouldNotCompute();
}
// The only time we can solve this is when we have all constant indices.
// Otherwise, we cannot determine the overflow conditions.
if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
return SE.getCouldNotCompute();
// Okay at this point we know that all elements of the chrec are constants and
// that the start element is zero.
// First check to see if the range contains zero. If not, the first
// iteration exits.
unsigned BitWidth = SE.getTypeSizeInBits(getType());
if (!Range.contains(APInt(BitWidth, 0)))
return SE.getZero(getType());
if (isAffine()) {
// If this is an affine expression then we have this situation:
// Solve {0,+,A} in Range === Ax in Range
// We know that zero is in the range. If A is positive then we know that
// the upper value of the range must be the first possible exit value.
// If A is negative then the lower of the range is the last possible loop
// value. Also note that we already checked for a full range.
APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
// The exit value should be (End+A)/A.
APInt ExitVal = (End + A).udiv(A);
ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
// Evaluate at the exit value. If we really did fall out of the valid
// range, then we computed our trip count, otherwise wrap around or other
// things must have happened.
ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
if (Range.contains(Val->getValue()))
return SE.getCouldNotCompute(); // Something strange happened
// Ensure that the previous value is in the range. This is a sanity check.
assert(Range.contains(
EvaluateConstantChrecAtConstant(this,
ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
"Linear scev computation is off in a bad way!");
return SE.getConstant(ExitValue);
}
if (isQuadratic()) {
if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
return SE.getConstant(S.getValue());
}
return SE.getCouldNotCompute();
}
const SCEVAddRecExpr *
SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
assert(getNumOperands() > 1 && "AddRec with zero step?");
// There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
// but in this case we cannot guarantee that the value returned will be an
// AddRec because SCEV does not have a fixed point where it stops
// simplification: it is legal to return ({rec1} + {rec2}). For example, it
// may happen if we reach arithmetic depth limit while simplifying. So we
// construct the returned value explicitly.
SmallVector<const SCEV *, 3> Ops;
// If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
// (this + Step) is {A+B,+,B+C,+...,+,N}.
for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
// We know that the last operand is not a constant zero (otherwise it would
// have been popped out earlier). This guarantees us that if the result has
// the same last operand, then it will also not be popped out, meaning that
// the returned value will be an AddRec.
const SCEV *Last = getOperand(getNumOperands() - 1);
assert(!Last->isZero() && "Recurrency with zero step?");
Ops.push_back(Last);
return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
SCEV::FlagAnyWrap));
}
// Return true when S contains at least an undef value.
static inline bool containsUndefs(const SCEV *S) {
return SCEVExprContains(S, [](const SCEV *S) {
if (const auto *SU = dyn_cast<SCEVUnknown>(S))
return isa<UndefValue>(SU->getValue());
return false;
});
}
namespace {
// Collect all steps of SCEV expressions.
struct SCEVCollectStrides {
ScalarEvolution &SE;
SmallVectorImpl<const SCEV *> &Strides;
SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
: SE(SE), Strides(S) {}
bool follow(const SCEV *S) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
Strides.push_back(AR->getStepRecurrence(SE));
return true;
}
bool isDone() const { return false; }
};
// Collect all SCEVUnknown and SCEVMulExpr expressions.
struct SCEVCollectTerms {
SmallVectorImpl<const SCEV *> &Terms;
SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
bool follow(const SCEV *S) {
if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
isa<SCEVSignExtendExpr>(S)) {
if (!containsUndefs(S))
Terms.push_back(S);
// Stop recursion: once we collected a term, do not walk its operands.
return false;
}
// Keep looking.
return true;
}
bool isDone() const { return false; }
};
// Check if a SCEV contains an AddRecExpr.
struct SCEVHasAddRec {
bool &ContainsAddRec;
SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
ContainsAddRec = false;
}
bool follow(const SCEV *S) {
if (isa<SCEVAddRecExpr>(S)) {
ContainsAddRec = true;
// Stop recursion: once we collected a term, do not walk its operands.
return false;
}
// Keep looking.
return true;
}
bool isDone() const { return false; }
};
// Find factors that are multiplied with an expression that (possibly as a
// subexpression) contains an AddRecExpr. In the expression:
//
// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
//
// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
// parameters as they form a product with an induction variable.
//
// This collector expects all array size parameters to be in the same MulExpr.
// It might be necessary to later add support for collecting parameters that are
// spread over different nested MulExpr.
struct SCEVCollectAddRecMultiplies {
SmallVectorImpl<const SCEV *> &Terms;
ScalarEvolution &SE;
SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
: Terms(T), SE(SE) {}
bool follow(const SCEV *S) {
if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
bool HasAddRec = false;
SmallVector<const SCEV *, 0> Operands;
for (auto Op : Mul->operands()) {
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
if (Unknown && !isa<CallInst>(Unknown->getValue())) {
Operands.push_back(Op);
} else if (Unknown) {
HasAddRec = true;
} else {
bool ContainsAddRec = false;
SCEVHasAddRec ContiansAddRec(ContainsAddRec);
visitAll(Op, ContiansAddRec);
HasAddRec |= ContainsAddRec;
}
}
if (Operands.size() == 0)
return true;
if (!HasAddRec)
return false;
Terms.push_back(SE.getMulExpr(Operands));
// Stop recursion: once we collected a term, do not walk its operands.
return false;
}
// Keep looking.
return true;
}
bool isDone() const { return false; }
};
} // end anonymous namespace
/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
/// two places:
/// 1) The strides of AddRec expressions.
/// 2) Unknowns that are multiplied with AddRec expressions.
void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Terms) {
SmallVector<const SCEV *, 4> Strides;
SCEVCollectStrides StrideCollector(*this, Strides);
visitAll(Expr, StrideCollector);
LLVM_DEBUG({
dbgs() << "Strides:\n";
for (const SCEV *S : Strides)
dbgs() << *S << "\n";
});
for (const SCEV *S : Strides) {
SCEVCollectTerms TermCollector(Terms);
visitAll(S, TermCollector);
}
LLVM_DEBUG({
dbgs() << "Terms:\n";
for (const SCEV *T : Terms)
dbgs() << *T << "\n";
});
SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
visitAll(Expr, MulCollector);
}
static bool findArrayDimensionsRec(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes) {
int Last = Terms.size() - 1;
const SCEV *Step = Terms[Last];
// End of recursion.
if (Last == 0) {
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
SmallVector<const SCEV *, 2> Qs;
for (const SCEV *Op : M->operands())
if (!isa<SCEVConstant>(Op))
Qs.push_back(Op);
Step = SE.getMulExpr(Qs);
}
Sizes.push_back(Step);
return true;
}
for (const SCEV *&Term : Terms) {
// Normalize the terms before the next call to findArrayDimensionsRec.
const SCEV *Q, *R;
SCEVDivision::divide(SE, Term, Step, &Q, &R);
// Bail out when GCD does not evenly divide one of the terms.
if (!R->isZero())
return false;
Term = Q;
}
// Remove all SCEVConstants.
Terms.erase(
remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
Terms.end());
if (Terms.size() > 0)
if (!findArrayDimensionsRec(SE, Terms, Sizes))
return false;
Sizes.push_back(Step);
return true;
}
// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
for (const SCEV *T : Terms)
if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
return true;
return false;
}
// Return the number of product terms in S.
static inline int numberOfTerms(const SCEV *S) {
if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
return Expr->getNumOperands();
return 1;
}
static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
if (isa<SCEVConstant>(T))
return nullptr;
if (isa<SCEVUnknown>(T))
return T;
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
SmallVector<const SCEV *, 2> Factors;
for (const SCEV *Op : M->operands())
if (!isa<SCEVConstant>(Op))
Factors.push_back(Op);
return SE.getMulExpr(Factors);
}
return T;
}
/// Return the size of an element read or written by Inst.
const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
Type *Ty;
if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
Ty = Store->getValueOperand()->getType();
else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Ty = Load->getType();
else
return nullptr;
Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
return getSizeOfExpr(ETy, Ty);
}
void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) {
if (Terms.size() < 1 || !ElementSize)
return;
// Early return when Terms do not contain parameters: we do not delinearize
// non parametric SCEVs.
if (!containsParameters(Terms))
return;
LLVM_DEBUG({
dbgs() << "Terms:\n";
for (const SCEV *T : Terms)
dbgs() << *T << "\n";
});
// Remove duplicates.
array_pod_sort(Terms.begin(), Terms.end());
Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
// Put larger terms first.
llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
return numberOfTerms(LHS) > numberOfTerms(RHS);
});
// Try to divide all terms by the element size. If term is not divisible by
// element size, proceed with the original term.
for (const SCEV *&Term : Terms) {
const SCEV *Q, *R;
SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
if (!Q->isZero())
Term = Q;
}
SmallVector<const SCEV *, 4> NewTerms;
// Remove constant factors.
for (const SCEV *T : Terms)
if (const SCEV *NewT = removeConstantFactors(*this, T))
NewTerms.push_back(NewT);
LLVM_DEBUG({
dbgs() << "Terms after sorting:\n";
for (const SCEV *T : NewTerms)
dbgs() << *T << "\n";
});
if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
Sizes.clear();
return;
}
// The last element to be pushed into Sizes is the size of an element.
Sizes.push_back(ElementSize);
LLVM_DEBUG({
dbgs() << "Sizes:\n";
for (const SCEV *S : Sizes)
dbgs() << *S << "\n";
});
}
void ScalarEvolution::computeAccessFunctions(
const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes) {
// Early exit in case this SCEV is not an affine multivariate function.
if (Sizes.empty())
return;
if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
if (!AR->isAffine())
return;
const SCEV *Res = Expr;
int Last = Sizes.size() - 1;
for (int i = Last; i >= 0; i--) {
const SCEV *Q, *R;
SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
LLVM_DEBUG({
dbgs() << "Res: " << *Res << "\n";
dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
dbgs() << "Res divided by Sizes[i]:\n";
dbgs() << "Quotient: " << *Q << "\n";
dbgs() << "Remainder: " << *R << "\n";
});
Res = Q;
// Do not record the last subscript corresponding to the size of elements in
// the array.
if (i == Last) {
// Bail out if the remainder is too complex.
if (isa<SCEVAddRecExpr>(R)) {
Subscripts.clear();
Sizes.clear();
return;
}
continue;
}
// Record the access function for the current subscript.
Subscripts.push_back(R);
}
// Also push in last position the remainder of the last division: it will be
// the access function of the innermost dimension.
Subscripts.push_back(Res);
std::reverse(Subscripts.begin(), Subscripts.end());
LLVM_DEBUG({
dbgs() << "Subscripts:\n";
for (const SCEV *S : Subscripts)
dbgs() << *S << "\n";
});
}
/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
/// sizes of an array access. Returns the remainder of the delinearization that
/// is the offset start of the array. The SCEV->delinearize algorithm computes
/// the multiples of SCEV coefficients: that is a pattern matching of sub
/// expressions in the stride and base of a SCEV corresponding to the
/// computation of a GCD (greatest common divisor) of base and stride. When
/// SCEV->delinearize fails, it returns the SCEV unchanged.
///
/// For example: when analyzing the memory access A[i][j][k] in this loop nest
///
/// void foo(long n, long m, long o, double A[n][m][o]) {
///
/// for (long i = 0; i < n; i++)
/// for (long j = 0; j < m; j++)
/// for (long k = 0; k < o; k++)
/// A[i][j][k] = 1.0;
/// }
///
/// the delinearization input is the following AddRec SCEV:
///
/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
///
/// From this SCEV, we are able to say that the base offset of the access is %A
/// because it appears as an offset that does not divide any of the strides in
/// the loops:
///
/// CHECK: Base offset: %A
///
/// and then SCEV->delinearize determines the size of some of the dimensions of
/// the array as these are the multiples by which the strides are happening:
///
/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
///
/// Note that the outermost dimension remains of UnknownSize because there are
/// no strides that would help identifying the size of the last dimension: when
/// the array has been statically allocated, one could compute the size of that
/// dimension by dividing the overall size of the array by the size of the known
/// dimensions: %m * %o * 8.
///
/// Finally delinearize provides the access functions for the array reference
/// that does correspond to A[i][j][k] of the above C testcase:
///
/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
///
/// The testcases are checking the output of a function pass:
/// DelinearizationPass that walks through all loads and stores of a function
/// asking for the SCEV of the memory access with respect to all enclosing
/// loops, calling SCEV->delinearize on that and printing the results.
void ScalarEvolution::delinearize(const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) {
// First step: collect parametric terms.
SmallVector<const SCEV *, 4> Terms;
collectParametricTerms(Expr, Terms);
if (Terms.empty())
return;
// Second step: find subscript sizes.
findArrayDimensions(Terms, Sizes, ElementSize);
if (Sizes.empty())
return;
// Third step: compute the access functions for each subscript.
computeAccessFunctions(Expr, Subscripts, Sizes);
if (Subscripts.empty())
return;
LLVM_DEBUG({
dbgs() << "succeeded to delinearize " << *Expr << "\n";
dbgs() << "ArrayDecl[UnknownSize]";
for (const SCEV *S : Sizes)
dbgs() << "[" << *S << "]";
dbgs() << "\nArrayRef";
for (const SCEV *S : Subscripts)
dbgs() << "[" << *S << "]";
dbgs() << "\n";
});
}
//===----------------------------------------------------------------------===//
// SCEVCallbackVH Class Implementation
//===----------------------------------------------------------------------===//
void ScalarEvolution::SCEVCallbackVH::deleted() {
assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
SE->ConstantEvolutionLoopExitValue.erase(PN);
SE->eraseValueFromMap(getValPtr());
// this now dangles!
}
void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
// Forget all the expressions associated with users of the old value,
// so that future queries will recompute the expressions using the new
// value.
Value *Old = getValPtr();
SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
SmallPtrSet<User *, 8> Visited;
while (!Worklist.empty()) {
User *U = Worklist.pop_back_val();
// Deleting the Old value will cause this to dangle. Postpone
// that until everything else is done.
if (U == Old)
continue;
if (!Visited.insert(U).second)
continue;
if (PHINode *PN = dyn_cast<PHINode>(U))
SE->ConstantEvolutionLoopExitValue.erase(PN);
SE->eraseValueFromMap(U);
Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
}
// Delete the Old value.
if (PHINode *PN = dyn_cast<PHINode>(Old))
SE->ConstantEvolutionLoopExitValue.erase(PN);
SE->eraseValueFromMap(Old);
// this now dangles!
}
ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
: CallbackVH(V), SE(se) {}
//===----------------------------------------------------------------------===//
// ScalarEvolution Class Implementation
//===----------------------------------------------------------------------===//
ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
AssumptionCache &AC, DominatorTree &DT,
LoopInfo &LI)
: F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
LoopDispositions(64), BlockDispositions(64) {
// To use guards for proving predicates, we need to scan every instruction in
// relevant basic blocks, and not just terminators. Doing this is a waste of
// time if the IR does not actually contain any calls to
// @llvm.experimental.guard, so do a quick check and remember this beforehand.
//
// This pessimizes the case where a pass that preserves ScalarEvolution wants
// to _add_ guards to the module when there weren't any before, and wants
// ScalarEvolution to optimize based on those guards. For now we prefer to be
// efficient in lieu of being smart in that rather obscure case.
auto *GuardDecl = F.getParent()->getFunction(
Intrinsic::getName(Intrinsic::experimental_guard));
HasGuards = GuardDecl && !GuardDecl->use_empty();
}
ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
: F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
ValueExprMap(std::move(Arg.ValueExprMap)),
PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
PendingMerges(std::move(Arg.PendingMerges)),
MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
PredicatedBackedgeTakenCounts(
std::move(Arg.PredicatedBackedgeTakenCounts)),
ConstantEvolutionLoopExitValue(
std::move(Arg.ConstantEvolutionLoopExitValue)),
ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
LoopDispositions(std::move(Arg.LoopDispositions)),
LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
BlockDispositions(std::move(Arg.BlockDispositions)),
UnsignedRanges(std::move(Arg.UnsignedRanges)),
SignedRanges(std::move(Arg.SignedRanges)),
UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
UniquePreds(std::move(Arg.UniquePreds)),
SCEVAllocator(std::move(Arg.SCEVAllocator)),
LoopUsers(std::move(Arg.LoopUsers)),
PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
FirstUnknown(Arg.FirstUnknown) {
Arg.FirstUnknown = nullptr;
}
ScalarEvolution::~ScalarEvolution() {
// Iterate through all the SCEVUnknown instances and call their
// destructors, so that they release their references to their values.
for (SCEVUnknown *U = FirstUnknown; U;) {
SCEVUnknown *Tmp = U;
U = U->Next;
Tmp->~SCEVUnknown();
}
FirstUnknown = nullptr;
ExprValueMap.clear();
ValueExprMap.clear();
HasRecMap.clear();
// Free any extra memory created for ExitNotTakenInfo in the unlikely event
// that a loop had multiple computable exits.
for (auto &BTCI : BackedgeTakenCounts)
BTCI.second.clear();
for (auto &BTCI : PredicatedBackedgeTakenCounts)
BTCI.second.clear();
assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
assert(PendingPhiRanges.empty() && "getRangeRef garbage");
assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
}
bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
}
static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
const Loop *L) {
// Print all inner loops first
for (Loop *I : *L)
PrintLoopInfo(OS, SE, I);
OS << "Loop ";
L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": ";
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
if (ExitingBlocks.size() != 1)
OS << "<multiple exits> ";
if (SE->hasLoopInvariantBackedgeTakenCount(L))
OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
else
OS << "Unpredictable backedge-taken count.\n";
if (ExitingBlocks.size() > 1)
for (BasicBlock *ExitingBlock : ExitingBlocks) {
OS << " exit count for " << ExitingBlock->getName() << ": "
<< *SE->getExitCount(L, ExitingBlock) << "\n";
}
OS << "Loop ";
L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": ";
if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
if (SE->isBackedgeTakenCountMaxOrZero(L))
OS << ", actual taken count either this or zero.";
} else {
OS << "Unpredictable max backedge-taken count. ";
}
OS << "\n"
"Loop ";
L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": ";
SCEVUnionPredicate Pred;
auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
if (!isa<SCEVCouldNotCompute>(PBT)) {
OS << "Predicated backedge-taken count is " << *PBT << "\n";
OS << " Predicates:\n";
Pred.print(OS, 4);
} else {
OS << "Unpredictable predicated backedge-taken count. ";
}
OS << "\n";
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
OS << "Loop ";
L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": ";
OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
}
}
static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
switch (LD) {
case ScalarEvolution::LoopVariant:
return "Variant";
case ScalarEvolution::LoopInvariant:
return "Invariant";
case ScalarEvolution::LoopComputable:
return "Computable";
}
llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
}
void ScalarEvolution::print(raw_ostream &OS) const {
// ScalarEvolution's implementation of the print method is to print
// out SCEV values of all instructions that are interesting. Doing
// this potentially causes it to create new SCEV objects though,
// which technically conflicts with the const qualifier. This isn't
// observable from outside the class though, so casting away the
// const isn't dangerous.
ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
if (ClassifyExpressions) {
OS << "Classifying expressions for: ";
F.printAsOperand(OS, /*PrintType=*/false);
OS << "\n";
for (Instruction &I : instructions(F))
if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
OS << I << '\n';
OS << " --> ";
const SCEV *SV = SE.getSCEV(&I);
SV->print(OS);
if (!isa<SCEVCouldNotCompute>(SV)) {
OS << " U: ";
SE.getUnsignedRange(SV).print(OS);
OS << " S: ";
SE.getSignedRange(SV).print(OS);
}
const Loop *L = LI.getLoopFor(I.getParent());
const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
if (AtUse != SV) {
OS << " --> ";
AtUse->print(OS);
if (!isa<SCEVCouldNotCompute>(AtUse)) {
OS << " U: ";
SE.getUnsignedRange(AtUse).print(OS);
OS << " S: ";
SE.getSignedRange(AtUse).print(OS);
}
}
if (L) {
OS << "\t\t" "Exits: ";
const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
if (!SE.isLoopInvariant(ExitValue, L)) {
OS << "<<Unknown>>";
} else {
OS << *ExitValue;
}
bool First = true;
for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
if (First) {
OS << "\t\t" "LoopDispositions: { ";
First = false;
} else {
OS << ", ";
}
Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
}
for (auto *InnerL : depth_first(L)) {
if (InnerL == L)
continue;
if (First) {
OS << "\t\t" "LoopDispositions: { ";
First = false;
} else {
OS << ", ";
}
InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
}
OS << " }";
}
OS << "\n";
}
}
OS << "Determining loop execution counts for: ";
F.printAsOperand(OS, /*PrintType=*/false);
OS << "\n";
for (Loop *I : LI)
PrintLoopInfo(OS, &SE, I);
}
ScalarEvolution::LoopDisposition
ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
auto &Values = LoopDispositions[S];
for (auto &V : Values) {
if (V.getPointer() == L)
return V.getInt();
}
Values.emplace_back(L, LoopVariant);
LoopDisposition D = computeLoopDisposition(S, L);
auto &Values2 = LoopDispositions[S];
for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
if (V.getPointer() == L) {
V.setInt(D);
break;
}
}
return D;
}
ScalarEvolution::LoopDisposition
ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
switch (static_cast<SCEVTypes>(S->getSCEVType())) {
case scConstant:
return LoopInvariant;
case scTruncate:
case scZeroExtend:
case scSignExtend:
return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
case scAddRecExpr: {
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
// If L is the addrec's loop, it's computable.
if (AR->getLoop() == L)
return LoopComputable;
// Add recurrences are never invariant in the function-body (null loop).
if (!L)
return LoopVariant;
// Everything that is not defined at loop entry is variant.
if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
return LoopVariant;
assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
" dominate the contained loop's header?");
// This recurrence is invariant w.r.t. L if AR's loop contains L.
if (AR->getLoop()->contains(L))
return LoopInvariant;
// This recurrence is variant w.r.t. L if any of its operands
// are variant.
for (auto *Op : AR->operands())
if (!isLoopInvariant(Op, L))
return LoopVariant;
// Otherwise it's loop-invariant.
return LoopInvariant;
}
case scAddExpr:
case scMulExpr:
case scUMaxExpr:
case scSMaxExpr:
case scUMinExpr:
case scSMinExpr: {
bool HasVarying = false;
for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
LoopDisposition D = getLoopDisposition(Op, L);
if (D == LoopVariant)
return LoopVariant;
if (D == LoopComputable)
HasVarying = true;
}
return HasVarying ? LoopComputable : LoopInvariant;
}
case scUDivExpr: {
const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
if (LD == LoopVariant)
return LoopVariant;
LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
if (RD == LoopVariant)
return LoopVariant;
return (LD == LoopInvariant && RD == LoopInvariant) ?
LoopInvariant : LoopComputable;
}
case scUnknown:
// All non-instruction values are loop invariant. All instructions are loop
// invariant if they are not contained in the specified loop.
// Instructions are never considered invariant in the function body
// (null loop) because they are defined within the "loop".
if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
return LoopInvariant;
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
}
llvm_unreachable("Unknown SCEV kind!");
}
bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
return getLoopDisposition(S, L) == LoopInvariant;
}
bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
return getLoopDisposition(S, L) == LoopComputable;
}
ScalarEvolution::BlockDisposition
ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
auto &Values = BlockDispositions[S];
for (auto &V : Values) {
if (V.getPointer() == BB)
return V.getInt();
}
Values.emplace_back(BB, DoesNotDominateBlock);
BlockDisposition D = computeBlockDisposition(S, BB);
auto &Values2 = BlockDispositions[S];
for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
if (V.getPointer() == BB) {
V.setInt(D);
break;
}
}
return D;
}
ScalarEvolution::BlockDisposition
ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
switch (static_cast<SCEVTypes>(S->getSCEVType())) {
case scConstant:
return ProperlyDominatesBlock;
case scTruncate:
case scZeroExtend:
case scSignExtend:
return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
case scAddRecExpr: {
// This uses a "dominates" query instead of "properly dominates" query
// to test for proper dominance too, because the instruction which
// produces the addrec's value is a PHI, and a PHI effectively properly
// dominates its entire containing block.
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
if (!DT.dominates(AR->getLoop()->getHeader(), BB))
return DoesNotDominateBlock;
// Fall through into SCEVNAryExpr handling.
LLVM_FALLTHROUGH;
}
case scAddExpr:
case scMulExpr:
case scUMaxExpr:
case scSMaxExpr:
case scUMinExpr:
case scSMinExpr: {
const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
bool Proper = true;
for (const SCEV *NAryOp : NAry->operands()) {
BlockDisposition D = getBlockDisposition(NAryOp, BB);
if (D == DoesNotDominateBlock)
return DoesNotDominateBlock;
if (D == DominatesBlock)
Proper = false;
}
return Proper ? ProperlyDominatesBlock : DominatesBlock;
}
case scUDivExpr: {
const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
BlockDisposition LD = getBlockDisposition(LHS, BB);
if (LD == DoesNotDominateBlock)
return DoesNotDominateBlock;
BlockDisposition RD = getBlockDisposition(RHS, BB);
if (RD == DoesNotDominateBlock)
return DoesNotDominateBlock;
return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
ProperlyDominatesBlock : DominatesBlock;
}
case scUnknown:
if (Instruction *I =
dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
if (I->getParent() == BB)
return DominatesBlock;
if (DT.properlyDominates(I->getParent(), BB))
return ProperlyDominatesBlock;
return DoesNotDominateBlock;
}
return ProperlyDominatesBlock;
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
}
llvm_unreachable("Unknown SCEV kind!");
}
bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
return getBlockDisposition(S, BB) >= DominatesBlock;
}
bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
}
bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
}
bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
auto IsS = [&](const SCEV *X) { return S == X; };
auto ContainsS = [&](const SCEV *X) {
return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
};
return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
}
void
ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
ValuesAtScopes.erase(S);
LoopDispositions.erase(S);
BlockDispositions.erase(S);
UnsignedRanges.erase(S);
SignedRanges.erase(S);
ExprValueMap.erase(S);
HasRecMap.erase(S);
MinTrailingZerosCache.erase(S);
for (auto I = PredicatedSCEVRewrites.begin();
I != PredicatedSCEVRewrites.end();) {
std::pair<const SCEV *, const Loop *> Entry = I->first;
if (Entry.first == S)
PredicatedSCEVRewrites.erase(I++);
else
++I;
}
auto RemoveSCEVFromBackedgeMap =
[S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
for (auto I = Map.begin(), E = Map.end(); I != E;) {
BackedgeTakenInfo &BEInfo = I->second;
if (BEInfo.hasOperand(S, this)) {
BEInfo.clear();
Map.erase(I++);
} else
++I;
}
};
RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
}
void
ScalarEvolution::getUsedLoops(const SCEV *S,
SmallPtrSetImpl<const Loop *> &LoopsUsed) {
struct FindUsedLoops {
FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
: LoopsUsed(LoopsUsed) {}
SmallPtrSetImpl<const Loop *> &LoopsUsed;
bool follow(const SCEV *S) {
if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
LoopsUsed.insert(AR->getLoop());
return true;
}
bool isDone() const { return false; }
};
FindUsedLoops F(LoopsUsed);
SCEVTraversal<FindUsedLoops>(F).visitAll(S);
}
void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
SmallPtrSet<const Loop *, 8> LoopsUsed;
getUsedLoops(S, LoopsUsed);
for (auto *L : LoopsUsed)
LoopUsers[L].push_back(S);
}
void ScalarEvolution::verify() const {
ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
ScalarEvolution SE2(F, TLI, AC, DT, LI);
SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
// Map's SCEV expressions from one ScalarEvolution "universe" to another.
struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
const SCEV *visitConstant(const SCEVConstant *Constant) {
return SE.getConstant(Constant->getAPInt());
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
return SE.getUnknown(Expr->getValue());
}
const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
return SE.getCouldNotCompute();
}
};
SCEVMapper SCM(SE2);
while (!LoopStack.empty()) {
auto *L = LoopStack.pop_back_val();
LoopStack.insert(LoopStack.end(), L->begin(), L->end());
auto *CurBECount = SCM.visit(
const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
auto *NewBECount = SE2.getBackedgeTakenCount(L);
if (CurBECount == SE2.getCouldNotCompute() ||
NewBECount == SE2.getCouldNotCompute()) {
// NB! This situation is legal, but is very suspicious -- whatever pass
// change the loop to make a trip count go from could not compute to
// computable or vice-versa *should have* invalidated SCEV. However, we
// choose not to assert here (for now) since we don't want false
// positives.
continue;
}
if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
// SCEV treats "undef" as an unknown but consistent value (i.e. it does
// not propagate undef aggressively). This means we can (and do) fail
// verification in cases where a transform makes the trip count of a loop
// go from "undef" to "undef+1" (say). The transform is fine, since in
// both cases the loop iterates "undef" times, but SCEV thinks we
// increased the trip count of the loop by 1 incorrectly.
continue;
}
if (SE.getTypeSizeInBits(CurBECount->getType()) >
SE.getTypeSizeInBits(NewBECount->getType()))
NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
else if (SE.getTypeSizeInBits(CurBECount->getType()) <
SE.getTypeSizeInBits(NewBECount->getType()))
CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
// Unless VerifySCEVStrict is set, we only compare constant deltas.
if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
dbgs() << "Trip Count for " << *L << " Changed!\n";
dbgs() << "Old: " << *CurBECount << "\n";
dbgs() << "New: " << *NewBECount << "\n";
dbgs() << "Delta: " << *Delta << "\n";
std::abort();
}
}
}
bool ScalarEvolution::invalidate(
Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
// Invalidate the ScalarEvolution object whenever it isn't preserved or one
// of its dependencies is invalidated.
auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
Inv.invalidate<AssumptionAnalysis>(F, PA) ||
Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
Inv.invalidate<LoopAnalysis>(F, PA);
}
AnalysisKey ScalarEvolutionAnalysis::Key;
ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
FunctionAnalysisManager &AM) {
return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
AM.getResult<AssumptionAnalysis>(F),
AM.getResult<DominatorTreeAnalysis>(F),
AM.getResult<LoopAnalysis>(F));
}
PreservedAnalyses
ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
AM.getResult<ScalarEvolutionAnalysis>(F).verify();
return PreservedAnalyses::all();
}
PreservedAnalyses
ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}
INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
"Scalar Evolution Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
"Scalar Evolution Analysis", false, true)
char ScalarEvolutionWrapperPass::ID = 0;
ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
SE.reset(new ScalarEvolution(
F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
return false;
}
void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
SE->print(OS);
}
void ScalarEvolutionWrapperPass::verifyAnalysis() const {
if (!VerifySCEV)
return;
SE->verify();
}
void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AssumptionCacheTracker>();
AU.addRequiredTransitive<LoopInfoWrapperPass>();
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
}
const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
const SCEV *RHS) {
FoldingSetNodeID ID;
assert(LHS->getType() == RHS->getType() &&
"Type mismatch between LHS and RHS");
// Unique this node based on the arguments
ID.AddInteger(SCEVPredicate::P_Equal);
ID.AddPointer(LHS);
ID.AddPointer(RHS);
void *IP = nullptr;
if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
return S;
SCEVEqualPredicate *Eq = new (SCEVAllocator)
SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
UniquePreds.InsertNode(Eq, IP);
return Eq;
}
const SCEVPredicate *ScalarEvolution::getWrapPredicate(
const SCEVAddRecExpr *AR,
SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
FoldingSetNodeID ID;
// Unique this node based on the arguments
ID.AddInteger(SCEVPredicate::P_Wrap);
ID.AddPointer(AR);
ID.AddInteger(AddedFlags);
void *IP = nullptr;
if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
return S;
auto *OF = new (SCEVAllocator)
SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
UniquePreds.InsertNode(OF, IP);
return OF;
}
namespace {
class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
public:
/// Rewrites \p S in the context of a loop L and the SCEV predication
/// infrastructure.
///
/// If \p Pred is non-null, the SCEV expression is rewritten to respect the
/// equivalences present in \p Pred.
///
/// If \p NewPreds is non-null, rewrite is free to add further predicates to
/// \p NewPreds such that the result will be an AddRecExpr.
static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
SCEVUnionPredicate *Pred) {
SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
return Rewriter.visit(S);
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
if (Pred) {
auto ExprPreds = Pred->getPredicatesForExpr(Expr);
for (auto *Pred : ExprPreds)
if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
if (IPred->getLHS() == Expr)
return IPred->getRHS();
}
return convertToAddRecWithPreds(Expr);
}
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
if (AR && AR->getLoop() == L && AR->isAffine()) {
// This couldn't be folded because the operand didn't have the nuw
// flag. Add the nusw flag as an assumption that we could make.
const SCEV *Step = AR->getStepRecurrence(SE);
Type *Ty = Expr->getType();
if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
SE.getSignExtendExpr(Step, Ty), L,
AR->getNoWrapFlags());
}
return SE.getZeroExtendExpr(Operand, Expr->getType());
}
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
if (AR && AR->getLoop() == L && AR->isAffine()) {
// This couldn't be folded because the operand didn't have the nsw
// flag. Add the nssw flag as an assumption that we could make.
const SCEV *Step = AR->getStepRecurrence(SE);
Type *Ty = Expr->getType();
if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
SE.getSignExtendExpr(Step, Ty), L,
AR->getNoWrapFlags());
}
return SE.getSignExtendExpr(Operand, Expr->getType());
}
private:
explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
SCEVUnionPredicate *Pred)
: SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
bool addOverflowAssumption(const SCEVPredicate *P) {
if (!NewPreds) {
// Check if we've already made this assumption.
return Pred && Pred->implies(P);
}
NewPreds->insert(P);
return true;
}
bool addOverflowAssumption(const SCEVAddRecExpr *AR,
SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
auto *A = SE.getWrapPredicate(AR, AddedFlags);
return addOverflowAssumption(A);
}
// If \p Expr represents a PHINode, we try to see if it can be represented
// as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
// to add this predicate as a runtime overflow check, we return the AddRec.
// If \p Expr does not meet these conditions (is not a PHI node, or we
// couldn't create an AddRec for it, or couldn't add the predicate), we just
// return \p Expr.
const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
if (!isa<PHINode>(Expr->getValue()))
return Expr;
Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
if (!PredicatedRewrite)
return Expr;
for (auto *P : PredicatedRewrite->second){
// Wrap predicates from outer loops are not supported.
if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
if (L != AR->getLoop())
return Expr;
}
if (!addOverflowAssumption(P))
return Expr;
}
return PredicatedRewrite->first;
}
SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
SCEVUnionPredicate *Pred;
const Loop *L;
};
} // end anonymous namespace
const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
SCEVUnionPredicate &Preds) {
return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
}
const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
const SCEV *S, const Loop *L,
SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
if (!AddRec)
return nullptr;
// Since the transformation was successful, we can now transfer the SCEV
// predicates.
for (auto *P : TransformPreds)
Preds.insert(P);
return AddRec;
}
/// SCEV predicates
SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
SCEVPredicateKind Kind)
: FastID(ID), Kind(Kind) {}
SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
const SCEV *LHS, const SCEV *RHS)
: SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
assert(LHS != RHS && "LHS and RHS are the same SCEV");
}
bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
if (!Op)
return false;
return Op->LHS == LHS && Op->RHS == RHS;
}
bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
}
SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
const SCEVAddRecExpr *AR,
IncrementWrapFlags Flags)
: SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
}
bool SCEVWrapPredicate::isAlwaysTrue() const {
SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
IncrementWrapFlags IFlags = Flags;
if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
IFlags = clearFlags(IFlags, IncrementNSSW);
return IFlags == IncrementAnyWrap;
}
void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
OS.indent(Depth) << *getExpr() << " Added Flags: ";
if (SCEVWrapPredicate::IncrementNUSW & getFlags())
OS << "<nusw>";
if (SCEVWrapPredicate::IncrementNSSW & getFlags())
OS << "<nssw>";
OS << "\n";
}
SCEVWrapPredicate::IncrementWrapFlags
SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
ScalarEvolution &SE) {
IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
// We can safely transfer the NSW flag as NSSW.
if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
ImpliedFlags = IncrementNSSW;
if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
// If the increment is positive, the SCEV NUW flag will also imply the
// WrapPredicate NUSW flag.
if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
if (Step->getValue()->getValue().isNonNegative())
ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
}
return ImpliedFlags;
}
/// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate::SCEVUnionPredicate()
: SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
bool SCEVUnionPredicate::isAlwaysTrue() const {
return all_of(Preds,
[](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
}
ArrayRef<const SCEVPredicate *>
SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
auto I = SCEVToPreds.find(Expr);
if (I == SCEVToPreds.end())
return ArrayRef<const SCEVPredicate *>();
return I->second;
}
bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
return all_of(Set->Preds,
[this](const SCEVPredicate *I) { return this->implies(I); });
auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
if (ScevPredsIt == SCEVToPreds.end())
return false;
auto &SCEVPreds = ScevPredsIt->second;
return any_of(SCEVPreds,
[N](const SCEVPredicate *I) { return I->implies(N); });
}
const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
for (auto Pred : Preds)
Pred->print(OS, Depth);
}
void SCEVUnionPredicate::add(const SCEVPredicate *N) {
if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
for (auto Pred : Set->Preds)
add(Pred);
return;
}
if (implies(N))
return;
const SCEV *Key = N->getExpr();
assert(Key && "Only SCEVUnionPredicate doesn't have an "
" associated expression!");
SCEVToPreds[Key].push_back(N);
Preds.push_back(N);
}
PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
Loop &L)
: SE(SE), L(L) {}
const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
const SCEV *Expr = SE.getSCEV(V);
RewriteEntry &Entry = RewriteMap[Expr];
// If we already have an entry and the version matches, return it.
if (Entry.second && Generation == Entry.first)
return Entry.second;
// We found an entry but it's stale. Rewrite the stale entry
// according to the current predicate.
if (Entry.second)
Expr = Entry.second;
const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
Entry = {Generation, NewSCEV};
return NewSCEV;
}
const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
if (!BackedgeCount) {
SCEVUnionPredicate BackedgePred;
BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
addPredicate(BackedgePred);
}
return BackedgeCount;
}
void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
if (Preds.implies(&Pred))
return;
Preds.add(&Pred);
updateGeneration();
}
const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
return Preds;
}
void PredicatedScalarEvolution::updateGeneration() {
// If the generation number wrapped recompute everything.
if (++Generation == 0) {
for (auto &II : RewriteMap) {
const SCEV *Rewritten = II.second.second;
II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
}
}
}
void PredicatedScalarEvolution::setNoOverflow(
Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
const SCEV *Expr = getSCEV(V);
const auto *AR = cast<SCEVAddRecExpr>(Expr);
auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
// Clear the statically implied flags.
Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
addPredicate(*SE.getWrapPredicate(AR, Flags));
auto II = FlagsMap.insert({V, Flags});
if (!II.second)
II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
}
bool PredicatedScalarEvolution::hasNoOverflow(
Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
const SCEV *Expr = getSCEV(V);
const auto *AR = cast<SCEVAddRecExpr>(Expr);
Flags = SCEVWrapPredicate::clearFlags(
Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
auto II = FlagsMap.find(V);
if (II != FlagsMap.end())
Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
return Flags == SCEVWrapPredicate::IncrementAnyWrap;
}
const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
const SCEV *Expr = this->getSCEV(V);
SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
if (!New)
return nullptr;
for (auto *P : NewPreds)
Preds.add(P);
updateGeneration();
RewriteMap[SE.getSCEV(V)] = {Generation, New};
return New;
}
PredicatedScalarEvolution::PredicatedScalarEvolution(
const PredicatedScalarEvolution &Init)
: RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
for (auto I : Init.FlagsMap)
FlagsMap.insert(I);
}
void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
// For each block.
for (auto *BB : L.getBlocks())
for (auto &I : *BB) {
if (!SE.isSCEVable(I.getType()))
continue;
auto *Expr = SE.getSCEV(&I);
auto II = RewriteMap.find(Expr);
if (II == RewriteMap.end())
continue;
// Don't print things that are not interesting.
if (II->second.second == Expr)
continue;
OS.indent(Depth) << "[PSE]" << I << ":\n";
OS.indent(Depth + 2) << *Expr << "\n";
OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
}
}
// Match the mathematical pattern A - (A / B) * B, where A and B can be
// arbitrary expressions.
// It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
// 4, A / B becomes X / 8).
bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
const SCEV *&RHS) {
const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
if (Add == nullptr || Add->getNumOperands() != 2)
return false;
const SCEV *A = Add->getOperand(1);
const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
if (Mul == nullptr)
return false;
const auto MatchURemWithDivisor = [&](const SCEV *B) {
// (SomeExpr + (-(SomeExpr / B) * B)).
if (Expr == getURemExpr(A, B)) {
LHS = A;
RHS = B;
return true;
}
return false;
};
// (SomeExpr + (-1 * (SomeExpr / B) * B)).
if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
return MatchURemWithDivisor(Mul->getOperand(1)) ||
MatchURemWithDivisor(Mul->getOperand(2));
// (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
if (Mul->getNumOperands() == 2)
return MatchURemWithDivisor(Mul->getOperand(1)) ||
MatchURemWithDivisor(Mul->getOperand(0)) ||
MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
return false;
}