VPlanSLP.cpp
15.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//===- VPlanSLP.cpp - SLP Analysis based on VPlan -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// This file implements SLP analysis based on VPlan. The analysis is based on
/// the ideas described in
///
/// Look-ahead SLP: auto-vectorization in the presence of commutative
/// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
/// Luís F. W. Góes
///
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <iterator>
#include <string>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "vplan-slp"
// Number of levels to look ahead when re-ordering multi node operands.
static unsigned LookaheadMaxDepth = 5;
VPInstruction *VPlanSlp::markFailed() {
// FIXME: Currently this is used to signal we hit instructions we cannot
// trivially SLP'ize.
CompletelySLP = false;
return nullptr;
}
void VPlanSlp::addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New) {
if (all_of(Operands, [](VPValue *V) {
return cast<VPInstruction>(V)->getUnderlyingInstr();
})) {
unsigned BundleSize = 0;
for (VPValue *V : Operands) {
Type *T = cast<VPInstruction>(V)->getUnderlyingInstr()->getType();
assert(!T->isVectorTy() && "Only scalar types supported for now");
BundleSize += T->getScalarSizeInBits();
}
WidestBundleBits = std::max(WidestBundleBits, BundleSize);
}
auto Res = BundleToCombined.try_emplace(to_vector<4>(Operands), New);
assert(Res.second &&
"Already created a combined instruction for the operand bundle");
(void)Res;
}
bool VPlanSlp::areVectorizable(ArrayRef<VPValue *> Operands) const {
// Currently we only support VPInstructions.
if (!all_of(Operands, [](VPValue *Op) {
return Op && isa<VPInstruction>(Op) &&
cast<VPInstruction>(Op)->getUnderlyingInstr();
})) {
LLVM_DEBUG(dbgs() << "VPSLP: not all operands are VPInstructions\n");
return false;
}
// Check if opcodes and type width agree for all instructions in the bundle.
// FIXME: Differing widths/opcodes can be handled by inserting additional
// instructions.
// FIXME: Deal with non-primitive types.
const Instruction *OriginalInstr =
cast<VPInstruction>(Operands[0])->getUnderlyingInstr();
unsigned Opcode = OriginalInstr->getOpcode();
unsigned Width = OriginalInstr->getType()->getPrimitiveSizeInBits();
if (!all_of(Operands, [Opcode, Width](VPValue *Op) {
const Instruction *I = cast<VPInstruction>(Op)->getUnderlyingInstr();
return I->getOpcode() == Opcode &&
I->getType()->getPrimitiveSizeInBits() == Width;
})) {
LLVM_DEBUG(dbgs() << "VPSLP: Opcodes do not agree \n");
return false;
}
// For now, all operands must be defined in the same BB.
if (any_of(Operands, [this](VPValue *Op) {
return cast<VPInstruction>(Op)->getParent() != &this->BB;
})) {
LLVM_DEBUG(dbgs() << "VPSLP: operands in different BBs\n");
return false;
}
if (any_of(Operands,
[](VPValue *Op) { return Op->hasMoreThanOneUniqueUser(); })) {
LLVM_DEBUG(dbgs() << "VPSLP: Some operands have multiple users.\n");
return false;
}
// For loads, check that there are no instructions writing to memory in
// between them.
// TODO: we only have to forbid instructions writing to memory that could
// interfere with any of the loads in the bundle
if (Opcode == Instruction::Load) {
unsigned LoadsSeen = 0;
VPBasicBlock *Parent = cast<VPInstruction>(Operands[0])->getParent();
for (auto &I : *Parent) {
auto *VPI = cast<VPInstruction>(&I);
if (VPI->getOpcode() == Instruction::Load &&
std::find(Operands.begin(), Operands.end(), VPI) != Operands.end())
LoadsSeen++;
if (LoadsSeen == Operands.size())
break;
if (LoadsSeen > 0 && VPI->mayWriteToMemory()) {
LLVM_DEBUG(
dbgs() << "VPSLP: instruction modifying memory between loads\n");
return false;
}
}
if (!all_of(Operands, [](VPValue *Op) {
return cast<LoadInst>(cast<VPInstruction>(Op)->getUnderlyingInstr())
->isSimple();
})) {
LLVM_DEBUG(dbgs() << "VPSLP: only simple loads are supported.\n");
return false;
}
}
if (Opcode == Instruction::Store)
if (!all_of(Operands, [](VPValue *Op) {
return cast<StoreInst>(cast<VPInstruction>(Op)->getUnderlyingInstr())
->isSimple();
})) {
LLVM_DEBUG(dbgs() << "VPSLP: only simple stores are supported.\n");
return false;
}
return true;
}
static SmallVector<VPValue *, 4> getOperands(ArrayRef<VPValue *> Values,
unsigned OperandIndex) {
SmallVector<VPValue *, 4> Operands;
for (VPValue *V : Values) {
auto *U = cast<VPUser>(V);
Operands.push_back(U->getOperand(OperandIndex));
}
return Operands;
}
static bool areCommutative(ArrayRef<VPValue *> Values) {
return Instruction::isCommutative(
cast<VPInstruction>(Values[0])->getOpcode());
}
static SmallVector<SmallVector<VPValue *, 4>, 4>
getOperands(ArrayRef<VPValue *> Values) {
SmallVector<SmallVector<VPValue *, 4>, 4> Result;
auto *VPI = cast<VPInstruction>(Values[0]);
switch (VPI->getOpcode()) {
case Instruction::Load:
llvm_unreachable("Loads terminate a tree, no need to get operands");
case Instruction::Store:
Result.push_back(getOperands(Values, 0));
break;
default:
for (unsigned I = 0, NumOps = VPI->getNumOperands(); I < NumOps; ++I)
Result.push_back(getOperands(Values, I));
break;
}
return Result;
}
/// Returns the opcode of Values or ~0 if they do not all agree.
static Optional<unsigned> getOpcode(ArrayRef<VPValue *> Values) {
unsigned Opcode = cast<VPInstruction>(Values[0])->getOpcode();
if (any_of(Values, [Opcode](VPValue *V) {
return cast<VPInstruction>(V)->getOpcode() != Opcode;
}))
return None;
return {Opcode};
}
/// Returns true if A and B access sequential memory if they are loads or
/// stores or if they have identical opcodes otherwise.
static bool areConsecutiveOrMatch(VPInstruction *A, VPInstruction *B,
VPInterleavedAccessInfo &IAI) {
if (A->getOpcode() != B->getOpcode())
return false;
if (A->getOpcode() != Instruction::Load &&
A->getOpcode() != Instruction::Store)
return true;
auto *GA = IAI.getInterleaveGroup(A);
auto *GB = IAI.getInterleaveGroup(B);
return GA && GB && GA == GB && GA->getIndex(A) + 1 == GB->getIndex(B);
}
/// Implements getLAScore from Listing 7 in the paper.
/// Traverses and compares operands of V1 and V2 to MaxLevel.
static unsigned getLAScore(VPValue *V1, VPValue *V2, unsigned MaxLevel,
VPInterleavedAccessInfo &IAI) {
if (!isa<VPInstruction>(V1) || !isa<VPInstruction>(V2))
return 0;
if (MaxLevel == 0)
return (unsigned)areConsecutiveOrMatch(cast<VPInstruction>(V1),
cast<VPInstruction>(V2), IAI);
unsigned Score = 0;
for (unsigned I = 0, EV1 = cast<VPUser>(V1)->getNumOperands(); I < EV1; ++I)
for (unsigned J = 0, EV2 = cast<VPUser>(V2)->getNumOperands(); J < EV2; ++J)
Score += getLAScore(cast<VPUser>(V1)->getOperand(I),
cast<VPUser>(V2)->getOperand(J), MaxLevel - 1, IAI);
return Score;
}
std::pair<VPlanSlp::OpMode, VPValue *>
VPlanSlp::getBest(OpMode Mode, VPValue *Last,
SmallPtrSetImpl<VPValue *> &Candidates,
VPInterleavedAccessInfo &IAI) {
assert((Mode == OpMode::Load || Mode == OpMode::Opcode) &&
"Currently we only handle load and commutative opcodes");
LLVM_DEBUG(dbgs() << " getBest\n");
SmallVector<VPValue *, 4> BestCandidates;
LLVM_DEBUG(dbgs() << " Candidates for "
<< *cast<VPInstruction>(Last)->getUnderlyingInstr() << " ");
for (auto *Candidate : Candidates) {
auto *LastI = cast<VPInstruction>(Last);
auto *CandidateI = cast<VPInstruction>(Candidate);
if (areConsecutiveOrMatch(LastI, CandidateI, IAI)) {
LLVM_DEBUG(dbgs() << *cast<VPInstruction>(Candidate)->getUnderlyingInstr()
<< " ");
BestCandidates.push_back(Candidate);
}
}
LLVM_DEBUG(dbgs() << "\n");
if (BestCandidates.empty())
return {OpMode::Failed, nullptr};
if (BestCandidates.size() == 1)
return {Mode, BestCandidates[0]};
VPValue *Best = nullptr;
unsigned BestScore = 0;
for (unsigned Depth = 1; Depth < LookaheadMaxDepth; Depth++) {
unsigned PrevScore = ~0u;
bool AllSame = true;
// FIXME: Avoid visiting the same operands multiple times.
for (auto *Candidate : BestCandidates) {
unsigned Score = getLAScore(Last, Candidate, Depth, IAI);
if (PrevScore == ~0u)
PrevScore = Score;
if (PrevScore != Score)
AllSame = false;
PrevScore = Score;
if (Score > BestScore) {
BestScore = Score;
Best = Candidate;
}
}
if (!AllSame)
break;
}
LLVM_DEBUG(dbgs() << "Found best "
<< *cast<VPInstruction>(Best)->getUnderlyingInstr()
<< "\n");
Candidates.erase(Best);
return {Mode, Best};
}
SmallVector<VPlanSlp::MultiNodeOpTy, 4> VPlanSlp::reorderMultiNodeOps() {
SmallVector<MultiNodeOpTy, 4> FinalOrder;
SmallVector<OpMode, 4> Mode;
FinalOrder.reserve(MultiNodeOps.size());
Mode.reserve(MultiNodeOps.size());
LLVM_DEBUG(dbgs() << "Reordering multinode\n");
for (auto &Operands : MultiNodeOps) {
FinalOrder.push_back({Operands.first, {Operands.second[0]}});
if (cast<VPInstruction>(Operands.second[0])->getOpcode() ==
Instruction::Load)
Mode.push_back(OpMode::Load);
else
Mode.push_back(OpMode::Opcode);
}
for (unsigned Lane = 1, E = MultiNodeOps[0].second.size(); Lane < E; ++Lane) {
LLVM_DEBUG(dbgs() << " Finding best value for lane " << Lane << "\n");
SmallPtrSet<VPValue *, 4> Candidates;
LLVM_DEBUG(dbgs() << " Candidates ");
for (auto Ops : MultiNodeOps) {
LLVM_DEBUG(
dbgs() << *cast<VPInstruction>(Ops.second[Lane])->getUnderlyingInstr()
<< " ");
Candidates.insert(Ops.second[Lane]);
}
LLVM_DEBUG(dbgs() << "\n");
for (unsigned Op = 0, E = MultiNodeOps.size(); Op < E; ++Op) {
LLVM_DEBUG(dbgs() << " Checking " << Op << "\n");
if (Mode[Op] == OpMode::Failed)
continue;
VPValue *Last = FinalOrder[Op].second[Lane - 1];
std::pair<OpMode, VPValue *> Res =
getBest(Mode[Op], Last, Candidates, IAI);
if (Res.second)
FinalOrder[Op].second.push_back(Res.second);
else
// TODO: handle this case
FinalOrder[Op].second.push_back(markFailed());
}
}
return FinalOrder;
}
void VPlanSlp::dumpBundle(ArrayRef<VPValue *> Values) {
dbgs() << " Ops: ";
for (auto Op : Values) {
if (auto *VPInstr = cast_or_null<VPInstruction>(Op))
if (auto *Instr = VPInstr->getUnderlyingInstr()) {
dbgs() << *Instr << " | ";
continue;
}
dbgs() << " nullptr | ";
}
dbgs() << "\n";
}
VPInstruction *VPlanSlp::buildGraph(ArrayRef<VPValue *> Values) {
assert(!Values.empty() && "Need some operands!");
// If we already visited this instruction bundle, re-use the existing node
auto I = BundleToCombined.find(to_vector<4>(Values));
if (I != BundleToCombined.end()) {
#ifndef NDEBUG
// Check that the resulting graph is a tree. If we re-use a node, this means
// its values have multiple users. We only allow this, if all users of each
// value are the same instruction.
for (auto *V : Values) {
auto UI = V->user_begin();
auto *FirstUser = *UI++;
while (UI != V->user_end()) {
assert(*UI == FirstUser && "Currently we only support SLP trees.");
UI++;
}
}
#endif
return I->second;
}
// Dump inputs
LLVM_DEBUG({
dbgs() << "buildGraph: ";
dumpBundle(Values);
});
if (!areVectorizable(Values))
return markFailed();
assert(getOpcode(Values) && "Opcodes for all values must match");
unsigned ValuesOpcode = getOpcode(Values).getValue();
SmallVector<VPValue *, 4> CombinedOperands;
if (areCommutative(Values)) {
bool MultiNodeRoot = !MultiNodeActive;
MultiNodeActive = true;
for (auto &Operands : getOperands(Values)) {
LLVM_DEBUG({
dbgs() << " Visiting Commutative";
dumpBundle(Operands);
});
auto OperandsOpcode = getOpcode(Operands);
if (OperandsOpcode && OperandsOpcode == getOpcode(Values)) {
LLVM_DEBUG(dbgs() << " Same opcode, continue building\n");
CombinedOperands.push_back(buildGraph(Operands));
} else {
LLVM_DEBUG(dbgs() << " Adding multinode Ops\n");
// Create dummy VPInstruction, which will we replace later by the
// re-ordered operand.
VPInstruction *Op = new VPInstruction(0, {});
CombinedOperands.push_back(Op);
MultiNodeOps.emplace_back(Op, Operands);
}
}
if (MultiNodeRoot) {
LLVM_DEBUG(dbgs() << "Reorder \n");
MultiNodeActive = false;
auto FinalOrder = reorderMultiNodeOps();
MultiNodeOps.clear();
for (auto &Ops : FinalOrder) {
VPInstruction *NewOp = buildGraph(Ops.second);
Ops.first->replaceAllUsesWith(NewOp);
for (unsigned i = 0; i < CombinedOperands.size(); i++)
if (CombinedOperands[i] == Ops.first)
CombinedOperands[i] = NewOp;
delete Ops.first;
Ops.first = NewOp;
}
LLVM_DEBUG(dbgs() << "Found final order\n");
}
} else {
LLVM_DEBUG(dbgs() << " NonCommuntative\n");
if (ValuesOpcode == Instruction::Load)
for (VPValue *V : Values)
CombinedOperands.push_back(cast<VPInstruction>(V)->getOperand(0));
else
for (auto &Operands : getOperands(Values))
CombinedOperands.push_back(buildGraph(Operands));
}
unsigned Opcode;
switch (ValuesOpcode) {
case Instruction::Load:
Opcode = VPInstruction::SLPLoad;
break;
case Instruction::Store:
Opcode = VPInstruction::SLPStore;
break;
default:
Opcode = ValuesOpcode;
break;
}
if (!CompletelySLP)
return markFailed();
assert(CombinedOperands.size() > 0 && "Need more some operands");
auto *VPI = new VPInstruction(Opcode, CombinedOperands);
VPI->setUnderlyingInstr(cast<VPInstruction>(Values[0])->getUnderlyingInstr());
LLVM_DEBUG(dbgs() << "Create VPInstruction "; VPI->print(dbgs());
cast<VPInstruction>(Values[0])->print(dbgs()); dbgs() << "\n");
addCombined(Values, VPI);
return VPI;
}