CodeGenPGO.cpp 35.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based profile-guided optimization
//
//===----------------------------------------------------------------------===//

#include "CodeGenPGO.h"
#include "CodeGenFunction.h"
#include "CoverageMappingGen.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MD5.h"

static llvm::cl::opt<bool>
    EnableValueProfiling("enable-value-profiling", llvm::cl::ZeroOrMore,
                         llvm::cl::desc("Enable value profiling"),
                         llvm::cl::Hidden, llvm::cl::init(false));

using namespace clang;
using namespace CodeGen;

void CodeGenPGO::setFuncName(StringRef Name,
                             llvm::GlobalValue::LinkageTypes Linkage) {
  llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader();
  FuncName = llvm::getPGOFuncName(
      Name, Linkage, CGM.getCodeGenOpts().MainFileName,
      PGOReader ? PGOReader->getVersion() : llvm::IndexedInstrProf::Version);

  // If we're generating a profile, create a variable for the name.
  if (CGM.getCodeGenOpts().hasProfileClangInstr())
    FuncNameVar = llvm::createPGOFuncNameVar(CGM.getModule(), Linkage, FuncName);
}

void CodeGenPGO::setFuncName(llvm::Function *Fn) {
  setFuncName(Fn->getName(), Fn->getLinkage());
  // Create PGOFuncName meta data.
  llvm::createPGOFuncNameMetadata(*Fn, FuncName);
}

/// The version of the PGO hash algorithm.
enum PGOHashVersion : unsigned {
  PGO_HASH_V1,
  PGO_HASH_V2,

  // Keep this set to the latest hash version.
  PGO_HASH_LATEST = PGO_HASH_V2
};

namespace {
/// Stable hasher for PGO region counters.
///
/// PGOHash produces a stable hash of a given function's control flow.
///
/// Changing the output of this hash will invalidate all previously generated
/// profiles -- i.e., don't do it.
///
/// \note  When this hash does eventually change (years?), we still need to
/// support old hashes.  We'll need to pull in the version number from the
/// profile data format and use the matching hash function.
class PGOHash {
  uint64_t Working;
  unsigned Count;
  PGOHashVersion HashVersion;
  llvm::MD5 MD5;

  static const int NumBitsPerType = 6;
  static const unsigned NumTypesPerWord = sizeof(uint64_t) * 8 / NumBitsPerType;
  static const unsigned TooBig = 1u << NumBitsPerType;

public:
  /// Hash values for AST nodes.
  ///
  /// Distinct values for AST nodes that have region counters attached.
  ///
  /// These values must be stable.  All new members must be added at the end,
  /// and no members should be removed.  Changing the enumeration value for an
  /// AST node will affect the hash of every function that contains that node.
  enum HashType : unsigned char {
    None = 0,
    LabelStmt = 1,
    WhileStmt,
    DoStmt,
    ForStmt,
    CXXForRangeStmt,
    ObjCForCollectionStmt,
    SwitchStmt,
    CaseStmt,
    DefaultStmt,
    IfStmt,
    CXXTryStmt,
    CXXCatchStmt,
    ConditionalOperator,
    BinaryOperatorLAnd,
    BinaryOperatorLOr,
    BinaryConditionalOperator,
    // The preceding values are available with PGO_HASH_V1.

    EndOfScope,
    IfThenBranch,
    IfElseBranch,
    GotoStmt,
    IndirectGotoStmt,
    BreakStmt,
    ContinueStmt,
    ReturnStmt,
    ThrowExpr,
    UnaryOperatorLNot,
    BinaryOperatorLT,
    BinaryOperatorGT,
    BinaryOperatorLE,
    BinaryOperatorGE,
    BinaryOperatorEQ,
    BinaryOperatorNE,
    // The preceding values are available with PGO_HASH_V2.

    // Keep this last.  It's for the static assert that follows.
    LastHashType
  };
  static_assert(LastHashType <= TooBig, "Too many types in HashType");

  PGOHash(PGOHashVersion HashVersion)
      : Working(0), Count(0), HashVersion(HashVersion), MD5() {}
  void combine(HashType Type);
  uint64_t finalize();
  PGOHashVersion getHashVersion() const { return HashVersion; }
};
const int PGOHash::NumBitsPerType;
const unsigned PGOHash::NumTypesPerWord;
const unsigned PGOHash::TooBig;

/// Get the PGO hash version used in the given indexed profile.
static PGOHashVersion getPGOHashVersion(llvm::IndexedInstrProfReader *PGOReader,
                                        CodeGenModule &CGM) {
  if (PGOReader->getVersion() <= 4)
    return PGO_HASH_V1;
  return PGO_HASH_V2;
}

/// A RecursiveASTVisitor that fills a map of statements to PGO counters.
struct MapRegionCounters : public RecursiveASTVisitor<MapRegionCounters> {
  using Base = RecursiveASTVisitor<MapRegionCounters>;

  /// The next counter value to assign.
  unsigned NextCounter;
  /// The function hash.
  PGOHash Hash;
  /// The map of statements to counters.
  llvm::DenseMap<const Stmt *, unsigned> &CounterMap;

  MapRegionCounters(PGOHashVersion HashVersion,
                    llvm::DenseMap<const Stmt *, unsigned> &CounterMap)
      : NextCounter(0), Hash(HashVersion), CounterMap(CounterMap) {}

  // Blocks and lambdas are handled as separate functions, so we need not
  // traverse them in the parent context.
  bool TraverseBlockExpr(BlockExpr *BE) { return true; }
  bool TraverseLambdaExpr(LambdaExpr *LE) {
    // Traverse the captures, but not the body.
    for (auto C : zip(LE->captures(), LE->capture_inits()))
      TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
    return true;
  }
  bool TraverseCapturedStmt(CapturedStmt *CS) { return true; }

  bool VisitDecl(const Decl *D) {
    switch (D->getKind()) {
    default:
      break;
    case Decl::Function:
    case Decl::CXXMethod:
    case Decl::CXXConstructor:
    case Decl::CXXDestructor:
    case Decl::CXXConversion:
    case Decl::ObjCMethod:
    case Decl::Block:
    case Decl::Captured:
      CounterMap[D->getBody()] = NextCounter++;
      break;
    }
    return true;
  }

  /// If \p S gets a fresh counter, update the counter mappings. Return the
  /// V1 hash of \p S.
  PGOHash::HashType updateCounterMappings(Stmt *S) {
    auto Type = getHashType(PGO_HASH_V1, S);
    if (Type != PGOHash::None)
      CounterMap[S] = NextCounter++;
    return Type;
  }

  /// Include \p S in the function hash.
  bool VisitStmt(Stmt *S) {
    auto Type = updateCounterMappings(S);
    if (Hash.getHashVersion() != PGO_HASH_V1)
      Type = getHashType(Hash.getHashVersion(), S);
    if (Type != PGOHash::None)
      Hash.combine(Type);
    return true;
  }

  bool TraverseIfStmt(IfStmt *If) {
    // If we used the V1 hash, use the default traversal.
    if (Hash.getHashVersion() == PGO_HASH_V1)
      return Base::TraverseIfStmt(If);

    // Otherwise, keep track of which branch we're in while traversing.
    VisitStmt(If);
    for (Stmt *CS : If->children()) {
      if (!CS)
        continue;
      if (CS == If->getThen())
        Hash.combine(PGOHash::IfThenBranch);
      else if (CS == If->getElse())
        Hash.combine(PGOHash::IfElseBranch);
      TraverseStmt(CS);
    }
    Hash.combine(PGOHash::EndOfScope);
    return true;
  }

// If the statement type \p N is nestable, and its nesting impacts profile
// stability, define a custom traversal which tracks the end of the statement
// in the hash (provided we're not using the V1 hash).
#define DEFINE_NESTABLE_TRAVERSAL(N)                                           \
  bool Traverse##N(N *S) {                                                     \
    Base::Traverse##N(S);                                                      \
    if (Hash.getHashVersion() != PGO_HASH_V1)                                  \
      Hash.combine(PGOHash::EndOfScope);                                       \
    return true;                                                               \
  }

  DEFINE_NESTABLE_TRAVERSAL(WhileStmt)
  DEFINE_NESTABLE_TRAVERSAL(DoStmt)
  DEFINE_NESTABLE_TRAVERSAL(ForStmt)
  DEFINE_NESTABLE_TRAVERSAL(CXXForRangeStmt)
  DEFINE_NESTABLE_TRAVERSAL(ObjCForCollectionStmt)
  DEFINE_NESTABLE_TRAVERSAL(CXXTryStmt)
  DEFINE_NESTABLE_TRAVERSAL(CXXCatchStmt)

  /// Get version \p HashVersion of the PGO hash for \p S.
  PGOHash::HashType getHashType(PGOHashVersion HashVersion, const Stmt *S) {
    switch (S->getStmtClass()) {
    default:
      break;
    case Stmt::LabelStmtClass:
      return PGOHash::LabelStmt;
    case Stmt::WhileStmtClass:
      return PGOHash::WhileStmt;
    case Stmt::DoStmtClass:
      return PGOHash::DoStmt;
    case Stmt::ForStmtClass:
      return PGOHash::ForStmt;
    case Stmt::CXXForRangeStmtClass:
      return PGOHash::CXXForRangeStmt;
    case Stmt::ObjCForCollectionStmtClass:
      return PGOHash::ObjCForCollectionStmt;
    case Stmt::SwitchStmtClass:
      return PGOHash::SwitchStmt;
    case Stmt::CaseStmtClass:
      return PGOHash::CaseStmt;
    case Stmt::DefaultStmtClass:
      return PGOHash::DefaultStmt;
    case Stmt::IfStmtClass:
      return PGOHash::IfStmt;
    case Stmt::CXXTryStmtClass:
      return PGOHash::CXXTryStmt;
    case Stmt::CXXCatchStmtClass:
      return PGOHash::CXXCatchStmt;
    case Stmt::ConditionalOperatorClass:
      return PGOHash::ConditionalOperator;
    case Stmt::BinaryConditionalOperatorClass:
      return PGOHash::BinaryConditionalOperator;
    case Stmt::BinaryOperatorClass: {
      const BinaryOperator *BO = cast<BinaryOperator>(S);
      if (BO->getOpcode() == BO_LAnd)
        return PGOHash::BinaryOperatorLAnd;
      if (BO->getOpcode() == BO_LOr)
        return PGOHash::BinaryOperatorLOr;
      if (HashVersion == PGO_HASH_V2) {
        switch (BO->getOpcode()) {
        default:
          break;
        case BO_LT:
          return PGOHash::BinaryOperatorLT;
        case BO_GT:
          return PGOHash::BinaryOperatorGT;
        case BO_LE:
          return PGOHash::BinaryOperatorLE;
        case BO_GE:
          return PGOHash::BinaryOperatorGE;
        case BO_EQ:
          return PGOHash::BinaryOperatorEQ;
        case BO_NE:
          return PGOHash::BinaryOperatorNE;
        }
      }
      break;
    }
    }

    if (HashVersion == PGO_HASH_V2) {
      switch (S->getStmtClass()) {
      default:
        break;
      case Stmt::GotoStmtClass:
        return PGOHash::GotoStmt;
      case Stmt::IndirectGotoStmtClass:
        return PGOHash::IndirectGotoStmt;
      case Stmt::BreakStmtClass:
        return PGOHash::BreakStmt;
      case Stmt::ContinueStmtClass:
        return PGOHash::ContinueStmt;
      case Stmt::ReturnStmtClass:
        return PGOHash::ReturnStmt;
      case Stmt::CXXThrowExprClass:
        return PGOHash::ThrowExpr;
      case Stmt::UnaryOperatorClass: {
        const UnaryOperator *UO = cast<UnaryOperator>(S);
        if (UO->getOpcode() == UO_LNot)
          return PGOHash::UnaryOperatorLNot;
        break;
      }
      }
    }

    return PGOHash::None;
  }
};

/// A StmtVisitor that propagates the raw counts through the AST and
/// records the count at statements where the value may change.
struct ComputeRegionCounts : public ConstStmtVisitor<ComputeRegionCounts> {
  /// PGO state.
  CodeGenPGO &PGO;

  /// A flag that is set when the current count should be recorded on the
  /// next statement, such as at the exit of a loop.
  bool RecordNextStmtCount;

  /// The count at the current location in the traversal.
  uint64_t CurrentCount;

  /// The map of statements to count values.
  llvm::DenseMap<const Stmt *, uint64_t> &CountMap;

  /// BreakContinueStack - Keep counts of breaks and continues inside loops.
  struct BreakContinue {
    uint64_t BreakCount;
    uint64_t ContinueCount;
    BreakContinue() : BreakCount(0), ContinueCount(0) {}
  };
  SmallVector<BreakContinue, 8> BreakContinueStack;

  ComputeRegionCounts(llvm::DenseMap<const Stmt *, uint64_t> &CountMap,
                      CodeGenPGO &PGO)
      : PGO(PGO), RecordNextStmtCount(false), CountMap(CountMap) {}

  void RecordStmtCount(const Stmt *S) {
    if (RecordNextStmtCount) {
      CountMap[S] = CurrentCount;
      RecordNextStmtCount = false;
    }
  }

  /// Set and return the current count.
  uint64_t setCount(uint64_t Count) {
    CurrentCount = Count;
    return Count;
  }

  void VisitStmt(const Stmt *S) {
    RecordStmtCount(S);
    for (const Stmt *Child : S->children())
      if (Child)
        this->Visit(Child);
  }

  void VisitFunctionDecl(const FunctionDecl *D) {
    // Counter tracks entry to the function body.
    uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
    CountMap[D->getBody()] = BodyCount;
    Visit(D->getBody());
  }

  // Skip lambda expressions. We visit these as FunctionDecls when we're
  // generating them and aren't interested in the body when generating a
  // parent context.
  void VisitLambdaExpr(const LambdaExpr *LE) {}

  void VisitCapturedDecl(const CapturedDecl *D) {
    // Counter tracks entry to the capture body.
    uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
    CountMap[D->getBody()] = BodyCount;
    Visit(D->getBody());
  }

  void VisitObjCMethodDecl(const ObjCMethodDecl *D) {
    // Counter tracks entry to the method body.
    uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
    CountMap[D->getBody()] = BodyCount;
    Visit(D->getBody());
  }

  void VisitBlockDecl(const BlockDecl *D) {
    // Counter tracks entry to the block body.
    uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody()));
    CountMap[D->getBody()] = BodyCount;
    Visit(D->getBody());
  }

  void VisitReturnStmt(const ReturnStmt *S) {
    RecordStmtCount(S);
    if (S->getRetValue())
      Visit(S->getRetValue());
    CurrentCount = 0;
    RecordNextStmtCount = true;
  }

  void VisitCXXThrowExpr(const CXXThrowExpr *E) {
    RecordStmtCount(E);
    if (E->getSubExpr())
      Visit(E->getSubExpr());
    CurrentCount = 0;
    RecordNextStmtCount = true;
  }

  void VisitGotoStmt(const GotoStmt *S) {
    RecordStmtCount(S);
    CurrentCount = 0;
    RecordNextStmtCount = true;
  }

  void VisitLabelStmt(const LabelStmt *S) {
    RecordNextStmtCount = false;
    // Counter tracks the block following the label.
    uint64_t BlockCount = setCount(PGO.getRegionCount(S));
    CountMap[S] = BlockCount;
    Visit(S->getSubStmt());
  }

  void VisitBreakStmt(const BreakStmt *S) {
    RecordStmtCount(S);
    assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
    BreakContinueStack.back().BreakCount += CurrentCount;
    CurrentCount = 0;
    RecordNextStmtCount = true;
  }

  void VisitContinueStmt(const ContinueStmt *S) {
    RecordStmtCount(S);
    assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
    BreakContinueStack.back().ContinueCount += CurrentCount;
    CurrentCount = 0;
    RecordNextStmtCount = true;
  }

  void VisitWhileStmt(const WhileStmt *S) {
    RecordStmtCount(S);
    uint64_t ParentCount = CurrentCount;

    BreakContinueStack.push_back(BreakContinue());
    // Visit the body region first so the break/continue adjustments can be
    // included when visiting the condition.
    uint64_t BodyCount = setCount(PGO.getRegionCount(S));
    CountMap[S->getBody()] = CurrentCount;
    Visit(S->getBody());
    uint64_t BackedgeCount = CurrentCount;

    // ...then go back and propagate counts through the condition. The count
    // at the start of the condition is the sum of the incoming edges,
    // the backedge from the end of the loop body, and the edges from
    // continue statements.
    BreakContinue BC = BreakContinueStack.pop_back_val();
    uint64_t CondCount =
        setCount(ParentCount + BackedgeCount + BC.ContinueCount);
    CountMap[S->getCond()] = CondCount;
    Visit(S->getCond());
    setCount(BC.BreakCount + CondCount - BodyCount);
    RecordNextStmtCount = true;
  }

  void VisitDoStmt(const DoStmt *S) {
    RecordStmtCount(S);
    uint64_t LoopCount = PGO.getRegionCount(S);

    BreakContinueStack.push_back(BreakContinue());
    // The count doesn't include the fallthrough from the parent scope. Add it.
    uint64_t BodyCount = setCount(LoopCount + CurrentCount);
    CountMap[S->getBody()] = BodyCount;
    Visit(S->getBody());
    uint64_t BackedgeCount = CurrentCount;

    BreakContinue BC = BreakContinueStack.pop_back_val();
    // The count at the start of the condition is equal to the count at the
    // end of the body, plus any continues.
    uint64_t CondCount = setCount(BackedgeCount + BC.ContinueCount);
    CountMap[S->getCond()] = CondCount;
    Visit(S->getCond());
    setCount(BC.BreakCount + CondCount - LoopCount);
    RecordNextStmtCount = true;
  }

  void VisitForStmt(const ForStmt *S) {
    RecordStmtCount(S);
    if (S->getInit())
      Visit(S->getInit());

    uint64_t ParentCount = CurrentCount;

    BreakContinueStack.push_back(BreakContinue());
    // Visit the body region first. (This is basically the same as a while
    // loop; see further comments in VisitWhileStmt.)
    uint64_t BodyCount = setCount(PGO.getRegionCount(S));
    CountMap[S->getBody()] = BodyCount;
    Visit(S->getBody());
    uint64_t BackedgeCount = CurrentCount;
    BreakContinue BC = BreakContinueStack.pop_back_val();

    // The increment is essentially part of the body but it needs to include
    // the count for all the continue statements.
    if (S->getInc()) {
      uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount);
      CountMap[S->getInc()] = IncCount;
      Visit(S->getInc());
    }

    // ...then go back and propagate counts through the condition.
    uint64_t CondCount =
        setCount(ParentCount + BackedgeCount + BC.ContinueCount);
    if (S->getCond()) {
      CountMap[S->getCond()] = CondCount;
      Visit(S->getCond());
    }
    setCount(BC.BreakCount + CondCount - BodyCount);
    RecordNextStmtCount = true;
  }

  void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
    RecordStmtCount(S);
    if (S->getInit())
      Visit(S->getInit());
    Visit(S->getLoopVarStmt());
    Visit(S->getRangeStmt());
    Visit(S->getBeginStmt());
    Visit(S->getEndStmt());

    uint64_t ParentCount = CurrentCount;
    BreakContinueStack.push_back(BreakContinue());
    // Visit the body region first. (This is basically the same as a while
    // loop; see further comments in VisitWhileStmt.)
    uint64_t BodyCount = setCount(PGO.getRegionCount(S));
    CountMap[S->getBody()] = BodyCount;
    Visit(S->getBody());
    uint64_t BackedgeCount = CurrentCount;
    BreakContinue BC = BreakContinueStack.pop_back_val();

    // The increment is essentially part of the body but it needs to include
    // the count for all the continue statements.
    uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount);
    CountMap[S->getInc()] = IncCount;
    Visit(S->getInc());

    // ...then go back and propagate counts through the condition.
    uint64_t CondCount =
        setCount(ParentCount + BackedgeCount + BC.ContinueCount);
    CountMap[S->getCond()] = CondCount;
    Visit(S->getCond());
    setCount(BC.BreakCount + CondCount - BodyCount);
    RecordNextStmtCount = true;
  }

  void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
    RecordStmtCount(S);
    Visit(S->getElement());
    uint64_t ParentCount = CurrentCount;
    BreakContinueStack.push_back(BreakContinue());
    // Counter tracks the body of the loop.
    uint64_t BodyCount = setCount(PGO.getRegionCount(S));
    CountMap[S->getBody()] = BodyCount;
    Visit(S->getBody());
    uint64_t BackedgeCount = CurrentCount;
    BreakContinue BC = BreakContinueStack.pop_back_val();

    setCount(BC.BreakCount + ParentCount + BackedgeCount + BC.ContinueCount -
             BodyCount);
    RecordNextStmtCount = true;
  }

  void VisitSwitchStmt(const SwitchStmt *S) {
    RecordStmtCount(S);
    if (S->getInit())
      Visit(S->getInit());
    Visit(S->getCond());
    CurrentCount = 0;
    BreakContinueStack.push_back(BreakContinue());
    Visit(S->getBody());
    // If the switch is inside a loop, add the continue counts.
    BreakContinue BC = BreakContinueStack.pop_back_val();
    if (!BreakContinueStack.empty())
      BreakContinueStack.back().ContinueCount += BC.ContinueCount;
    // Counter tracks the exit block of the switch.
    setCount(PGO.getRegionCount(S));
    RecordNextStmtCount = true;
  }

  void VisitSwitchCase(const SwitchCase *S) {
    RecordNextStmtCount = false;
    // Counter for this particular case. This counts only jumps from the
    // switch header and does not include fallthrough from the case before
    // this one.
    uint64_t CaseCount = PGO.getRegionCount(S);
    setCount(CurrentCount + CaseCount);
    // We need the count without fallthrough in the mapping, so it's more useful
    // for branch probabilities.
    CountMap[S] = CaseCount;
    RecordNextStmtCount = true;
    Visit(S->getSubStmt());
  }

  void VisitIfStmt(const IfStmt *S) {
    RecordStmtCount(S);
    uint64_t ParentCount = CurrentCount;
    if (S->getInit())
      Visit(S->getInit());
    Visit(S->getCond());

    // Counter tracks the "then" part of an if statement. The count for
    // the "else" part, if it exists, will be calculated from this counter.
    uint64_t ThenCount = setCount(PGO.getRegionCount(S));
    CountMap[S->getThen()] = ThenCount;
    Visit(S->getThen());
    uint64_t OutCount = CurrentCount;

    uint64_t ElseCount = ParentCount - ThenCount;
    if (S->getElse()) {
      setCount(ElseCount);
      CountMap[S->getElse()] = ElseCount;
      Visit(S->getElse());
      OutCount += CurrentCount;
    } else
      OutCount += ElseCount;
    setCount(OutCount);
    RecordNextStmtCount = true;
  }

  void VisitCXXTryStmt(const CXXTryStmt *S) {
    RecordStmtCount(S);
    Visit(S->getTryBlock());
    for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
      Visit(S->getHandler(I));
    // Counter tracks the continuation block of the try statement.
    setCount(PGO.getRegionCount(S));
    RecordNextStmtCount = true;
  }

  void VisitCXXCatchStmt(const CXXCatchStmt *S) {
    RecordNextStmtCount = false;
    // Counter tracks the catch statement's handler block.
    uint64_t CatchCount = setCount(PGO.getRegionCount(S));
    CountMap[S] = CatchCount;
    Visit(S->getHandlerBlock());
  }

  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
    RecordStmtCount(E);
    uint64_t ParentCount = CurrentCount;
    Visit(E->getCond());

    // Counter tracks the "true" part of a conditional operator. The
    // count in the "false" part will be calculated from this counter.
    uint64_t TrueCount = setCount(PGO.getRegionCount(E));
    CountMap[E->getTrueExpr()] = TrueCount;
    Visit(E->getTrueExpr());
    uint64_t OutCount = CurrentCount;

    uint64_t FalseCount = setCount(ParentCount - TrueCount);
    CountMap[E->getFalseExpr()] = FalseCount;
    Visit(E->getFalseExpr());
    OutCount += CurrentCount;

    setCount(OutCount);
    RecordNextStmtCount = true;
  }

  void VisitBinLAnd(const BinaryOperator *E) {
    RecordStmtCount(E);
    uint64_t ParentCount = CurrentCount;
    Visit(E->getLHS());
    // Counter tracks the right hand side of a logical and operator.
    uint64_t RHSCount = setCount(PGO.getRegionCount(E));
    CountMap[E->getRHS()] = RHSCount;
    Visit(E->getRHS());
    setCount(ParentCount + RHSCount - CurrentCount);
    RecordNextStmtCount = true;
  }

  void VisitBinLOr(const BinaryOperator *E) {
    RecordStmtCount(E);
    uint64_t ParentCount = CurrentCount;
    Visit(E->getLHS());
    // Counter tracks the right hand side of a logical or operator.
    uint64_t RHSCount = setCount(PGO.getRegionCount(E));
    CountMap[E->getRHS()] = RHSCount;
    Visit(E->getRHS());
    setCount(ParentCount + RHSCount - CurrentCount);
    RecordNextStmtCount = true;
  }
};
} // end anonymous namespace

void PGOHash::combine(HashType Type) {
  // Check that we never combine 0 and only have six bits.
  assert(Type && "Hash is invalid: unexpected type 0");
  assert(unsigned(Type) < TooBig && "Hash is invalid: too many types");

  // Pass through MD5 if enough work has built up.
  if (Count && Count % NumTypesPerWord == 0) {
    using namespace llvm::support;
    uint64_t Swapped = endian::byte_swap<uint64_t, little>(Working);
    MD5.update(llvm::makeArrayRef((uint8_t *)&Swapped, sizeof(Swapped)));
    Working = 0;
  }

  // Accumulate the current type.
  ++Count;
  Working = Working << NumBitsPerType | Type;
}

uint64_t PGOHash::finalize() {
  // Use Working as the hash directly if we never used MD5.
  if (Count <= NumTypesPerWord)
    // No need to byte swap here, since none of the math was endian-dependent.
    // This number will be byte-swapped as required on endianness transitions,
    // so we will see the same value on the other side.
    return Working;

  // Check for remaining work in Working.
  if (Working)
    MD5.update(Working);

  // Finalize the MD5 and return the hash.
  llvm::MD5::MD5Result Result;
  MD5.final(Result);
  using namespace llvm::support;
  return Result.low();
}

void CodeGenPGO::assignRegionCounters(GlobalDecl GD, llvm::Function *Fn) {
  const Decl *D = GD.getDecl();
  if (!D->hasBody())
    return;

  bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
  llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader();
  if (!InstrumentRegions && !PGOReader)
    return;
  if (D->isImplicit())
    return;
  // Constructors and destructors may be represented by several functions in IR.
  // If so, instrument only base variant, others are implemented by delegation
  // to the base one, it would be counted twice otherwise.
  if (CGM.getTarget().getCXXABI().hasConstructorVariants()) {
    if (const auto *CCD = dyn_cast<CXXConstructorDecl>(D))
      if (GD.getCtorType() != Ctor_Base &&
          CodeGenFunction::IsConstructorDelegationValid(CCD))
        return;
  }
  if (isa<CXXDestructorDecl>(D) && GD.getDtorType() != Dtor_Base)
    return;

  CGM.ClearUnusedCoverageMapping(D);
  setFuncName(Fn);

  mapRegionCounters(D);
  if (CGM.getCodeGenOpts().CoverageMapping)
    emitCounterRegionMapping(D);
  if (PGOReader) {
    SourceManager &SM = CGM.getContext().getSourceManager();
    loadRegionCounts(PGOReader, SM.isInMainFile(D->getLocation()));
    computeRegionCounts(D);
    applyFunctionAttributes(PGOReader, Fn);
  }
}

void CodeGenPGO::mapRegionCounters(const Decl *D) {
  // Use the latest hash version when inserting instrumentation, but use the
  // version in the indexed profile if we're reading PGO data.
  PGOHashVersion HashVersion = PGO_HASH_LATEST;
  if (auto *PGOReader = CGM.getPGOReader())
    HashVersion = getPGOHashVersion(PGOReader, CGM);

  RegionCounterMap.reset(new llvm::DenseMap<const Stmt *, unsigned>);
  MapRegionCounters Walker(HashVersion, *RegionCounterMap);
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    Walker.TraverseDecl(const_cast<FunctionDecl *>(FD));
  else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D))
    Walker.TraverseDecl(const_cast<ObjCMethodDecl *>(MD));
  else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D))
    Walker.TraverseDecl(const_cast<BlockDecl *>(BD));
  else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D))
    Walker.TraverseDecl(const_cast<CapturedDecl *>(CD));
  assert(Walker.NextCounter > 0 && "no entry counter mapped for decl");
  NumRegionCounters = Walker.NextCounter;
  FunctionHash = Walker.Hash.finalize();
}

bool CodeGenPGO::skipRegionMappingForDecl(const Decl *D) {
  if (!D->getBody())
    return true;

  // Don't map the functions in system headers.
  const auto &SM = CGM.getContext().getSourceManager();
  auto Loc = D->getBody()->getBeginLoc();
  return SM.isInSystemHeader(Loc);
}

void CodeGenPGO::emitCounterRegionMapping(const Decl *D) {
  if (skipRegionMappingForDecl(D))
    return;

  std::string CoverageMapping;
  llvm::raw_string_ostream OS(CoverageMapping);
  CoverageMappingGen MappingGen(*CGM.getCoverageMapping(),
                                CGM.getContext().getSourceManager(),
                                CGM.getLangOpts(), RegionCounterMap.get());
  MappingGen.emitCounterMapping(D, OS);
  OS.flush();

  if (CoverageMapping.empty())
    return;

  CGM.getCoverageMapping()->addFunctionMappingRecord(
      FuncNameVar, FuncName, FunctionHash, CoverageMapping);
}

void
CodeGenPGO::emitEmptyCounterMapping(const Decl *D, StringRef Name,
                                    llvm::GlobalValue::LinkageTypes Linkage) {
  if (skipRegionMappingForDecl(D))
    return;

  std::string CoverageMapping;
  llvm::raw_string_ostream OS(CoverageMapping);
  CoverageMappingGen MappingGen(*CGM.getCoverageMapping(),
                                CGM.getContext().getSourceManager(),
                                CGM.getLangOpts());
  MappingGen.emitEmptyMapping(D, OS);
  OS.flush();

  if (CoverageMapping.empty())
    return;

  setFuncName(Name, Linkage);
  CGM.getCoverageMapping()->addFunctionMappingRecord(
      FuncNameVar, FuncName, FunctionHash, CoverageMapping, false);
}

void CodeGenPGO::computeRegionCounts(const Decl *D) {
  StmtCountMap.reset(new llvm::DenseMap<const Stmt *, uint64_t>);
  ComputeRegionCounts Walker(*StmtCountMap, *this);
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    Walker.VisitFunctionDecl(FD);
  else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D))
    Walker.VisitObjCMethodDecl(MD);
  else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D))
    Walker.VisitBlockDecl(BD);
  else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D))
    Walker.VisitCapturedDecl(const_cast<CapturedDecl *>(CD));
}

void
CodeGenPGO::applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader,
                                    llvm::Function *Fn) {
  if (!haveRegionCounts())
    return;

  uint64_t FunctionCount = getRegionCount(nullptr);
  Fn->setEntryCount(FunctionCount);
}

void CodeGenPGO::emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S,
                                      llvm::Value *StepV) {
  if (!CGM.getCodeGenOpts().hasProfileClangInstr() || !RegionCounterMap)
    return;
  if (!Builder.GetInsertBlock())
    return;

  unsigned Counter = (*RegionCounterMap)[S];
  auto *I8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());

  llvm::Value *Args[] = {llvm::ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
                         Builder.getInt64(FunctionHash),
                         Builder.getInt32(NumRegionCounters),
                         Builder.getInt32(Counter), StepV};
  if (!StepV)
    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment),
                       makeArrayRef(Args, 4));
  else
    Builder.CreateCall(
        CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment_step),
        makeArrayRef(Args));
}

// This method either inserts a call to the profile run-time during
// instrumentation or puts profile data into metadata for PGO use.
void CodeGenPGO::valueProfile(CGBuilderTy &Builder, uint32_t ValueKind,
    llvm::Instruction *ValueSite, llvm::Value *ValuePtr) {

  if (!EnableValueProfiling)
    return;

  if (!ValuePtr || !ValueSite || !Builder.GetInsertBlock())
    return;

  if (isa<llvm::Constant>(ValuePtr))
    return;

  bool InstrumentValueSites = CGM.getCodeGenOpts().hasProfileClangInstr();
  if (InstrumentValueSites && RegionCounterMap) {
    auto BuilderInsertPoint = Builder.saveIP();
    Builder.SetInsertPoint(ValueSite);
    llvm::Value *Args[5] = {
        llvm::ConstantExpr::getBitCast(FuncNameVar, Builder.getInt8PtrTy()),
        Builder.getInt64(FunctionHash),
        Builder.CreatePtrToInt(ValuePtr, Builder.getInt64Ty()),
        Builder.getInt32(ValueKind),
        Builder.getInt32(NumValueSites[ValueKind]++)
    };
    Builder.CreateCall(
        CGM.getIntrinsic(llvm::Intrinsic::instrprof_value_profile), Args);
    Builder.restoreIP(BuilderInsertPoint);
    return;
  }

  llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader();
  if (PGOReader && haveRegionCounts()) {
    // We record the top most called three functions at each call site.
    // Profile metadata contains "VP" string identifying this metadata
    // as value profiling data, then a uint32_t value for the value profiling
    // kind, a uint64_t value for the total number of times the call is
    // executed, followed by the function hash and execution count (uint64_t)
    // pairs for each function.
    if (NumValueSites[ValueKind] >= ProfRecord->getNumValueSites(ValueKind))
      return;

    llvm::annotateValueSite(CGM.getModule(), *ValueSite, *ProfRecord,
                            (llvm::InstrProfValueKind)ValueKind,
                            NumValueSites[ValueKind]);

    NumValueSites[ValueKind]++;
  }
}

void CodeGenPGO::loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader,
                                  bool IsInMainFile) {
  CGM.getPGOStats().addVisited(IsInMainFile);
  RegionCounts.clear();
  llvm::Expected<llvm::InstrProfRecord> RecordExpected =
      PGOReader->getInstrProfRecord(FuncName, FunctionHash);
  if (auto E = RecordExpected.takeError()) {
    auto IPE = llvm::InstrProfError::take(std::move(E));
    if (IPE == llvm::instrprof_error::unknown_function)
      CGM.getPGOStats().addMissing(IsInMainFile);
    else if (IPE == llvm::instrprof_error::hash_mismatch)
      CGM.getPGOStats().addMismatched(IsInMainFile);
    else if (IPE == llvm::instrprof_error::malformed)
      // TODO: Consider a more specific warning for this case.
      CGM.getPGOStats().addMismatched(IsInMainFile);
    return;
  }
  ProfRecord =
      std::make_unique<llvm::InstrProfRecord>(std::move(RecordExpected.get()));
  RegionCounts = ProfRecord->Counts;
}

/// Calculate what to divide by to scale weights.
///
/// Given the maximum weight, calculate a divisor that will scale all the
/// weights to strictly less than UINT32_MAX.
static uint64_t calculateWeightScale(uint64_t MaxWeight) {
  return MaxWeight < UINT32_MAX ? 1 : MaxWeight / UINT32_MAX + 1;
}

/// Scale an individual branch weight (and add 1).
///
/// Scale a 64-bit weight down to 32-bits using \c Scale.
///
/// According to Laplace's Rule of Succession, it is better to compute the
/// weight based on the count plus 1, so universally add 1 to the value.
///
/// \pre \c Scale was calculated by \a calculateWeightScale() with a weight no
/// greater than \c Weight.
static uint32_t scaleBranchWeight(uint64_t Weight, uint64_t Scale) {
  assert(Scale && "scale by 0?");
  uint64_t Scaled = Weight / Scale + 1;
  assert(Scaled <= UINT32_MAX && "overflow 32-bits");
  return Scaled;
}

llvm::MDNode *CodeGenFunction::createProfileWeights(uint64_t TrueCount,
                                                    uint64_t FalseCount) {
  // Check for empty weights.
  if (!TrueCount && !FalseCount)
    return nullptr;

  // Calculate how to scale down to 32-bits.
  uint64_t Scale = calculateWeightScale(std::max(TrueCount, FalseCount));

  llvm::MDBuilder MDHelper(CGM.getLLVMContext());
  return MDHelper.createBranchWeights(scaleBranchWeight(TrueCount, Scale),
                                      scaleBranchWeight(FalseCount, Scale));
}

llvm::MDNode *
CodeGenFunction::createProfileWeights(ArrayRef<uint64_t> Weights) {
  // We need at least two elements to create meaningful weights.
  if (Weights.size() < 2)
    return nullptr;

  // Check for empty weights.
  uint64_t MaxWeight = *std::max_element(Weights.begin(), Weights.end());
  if (MaxWeight == 0)
    return nullptr;

  // Calculate how to scale down to 32-bits.
  uint64_t Scale = calculateWeightScale(MaxWeight);

  SmallVector<uint32_t, 16> ScaledWeights;
  ScaledWeights.reserve(Weights.size());
  for (uint64_t W : Weights)
    ScaledWeights.push_back(scaleBranchWeight(W, Scale));

  llvm::MDBuilder MDHelper(CGM.getLLVMContext());
  return MDHelper.createBranchWeights(ScaledWeights);
}

llvm::MDNode *CodeGenFunction::createProfileWeightsForLoop(const Stmt *Cond,
                                                           uint64_t LoopCount) {
  if (!PGO.haveRegionCounts())
    return nullptr;
  Optional<uint64_t> CondCount = PGO.getStmtCount(Cond);
  assert(CondCount.hasValue() && "missing expected loop condition count");
  if (*CondCount == 0)
    return nullptr;
  return createProfileWeights(LoopCount,
                              std::max(*CondCount, LoopCount) - LoopCount);
}