gpgpucodegen.html
9.83 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ -->
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Polly - GPGPU Code Generation</title>
<link type="text/css" rel="stylesheet" href="../menu.css">
<link type="text/css" rel="stylesheet" href="../content.css">
</head>
<body>
<div id="box">
<!--#include virtual="../menu.html.incl"-->
<div id="content">
<!--*********************************************************************-->
<h1>Polly - GPGPU Code Generation</h1>
<!--*********************************************************************-->
<p><em>WARNING: This project was part of the Google Summer of Code 2012.
It is currently not finished, but it is in the design and implementation stage.
The ideas/plans described here may not yet be implemented in Polly and may
change later on.</em></p>
This project adds GPGPU code generation feature to Polly.
<h2>Objective</h2>
<p>The overall objective of this GSoC project is to create a preliminary
implementation of GPGPU code generation for Polly. With this addition, users
can parallelize some perfectly nested loops with Polly to execute on a
heterogeneous platform, composed of CPU and GPU.</p>
<p>There are several successful projects about automatic source-to-source gpu
code transformation. C-to-CUDA[1] uses the standard Pluto algorithms for
computing an affine schedule and then applies a wavefront transformation to
obtain one sequential and n-1 parallel loops. The parallel loops are then
mapped onto the blocks and threads of GPU. PPCG[2] introduces some advanced
algorithms which can expose much more parallelism than other methods . And It
also introduces affine partition heuristics and code generation algorithms
for locality enhancement in the registers and shared memory.</p>
<p>Since automatic GPGPU code generation is quite a complex problem and what we
target is a low-level intermediate representation, LLVM IR, rather than a
high-level language source, it is important for us to set a proper objective
as a start step to give a complete solution to GPGPU code generation for LLVM
IR.</p>
<p>Firstly, we plan to target two kinds of relatively simple test cases. One is
comprised of pure parallel and perfectly nested loops, like the following
code.</p>
<pre>
parfor(int i=0 to M)
parfor(int j=0 to N)
LoopBody(i, j);
</pre>
<p>Another one is that all the loops in it are parallel except the inner-most
one, just like this:</p>
<pre>
parfor(int i=0 to M)
parfor(int j=0 to N)
non-parfor(int k=0 to K)
LoopBody(i, j, k);
</pre>
<p>The LoopBody part should be limited to instructions or functions calls
(intrinsics) which can be handled by LLVM's NVPTX backend.</p>
<p>On the other hand, we focus on building a preliminary and scalable framework
of GPGPU code generation for polly. Thus we plan to employ relatively simple
tiling and mapping algorithms and optimize them later.</p>
<h2>Work Flow</h2>
<h3>GPGPU Code Generation In General</h3>
<p>C-to-CUDA[1] and PPCG[2] propose similar steps to solve the automatic GPGPU
code generation problem.</p>
<li>Look for parallel loops.</li>
<li>Create a polyhedral model from the loops.</li>
<li>Tile and map the loops to GPU blocks and threads.</li>
<li>Determine where to place the data.</li>
<h3>What has been done in Polly</h3>
<p>Polly has implemented the 1st, 2nd and part of the 3rd of the above steps and
many other analysis and transformation passes.</p>
<h3>What to do in Polly</h3>
<p>Unlike many source-to-source optimizers such as C-to-CUDA and PPCG, Polly is
a low-level optimizer, which means we can't use a source-level compiler
(e.g. NVCC) to generate the final assembly for the device. We need manually
insert device driver API calls to execute the generated kernel assembly
text.</p>
<p>In this project, we assume that the device driver library has provided an
interface to launch kernels in the form of assembly text. Fortunately, most
of the mainstream GPU vendors provide such a feature in thier products (see
ptxjit of NVIDIA GPUs and CAL of AMD GPUs). Generally speaking, what we
are going to do in Polly is:</p>
<li>Find a way to tile the parallel loops.</li>
<li>Find a way to extract the loop body and transform it into thread-centric
parallel code.</li>
<li>Find a way to store/load the thread-centric code into/from a device module.
<li>Find a way to pass the target machine information and generate code of the
device module for the target.
<li>Find a way to map the tiled loop to GPU blocks and threads.</li>
<li>Find a way to insert CUDA synchronization operations on-demand.
<li>Find a way to generate the memory copy operations between a host and a
device.</li>
<li>Implement/Wrap a runtime library to serve as the execution engine for the
generated device code.</li>
<h3>The Work Flow</h3>
<p>In this section, we assume that the host cpu is X86 and the device is NVIDIA
CUDA-compatible. we will use the following test case to describe our work
flow.</p>
<pre>
for(i = 0; i < 128; i++)
for(j = 0; j < 128; j++)
A[i][j] = i*128 + j;
</pre>
<p>The work flow of our code generator is as follows.</p>
<p>1.We first use Polly's jscop file importer to get a wanted 4-level parallel
tiled code.</p>
The "schedule" part of the pre-optimization jscop file is as the following:
<pre>
"schedule" : "{ Stmt_for_body3[i0, i1] -> schedule[0, i0, 0, i1, 0] }"
</pre>
The jscop file describing the tiling transformation is:
<pre>
"schedule" : "{ Stmt_for_body3[i0, i1] -> schedule[0, o0, o1, o2, o3]:
o0 >= 0 and o0 <= 7 and o1 >= 0 and o1 <= 15 and
o2 >= 0 and o2 <= 7 and o3 >= 0 and o3 <= 15 and
i0 = 16o0 + o1 and i1 = 16o2 + o3 }"
</pre>
We can test the schedule with the following command line.
<pre>
opt -load /path/to/polly/build/LLVMPolly.so -basicaa -polly-import-jscop
-polly-ast -analyze -q ./test.ll
-polly-import-jscop-postfix=transformed+gpu
</pre>
The output of this schedule is:
<pre>
for (c2=0;c2<=7;c2++) {
for (c3=0;c3<=15;c3++) {
for (c4=0;c4<=7;c4++) {
for (c5=0;c5<=15;c5++) {
Stmt_for_body3(16*c2+c3,16*c4+c5);
}
}
}
}
</pre>
Now we get a 4-dimensional parallel loops with a single SCoP statement in it.
<p>2.We then extract the loop body (or the inner-most non-parallel loop) into a
LLVM function, tagging it with PTX_Kernel call convention.</p>
<p>3.We extract the PTX_kernel function into a temporary module, set the target
triple (e.g. nvptx64-unknown-linux) for the module, transform the temporary
module into a string, store it in the original module and erase the
PTX_kernel function.</p>
<p>4.We replace the loops with their GPGPU counterpart. The GPGPU part of code
is composed of a call to the llvm.codegen intrinsic and function calls to our
GPU runtime library.</p>
<p>5.Finally, we generate the executable program with <em>llc</em> or run the
optimized LLVM IRs with a JIT compiler like <em>lli</em>.</p>
<h2>Usage</h2>
<p>1. Apply the llvm.codegen intrinsic patch to LLVM code base.</p>
<pre>cd /path/to/llvm/source
git am /path/to/polly/source/utils/0001-Add-llvm.codegen-intrinsic.patch</pre>
<p>2. Build the test case.</p>
<pre>/path/to/polly/source/test/create_ll.sh test.c</pre>
<p>3. Get and edit the jscop file (take function "gpu_codegen" as an example).
</p>
<pre>opt -load /path/to/polly/build/lib/LLVMPolly.so -basicaa
-polly-export-jscop ./test.ll
cp gpu_codegen___%for.cond---%for.end8.jscop
gpu_codegen___%for.cond---%for.end8.jscop.transformed+gpu
vi gpu_codegen___%for.cond---%for.end8.jscop.transformed+gpu</pre>
<p><em>(Please refer to section "The Work Flow" on how to edit the "schedule"
part of a statement)</em></p>
<p>4. Optimize the code with GPGPU code generation.</p>
<pre>opt -load /path/to/polly/build/lib/LLVMPolly.so -basicaa
-polly-import-jscop-postfix=transformed+gpu -enable-polly-gpgpu
-polly-gpgpu-triple=nvptx64-unknown-unknown -polly-codegen ./test.ll -S
-o test.gpued.ll</pre>
<p>5. Build the final assembly and executable.</p>
<pre>llc test.gpued.ll -o test.s
gcc test.s -lGPURuntime -o test</pre>
<p><em>(Please make sure that LD_LIBRARY_PATH is set properly so that
/path/to/polly/build/lib/libGPURuntime.so is visible to gcc.)</em></p>
<h2>TODO List</h2>
<table class="wikitable" cellpadding="2">
<tbody>
<tr style="background: rgb(239, 239, 239)">
<th width="400px"> Tasks</th>
<th width="150px"> Status </th>
<th> Owner </th>
</tr>
<tr>
<th align="left">Tiling the Parallel Loops with An External Jscop File</th>
<td align="center" class='open'>Open, In Design</td>
<td>Yabin Hu</td>
</tr>
<tr>
<th align="left">GPU Runtime Library Implementation</th>
<td align="center" class='inprogress'>Coding Finished, In Reviewing</td>
<td></td>
</tr>
<tr>
<th align="left">llvm.codegen Intrinsic Implementation</th>
<td align="center" class='inprogress'>Codeing Finished, To Be Reviewed</td>
<td></td>
</tr>
<tr>
<th align="left">Code Generation For Host</th>
<td align="center" class='inprogress'>50% Done</td>
<td></td>
</tr>
</tbody></table>
<h2>References</h2>
<li type="1" value="1">
<em>Automatic C-to-CUDA Code Generation for Affine Programs. </em><br />
Muthu Manikandan Baskaran, J. Ramanujam and P. Sadayappan.<br />
International Conference on Compiler Construction (CC) 2010.<br />
</li>
<li type="1"><em>PPCG Project</em><br />
<a href="http://freecode.com/projects/ppcg">http://freecode.com/projects/ppcg
</a></li>
<li type="1">
<em>Where is the Data? Why You Cannot Debate GPU vs. CPU Performance Without the
Answer. </em><br />
Chris Gregg and Kim Hazelwood<br />
International Symposium on Performance Analysis of Systems and Software
(ISPASS) 2011.
</li>
<p></p>
</div>
</div>
</body>
</html>