ExtractVariable.cpp 18.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
//===--- ExtractVariable.cpp ------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Logger.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "Selection.h"
#include "SourceCode.h"
#include "refactor/Tweak.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Tooling/Core/Replacement.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"

namespace clang {
namespace clangd {
namespace {
// information regarding the Expr that is being extracted
class ExtractionContext {
public:
  ExtractionContext(const SelectionTree::Node *Node, const SourceManager &SM,
                    const ASTContext &Ctx);
  const clang::Expr *getExpr() const { return Expr; }
  const SelectionTree::Node *getExprNode() const { return ExprNode; }
  bool isExtractable() const { return Extractable; }
  // The half-open range for the expression to be extracted.
  SourceRange getExtractionChars() const;
  // Generate Replacement for replacing selected expression with given VarName
  tooling::Replacement replaceWithVar(SourceRange Chars,
                                      llvm::StringRef VarName) const;
  // Generate Replacement for declaring the selected Expr as a new variable
  tooling::Replacement insertDeclaration(llvm::StringRef VarName,
                                         SourceRange InitChars) const;

private:
  bool Extractable = false;
  const clang::Expr *Expr;
  const SelectionTree::Node *ExprNode;
  // Stmt before which we will extract
  const clang::Stmt *InsertionPoint = nullptr;
  const SourceManager &SM;
  const ASTContext &Ctx;
  // Decls referenced in the Expr
  std::vector<clang::Decl *> ReferencedDecls;
  // returns true if the Expr doesn't reference any variable declared in scope
  bool exprIsValidOutside(const clang::Stmt *Scope) const;
  // computes the Stmt before which we will extract out Expr
  const clang::Stmt *computeInsertionPoint() const;
};

// Returns all the Decls referenced inside the given Expr
static std::vector<clang::Decl *>
computeReferencedDecls(const clang::Expr *Expr) {
  // RAV subclass to find all DeclRefs in a given Stmt
  class FindDeclRefsVisitor
      : public clang::RecursiveASTVisitor<FindDeclRefsVisitor> {
  public:
    std::vector<Decl *> ReferencedDecls;
    bool VisitDeclRefExpr(DeclRefExpr *DeclRef) { // NOLINT
      ReferencedDecls.push_back(DeclRef->getDecl());
      return true;
    }
  };
  FindDeclRefsVisitor Visitor;
  Visitor.TraverseStmt(const_cast<Stmt *>(dyn_cast<Stmt>(Expr)));
  return Visitor.ReferencedDecls;
}

ExtractionContext::ExtractionContext(const SelectionTree::Node *Node,
                                     const SourceManager &SM,
                                     const ASTContext &Ctx)
    : ExprNode(Node), SM(SM), Ctx(Ctx) {
  Expr = Node->ASTNode.get<clang::Expr>();
  ReferencedDecls = computeReferencedDecls(Expr);
  InsertionPoint = computeInsertionPoint();
  if (InsertionPoint)
    Extractable = true;
}

// checks whether extracting before InsertionPoint will take a
// variable reference out of scope
bool ExtractionContext::exprIsValidOutside(const clang::Stmt *Scope) const {
  SourceLocation ScopeBegin = Scope->getBeginLoc();
  SourceLocation ScopeEnd = Scope->getEndLoc();
  for (const Decl *ReferencedDecl : ReferencedDecls) {
    if (SM.isPointWithin(ReferencedDecl->getBeginLoc(), ScopeBegin, ScopeEnd) &&
        SM.isPointWithin(ReferencedDecl->getEndLoc(), ScopeBegin, ScopeEnd))
      return false;
  }
  return true;
}

// Return the Stmt before which we need to insert the extraction.
// To find the Stmt, we go up the AST Tree and if the Parent of the current
// Stmt is a CompoundStmt, we can extract inside this CompoundStmt just before
// the current Stmt. We ALWAYS insert before a Stmt whose parent is a
// CompoundStmt
//
// FIXME: Extraction from label, switch and case statements
// FIXME: Doens't work for FoldExpr
// FIXME: Ensure extraction from loops doesn't change semantics.
const clang::Stmt *ExtractionContext::computeInsertionPoint() const {
  // returns true if we can extract before InsertionPoint
  auto CanExtractOutside =
      [](const SelectionTree::Node *InsertionPoint) -> bool {
    if (const clang::Stmt *Stmt = InsertionPoint->ASTNode.get<clang::Stmt>()) {
      // Allow all expressions except LambdaExpr since we don't want to extract
      // from the captures/default arguments of a lambda
      if (isa<clang::Expr>(Stmt))
        return !isa<LambdaExpr>(Stmt);
      // We don't yet allow extraction from switch/case stmt as we would need to
      // jump over the switch stmt even if there is a CompoundStmt inside the
      // switch. And there are other Stmts which we don't care about (e.g.
      // continue and break) as there can never be anything to extract from
      // them.
      return isa<AttributedStmt>(Stmt) || isa<CompoundStmt>(Stmt) ||
             isa<CXXForRangeStmt>(Stmt) || isa<DeclStmt>(Stmt) ||
             isa<DoStmt>(Stmt) || isa<ForStmt>(Stmt) || isa<IfStmt>(Stmt) ||
             isa<ReturnStmt>(Stmt) || isa<WhileStmt>(Stmt);
    }
    if (InsertionPoint->ASTNode.get<VarDecl>())
      return true;
    return false;
  };
  for (const SelectionTree::Node *CurNode = getExprNode();
       CurNode->Parent && CanExtractOutside(CurNode);
       CurNode = CurNode->Parent) {
    const clang::Stmt *CurInsertionPoint = CurNode->ASTNode.get<Stmt>();
    // give up if extraction will take a variable out of scope
    if (CurInsertionPoint && !exprIsValidOutside(CurInsertionPoint))
      break;
    if (const clang::Stmt *CurParent = CurNode->Parent->ASTNode.get<Stmt>()) {
      if (isa<CompoundStmt>(CurParent)) {
        // Ensure we don't write inside a macro.
        if (CurParent->getBeginLoc().isMacroID())
          continue;
        return CurInsertionPoint;
      }
    }
  }
  return nullptr;
}

// returns the replacement for substituting the extraction with VarName
tooling::Replacement
ExtractionContext::replaceWithVar(SourceRange Chars,
                                  llvm::StringRef VarName) const {
  unsigned ExtractionLength =
      SM.getFileOffset(Chars.getEnd()) - SM.getFileOffset(Chars.getBegin());
  return tooling::Replacement(SM, Chars.getBegin(), ExtractionLength, VarName);
}
// returns the Replacement for declaring a new variable storing the extraction
tooling::Replacement
ExtractionContext::insertDeclaration(llvm::StringRef VarName,
                                     SourceRange InitializerChars) const {
  llvm::StringRef ExtractionCode = toSourceCode(SM, InitializerChars);
  const SourceLocation InsertionLoc =
      toHalfOpenFileRange(SM, Ctx.getLangOpts(),
                          InsertionPoint->getSourceRange())
          ->getBegin();
  // FIXME: Replace auto with explicit type and add &/&& as necessary
  std::string ExtractedVarDecl = std::string("auto ") + VarName.str() + " = " +
                                 ExtractionCode.str() + "; ";
  return tooling::Replacement(SM, InsertionLoc, 0, ExtractedVarDecl);
}

// Helpers for handling "binary subexpressions" like a + [[b + c]] + d.
//
// These are special, because the formal AST doesn't match what users expect:
// - the AST is ((a + b) + c) + d, so the ancestor expression is `a + b + c`.
// - but extracting `b + c` is reasonable, as + is (mathematically) associative.
//
// So we try to support these cases with some restrictions:
//  - the operator must be associative
//  - no mixing of operators is allowed
//  - we don't look inside macro expansions in the subexpressions
//  - we only adjust the extracted range, so references in the unselected parts
//    of the AST expression (e.g. `a`) are still considered referenced for
//    the purposes of calculating the insertion point.
//    FIXME: it would be nice to exclude these references, by micromanaging
//    the computeReferencedDecls() calls around the binary operator tree.

// Information extracted about a binary operator encounted in a SelectionTree.
// It can represent either an overloaded or built-in operator.
struct ParsedBinaryOperator {
  BinaryOperatorKind Kind;
  SourceLocation ExprLoc;
  llvm::SmallVector<const SelectionTree::Node*, 8> SelectedOperands;

  // If N is a binary operator, populate this and return true.
  bool parse(const SelectionTree::Node &N) {
    SelectedOperands.clear();

    if (const BinaryOperator *Op =
        llvm::dyn_cast_or_null<BinaryOperator>(N.ASTNode.get<Expr>())) {
      Kind = Op->getOpcode();
      ExprLoc = Op->getExprLoc();
      SelectedOperands = N.Children;
      return true;
    }
    if (const CXXOperatorCallExpr *Op =
            llvm::dyn_cast_or_null<CXXOperatorCallExpr>(
                N.ASTNode.get<Expr>())) {
      if (!Op->isInfixBinaryOp())
        return false;

      Kind = BinaryOperator::getOverloadedOpcode(Op->getOperator());
      ExprLoc = Op->getExprLoc();
      // Not all children are args, there's also the callee (operator).
      for (const auto* Child : N.Children) {
        const Expr *E = Child->ASTNode.get<Expr>();
        assert(E && "callee and args should be Exprs!");
        if (E == Op->getArg(0) || E == Op->getArg(1))
          SelectedOperands.push_back(Child);
      }
      return true;
    }
    return false;
  }

  bool associative() const {
    // Must also be left-associative, or update getBinaryOperatorRange()!
    switch (Kind) {
    case BO_Add:
    case BO_Mul:
    case BO_And:
    case BO_Or:
    case BO_Xor:
    case BO_LAnd:
    case BO_LOr:
      return true;
    default:
      return false;
    }
  }

  bool crossesMacroBoundary(const SourceManager &SM) {
    FileID F = SM.getFileID(ExprLoc);
    for (const SelectionTree::Node *Child : SelectedOperands)
      if (SM.getFileID(Child->ASTNode.get<Expr>()->getExprLoc()) != F)
        return true;
    return false;
  }
};

// If have an associative operator at the top level, then we must find
// the start point (rightmost in LHS) and end point (leftmost in RHS).
// We can only descend into subtrees where the operator matches.
//
// e.g. for a + [[b + c]] + d
//        +
//       / \
//  N-> +   d
//     / \
//    +   c <- End
//   / \
//  a   b <- Start
const SourceRange getBinaryOperatorRange(const SelectionTree::Node &N,
                                         const SourceManager &SM,
                                         const LangOptions &LangOpts) {
  // If N is not a suitable binary operator, bail out.
  ParsedBinaryOperator Op;
  if (!Op.parse(N.ignoreImplicit()) || !Op.associative() ||
      Op.crossesMacroBoundary(SM) || Op.SelectedOperands.size() != 2)
    return SourceRange();
  BinaryOperatorKind OuterOp = Op.Kind;

  // Because the tree we're interested in contains only one operator type, and
  // all eligible operators are left-associative, the shape of the tree is
  // very restricted: it's a linked list along the left edges.
  // This simplifies our implementation.
  const SelectionTree::Node *Start = Op.SelectedOperands.front(); // LHS
  const SelectionTree::Node *End = Op.SelectedOperands.back();    // RHS
  // End is already correct: it can't be an OuterOp (as it's left-associative).
  // Start needs to be pushed down int the subtree to the right spot.
  while (Op.parse(Start->ignoreImplicit()) && Op.Kind == OuterOp &&
         !Op.crossesMacroBoundary(SM)) {
    assert(!Op.SelectedOperands.empty() && "got only operator on one side!");
    if (Op.SelectedOperands.size() == 1) { // Only Op.RHS selected
      Start = Op.SelectedOperands.back();
      break;
    }
    // Op.LHS is (at least partially) selected, so descend into it.
    Start = Op.SelectedOperands.front();
  }

  return SourceRange(
      toHalfOpenFileRange(SM, LangOpts, Start->ASTNode.getSourceRange())
          ->getBegin(),
      toHalfOpenFileRange(SM, LangOpts, End->ASTNode.getSourceRange())
          ->getEnd());
}

SourceRange ExtractionContext::getExtractionChars() const {
  // Special case: we're extracting an associative binary subexpression.
  SourceRange BinaryOperatorRange =
      getBinaryOperatorRange(*ExprNode, SM, Ctx.getLangOpts());
  if (BinaryOperatorRange.isValid())
    return BinaryOperatorRange;

  // Usual case: we're extracting the whole expression.
  return *toHalfOpenFileRange(SM, Ctx.getLangOpts(), Expr->getSourceRange());
}

// Find the CallExpr whose callee is the (possibly wrapped) DeclRef
const SelectionTree::Node *getCallExpr(const SelectionTree::Node *DeclRef) {
  const SelectionTree::Node &MaybeCallee = DeclRef->outerImplicit();
  const SelectionTree::Node *MaybeCall = MaybeCallee.Parent;
  if (!MaybeCall)
    return nullptr;
  const CallExpr *CE =
      llvm::dyn_cast_or_null<CallExpr>(MaybeCall->ASTNode.get<Expr>());
  if (!CE)
    return nullptr;
  if (CE->getCallee() != MaybeCallee.ASTNode.get<Expr>())
    return nullptr;
  return MaybeCall;
}

// Returns true if Inner (which is a direct child of Outer) is appearing as
// a statement rather than an expression whose value can be used.
bool childExprIsStmt(const Stmt *Outer, const Expr *Inner) {
  if (!Outer || !Inner)
    return false;
  // Blacklist the most common places where an expr can appear but be unused.
  if (llvm::isa<CompoundStmt>(Outer))
    return true;
  if (llvm::isa<SwitchCase>(Outer))
    return true;
  // Control flow statements use condition etc, but not the body.
  if (const auto* WS = llvm::dyn_cast<WhileStmt>(Outer))
    return Inner == WS->getBody();
  if (const auto* DS = llvm::dyn_cast<DoStmt>(Outer))
    return Inner == DS->getBody();
  if (const auto* FS = llvm::dyn_cast<ForStmt>(Outer))
    return Inner == FS->getBody();
  if (const auto* FS = llvm::dyn_cast<CXXForRangeStmt>(Outer))
    return Inner == FS->getBody();
  if (const auto* IS = llvm::dyn_cast<IfStmt>(Outer))
    return Inner == IS->getThen() || Inner == IS->getElse();
  // Assume all other cases may be actual expressions.
  // This includes the important case of subexpressions (where Outer is Expr).
  return false;
}

// check if N can and should be extracted (e.g. is not void-typed).
bool eligibleForExtraction(const SelectionTree::Node *N) {
  const Expr *E = N->ASTNode.get<Expr>();
  if (!E)
    return false;

  // Void expressions can't be assigned to variables.
  if (const Type *ExprType = E->getType().getTypePtrOrNull())
    if (ExprType->isVoidType())
      return false;

  // A plain reference to a name (e.g. variable) isn't  worth extracting.
  // FIXME: really? What if it's e.g. `std::is_same<void, void>::value`?
  if (llvm::isa<DeclRefExpr>(E) || llvm::isa<MemberExpr>(E))
    return false;

  // Extracting Exprs like a = 1 gives dummy = a = 1 which isn't useful.
  // FIXME: we could still hoist the assignment, and leave the variable there?
  ParsedBinaryOperator BinOp;
  if (BinOp.parse(*N) && BinaryOperator::isAssignmentOp(BinOp.Kind))
    return false;

  // We don't want to extract expressions used as statements, that would leave
  // a `dummy;` around that has no effect.
  // Unfortunately because the AST doesn't have ExprStmt, we have to check in
  // this roundabout way.
  const SelectionTree::Node &OuterImplicit = N->outerImplicit();
  if (!OuterImplicit.Parent ||
      childExprIsStmt(OuterImplicit.Parent->ASTNode.get<Stmt>(),
                      OuterImplicit.ASTNode.get<Expr>()))
    return false;

  // FIXME: ban extracting the RHS of an assignment: `a = [[foo()]]`
  return true;
}

// Find the Expr node that we're going to extract.
// We don't want to trigger for assignment expressions and variable/field
// DeclRefs. For function/member function, we want to extract the entire
// function call.
const SelectionTree::Node *computeExtractedExpr(const SelectionTree::Node *N) {
  if (!N)
    return nullptr;
  const SelectionTree::Node *TargetNode = N;
  const clang::Expr *SelectedExpr = N->ASTNode.get<clang::Expr>();
  if (!SelectedExpr)
    return nullptr;
  // For function and member function DeclRefs, extract the whole call.
  if (llvm::isa<DeclRefExpr>(SelectedExpr) ||
      llvm::isa<MemberExpr>(SelectedExpr))
    if (const SelectionTree::Node *Call = getCallExpr(N))
      TargetNode = Call;
  // Extracting Exprs like a = 1 gives dummy = a = 1 which isn't useful.
  if (const BinaryOperator *BinOpExpr =
          dyn_cast_or_null<BinaryOperator>(SelectedExpr)) {
    if (BinOpExpr->getOpcode() == BinaryOperatorKind::BO_Assign)
      return nullptr;
  }
  if (!TargetNode || !eligibleForExtraction(TargetNode))
    return nullptr;
  return TargetNode;
}

/// Extracts an expression to the variable dummy
/// Before:
/// int x = 5 + 4 * 3;
///         ^^^^^
/// After:
/// auto dummy = 5 + 4;
/// int x = dummy * 3;
class ExtractVariable : public Tweak {
public:
  const char *id() const override final;
  bool prepare(const Selection &Inputs) override;
  Expected<Effect> apply(const Selection &Inputs) override;
  std::string title() const override {
    return "Extract subexpression to variable";
  }
  Intent intent() const override { return Refactor; }

private:
  // the expression to extract
  std::unique_ptr<ExtractionContext> Target;
};
REGISTER_TWEAK(ExtractVariable)
bool ExtractVariable::prepare(const Selection &Inputs) {
  // we don't trigger on empty selections for now
  if (Inputs.SelectionBegin == Inputs.SelectionEnd)
    return false;
  const ASTContext &Ctx = Inputs.AST->getASTContext();
  const SourceManager &SM = Inputs.AST->getSourceManager();
  if (const SelectionTree::Node *N =
          computeExtractedExpr(Inputs.ASTSelection.commonAncestor()))
    Target = std::make_unique<ExtractionContext>(N, SM, Ctx);
  return Target && Target->isExtractable();
}

Expected<Tweak::Effect> ExtractVariable::apply(const Selection &Inputs) {
  tooling::Replacements Result;
  // FIXME: get variable name from user or suggest based on type
  std::string VarName = "dummy";
  SourceRange Range = Target->getExtractionChars();
  // insert new variable declaration
  if (auto Err = Result.add(Target->insertDeclaration(VarName, Range)))
    return std::move(Err);
  // replace expression with variable name
  if (auto Err = Result.add(Target->replaceWithVar(Range, VarName)))
    return std::move(Err);
  return Effect::mainFileEdit(Inputs.AST->getSourceManager(),
                              std::move(Result));
}

} // namespace
} // namespace clangd
} // namespace clang