CodeGenFunction.h 188 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-function state used for llvm translation.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H

#include "CGBuilder.h"
#include "CGDebugInfo.h"
#include "CGLoopInfo.h"
#include "CGValue.h"
#include "CodeGenModule.h"
#include "CodeGenPGO.h"
#include "EHScopeStack.h"
#include "VarBypassDetector.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/CurrentSourceLocExprScope.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/Type.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/CapturedStmt.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/SanitizerStats.h"

namespace llvm {
class BasicBlock;
class LLVMContext;
class MDNode;
class Module;
class SwitchInst;
class Twine;
class Value;
}

namespace clang {
class ASTContext;
class BlockDecl;
class CXXDestructorDecl;
class CXXForRangeStmt;
class CXXTryStmt;
class Decl;
class LabelDecl;
class EnumConstantDecl;
class FunctionDecl;
class FunctionProtoType;
class LabelStmt;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCImplementationDecl;
class ObjCPropertyImplDecl;
class TargetInfo;
class VarDecl;
class ObjCForCollectionStmt;
class ObjCAtTryStmt;
class ObjCAtThrowStmt;
class ObjCAtSynchronizedStmt;
class ObjCAutoreleasePoolStmt;
class ReturnsNonNullAttr;

namespace analyze_os_log {
class OSLogBufferLayout;
}

namespace CodeGen {
class CodeGenTypes;
class CGCallee;
class CGFunctionInfo;
class CGRecordLayout;
class CGBlockInfo;
class CGCXXABI;
class BlockByrefHelpers;
class BlockByrefInfo;
class BlockFlags;
class BlockFieldFlags;
class RegionCodeGenTy;
class TargetCodeGenInfo;
struct OMPTaskDataTy;
struct CGCoroData;

/// The kind of evaluation to perform on values of a particular
/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
/// CGExprAgg?
///
/// TODO: should vectors maybe be split out into their own thing?
enum TypeEvaluationKind {
  TEK_Scalar,
  TEK_Complex,
  TEK_Aggregate
};

#define LIST_SANITIZER_CHECKS                                                  \
  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)

enum SanitizerHandler {
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
  LIST_SANITIZER_CHECKS
#undef SANITIZER_CHECK
};

/// Helper class with most of the code for saving a value for a
/// conditional expression cleanup.
struct DominatingLLVMValue {
  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;

  /// Answer whether the given value needs extra work to be saved.
  static bool needsSaving(llvm::Value *value) {
    // If it's not an instruction, we don't need to save.
    if (!isa<llvm::Instruction>(value)) return false;

    // If it's an instruction in the entry block, we don't need to save.
    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
    return (block != &block->getParent()->getEntryBlock());
  }

  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
};

/// A partial specialization of DominatingValue for llvm::Values that
/// might be llvm::Instructions.
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
  typedef T *type;
  static type restore(CodeGenFunction &CGF, saved_type value) {
    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
  }
};

/// A specialization of DominatingValue for Address.
template <> struct DominatingValue<Address> {
  typedef Address type;

  struct saved_type {
    DominatingLLVMValue::saved_type SavedValue;
    CharUnits Alignment;
  };

  static bool needsSaving(type value) {
    return DominatingLLVMValue::needsSaving(value.getPointer());
  }
  static saved_type save(CodeGenFunction &CGF, type value) {
    return { DominatingLLVMValue::save(CGF, value.getPointer()),
             value.getAlignment() };
  }
  static type restore(CodeGenFunction &CGF, saved_type value) {
    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
                   value.Alignment);
  }
};

/// A specialization of DominatingValue for RValue.
template <> struct DominatingValue<RValue> {
  typedef RValue type;
  class saved_type {
    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
                AggregateAddress, ComplexAddress };

    llvm::Value *Value;
    unsigned K : 3;
    unsigned Align : 29;
    saved_type(llvm::Value *v, Kind k, unsigned a = 0)
      : Value(v), K(k), Align(a) {}

  public:
    static bool needsSaving(RValue value);
    static saved_type save(CodeGenFunction &CGF, RValue value);
    RValue restore(CodeGenFunction &CGF);

    // implementations in CGCleanup.cpp
  };

  static bool needsSaving(type value) {
    return saved_type::needsSaving(value);
  }
  static saved_type save(CodeGenFunction &CGF, type value) {
    return saved_type::save(CGF, value);
  }
  static type restore(CodeGenFunction &CGF, saved_type value) {
    return value.restore(CGF);
  }
};

/// CodeGenFunction - This class organizes the per-function state that is used
/// while generating LLVM code.
class CodeGenFunction : public CodeGenTypeCache {
  CodeGenFunction(const CodeGenFunction &) = delete;
  void operator=(const CodeGenFunction &) = delete;

  friend class CGCXXABI;
public:
  /// A jump destination is an abstract label, branching to which may
  /// require a jump out through normal cleanups.
  struct JumpDest {
    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
    JumpDest(llvm::BasicBlock *Block,
             EHScopeStack::stable_iterator Depth,
             unsigned Index)
      : Block(Block), ScopeDepth(Depth), Index(Index) {}

    bool isValid() const { return Block != nullptr; }
    llvm::BasicBlock *getBlock() const { return Block; }
    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    unsigned getDestIndex() const { return Index; }

    // This should be used cautiously.
    void setScopeDepth(EHScopeStack::stable_iterator depth) {
      ScopeDepth = depth;
    }

  private:
    llvm::BasicBlock *Block;
    EHScopeStack::stable_iterator ScopeDepth;
    unsigned Index;
  };

  CodeGenModule &CGM;  // Per-module state.
  const TargetInfo &Target;

  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
  LoopInfoStack LoopStack;
  CGBuilderTy Builder;

  // Stores variables for which we can't generate correct lifetime markers
  // because of jumps.
  VarBypassDetector Bypasses;

  // CodeGen lambda for loops and support for ordered clause
  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
                                  JumpDest)>
      CodeGenLoopTy;
  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
                                  const unsigned, const bool)>
      CodeGenOrderedTy;

  // Codegen lambda for loop bounds in worksharing loop constructs
  typedef llvm::function_ref<std::pair<LValue, LValue>(
      CodeGenFunction &, const OMPExecutableDirective &S)>
      CodeGenLoopBoundsTy;

  // Codegen lambda for loop bounds in dispatch-based loop implementation
  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
      Address UB)>
      CodeGenDispatchBoundsTy;

  /// CGBuilder insert helper. This function is called after an
  /// instruction is created using Builder.
  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
                    llvm::BasicBlock *BB,
                    llvm::BasicBlock::iterator InsertPt) const;

  /// CurFuncDecl - Holds the Decl for the current outermost
  /// non-closure context.
  const Decl *CurFuncDecl;
  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
  const Decl *CurCodeDecl;
  const CGFunctionInfo *CurFnInfo;
  QualType FnRetTy;
  llvm::Function *CurFn = nullptr;

  // Holds coroutine data if the current function is a coroutine. We use a
  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
  // in this header.
  struct CGCoroInfo {
    std::unique_ptr<CGCoroData> Data;
    CGCoroInfo();
    ~CGCoroInfo();
  };
  CGCoroInfo CurCoro;

  bool isCoroutine() const {
    return CurCoro.Data != nullptr;
  }

  /// CurGD - The GlobalDecl for the current function being compiled.
  GlobalDecl CurGD;

  /// PrologueCleanupDepth - The cleanup depth enclosing all the
  /// cleanups associated with the parameters.
  EHScopeStack::stable_iterator PrologueCleanupDepth;

  /// ReturnBlock - Unified return block.
  JumpDest ReturnBlock;

  /// ReturnValue - The temporary alloca to hold the return
  /// value. This is invalid iff the function has no return value.
  Address ReturnValue = Address::invalid();

  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
  /// This is invalid if sret is not in use.
  Address ReturnValuePointer = Address::invalid();

  /// Return true if a label was seen in the current scope.
  bool hasLabelBeenSeenInCurrentScope() const {
    if (CurLexicalScope)
      return CurLexicalScope->hasLabels();
    return !LabelMap.empty();
  }

  /// AllocaInsertPoint - This is an instruction in the entry block before which
  /// we prefer to insert allocas.
  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;

  /// API for captured statement code generation.
  class CGCapturedStmtInfo {
  public:
    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
    explicit CGCapturedStmtInfo(const CapturedStmt &S,
                                CapturedRegionKind K = CR_Default)
      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {

      RecordDecl::field_iterator Field =
        S.getCapturedRecordDecl()->field_begin();
      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
                                                E = S.capture_end();
           I != E; ++I, ++Field) {
        if (I->capturesThis())
          CXXThisFieldDecl = *Field;
        else if (I->capturesVariable())
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
        else if (I->capturesVariableByCopy())
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
      }
    }

    virtual ~CGCapturedStmtInfo();

    CapturedRegionKind getKind() const { return Kind; }

    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
    // Retrieve the value of the context parameter.
    virtual llvm::Value *getContextValue() const { return ThisValue; }

    /// Lookup the captured field decl for a variable.
    virtual const FieldDecl *lookup(const VarDecl *VD) const {
      return CaptureFields.lookup(VD->getCanonicalDecl());
    }

    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }

    static bool classof(const CGCapturedStmtInfo *) {
      return true;
    }

    /// Emit the captured statement body.
    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
      CGF.incrementProfileCounter(S);
      CGF.EmitStmt(S);
    }

    /// Get the name of the capture helper.
    virtual StringRef getHelperName() const { return "__captured_stmt"; }

  private:
    /// The kind of captured statement being generated.
    CapturedRegionKind Kind;

    /// Keep the map between VarDecl and FieldDecl.
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;

    /// The base address of the captured record, passed in as the first
    /// argument of the parallel region function.
    llvm::Value *ThisValue;

    /// Captured 'this' type.
    FieldDecl *CXXThisFieldDecl;
  };
  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;

  /// RAII for correct setting/restoring of CapturedStmtInfo.
  class CGCapturedStmtRAII {
  private:
    CodeGenFunction &CGF;
    CGCapturedStmtInfo *PrevCapturedStmtInfo;
  public:
    CGCapturedStmtRAII(CodeGenFunction &CGF,
                       CGCapturedStmtInfo *NewCapturedStmtInfo)
        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
    }
    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
  };

  /// An abstract representation of regular/ObjC call/message targets.
  class AbstractCallee {
    /// The function declaration of the callee.
    const Decl *CalleeDecl;

  public:
    AbstractCallee() : CalleeDecl(nullptr) {}
    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
    bool hasFunctionDecl() const {
      return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
    }
    const Decl *getDecl() const { return CalleeDecl; }
    unsigned getNumParams() const {
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
        return FD->getNumParams();
      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
    }
    const ParmVarDecl *getParamDecl(unsigned I) const {
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
        return FD->getParamDecl(I);
      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
    }
  };

  /// Sanitizers enabled for this function.
  SanitizerSet SanOpts;

  /// True if CodeGen currently emits code implementing sanitizer checks.
  bool IsSanitizerScope = false;

  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
  class SanitizerScope {
    CodeGenFunction *CGF;
  public:
    SanitizerScope(CodeGenFunction *CGF);
    ~SanitizerScope();
  };

  /// In C++, whether we are code generating a thunk.  This controls whether we
  /// should emit cleanups.
  bool CurFuncIsThunk = false;

  /// In ARC, whether we should autorelease the return value.
  bool AutoreleaseResult = false;

  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
  /// potentially set the return value.
  bool SawAsmBlock = false;

  const NamedDecl *CurSEHParent = nullptr;

  /// True if the current function is an outlined SEH helper. This can be a
  /// finally block or filter expression.
  bool IsOutlinedSEHHelper = false;

  /// True if CodeGen currently emits code inside presereved access index
  /// region.
  bool IsInPreservedAIRegion = false;

  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
  llvm::Value *BlockPointer = nullptr;

  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
  FieldDecl *LambdaThisCaptureField = nullptr;

  /// A mapping from NRVO variables to the flags used to indicate
  /// when the NRVO has been applied to this variable.
  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;

  EHScopeStack EHStack;
  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;

  llvm::Instruction *CurrentFuncletPad = nullptr;

  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
    llvm::Value *Addr;
    llvm::Value *Size;

  public:
    CallLifetimeEnd(Address addr, llvm::Value *size)
        : Addr(addr.getPointer()), Size(size) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitLifetimeEnd(Size, Addr);
    }
  };

  /// Header for data within LifetimeExtendedCleanupStack.
  struct LifetimeExtendedCleanupHeader {
    /// The size of the following cleanup object.
    unsigned Size;
    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
    unsigned Kind : 31;
    /// Whether this is a conditional cleanup.
    unsigned IsConditional : 1;

    size_t getSize() const { return Size; }
    CleanupKind getKind() const { return (CleanupKind)Kind; }
    bool isConditional() const { return IsConditional; }
  };

  /// i32s containing the indexes of the cleanup destinations.
  Address NormalCleanupDest = Address::invalid();

  unsigned NextCleanupDestIndex = 1;

  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
  CGBlockInfo *FirstBlockInfo = nullptr;

  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
  llvm::BasicBlock *EHResumeBlock = nullptr;

  /// The exception slot.  All landing pads write the current exception pointer
  /// into this alloca.
  llvm::Value *ExceptionSlot = nullptr;

  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
  /// write the current selector value into this alloca.
  llvm::AllocaInst *EHSelectorSlot = nullptr;

  /// A stack of exception code slots. Entering an __except block pushes a slot
  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
  /// a value from the top of the stack.
  SmallVector<Address, 1> SEHCodeSlotStack;

  /// Value returned by __exception_info intrinsic.
  llvm::Value *SEHInfo = nullptr;

  /// Emits a landing pad for the current EH stack.
  llvm::BasicBlock *EmitLandingPad();

  llvm::BasicBlock *getInvokeDestImpl();

  template <class T>
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    return DominatingValue<T>::save(*this, value);
  }

public:
  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
  /// rethrows.
  SmallVector<llvm::Value*, 8> ObjCEHValueStack;

  /// A class controlling the emission of a finally block.
  class FinallyInfo {
    /// Where the catchall's edge through the cleanup should go.
    JumpDest RethrowDest;

    /// A function to call to enter the catch.
    llvm::FunctionCallee BeginCatchFn;

    /// An i1 variable indicating whether or not the @finally is
    /// running for an exception.
    llvm::AllocaInst *ForEHVar;

    /// An i8* variable into which the exception pointer to rethrow
    /// has been saved.
    llvm::AllocaInst *SavedExnVar;

  public:
    void enter(CodeGenFunction &CGF, const Stmt *Finally,
               llvm::FunctionCallee beginCatchFn,
               llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
    void exit(CodeGenFunction &CGF);
  };

  /// Returns true inside SEH __try blocks.
  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }

  /// Returns true while emitting a cleanuppad.
  bool isCleanupPadScope() const {
    return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
  }

  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
  /// current full-expression.  Safe against the possibility that
  /// we're currently inside a conditionally-evaluated expression.
  template <class T, class... As>
  void pushFullExprCleanup(CleanupKind kind, As... A) {
    // If we're not in a conditional branch, or if none of the
    // arguments requires saving, then use the unconditional cleanup.
    if (!isInConditionalBranch())
      return EHStack.pushCleanup<T>(kind, A...);

    // Stash values in a tuple so we can guarantee the order of saves.
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
    SavedTuple Saved{saveValueInCond(A)...};

    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
    initFullExprCleanup();
  }

  /// Queue a cleanup to be pushed after finishing the current
  /// full-expression.
  template <class T, class... As>
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
    if (!isInConditionalBranch())
      return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);

    Address ActiveFlag = createCleanupActiveFlag();
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
           "cleanup active flag should never need saving");

    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
    SavedTuple Saved{saveValueInCond(A)...};

    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
    pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
  }

  template <class T, class... As>
  void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
                                    As... A) {
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
                                            ActiveFlag.isValid()};

    size_t OldSize = LifetimeExtendedCleanupStack.size();
    LifetimeExtendedCleanupStack.resize(
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
        (Header.IsConditional ? sizeof(ActiveFlag) : 0));

    static_assert(sizeof(Header) % alignof(T) == 0,
                  "Cleanup will be allocated on misaligned address");
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
    new (Buffer + sizeof(Header)) T(A...);
    if (Header.IsConditional)
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
  }

  /// Set up the last cleanup that was pushed as a conditional
  /// full-expression cleanup.
  void initFullExprCleanup() {
    initFullExprCleanupWithFlag(createCleanupActiveFlag());
  }

  void initFullExprCleanupWithFlag(Address ActiveFlag);
  Address createCleanupActiveFlag();

  /// PushDestructorCleanup - Push a cleanup to call the
  /// complete-object destructor of an object of the given type at the
  /// given address.  Does nothing if T is not a C++ class type with a
  /// non-trivial destructor.
  void PushDestructorCleanup(QualType T, Address Addr);

  /// PushDestructorCleanup - Push a cleanup to call the
  /// complete-object variant of the given destructor on the object at
  /// the given address.
  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
                             Address Addr);

  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
  /// process all branch fixups.
  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);

  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
  /// The block cannot be reactivated.  Pops it if it's the top of the
  /// stack.
  ///
  /// \param DominatingIP - An instruction which is known to
  ///   dominate the current IP (if set) and which lies along
  ///   all paths of execution between the current IP and the
  ///   the point at which the cleanup comes into scope.
  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
                              llvm::Instruction *DominatingIP);

  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
  /// Cannot be used to resurrect a deactivated cleanup.
  ///
  /// \param DominatingIP - An instruction which is known to
  ///   dominate the current IP (if set) and which lies along
  ///   all paths of execution between the current IP and the
  ///   the point at which the cleanup comes into scope.
  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
                            llvm::Instruction *DominatingIP);

  /// Enters a new scope for capturing cleanups, all of which
  /// will be executed once the scope is exited.
  class RunCleanupsScope {
    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
    size_t LifetimeExtendedCleanupStackSize;
    bool OldDidCallStackSave;
  protected:
    bool PerformCleanup;
  private:

    RunCleanupsScope(const RunCleanupsScope &) = delete;
    void operator=(const RunCleanupsScope &) = delete;

  protected:
    CodeGenFunction& CGF;

  public:
    /// Enter a new cleanup scope.
    explicit RunCleanupsScope(CodeGenFunction &CGF)
      : PerformCleanup(true), CGF(CGF)
    {
      CleanupStackDepth = CGF.EHStack.stable_begin();
      LifetimeExtendedCleanupStackSize =
          CGF.LifetimeExtendedCleanupStack.size();
      OldDidCallStackSave = CGF.DidCallStackSave;
      CGF.DidCallStackSave = false;
      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
    }

    /// Exit this cleanup scope, emitting any accumulated cleanups.
    ~RunCleanupsScope() {
      if (PerformCleanup)
        ForceCleanup();
    }

    /// Determine whether this scope requires any cleanups.
    bool requiresCleanups() const {
      return CGF.EHStack.stable_begin() != CleanupStackDepth;
    }

    /// Force the emission of cleanups now, instead of waiting
    /// until this object is destroyed.
    /// \param ValuesToReload - A list of values that need to be available at
    /// the insertion point after cleanup emission. If cleanup emission created
    /// a shared cleanup block, these value pointers will be rewritten.
    /// Otherwise, they not will be modified.
    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
      assert(PerformCleanup && "Already forced cleanup");
      CGF.DidCallStackSave = OldDidCallStackSave;
      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
                           ValuesToReload);
      PerformCleanup = false;
      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
    }
  };

  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
      EHScopeStack::stable_end();

  class LexicalScope : public RunCleanupsScope {
    SourceRange Range;
    SmallVector<const LabelDecl*, 4> Labels;
    LexicalScope *ParentScope;

    LexicalScope(const LexicalScope &) = delete;
    void operator=(const LexicalScope &) = delete;

  public:
    /// Enter a new cleanup scope.
    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
      CGF.CurLexicalScope = this;
      if (CGDebugInfo *DI = CGF.getDebugInfo())
        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
    }

    void addLabel(const LabelDecl *label) {
      assert(PerformCleanup && "adding label to dead scope?");
      Labels.push_back(label);
    }

    /// Exit this cleanup scope, emitting any accumulated
    /// cleanups.
    ~LexicalScope() {
      if (CGDebugInfo *DI = CGF.getDebugInfo())
        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());

      // If we should perform a cleanup, force them now.  Note that
      // this ends the cleanup scope before rescoping any labels.
      if (PerformCleanup) {
        ApplyDebugLocation DL(CGF, Range.getEnd());
        ForceCleanup();
      }
    }

    /// Force the emission of cleanups now, instead of waiting
    /// until this object is destroyed.
    void ForceCleanup() {
      CGF.CurLexicalScope = ParentScope;
      RunCleanupsScope::ForceCleanup();

      if (!Labels.empty())
        rescopeLabels();
    }

    bool hasLabels() const {
      return !Labels.empty();
    }

    void rescopeLabels();
  };

  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;

  /// The class used to assign some variables some temporarily addresses.
  class OMPMapVars {
    DeclMapTy SavedLocals;
    DeclMapTy SavedTempAddresses;
    OMPMapVars(const OMPMapVars &) = delete;
    void operator=(const OMPMapVars &) = delete;

  public:
    explicit OMPMapVars() = default;
    ~OMPMapVars() {
      assert(SavedLocals.empty() && "Did not restored original addresses.");
    };

    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
    /// function \p CGF.
    /// \return true if at least one variable was set already, false otherwise.
    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
                    Address TempAddr) {
      LocalVD = LocalVD->getCanonicalDecl();
      // Only save it once.
      if (SavedLocals.count(LocalVD)) return false;

      // Copy the existing local entry to SavedLocals.
      auto it = CGF.LocalDeclMap.find(LocalVD);
      if (it != CGF.LocalDeclMap.end())
        SavedLocals.try_emplace(LocalVD, it->second);
      else
        SavedLocals.try_emplace(LocalVD, Address::invalid());

      // Generate the private entry.
      QualType VarTy = LocalVD->getType();
      if (VarTy->isReferenceType()) {
        Address Temp = CGF.CreateMemTemp(VarTy);
        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
        TempAddr = Temp;
      }
      SavedTempAddresses.try_emplace(LocalVD, TempAddr);

      return true;
    }

    /// Applies new addresses to the list of the variables.
    /// \return true if at least one variable is using new address, false
    /// otherwise.
    bool apply(CodeGenFunction &CGF) {
      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
      SavedTempAddresses.clear();
      return !SavedLocals.empty();
    }

    /// Restores original addresses of the variables.
    void restore(CodeGenFunction &CGF) {
      if (!SavedLocals.empty()) {
        copyInto(SavedLocals, CGF.LocalDeclMap);
        SavedLocals.clear();
      }
    }

  private:
    /// Copy all the entries in the source map over the corresponding
    /// entries in the destination, which must exist.
    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
      for (auto &Pair : Src) {
        if (!Pair.second.isValid()) {
          Dest.erase(Pair.first);
          continue;
        }

        auto I = Dest.find(Pair.first);
        if (I != Dest.end())
          I->second = Pair.second;
        else
          Dest.insert(Pair);
      }
    }
  };

  /// The scope used to remap some variables as private in the OpenMP loop body
  /// (or other captured region emitted without outlining), and to restore old
  /// vars back on exit.
  class OMPPrivateScope : public RunCleanupsScope {
    OMPMapVars MappedVars;
    OMPPrivateScope(const OMPPrivateScope &) = delete;
    void operator=(const OMPPrivateScope &) = delete;

  public:
    /// Enter a new OpenMP private scope.
    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}

    /// Registers \p LocalVD variable as a private and apply \p PrivateGen
    /// function for it to generate corresponding private variable. \p
    /// PrivateGen returns an address of the generated private variable.
    /// \return true if the variable is registered as private, false if it has
    /// been privatized already.
    bool addPrivate(const VarDecl *LocalVD,
                    const llvm::function_ref<Address()> PrivateGen) {
      assert(PerformCleanup && "adding private to dead scope");
      return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
    }

    /// Privatizes local variables previously registered as private.
    /// Registration is separate from the actual privatization to allow
    /// initializers use values of the original variables, not the private one.
    /// This is important, for example, if the private variable is a class
    /// variable initialized by a constructor that references other private
    /// variables. But at initialization original variables must be used, not
    /// private copies.
    /// \return true if at least one variable was privatized, false otherwise.
    bool Privatize() { return MappedVars.apply(CGF); }

    void ForceCleanup() {
      RunCleanupsScope::ForceCleanup();
      MappedVars.restore(CGF);
    }

    /// Exit scope - all the mapped variables are restored.
    ~OMPPrivateScope() {
      if (PerformCleanup)
        ForceCleanup();
    }

    /// Checks if the global variable is captured in current function.
    bool isGlobalVarCaptured(const VarDecl *VD) const {
      VD = VD->getCanonicalDecl();
      return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
    }
  };

  /// Save/restore original map of previously emitted local vars in case when we
  /// need to duplicate emission of the same code several times in the same
  /// function for OpenMP code.
  class OMPLocalDeclMapRAII {
    CodeGenFunction &CGF;
    DeclMapTy SavedMap;

  public:
    OMPLocalDeclMapRAII(CodeGenFunction &CGF)
        : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
    ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
  };

  /// Takes the old cleanup stack size and emits the cleanup blocks
  /// that have been added.
  void
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
                   std::initializer_list<llvm::Value **> ValuesToReload = {});

  /// Takes the old cleanup stack size and emits the cleanup blocks
  /// that have been added, then adds all lifetime-extended cleanups from
  /// the given position to the stack.
  void
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
                   size_t OldLifetimeExtendedStackSize,
                   std::initializer_list<llvm::Value **> ValuesToReload = {});

  void ResolveBranchFixups(llvm::BasicBlock *Target);

  /// The given basic block lies in the current EH scope, but may be a
  /// target of a potentially scope-crossing jump; get a stable handle
  /// to which we can perform this jump later.
  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    return JumpDest(Target,
                    EHStack.getInnermostNormalCleanup(),
                    NextCleanupDestIndex++);
  }

  /// The given basic block lies in the current EH scope, but may be a
  /// target of a potentially scope-crossing jump; get a stable handle
  /// to which we can perform this jump later.
  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
    return getJumpDestInCurrentScope(createBasicBlock(Name));
  }

  /// EmitBranchThroughCleanup - Emit a branch from the current insert
  /// block through the normal cleanup handling code (if any) and then
  /// on to \arg Dest.
  void EmitBranchThroughCleanup(JumpDest Dest);

  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
  /// specified destination obviously has no cleanups to run.  'false' is always
  /// a conservatively correct answer for this method.
  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;

  /// popCatchScope - Pops the catch scope at the top of the EHScope
  /// stack, emitting any required code (other than the catch handlers
  /// themselves).
  void popCatchScope();

  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
  llvm::BasicBlock *
  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);

  /// An object to manage conditionally-evaluated expressions.
  class ConditionalEvaluation {
    llvm::BasicBlock *StartBB;

  public:
    ConditionalEvaluation(CodeGenFunction &CGF)
      : StartBB(CGF.Builder.GetInsertBlock()) {}

    void begin(CodeGenFunction &CGF) {
      assert(CGF.OutermostConditional != this);
      if (!CGF.OutermostConditional)
        CGF.OutermostConditional = this;
    }

    void end(CodeGenFunction &CGF) {
      assert(CGF.OutermostConditional != nullptr);
      if (CGF.OutermostConditional == this)
        CGF.OutermostConditional = nullptr;
    }

    /// Returns a block which will be executed prior to each
    /// evaluation of the conditional code.
    llvm::BasicBlock *getStartingBlock() const {
      return StartBB;
    }
  };

  /// isInConditionalBranch - Return true if we're currently emitting
  /// one branch or the other of a conditional expression.
  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }

  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
    assert(isInConditionalBranch());
    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
    store->setAlignment(addr.getAlignment().getAsAlign());
  }

  /// An RAII object to record that we're evaluating a statement
  /// expression.
  class StmtExprEvaluation {
    CodeGenFunction &CGF;

    /// We have to save the outermost conditional: cleanups in a
    /// statement expression aren't conditional just because the
    /// StmtExpr is.
    ConditionalEvaluation *SavedOutermostConditional;

  public:
    StmtExprEvaluation(CodeGenFunction &CGF)
      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
      CGF.OutermostConditional = nullptr;
    }

    ~StmtExprEvaluation() {
      CGF.OutermostConditional = SavedOutermostConditional;
      CGF.EnsureInsertPoint();
    }
  };

  /// An object which temporarily prevents a value from being
  /// destroyed by aggressive peephole optimizations that assume that
  /// all uses of a value have been realized in the IR.
  class PeepholeProtection {
    llvm::Instruction *Inst;
    friend class CodeGenFunction;

  public:
    PeepholeProtection() : Inst(nullptr) {}
  };

  /// A non-RAII class containing all the information about a bound
  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
  /// this which makes individual mappings very simple; using this
  /// class directly is useful when you have a variable number of
  /// opaque values or don't want the RAII functionality for some
  /// reason.
  class OpaqueValueMappingData {
    const OpaqueValueExpr *OpaqueValue;
    bool BoundLValue;
    CodeGenFunction::PeepholeProtection Protection;

    OpaqueValueMappingData(const OpaqueValueExpr *ov,
                           bool boundLValue)
      : OpaqueValue(ov), BoundLValue(boundLValue) {}
  public:
    OpaqueValueMappingData() : OpaqueValue(nullptr) {}

    static bool shouldBindAsLValue(const Expr *expr) {
      // gl-values should be bound as l-values for obvious reasons.
      // Records should be bound as l-values because IR generation
      // always keeps them in memory.  Expressions of function type
      // act exactly like l-values but are formally required to be
      // r-values in C.
      return expr->isGLValue() ||
             expr->getType()->isFunctionType() ||
             hasAggregateEvaluationKind(expr->getType());
    }

    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
                                       const OpaqueValueExpr *ov,
                                       const Expr *e) {
      if (shouldBindAsLValue(ov))
        return bind(CGF, ov, CGF.EmitLValue(e));
      return bind(CGF, ov, CGF.EmitAnyExpr(e));
    }

    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
                                       const OpaqueValueExpr *ov,
                                       const LValue &lv) {
      assert(shouldBindAsLValue(ov));
      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
      return OpaqueValueMappingData(ov, true);
    }

    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
                                       const OpaqueValueExpr *ov,
                                       const RValue &rv) {
      assert(!shouldBindAsLValue(ov));
      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));

      OpaqueValueMappingData data(ov, false);

      // Work around an extremely aggressive peephole optimization in
      // EmitScalarConversion which assumes that all other uses of a
      // value are extant.
      data.Protection = CGF.protectFromPeepholes(rv);

      return data;
    }

    bool isValid() const { return OpaqueValue != nullptr; }
    void clear() { OpaqueValue = nullptr; }

    void unbind(CodeGenFunction &CGF) {
      assert(OpaqueValue && "no data to unbind!");

      if (BoundLValue) {
        CGF.OpaqueLValues.erase(OpaqueValue);
      } else {
        CGF.OpaqueRValues.erase(OpaqueValue);
        CGF.unprotectFromPeepholes(Protection);
      }
    }
  };

  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
  class OpaqueValueMapping {
    CodeGenFunction &CGF;
    OpaqueValueMappingData Data;

  public:
    static bool shouldBindAsLValue(const Expr *expr) {
      return OpaqueValueMappingData::shouldBindAsLValue(expr);
    }

    /// Build the opaque value mapping for the given conditional
    /// operator if it's the GNU ?: extension.  This is a common
    /// enough pattern that the convenience operator is really
    /// helpful.
    ///
    OpaqueValueMapping(CodeGenFunction &CGF,
                       const AbstractConditionalOperator *op) : CGF(CGF) {
      if (isa<ConditionalOperator>(op))
        // Leave Data empty.
        return;

      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
                                          e->getCommon());
    }

    /// Build the opaque value mapping for an OpaqueValueExpr whose source
    /// expression is set to the expression the OVE represents.
    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
        : CGF(CGF) {
      if (OV) {
        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
                                      "for OVE with no source expression");
        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
      }
    }

    OpaqueValueMapping(CodeGenFunction &CGF,
                       const OpaqueValueExpr *opaqueValue,
                       LValue lvalue)
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
    }

    OpaqueValueMapping(CodeGenFunction &CGF,
                       const OpaqueValueExpr *opaqueValue,
                       RValue rvalue)
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
    }

    void pop() {
      Data.unbind(CGF);
      Data.clear();
    }

    ~OpaqueValueMapping() {
      if (Data.isValid()) Data.unbind(CGF);
    }
  };

private:
  CGDebugInfo *DebugInfo;
  /// Used to create unique names for artificial VLA size debug info variables.
  unsigned VLAExprCounter = 0;
  bool DisableDebugInfo = false;

  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
  /// calling llvm.stacksave for multiple VLAs in the same scope.
  bool DidCallStackSave = false;

  /// IndirectBranch - The first time an indirect goto is seen we create a block
  /// with an indirect branch.  Every time we see the address of a label taken,
  /// we add the label to the indirect goto.  Every subsequent indirect goto is
  /// codegen'd as a jump to the IndirectBranch's basic block.
  llvm::IndirectBrInst *IndirectBranch = nullptr;

  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
  /// decls.
  DeclMapTy LocalDeclMap;

  // Keep track of the cleanups for callee-destructed parameters pushed to the
  // cleanup stack so that they can be deactivated later.
  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
      CalleeDestructedParamCleanups;

  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
  /// parameter.
  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
      SizeArguments;

  /// Track escaped local variables with auto storage. Used during SEH
  /// outlining to produce a call to llvm.localescape.
  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;

  /// LabelMap - This keeps track of the LLVM basic block for each C label.
  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;

  // BreakContinueStack - This keeps track of where break and continue
  // statements should jump to.
  struct BreakContinue {
    BreakContinue(JumpDest Break, JumpDest Continue)
      : BreakBlock(Break), ContinueBlock(Continue) {}

    JumpDest BreakBlock;
    JumpDest ContinueBlock;
  };
  SmallVector<BreakContinue, 8> BreakContinueStack;

  /// Handles cancellation exit points in OpenMP-related constructs.
  class OpenMPCancelExitStack {
    /// Tracks cancellation exit point and join point for cancel-related exit
    /// and normal exit.
    struct CancelExit {
      CancelExit() = default;
      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
                 JumpDest ContBlock)
          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
      OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
      /// true if the exit block has been emitted already by the special
      /// emitExit() call, false if the default codegen is used.
      bool HasBeenEmitted = false;
      JumpDest ExitBlock;
      JumpDest ContBlock;
    };

    SmallVector<CancelExit, 8> Stack;

  public:
    OpenMPCancelExitStack() : Stack(1) {}
    ~OpenMPCancelExitStack() = default;
    /// Fetches the exit block for the current OpenMP construct.
    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
    /// Emits exit block with special codegen procedure specific for the related
    /// OpenMP construct + emits code for normal construct cleanup.
    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
      if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
        assert(CGF.getOMPCancelDestination(Kind).isValid());
        assert(CGF.HaveInsertPoint());
        assert(!Stack.back().HasBeenEmitted);
        auto IP = CGF.Builder.saveAndClearIP();
        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
        CodeGen(CGF);
        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
        CGF.Builder.restoreIP(IP);
        Stack.back().HasBeenEmitted = true;
      }
      CodeGen(CGF);
    }
    /// Enter the cancel supporting \a Kind construct.
    /// \param Kind OpenMP directive that supports cancel constructs.
    /// \param HasCancel true, if the construct has inner cancel directive,
    /// false otherwise.
    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
      Stack.push_back({Kind,
                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
                                 : JumpDest(),
                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
                                 : JumpDest()});
    }
    /// Emits default exit point for the cancel construct (if the special one
    /// has not be used) + join point for cancel/normal exits.
    void exit(CodeGenFunction &CGF) {
      if (getExitBlock().isValid()) {
        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
        bool HaveIP = CGF.HaveInsertPoint();
        if (!Stack.back().HasBeenEmitted) {
          if (HaveIP)
            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
        }
        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
        if (!HaveIP) {
          CGF.Builder.CreateUnreachable();
          CGF.Builder.ClearInsertionPoint();
        }
      }
      Stack.pop_back();
    }
  };
  OpenMPCancelExitStack OMPCancelStack;

  CodeGenPGO PGO;

  /// Calculate branch weights appropriate for PGO data
  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
                                            uint64_t LoopCount);

public:
  /// Increment the profiler's counter for the given statement by \p StepV.
  /// If \p StepV is null, the default increment is 1.
  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
    if (CGM.getCodeGenOpts().hasProfileClangInstr())
      PGO.emitCounterIncrement(Builder, S, StepV);
    PGO.setCurrentStmt(S);
  }

  /// Get the profiler's count for the given statement.
  uint64_t getProfileCount(const Stmt *S) {
    Optional<uint64_t> Count = PGO.getStmtCount(S);
    if (!Count.hasValue())
      return 0;
    return *Count;
  }

  /// Set the profiler's current count.
  void setCurrentProfileCount(uint64_t Count) {
    PGO.setCurrentRegionCount(Count);
  }

  /// Get the profiler's current count. This is generally the count for the most
  /// recently incremented counter.
  uint64_t getCurrentProfileCount() {
    return PGO.getCurrentRegionCount();
  }

private:

  /// SwitchInsn - This is nearest current switch instruction. It is null if
  /// current context is not in a switch.
  llvm::SwitchInst *SwitchInsn = nullptr;
  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;

  /// CaseRangeBlock - This block holds if condition check for last case
  /// statement range in current switch instruction.
  llvm::BasicBlock *CaseRangeBlock = nullptr;

  /// OpaqueLValues - Keeps track of the current set of opaque value
  /// expressions.
  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;

  // VLASizeMap - This keeps track of the associated size for each VLA type.
  // We track this by the size expression rather than the type itself because
  // in certain situations, like a const qualifier applied to an VLA typedef,
  // multiple VLA types can share the same size expression.
  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
  // enter/leave scopes.
  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;

  /// A block containing a single 'unreachable' instruction.  Created
  /// lazily by getUnreachableBlock().
  llvm::BasicBlock *UnreachableBlock = nullptr;

  /// Counts of the number return expressions in the function.
  unsigned NumReturnExprs = 0;

  /// Count the number of simple (constant) return expressions in the function.
  unsigned NumSimpleReturnExprs = 0;

  /// The last regular (non-return) debug location (breakpoint) in the function.
  SourceLocation LastStopPoint;

public:
  /// Source location information about the default argument or member
  /// initializer expression we're evaluating, if any.
  CurrentSourceLocExprScope CurSourceLocExprScope;
  using SourceLocExprScopeGuard =
      CurrentSourceLocExprScope::SourceLocExprScopeGuard;

  /// A scope within which we are constructing the fields of an object which
  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
  class FieldConstructionScope {
  public:
    FieldConstructionScope(CodeGenFunction &CGF, Address This)
        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
      CGF.CXXDefaultInitExprThis = This;
    }
    ~FieldConstructionScope() {
      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
    }

  private:
    CodeGenFunction &CGF;
    Address OldCXXDefaultInitExprThis;
  };

  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
  /// is overridden to be the object under construction.
  class CXXDefaultInitExprScope  {
  public:
    CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
          OldCXXThisAlignment(CGF.CXXThisAlignment),
          SourceLocScope(E, CGF.CurSourceLocExprScope) {
      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
    }
    ~CXXDefaultInitExprScope() {
      CGF.CXXThisValue = OldCXXThisValue;
      CGF.CXXThisAlignment = OldCXXThisAlignment;
    }

  public:
    CodeGenFunction &CGF;
    llvm::Value *OldCXXThisValue;
    CharUnits OldCXXThisAlignment;
    SourceLocExprScopeGuard SourceLocScope;
  };

  struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
    CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
        : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
  };

  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
  /// current loop index is overridden.
  class ArrayInitLoopExprScope {
  public:
    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
      CGF.ArrayInitIndex = Index;
    }
    ~ArrayInitLoopExprScope() {
      CGF.ArrayInitIndex = OldArrayInitIndex;
    }

  private:
    CodeGenFunction &CGF;
    llvm::Value *OldArrayInitIndex;
  };

  class InlinedInheritingConstructorScope {
  public:
    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
          OldCurCodeDecl(CGF.CurCodeDecl),
          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
          OldCXXABIThisValue(CGF.CXXABIThisValue),
          OldCXXThisValue(CGF.CXXThisValue),
          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
          OldCXXThisAlignment(CGF.CXXThisAlignment),
          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
          OldCXXInheritedCtorInitExprArgs(
              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
      CGF.CurGD = GD;
      CGF.CurFuncDecl = CGF.CurCodeDecl =
          cast<CXXConstructorDecl>(GD.getDecl());
      CGF.CXXABIThisDecl = nullptr;
      CGF.CXXABIThisValue = nullptr;
      CGF.CXXThisValue = nullptr;
      CGF.CXXABIThisAlignment = CharUnits();
      CGF.CXXThisAlignment = CharUnits();
      CGF.ReturnValue = Address::invalid();
      CGF.FnRetTy = QualType();
      CGF.CXXInheritedCtorInitExprArgs.clear();
    }
    ~InlinedInheritingConstructorScope() {
      CGF.CurGD = OldCurGD;
      CGF.CurFuncDecl = OldCurFuncDecl;
      CGF.CurCodeDecl = OldCurCodeDecl;
      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
      CGF.CXXABIThisValue = OldCXXABIThisValue;
      CGF.CXXThisValue = OldCXXThisValue;
      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
      CGF.CXXThisAlignment = OldCXXThisAlignment;
      CGF.ReturnValue = OldReturnValue;
      CGF.FnRetTy = OldFnRetTy;
      CGF.CXXInheritedCtorInitExprArgs =
          std::move(OldCXXInheritedCtorInitExprArgs);
    }

  private:
    CodeGenFunction &CGF;
    GlobalDecl OldCurGD;
    const Decl *OldCurFuncDecl;
    const Decl *OldCurCodeDecl;
    ImplicitParamDecl *OldCXXABIThisDecl;
    llvm::Value *OldCXXABIThisValue;
    llvm::Value *OldCXXThisValue;
    CharUnits OldCXXABIThisAlignment;
    CharUnits OldCXXThisAlignment;
    Address OldReturnValue;
    QualType OldFnRetTy;
    CallArgList OldCXXInheritedCtorInitExprArgs;
  };

private:
  /// CXXThisDecl - When generating code for a C++ member function,
  /// this will hold the implicit 'this' declaration.
  ImplicitParamDecl *CXXABIThisDecl = nullptr;
  llvm::Value *CXXABIThisValue = nullptr;
  llvm::Value *CXXThisValue = nullptr;
  CharUnits CXXABIThisAlignment;
  CharUnits CXXThisAlignment;

  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
  /// this expression.
  Address CXXDefaultInitExprThis = Address::invalid();

  /// The current array initialization index when evaluating an
  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
  llvm::Value *ArrayInitIndex = nullptr;

  /// The values of function arguments to use when evaluating
  /// CXXInheritedCtorInitExprs within this context.
  CallArgList CXXInheritedCtorInitExprArgs;

  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
  /// destructor, this will hold the implicit argument (e.g. VTT).
  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
  llvm::Value *CXXStructorImplicitParamValue = nullptr;

  /// OutermostConditional - Points to the outermost active
  /// conditional control.  This is used so that we know if a
  /// temporary should be destroyed conditionally.
  ConditionalEvaluation *OutermostConditional = nullptr;

  /// The current lexical scope.
  LexicalScope *CurLexicalScope = nullptr;

  /// The current source location that should be used for exception
  /// handling code.
  SourceLocation CurEHLocation;

  /// BlockByrefInfos - For each __block variable, contains
  /// information about the layout of the variable.
  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;

  /// Used by -fsanitize=nullability-return to determine whether the return
  /// value can be checked.
  llvm::Value *RetValNullabilityPrecondition = nullptr;

  /// Check if -fsanitize=nullability-return instrumentation is required for
  /// this function.
  bool requiresReturnValueNullabilityCheck() const {
    return RetValNullabilityPrecondition;
  }

  /// Used to store precise source locations for return statements by the
  /// runtime return value checks.
  Address ReturnLocation = Address::invalid();

  /// Check if the return value of this function requires sanitization.
  bool requiresReturnValueCheck() const;

  llvm::BasicBlock *TerminateLandingPad = nullptr;
  llvm::BasicBlock *TerminateHandler = nullptr;
  llvm::BasicBlock *TrapBB = nullptr;

  /// Terminate funclets keyed by parent funclet pad.
  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;

  /// Largest vector width used in ths function. Will be used to create a
  /// function attribute.
  unsigned LargestVectorWidth = 0;

  /// True if we need emit the life-time markers.
  const bool ShouldEmitLifetimeMarkers;

  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
  /// the function metadata.
  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
                                llvm::Function *Fn);

public:
  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
  ~CodeGenFunction();

  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
  ASTContext &getContext() const { return CGM.getContext(); }
  CGDebugInfo *getDebugInfo() {
    if (DisableDebugInfo)
      return nullptr;
    return DebugInfo;
  }
  void disableDebugInfo() { DisableDebugInfo = true; }
  void enableDebugInfo() { DisableDebugInfo = false; }

  bool shouldUseFusedARCCalls() {
    return CGM.getCodeGenOpts().OptimizationLevel == 0;
  }

  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }

  /// Returns a pointer to the function's exception object and selector slot,
  /// which is assigned in every landing pad.
  Address getExceptionSlot();
  Address getEHSelectorSlot();

  /// Returns the contents of the function's exception object and selector
  /// slots.
  llvm::Value *getExceptionFromSlot();
  llvm::Value *getSelectorFromSlot();

  Address getNormalCleanupDestSlot();

  llvm::BasicBlock *getUnreachableBlock() {
    if (!UnreachableBlock) {
      UnreachableBlock = createBasicBlock("unreachable");
      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
    }
    return UnreachableBlock;
  }

  llvm::BasicBlock *getInvokeDest() {
    if (!EHStack.requiresLandingPad()) return nullptr;
    return getInvokeDestImpl();
  }

  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }

  const TargetInfo &getTarget() const { return Target; }
  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
  const TargetCodeGenInfo &getTargetHooks() const {
    return CGM.getTargetCodeGenInfo();
  }

  //===--------------------------------------------------------------------===//
  //                                  Cleanups
  //===--------------------------------------------------------------------===//

  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);

  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
                                        Address arrayEndPointer,
                                        QualType elementType,
                                        CharUnits elementAlignment,
                                        Destroyer *destroyer);
  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
                                      llvm::Value *arrayEnd,
                                      QualType elementType,
                                      CharUnits elementAlignment,
                                      Destroyer *destroyer);

  void pushDestroy(QualType::DestructionKind dtorKind,
                   Address addr, QualType type);
  void pushEHDestroy(QualType::DestructionKind dtorKind,
                     Address addr, QualType type);
  void pushDestroy(CleanupKind kind, Address addr, QualType type,
                   Destroyer *destroyer, bool useEHCleanupForArray);
  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
                                   QualType type, Destroyer *destroyer,
                                   bool useEHCleanupForArray);
  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
                                   llvm::Value *CompletePtr,
                                   QualType ElementType);
  void pushStackRestore(CleanupKind kind, Address SPMem);
  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
                   bool useEHCleanupForArray);
  llvm::Function *generateDestroyHelper(Address addr, QualType type,
                                        Destroyer *destroyer,
                                        bool useEHCleanupForArray,
                                        const VarDecl *VD);
  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
                        QualType elementType, CharUnits elementAlign,
                        Destroyer *destroyer,
                        bool checkZeroLength, bool useEHCleanup);

  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);

  /// Determines whether an EH cleanup is required to destroy a type
  /// with the given destruction kind.
  bool needsEHCleanup(QualType::DestructionKind kind) {
    switch (kind) {
    case QualType::DK_none:
      return false;
    case QualType::DK_cxx_destructor:
    case QualType::DK_objc_weak_lifetime:
    case QualType::DK_nontrivial_c_struct:
      return getLangOpts().Exceptions;
    case QualType::DK_objc_strong_lifetime:
      return getLangOpts().Exceptions &&
             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
    }
    llvm_unreachable("bad destruction kind");
  }

  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
  }

  //===--------------------------------------------------------------------===//
  //                                  Objective-C
  //===--------------------------------------------------------------------===//

  void GenerateObjCMethod(const ObjCMethodDecl *OMD);

  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);

  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
                          const ObjCPropertyImplDecl *PID);
  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
                              const ObjCPropertyImplDecl *propImpl,
                              const ObjCMethodDecl *GetterMothodDecl,
                              llvm::Constant *AtomicHelperFn);

  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
                                  ObjCMethodDecl *MD, bool ctor);

  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
  /// for the given property.
  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
                          const ObjCPropertyImplDecl *PID);
  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
                              const ObjCPropertyImplDecl *propImpl,
                              llvm::Constant *AtomicHelperFn);

  //===--------------------------------------------------------------------===//
  //                                  Block Bits
  //===--------------------------------------------------------------------===//

  /// Emit block literal.
  /// \return an LLVM value which is a pointer to a struct which contains
  /// information about the block, including the block invoke function, the
  /// captured variables, etc.
  llvm::Value *EmitBlockLiteral(const BlockExpr *);
  static void destroyBlockInfos(CGBlockInfo *info);

  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
                                        const CGBlockInfo &Info,
                                        const DeclMapTy &ldm,
                                        bool IsLambdaConversionToBlock,
                                        bool BuildGlobalBlock);

  /// Check if \p T is a C++ class that has a destructor that can throw.
  static bool cxxDestructorCanThrow(QualType T);

  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
                                             const ObjCPropertyImplDecl *PID);
  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
                                             const ObjCPropertyImplDecl *PID);
  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);

  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
                         bool CanThrow);

  class AutoVarEmission;

  void emitByrefStructureInit(const AutoVarEmission &emission);

  /// Enter a cleanup to destroy a __block variable.  Note that this
  /// cleanup should be a no-op if the variable hasn't left the stack
  /// yet; if a cleanup is required for the variable itself, that needs
  /// to be done externally.
  ///
  /// \param Kind Cleanup kind.
  ///
  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
  /// structure that will be passed to _Block_object_dispose. When
  /// \p LoadBlockVarAddr is true, the address of the field of the block
  /// structure that holds the address of the __block structure.
  ///
  /// \param Flags The flag that will be passed to _Block_object_dispose.
  ///
  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
  /// \p Addr to get the address of the __block structure.
  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
                         bool LoadBlockVarAddr, bool CanThrow);

  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
                                llvm::Value *ptr);

  Address LoadBlockStruct();
  Address GetAddrOfBlockDecl(const VarDecl *var);

  /// BuildBlockByrefAddress - Computes the location of the
  /// data in a variable which is declared as __block.
  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
                                bool followForward = true);
  Address emitBlockByrefAddress(Address baseAddr,
                                const BlockByrefInfo &info,
                                bool followForward,
                                const llvm::Twine &name);

  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);

  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);

  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
                    const CGFunctionInfo &FnInfo);

  /// Annotate the function with an attribute that disables TSan checking at
  /// runtime.
  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);

  /// Emit code for the start of a function.
  /// \param Loc       The location to be associated with the function.
  /// \param StartLoc  The location of the function body.
  void StartFunction(GlobalDecl GD,
                     QualType RetTy,
                     llvm::Function *Fn,
                     const CGFunctionInfo &FnInfo,
                     const FunctionArgList &Args,
                     SourceLocation Loc = SourceLocation(),
                     SourceLocation StartLoc = SourceLocation());

  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);

  void EmitConstructorBody(FunctionArgList &Args);
  void EmitDestructorBody(FunctionArgList &Args);
  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
  void EmitFunctionBody(const Stmt *Body);
  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);

  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
                                  CallArgList &CallArgs);
  void EmitLambdaBlockInvokeBody();
  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
  void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
    EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
  }
  void EmitAsanPrologueOrEpilogue(bool Prologue);

  /// Emit the unified return block, trying to avoid its emission when
  /// possible.
  /// \return The debug location of the user written return statement if the
  /// return block is is avoided.
  llvm::DebugLoc EmitReturnBlock();

  /// FinishFunction - Complete IR generation of the current function. It is
  /// legal to call this function even if there is no current insertion point.
  void FinishFunction(SourceLocation EndLoc=SourceLocation());

  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);

  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
                                 const ThunkInfo *Thunk, bool IsUnprototyped);

  void FinishThunk();

  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
                         llvm::FunctionCallee Callee);

  /// Generate a thunk for the given method.
  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
                     GlobalDecl GD, const ThunkInfo &Thunk,
                     bool IsUnprototyped);

  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
                                       const CGFunctionInfo &FnInfo,
                                       GlobalDecl GD, const ThunkInfo &Thunk);

  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
                        FunctionArgList &Args);

  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);

  /// Struct with all information about dynamic [sub]class needed to set vptr.
  struct VPtr {
    BaseSubobject Base;
    const CXXRecordDecl *NearestVBase;
    CharUnits OffsetFromNearestVBase;
    const CXXRecordDecl *VTableClass;
  };

  /// Initialize the vtable pointer of the given subobject.
  void InitializeVTablePointer(const VPtr &vptr);

  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;

  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);

  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
                         CharUnits OffsetFromNearestVBase,
                         bool BaseIsNonVirtualPrimaryBase,
                         const CXXRecordDecl *VTableClass,
                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);

  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);

  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
  /// to by This.
  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
                            const CXXRecordDecl *VTableClass);

  enum CFITypeCheckKind {
    CFITCK_VCall,
    CFITCK_NVCall,
    CFITCK_DerivedCast,
    CFITCK_UnrelatedCast,
    CFITCK_ICall,
    CFITCK_NVMFCall,
    CFITCK_VMFCall,
  };

  /// Derived is the presumed address of an object of type T after a
  /// cast. If T is a polymorphic class type, emit a check that the virtual
  /// table for Derived belongs to a class derived from T.
  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
                                 bool MayBeNull, CFITypeCheckKind TCK,
                                 SourceLocation Loc);

  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
  /// If vptr CFI is enabled, emit a check that VTable is valid.
  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
                                 CFITypeCheckKind TCK, SourceLocation Loc);

  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
  /// RD using llvm.type.test.
  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
                          CFITypeCheckKind TCK, SourceLocation Loc);

  /// If whole-program virtual table optimization is enabled, emit an assumption
  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
  /// enabled, emit a check that VTable is a member of RD's type identifier.
  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
                                    llvm::Value *VTable, SourceLocation Loc);

  /// Returns whether we should perform a type checked load when loading a
  /// virtual function for virtual calls to members of RD. This is generally
  /// true when both vcall CFI and whole-program-vtables are enabled.
  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);

  /// Emit a type checked load from the given vtable.
  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
                                         uint64_t VTableByteOffset);

  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
  /// given phase of destruction for a destructor.  The end result
  /// should call destructors on members and base classes in reverse
  /// order of their construction.
  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);

  /// ShouldInstrumentFunction - Return true if the current function should be
  /// instrumented with __cyg_profile_func_* calls
  bool ShouldInstrumentFunction();

  /// ShouldXRayInstrument - Return true if the current function should be
  /// instrumented with XRay nop sleds.
  bool ShouldXRayInstrumentFunction() const;

  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
  /// XRay custom event handling calls.
  bool AlwaysEmitXRayCustomEvents() const;

  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
  /// XRay typed event handling calls.
  bool AlwaysEmitXRayTypedEvents() const;

  /// Encode an address into a form suitable for use in a function prologue.
  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
                                             llvm::Constant *Addr);

  /// Decode an address used in a function prologue, encoded by \c
  /// EncodeAddrForUseInPrologue.
  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
                                        llvm::Value *EncodedAddr);

  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
  /// arguments for the given function. This is also responsible for naming the
  /// LLVM function arguments.
  void EmitFunctionProlog(const CGFunctionInfo &FI,
                          llvm::Function *Fn,
                          const FunctionArgList &Args);

  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
  /// given temporary.
  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
                          SourceLocation EndLoc);

  /// Emit a test that checks if the return value \p RV is nonnull.
  void EmitReturnValueCheck(llvm::Value *RV);

  /// EmitStartEHSpec - Emit the start of the exception spec.
  void EmitStartEHSpec(const Decl *D);

  /// EmitEndEHSpec - Emit the end of the exception spec.
  void EmitEndEHSpec(const Decl *D);

  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
  llvm::BasicBlock *getTerminateLandingPad();

  /// getTerminateLandingPad - Return a cleanup funclet that just calls
  /// terminate.
  llvm::BasicBlock *getTerminateFunclet();

  /// getTerminateHandler - Return a handler (not a landing pad, just
  /// a catch handler) that just calls terminate.  This is used when
  /// a terminate scope encloses a try.
  llvm::BasicBlock *getTerminateHandler();

  llvm::Type *ConvertTypeForMem(QualType T);
  llvm::Type *ConvertType(QualType T);
  llvm::Type *ConvertType(const TypeDecl *T) {
    return ConvertType(getContext().getTypeDeclType(T));
  }

  /// LoadObjCSelf - Load the value of self. This function is only valid while
  /// generating code for an Objective-C method.
  llvm::Value *LoadObjCSelf();

  /// TypeOfSelfObject - Return type of object that this self represents.
  QualType TypeOfSelfObject();

  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
  static TypeEvaluationKind getEvaluationKind(QualType T);

  static bool hasScalarEvaluationKind(QualType T) {
    return getEvaluationKind(T) == TEK_Scalar;
  }

  static bool hasAggregateEvaluationKind(QualType T) {
    return getEvaluationKind(T) == TEK_Aggregate;
  }

  /// createBasicBlock - Create an LLVM basic block.
  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
                                     llvm::Function *parent = nullptr,
                                     llvm::BasicBlock *before = nullptr) {
    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
  }

  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
  /// label maps to.
  JumpDest getJumpDestForLabel(const LabelDecl *S);

  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
  /// another basic block, simplify it. This assumes that no other code could
  /// potentially reference the basic block.
  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);

  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
  /// adding a fall-through branch from the current insert block if
  /// necessary. It is legal to call this function even if there is no current
  /// insertion point.
  ///
  /// IsFinished - If true, indicates that the caller has finished emitting
  /// branches to the given block and does not expect to emit code into it. This
  /// means the block can be ignored if it is unreachable.
  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);

  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
  /// near its uses, and leave the insertion point in it.
  void EmitBlockAfterUses(llvm::BasicBlock *BB);

  /// EmitBranch - Emit a branch to the specified basic block from the current
  /// insert block, taking care to avoid creation of branches from dummy
  /// blocks. It is legal to call this function even if there is no current
  /// insertion point.
  ///
  /// This function clears the current insertion point. The caller should follow
  /// calls to this function with calls to Emit*Block prior to generation new
  /// code.
  void EmitBranch(llvm::BasicBlock *Block);

  /// HaveInsertPoint - True if an insertion point is defined. If not, this
  /// indicates that the current code being emitted is unreachable.
  bool HaveInsertPoint() const {
    return Builder.GetInsertBlock() != nullptr;
  }

  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
  /// emitted IR has a place to go. Note that by definition, if this function
  /// creates a block then that block is unreachable; callers may do better to
  /// detect when no insertion point is defined and simply skip IR generation.
  void EnsureInsertPoint() {
    if (!HaveInsertPoint())
      EmitBlock(createBasicBlock());
  }

  /// ErrorUnsupported - Print out an error that codegen doesn't support the
  /// specified stmt yet.
  void ErrorUnsupported(const Stmt *S, const char *Type);

  //===--------------------------------------------------------------------===//
  //                                  Helpers
  //===--------------------------------------------------------------------===//

  LValue MakeAddrLValue(Address Addr, QualType T,
                        AlignmentSource Source = AlignmentSource::Type) {
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
                            CGM.getTBAAAccessInfo(T));
  }

  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
                        TBAAAccessInfo TBAAInfo) {
    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
  }

  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
                        AlignmentSource Source = AlignmentSource::Type) {
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
                            LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
  }

  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
                        LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
                            BaseInfo, TBAAInfo);
  }

  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
  CharUnits getNaturalTypeAlignment(QualType T,
                                    LValueBaseInfo *BaseInfo = nullptr,
                                    TBAAAccessInfo *TBAAInfo = nullptr,
                                    bool forPointeeType = false);
  CharUnits getNaturalPointeeTypeAlignment(QualType T,
                                           LValueBaseInfo *BaseInfo = nullptr,
                                           TBAAAccessInfo *TBAAInfo = nullptr);

  Address EmitLoadOfReference(LValue RefLVal,
                              LValueBaseInfo *PointeeBaseInfo = nullptr,
                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
                                   AlignmentSource Source =
                                       AlignmentSource::Type) {
    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
                                    CGM.getTBAAAccessInfo(RefTy));
    return EmitLoadOfReferenceLValue(RefLVal);
  }

  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
                            LValueBaseInfo *BaseInfo = nullptr,
                            TBAAAccessInfo *TBAAInfo = nullptr);
  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);

  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
  /// insertion point of the builder. The caller is responsible for setting an
  /// appropriate alignment on
  /// the alloca.
  ///
  /// \p ArraySize is the number of array elements to be allocated if it
  ///    is not nullptr.
  ///
  /// LangAS::Default is the address space of pointers to local variables and
  /// temporaries, as exposed in the source language. In certain
  /// configurations, this is not the same as the alloca address space, and a
  /// cast is needed to lift the pointer from the alloca AS into
  /// LangAS::Default. This can happen when the target uses a restricted
  /// address space for the stack but the source language requires
  /// LangAS::Default to be a generic address space. The latter condition is
  /// common for most programming languages; OpenCL is an exception in that
  /// LangAS::Default is the private address space, which naturally maps
  /// to the stack.
  ///
  /// Because the address of a temporary is often exposed to the program in
  /// various ways, this function will perform the cast. The original alloca
  /// instruction is returned through \p Alloca if it is not nullptr.
  ///
  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
  /// more efficient if the caller knows that the address will not be exposed.
  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
                                     llvm::Value *ArraySize = nullptr);
  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
                           const Twine &Name = "tmp",
                           llvm::Value *ArraySize = nullptr,
                           Address *Alloca = nullptr);
  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
                                      const Twine &Name = "tmp",
                                      llvm::Value *ArraySize = nullptr);

  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
  /// default ABI alignment of the given LLVM type.
  ///
  /// IMPORTANT NOTE: This is *not* generally the right alignment for
  /// any given AST type that happens to have been lowered to the
  /// given IR type.  This should only ever be used for function-local,
  /// IR-driven manipulations like saving and restoring a value.  Do
  /// not hand this address off to arbitrary IRGen routines, and especially
  /// do not pass it as an argument to a function that might expect a
  /// properly ABI-aligned value.
  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
                                       const Twine &Name = "tmp");

  /// InitTempAlloca - Provide an initial value for the given alloca which
  /// will be observable at all locations in the function.
  ///
  /// The address should be something that was returned from one of
  /// the CreateTempAlloca or CreateMemTemp routines, and the
  /// initializer must be valid in the entry block (i.e. it must
  /// either be a constant or an argument value).
  void InitTempAlloca(Address Alloca, llvm::Value *Value);

  /// CreateIRTemp - Create a temporary IR object of the given type, with
  /// appropriate alignment. This routine should only be used when an temporary
  /// value needs to be stored into an alloca (for example, to avoid explicit
  /// PHI construction), but the type is the IR type, not the type appropriate
  /// for storing in memory.
  ///
  /// That is, this is exactly equivalent to CreateMemTemp, but calling
  /// ConvertType instead of ConvertTypeForMem.
  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");

  /// CreateMemTemp - Create a temporary memory object of the given type, with
  /// appropriate alignmen and cast it to the default address space. Returns
  /// the original alloca instruction by \p Alloca if it is not nullptr.
  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
                        Address *Alloca = nullptr);
  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
                        Address *Alloca = nullptr);

  /// CreateMemTemp - Create a temporary memory object of the given type, with
  /// appropriate alignmen without casting it to the default address space.
  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
                                   const Twine &Name = "tmp");

  /// CreateAggTemp - Create a temporary memory object for the given
  /// aggregate type.
  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
    return AggValueSlot::forAddr(CreateMemTemp(T, Name),
                                 T.getQualifiers(),
                                 AggValueSlot::IsNotDestructed,
                                 AggValueSlot::DoesNotNeedGCBarriers,
                                 AggValueSlot::IsNotAliased,
                                 AggValueSlot::DoesNotOverlap);
  }

  /// Emit a cast to void* in the appropriate address space.
  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);

  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
  /// expression and compare the result against zero, returning an Int1Ty value.
  llvm::Value *EvaluateExprAsBool(const Expr *E);

  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
  void EmitIgnoredExpr(const Expr *E);

  /// EmitAnyExpr - Emit code to compute the specified expression which can have
  /// any type.  The result is returned as an RValue struct.  If this is an
  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
  /// the result should be returned.
  ///
  /// \param ignoreResult True if the resulting value isn't used.
  RValue EmitAnyExpr(const Expr *E,
                     AggValueSlot aggSlot = AggValueSlot::ignored(),
                     bool ignoreResult = false);

  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
  // or the value of the expression, depending on how va_list is defined.
  Address EmitVAListRef(const Expr *E);

  /// Emit a "reference" to a __builtin_ms_va_list; this is
  /// always the value of the expression, because a __builtin_ms_va_list is a
  /// pointer to a char.
  Address EmitMSVAListRef(const Expr *E);

  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
  /// always be accessible even if no aggregate location is provided.
  RValue EmitAnyExprToTemp(const Expr *E);

  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
  /// arbitrary expression into the given memory location.
  void EmitAnyExprToMem(const Expr *E, Address Location,
                        Qualifiers Quals, bool IsInitializer);

  void EmitAnyExprToExn(const Expr *E, Address Addr);

  /// EmitExprAsInit - Emits the code necessary to initialize a
  /// location in memory with the given initializer.
  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
                      bool capturedByInit);

  /// hasVolatileMember - returns true if aggregate type has a volatile
  /// member.
  bool hasVolatileMember(QualType T) {
    if (const RecordType *RT = T->getAs<RecordType>()) {
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
      return RD->hasVolatileMember();
    }
    return false;
  }

  /// Determine whether a return value slot may overlap some other object.
  AggValueSlot::Overlap_t getOverlapForReturnValue() {
    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
    // class subobjects. These cases may need to be revisited depending on the
    // resolution of the relevant core issue.
    return AggValueSlot::DoesNotOverlap;
  }

  /// Determine whether a field initialization may overlap some other object.
  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);

  /// Determine whether a base class initialization may overlap some other
  /// object.
  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
                                                const CXXRecordDecl *BaseRD,
                                                bool IsVirtual);

  /// Emit an aggregate assignment.
  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
    bool IsVolatile = hasVolatileMember(EltTy);
    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
  }

  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
                             AggValueSlot::Overlap_t MayOverlap) {
    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
  }

  /// EmitAggregateCopy - Emit an aggregate copy.
  ///
  /// \param isVolatile \c true iff either the source or the destination is
  ///        volatile.
  /// \param MayOverlap Whether the tail padding of the destination might be
  ///        occupied by some other object. More efficient code can often be
  ///        generated if not.
  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
                         AggValueSlot::Overlap_t MayOverlap,
                         bool isVolatile = false);

  /// GetAddrOfLocalVar - Return the address of a local variable.
  Address GetAddrOfLocalVar(const VarDecl *VD) {
    auto it = LocalDeclMap.find(VD);
    assert(it != LocalDeclMap.end() &&
           "Invalid argument to GetAddrOfLocalVar(), no decl!");
    return it->second;
  }

  /// Given an opaque value expression, return its LValue mapping if it exists,
  /// otherwise create one.
  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);

  /// Given an opaque value expression, return its RValue mapping if it exists,
  /// otherwise create one.
  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);

  /// Get the index of the current ArrayInitLoopExpr, if any.
  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }

  /// getAccessedFieldNo - Given an encoded value and a result number, return
  /// the input field number being accessed.
  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);

  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
  llvm::BasicBlock *GetIndirectGotoBlock();

  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
  static bool IsWrappedCXXThis(const Expr *E);

  /// EmitNullInitialization - Generate code to set a value of the given type to
  /// null, If the type contains data member pointers, they will be initialized
  /// to -1 in accordance with the Itanium C++ ABI.
  void EmitNullInitialization(Address DestPtr, QualType Ty);

  /// Emits a call to an LLVM variable-argument intrinsic, either
  /// \c llvm.va_start or \c llvm.va_end.
  /// \param ArgValue A reference to the \c va_list as emitted by either
  /// \c EmitVAListRef or \c EmitMSVAListRef.
  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
  /// calls \c llvm.va_end.
  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);

  /// Generate code to get an argument from the passed in pointer
  /// and update it accordingly.
  /// \param VE The \c VAArgExpr for which to generate code.
  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
  /// either \c EmitVAListRef or \c EmitMSVAListRef.
  /// \returns A pointer to the argument.
  // FIXME: We should be able to get rid of this method and use the va_arg
  // instruction in LLVM instead once it works well enough.
  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);

  /// emitArrayLength - Compute the length of an array, even if it's a
  /// VLA, and drill down to the base element type.
  llvm::Value *emitArrayLength(const ArrayType *arrayType,
                               QualType &baseType,
                               Address &addr);

  /// EmitVLASize - Capture all the sizes for the VLA expressions in
  /// the given variably-modified type and store them in the VLASizeMap.
  ///
  /// This function can be called with a null (unreachable) insert point.
  void EmitVariablyModifiedType(QualType Ty);

  struct VlaSizePair {
    llvm::Value *NumElts;
    QualType Type;

    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
  };

  /// Return the number of elements for a single dimension
  /// for the given array type.
  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
  VlaSizePair getVLAElements1D(QualType vla);

  /// Returns an LLVM value that corresponds to the size,
  /// in non-variably-sized elements, of a variable length array type,
  /// plus that largest non-variably-sized element type.  Assumes that
  /// the type has already been emitted with EmitVariablyModifiedType.
  VlaSizePair getVLASize(const VariableArrayType *vla);
  VlaSizePair getVLASize(QualType vla);

  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
  /// generating code for an C++ member function.
  llvm::Value *LoadCXXThis() {
    assert(CXXThisValue && "no 'this' value for this function");
    return CXXThisValue;
  }
  Address LoadCXXThisAddress();

  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
  /// virtual bases.
  // FIXME: Every place that calls LoadCXXVTT is something
  // that needs to be abstracted properly.
  llvm::Value *LoadCXXVTT() {
    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
    return CXXStructorImplicitParamValue;
  }

  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
  /// complete class to the given direct base.
  Address
  GetAddressOfDirectBaseInCompleteClass(Address Value,
                                        const CXXRecordDecl *Derived,
                                        const CXXRecordDecl *Base,
                                        bool BaseIsVirtual);

  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);

  /// GetAddressOfBaseClass - This function will add the necessary delta to the
  /// load of 'this' and returns address of the base class.
  Address GetAddressOfBaseClass(Address Value,
                                const CXXRecordDecl *Derived,
                                CastExpr::path_const_iterator PathBegin,
                                CastExpr::path_const_iterator PathEnd,
                                bool NullCheckValue, SourceLocation Loc);

  Address GetAddressOfDerivedClass(Address Value,
                                   const CXXRecordDecl *Derived,
                                   CastExpr::path_const_iterator PathBegin,
                                   CastExpr::path_const_iterator PathEnd,
                                   bool NullCheckValue);

  /// GetVTTParameter - Return the VTT parameter that should be passed to a
  /// base constructor/destructor with virtual bases.
  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
  /// to ItaniumCXXABI.cpp together with all the references to VTT.
  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
                               bool Delegating);

  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
                                      CXXCtorType CtorType,
                                      const FunctionArgList &Args,
                                      SourceLocation Loc);
  // It's important not to confuse this and the previous function. Delegating
  // constructors are the C++0x feature. The constructor delegate optimization
  // is used to reduce duplication in the base and complete consturctors where
  // they are substantially the same.
  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
                                        const FunctionArgList &Args);

  /// Emit a call to an inheriting constructor (that is, one that invokes a
  /// constructor inherited from a base class) by inlining its definition. This
  /// is necessary if the ABI does not support forwarding the arguments to the
  /// base class constructor (because they're variadic or similar).
  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
                                               CXXCtorType CtorType,
                                               bool ForVirtualBase,
                                               bool Delegating,
                                               CallArgList &Args);

  /// Emit a call to a constructor inherited from a base class, passing the
  /// current constructor's arguments along unmodified (without even making
  /// a copy).
  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
                                       bool ForVirtualBase, Address This,
                                       bool InheritedFromVBase,
                                       const CXXInheritedCtorInitExpr *E);

  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
                              bool ForVirtualBase, bool Delegating,
                              AggValueSlot ThisAVS, const CXXConstructExpr *E);

  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
                              bool ForVirtualBase, bool Delegating,
                              Address This, CallArgList &Args,
                              AggValueSlot::Overlap_t Overlap,
                              SourceLocation Loc, bool NewPointerIsChecked);

  /// Emit assumption load for all bases. Requires to be be called only on
  /// most-derived class and not under construction of the object.
  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);

  /// Emit assumption that vptr load == global vtable.
  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);

  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
                                      Address This, Address Src,
                                      const CXXConstructExpr *E);

  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
                                  const ArrayType *ArrayTy,
                                  Address ArrayPtr,
                                  const CXXConstructExpr *E,
                                  bool NewPointerIsChecked,
                                  bool ZeroInitialization = false);

  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
                                  llvm::Value *NumElements,
                                  Address ArrayPtr,
                                  const CXXConstructExpr *E,
                                  bool NewPointerIsChecked,
                                  bool ZeroInitialization = false);

  static Destroyer destroyCXXObject;

  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
                             bool ForVirtualBase, bool Delegating, Address This,
                             QualType ThisTy);

  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
                               llvm::Type *ElementTy, Address NewPtr,
                               llvm::Value *NumElements,
                               llvm::Value *AllocSizeWithoutCookie);

  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
                        Address Ptr);

  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);

  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);

  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
                      CharUnits CookieSize = CharUnits());

  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
                                  const CallExpr *TheCallExpr, bool IsDelete);

  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);

  /// Situations in which we might emit a check for the suitability of a
  ///        pointer or glvalue.
  enum TypeCheckKind {
    /// Checking the operand of a load. Must be suitably sized and aligned.
    TCK_Load,
    /// Checking the destination of a store. Must be suitably sized and aligned.
    TCK_Store,
    /// Checking the bound value in a reference binding. Must be suitably sized
    /// and aligned, but is not required to refer to an object (until the
    /// reference is used), per core issue 453.
    TCK_ReferenceBinding,
    /// Checking the object expression in a non-static data member access. Must
    /// be an object within its lifetime.
    TCK_MemberAccess,
    /// Checking the 'this' pointer for a call to a non-static member function.
    /// Must be an object within its lifetime.
    TCK_MemberCall,
    /// Checking the 'this' pointer for a constructor call.
    TCK_ConstructorCall,
    /// Checking the operand of a static_cast to a derived pointer type. Must be
    /// null or an object within its lifetime.
    TCK_DowncastPointer,
    /// Checking the operand of a static_cast to a derived reference type. Must
    /// be an object within its lifetime.
    TCK_DowncastReference,
    /// Checking the operand of a cast to a base object. Must be suitably sized
    /// and aligned.
    TCK_Upcast,
    /// Checking the operand of a cast to a virtual base object. Must be an
    /// object within its lifetime.
    TCK_UpcastToVirtualBase,
    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
    TCK_NonnullAssign,
    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
    /// null or an object within its lifetime.
    TCK_DynamicOperation
  };

  /// Determine whether the pointer type check \p TCK permits null pointers.
  static bool isNullPointerAllowed(TypeCheckKind TCK);

  /// Determine whether the pointer type check \p TCK requires a vptr check.
  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);

  /// Whether any type-checking sanitizers are enabled. If \c false,
  /// calls to EmitTypeCheck can be skipped.
  bool sanitizePerformTypeCheck() const;

  /// Emit a check that \p V is the address of storage of the
  /// appropriate size and alignment for an object of type \p Type
  /// (or if ArraySize is provided, for an array of that bound).
  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
                     SanitizerSet SkippedChecks = SanitizerSet(),
                     llvm::Value *ArraySize = nullptr);

  /// Emit a check that \p Base points into an array object, which
  /// we can access at index \p Index. \p Accessed should be \c false if we
  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
                       QualType IndexType, bool Accessed);

  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
                                       bool isInc, bool isPre);
  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
                                         bool isInc, bool isPre);

  /// Converts Location to a DebugLoc, if debug information is enabled.
  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);

  /// Get the record field index as represented in debug info.
  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);


  //===--------------------------------------------------------------------===//
  //                            Declaration Emission
  //===--------------------------------------------------------------------===//

  /// EmitDecl - Emit a declaration.
  ///
  /// This function can be called with a null (unreachable) insert point.
  void EmitDecl(const Decl &D);

  /// EmitVarDecl - Emit a local variable declaration.
  ///
  /// This function can be called with a null (unreachable) insert point.
  void EmitVarDecl(const VarDecl &D);

  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
                      bool capturedByInit);

  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
                             llvm::Value *Address);

  /// Determine whether the given initializer is trivial in the sense
  /// that it requires no code to be generated.
  bool isTrivialInitializer(const Expr *Init);

  /// EmitAutoVarDecl - Emit an auto variable declaration.
  ///
  /// This function can be called with a null (unreachable) insert point.
  void EmitAutoVarDecl(const VarDecl &D);

  class AutoVarEmission {
    friend class CodeGenFunction;

    const VarDecl *Variable;

    /// The address of the alloca for languages with explicit address space
    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
    /// as a global constant.
    Address Addr;

    llvm::Value *NRVOFlag;

    /// True if the variable is a __block variable that is captured by an
    /// escaping block.
    bool IsEscapingByRef;

    /// True if the variable is of aggregate type and has a constant
    /// initializer.
    bool IsConstantAggregate;

    /// Non-null if we should use lifetime annotations.
    llvm::Value *SizeForLifetimeMarkers;

    /// Address with original alloca instruction. Invalid if the variable was
    /// emitted as a global constant.
    Address AllocaAddr;

    struct Invalid {};
    AutoVarEmission(Invalid)
        : Variable(nullptr), Addr(Address::invalid()),
          AllocaAddr(Address::invalid()) {}

    AutoVarEmission(const VarDecl &variable)
        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
          IsEscapingByRef(false), IsConstantAggregate(false),
          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}

    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }

  public:
    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }

    bool useLifetimeMarkers() const {
      return SizeForLifetimeMarkers != nullptr;
    }
    llvm::Value *getSizeForLifetimeMarkers() const {
      assert(useLifetimeMarkers());
      return SizeForLifetimeMarkers;
    }

    /// Returns the raw, allocated address, which is not necessarily
    /// the address of the object itself. It is casted to default
    /// address space for address space agnostic languages.
    Address getAllocatedAddress() const {
      return Addr;
    }

    /// Returns the address for the original alloca instruction.
    Address getOriginalAllocatedAddress() const { return AllocaAddr; }

    /// Returns the address of the object within this declaration.
    /// Note that this does not chase the forwarding pointer for
    /// __block decls.
    Address getObjectAddress(CodeGenFunction &CGF) const {
      if (!IsEscapingByRef) return Addr;

      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
    }
  };
  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
  void EmitAutoVarInit(const AutoVarEmission &emission);
  void EmitAutoVarCleanups(const AutoVarEmission &emission);
  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
                              QualType::DestructionKind dtorKind);

  /// Emits the alloca and debug information for the size expressions for each
  /// dimension of an array. It registers the association of its (1-dimensional)
  /// QualTypes and size expression's debug node, so that CGDebugInfo can
  /// reference this node when creating the DISubrange object to describe the
  /// array types.
  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
                                              const VarDecl &D,
                                              bool EmitDebugInfo);

  void EmitStaticVarDecl(const VarDecl &D,
                         llvm::GlobalValue::LinkageTypes Linkage);

  class ParamValue {
    llvm::Value *Value;
    unsigned Alignment;
    ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
  public:
    static ParamValue forDirect(llvm::Value *value) {
      return ParamValue(value, 0);
    }
    static ParamValue forIndirect(Address addr) {
      assert(!addr.getAlignment().isZero());
      return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
    }

    bool isIndirect() const { return Alignment != 0; }
    llvm::Value *getAnyValue() const { return Value; }

    llvm::Value *getDirectValue() const {
      assert(!isIndirect());
      return Value;
    }

    Address getIndirectAddress() const {
      assert(isIndirect());
      return Address(Value, CharUnits::fromQuantity(Alignment));
    }
  };

  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);

  /// protectFromPeepholes - Protect a value that we're intending to
  /// store to the side, but which will probably be used later, from
  /// aggressive peepholing optimizations that might delete it.
  ///
  /// Pass the result to unprotectFromPeepholes to declare that
  /// protection is no longer required.
  ///
  /// There's no particular reason why this shouldn't apply to
  /// l-values, it's just that no existing peepholes work on pointers.
  PeepholeProtection protectFromPeepholes(RValue rvalue);
  void unprotectFromPeepholes(PeepholeProtection protection);

  void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
                                    SourceLocation Loc,
                                    SourceLocation AssumptionLoc,
                                    llvm::Value *Alignment,
                                    llvm::Value *OffsetValue,
                                    llvm::Value *TheCheck,
                                    llvm::Instruction *Assumption);

  void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
                               SourceLocation Loc, SourceLocation AssumptionLoc,
                               llvm::Value *Alignment,
                               llvm::Value *OffsetValue = nullptr);

  void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
                               SourceLocation AssumptionLoc, llvm::Value *Alignment,
                               llvm::Value *OffsetValue = nullptr);

  //===--------------------------------------------------------------------===//
  //                             Statement Emission
  //===--------------------------------------------------------------------===//

  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
  void EmitStopPoint(const Stmt *S);

  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
  /// this function even if there is no current insertion point.
  ///
  /// This function may clear the current insertion point; callers should use
  /// EnsureInsertPoint if they wish to subsequently generate code without first
  /// calling EmitBlock, EmitBranch, or EmitStmt.
  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);

  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
  /// necessarily require an insertion point or debug information; typically
  /// because the statement amounts to a jump or a container of other
  /// statements.
  ///
  /// \return True if the statement was handled.
  bool EmitSimpleStmt(const Stmt *S);

  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
                           AggValueSlot AVS = AggValueSlot::ignored());
  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
                                       bool GetLast = false,
                                       AggValueSlot AVS =
                                                AggValueSlot::ignored());

  /// EmitLabel - Emit the block for the given label. It is legal to call this
  /// function even if there is no current insertion point.
  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.

  void EmitLabelStmt(const LabelStmt &S);
  void EmitAttributedStmt(const AttributedStmt &S);
  void EmitGotoStmt(const GotoStmt &S);
  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
  void EmitIfStmt(const IfStmt &S);

  void EmitWhileStmt(const WhileStmt &S,
                     ArrayRef<const Attr *> Attrs = None);
  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
  void EmitForStmt(const ForStmt &S,
                   ArrayRef<const Attr *> Attrs = None);
  void EmitReturnStmt(const ReturnStmt &S);
  void EmitDeclStmt(const DeclStmt &S);
  void EmitBreakStmt(const BreakStmt &S);
  void EmitContinueStmt(const ContinueStmt &S);
  void EmitSwitchStmt(const SwitchStmt &S);
  void EmitDefaultStmt(const DefaultStmt &S);
  void EmitCaseStmt(const CaseStmt &S);
  void EmitCaseStmtRange(const CaseStmt &S);
  void EmitAsmStmt(const AsmStmt &S);

  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);

  void EmitCoroutineBody(const CoroutineBodyStmt &S);
  void EmitCoreturnStmt(const CoreturnStmt &S);
  RValue EmitCoawaitExpr(const CoawaitExpr &E,
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
                         bool ignoreResult = false);
  LValue EmitCoawaitLValue(const CoawaitExpr *E);
  RValue EmitCoyieldExpr(const CoyieldExpr &E,
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
                         bool ignoreResult = false);
  LValue EmitCoyieldLValue(const CoyieldExpr *E);
  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);

  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);

  void EmitCXXTryStmt(const CXXTryStmt &S);
  void EmitSEHTryStmt(const SEHTryStmt &S);
  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
  void EnterSEHTryStmt(const SEHTryStmt &S);
  void ExitSEHTryStmt(const SEHTryStmt &S);

  void pushSEHCleanup(CleanupKind kind,
                      llvm::Function *FinallyFunc);
  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
                              const Stmt *OutlinedStmt);

  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
                                            const SEHExceptStmt &Except);

  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
                                             const SEHFinallyStmt &Finally);

  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
                                llvm::Value *ParentFP,
                                llvm::Value *EntryEBP);
  llvm::Value *EmitSEHExceptionCode();
  llvm::Value *EmitSEHExceptionInfo();
  llvm::Value *EmitSEHAbnormalTermination();

  /// Emit simple code for OpenMP directives in Simd-only mode.
  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);

  /// Scan the outlined statement for captures from the parent function. For
  /// each capture, mark the capture as escaped and emit a call to
  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
                          bool IsFilter);

  /// Recovers the address of a local in a parent function. ParentVar is the
  /// address of the variable used in the immediate parent function. It can
  /// either be an alloca or a call to llvm.localrecover if there are nested
  /// outlined functions. ParentFP is the frame pointer of the outermost parent
  /// frame.
  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
                                    Address ParentVar,
                                    llvm::Value *ParentFP);

  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
                           ArrayRef<const Attr *> Attrs = None);

  /// Controls insertion of cancellation exit blocks in worksharing constructs.
  class OMPCancelStackRAII {
    CodeGenFunction &CGF;

  public:
    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
                       bool HasCancel)
        : CGF(CGF) {
      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
    }
    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
  };

  /// Returns calculated size of the specified type.
  llvm::Value *getTypeSize(QualType Ty);
  LValue InitCapturedStruct(const CapturedStmt &S);
  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
                          SourceLocation Loc);
  /// Perform element by element copying of arrays with type \a
  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
  /// generated by \a CopyGen.
  ///
  /// \param DestAddr Address of the destination array.
  /// \param SrcAddr Address of the source array.
  /// \param OriginalType Type of destination and source arrays.
  /// \param CopyGen Copying procedure that copies value of single array element
  /// to another single array element.
  void EmitOMPAggregateAssign(
      Address DestAddr, Address SrcAddr, QualType OriginalType,
      const llvm::function_ref<void(Address, Address)> CopyGen);
  /// Emit proper copying of data from one variable to another.
  ///
  /// \param OriginalType Original type of the copied variables.
  /// \param DestAddr Destination address.
  /// \param SrcAddr Source address.
  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
  /// type of the base array element).
  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
  /// the base array element).
  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
  /// DestVD.
  void EmitOMPCopy(QualType OriginalType,
                   Address DestAddr, Address SrcAddr,
                   const VarDecl *DestVD, const VarDecl *SrcVD,
                   const Expr *Copy);
  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
  /// \a X = \a E \a BO \a E.
  ///
  /// \param X Value to be updated.
  /// \param E Update value.
  /// \param BO Binary operation for update operation.
  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
  /// expression, false otherwise.
  /// \param AO Atomic ordering of the generated atomic instructions.
  /// \param CommonGen Code generator for complex expressions that cannot be
  /// expressed through atomicrmw instruction.
  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
  /// generated, <false, RValue::get(nullptr)> otherwise.
  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
      llvm::AtomicOrdering AO, SourceLocation Loc,
      const llvm::function_ref<RValue(RValue)> CommonGen);
  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
                                 OMPPrivateScope &PrivateScope);
  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
                            OMPPrivateScope &PrivateScope);
  void EmitOMPUseDevicePtrClause(
      const OMPClause &C, OMPPrivateScope &PrivateScope,
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
  /// Emit code for copyin clause in \a D directive. The next code is
  /// generated at the start of outlined functions for directives:
  /// \code
  /// threadprivate_var1 = master_threadprivate_var1;
  /// operator=(threadprivate_var2, master_threadprivate_var2);
  /// ...
  /// __kmpc_barrier(&loc, global_tid);
  /// \endcode
  ///
  /// \param D OpenMP directive possibly with 'copyin' clause(s).
  /// \returns true if at least one copyin variable is found, false otherwise.
  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
  /// Emit initial code for lastprivate variables. If some variable is
  /// not also firstprivate, then the default initialization is used. Otherwise
  /// initialization of this variable is performed by EmitOMPFirstprivateClause
  /// method.
  ///
  /// \param D Directive that may have 'lastprivate' directives.
  /// \param PrivateScope Private scope for capturing lastprivate variables for
  /// proper codegen in internal captured statement.
  ///
  /// \returns true if there is at least one lastprivate variable, false
  /// otherwise.
  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
                                    OMPPrivateScope &PrivateScope);
  /// Emit final copying of lastprivate values to original variables at
  /// the end of the worksharing or simd directive.
  ///
  /// \param D Directive that has at least one 'lastprivate' directives.
  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
  /// it is the last iteration of the loop code in associated directive, or to
  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
                                     bool NoFinals,
                                     llvm::Value *IsLastIterCond = nullptr);
  /// Emit initial code for linear clauses.
  void EmitOMPLinearClause(const OMPLoopDirective &D,
                           CodeGenFunction::OMPPrivateScope &PrivateScope);
  /// Emit final code for linear clauses.
  /// \param CondGen Optional conditional code for final part of codegen for
  /// linear clause.
  void EmitOMPLinearClauseFinal(
      const OMPLoopDirective &D,
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
  /// Emit initial code for reduction variables. Creates reduction copies
  /// and initializes them with the values according to OpenMP standard.
  ///
  /// \param D Directive (possibly) with the 'reduction' clause.
  /// \param PrivateScope Private scope for capturing reduction variables for
  /// proper codegen in internal captured statement.
  ///
  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
                                  OMPPrivateScope &PrivateScope);
  /// Emit final update of reduction values to original variables at
  /// the end of the directive.
  ///
  /// \param D Directive that has at least one 'reduction' directives.
  /// \param ReductionKind The kind of reduction to perform.
  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
                                   const OpenMPDirectiveKind ReductionKind);
  /// Emit initial code for linear variables. Creates private copies
  /// and initializes them with the values according to OpenMP standard.
  ///
  /// \param D Directive (possibly) with the 'linear' clause.
  /// \return true if at least one linear variable is found that should be
  /// initialized with the value of the original variable, false otherwise.
  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);

  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
                                        llvm::Function * /*OutlinedFn*/,
                                        const OMPTaskDataTy & /*Data*/)>
      TaskGenTy;
  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
                                 const OpenMPDirectiveKind CapturedRegion,
                                 const RegionCodeGenTy &BodyGen,
                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
  struct OMPTargetDataInfo {
    Address BasePointersArray = Address::invalid();
    Address PointersArray = Address::invalid();
    Address SizesArray = Address::invalid();
    unsigned NumberOfTargetItems = 0;
    explicit OMPTargetDataInfo() = default;
    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
                      Address SizesArray, unsigned NumberOfTargetItems)
        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
          SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
  };
  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
                                       const RegionCodeGenTy &BodyGen,
                                       OMPTargetDataInfo &InputInfo);

  void EmitOMPParallelDirective(const OMPParallelDirective &S);
  void EmitOMPSimdDirective(const OMPSimdDirective &S);
  void EmitOMPForDirective(const OMPForDirective &S);
  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
  void EmitOMPSectionDirective(const OMPSectionDirective &S);
  void EmitOMPSingleDirective(const OMPSingleDirective &S);
  void EmitOMPMasterDirective(const OMPMasterDirective &S);
  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
  void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
  void EmitOMPTaskDirective(const OMPTaskDirective &S);
  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
  void EmitOMPFlushDirective(const OMPFlushDirective &S);
  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
  void EmitOMPTargetDirective(const OMPTargetDirective &S);
  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
  void
  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
  void
  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
  void EmitOMPCancelDirective(const OMPCancelDirective &S);
  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
  void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
  void
  EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
  void EmitOMPParallelMasterTaskLoopDirective(
      const OMPParallelMasterTaskLoopDirective &S);
  void EmitOMPParallelMasterTaskLoopSimdDirective(
      const OMPParallelMasterTaskLoopSimdDirective &S);
  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
  void EmitOMPDistributeParallelForDirective(
      const OMPDistributeParallelForDirective &S);
  void EmitOMPDistributeParallelForSimdDirective(
      const OMPDistributeParallelForSimdDirective &S);
  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
  void EmitOMPTargetParallelForSimdDirective(
      const OMPTargetParallelForSimdDirective &S);
  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
  void
  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
  void EmitOMPTeamsDistributeParallelForSimdDirective(
      const OMPTeamsDistributeParallelForSimdDirective &S);
  void EmitOMPTeamsDistributeParallelForDirective(
      const OMPTeamsDistributeParallelForDirective &S);
  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
  void EmitOMPTargetTeamsDistributeDirective(
      const OMPTargetTeamsDistributeDirective &S);
  void EmitOMPTargetTeamsDistributeParallelForDirective(
      const OMPTargetTeamsDistributeParallelForDirective &S);
  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
  void EmitOMPTargetTeamsDistributeSimdDirective(
      const OMPTargetTeamsDistributeSimdDirective &S);

  /// Emit device code for the target directive.
  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
                                          StringRef ParentName,
                                          const OMPTargetDirective &S);
  static void
  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
                                      const OMPTargetParallelDirective &S);
  /// Emit device code for the target parallel for directive.
  static void EmitOMPTargetParallelForDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetParallelForDirective &S);
  /// Emit device code for the target parallel for simd directive.
  static void EmitOMPTargetParallelForSimdDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetParallelForSimdDirective &S);
  /// Emit device code for the target teams directive.
  static void
  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
                                   const OMPTargetTeamsDirective &S);
  /// Emit device code for the target teams distribute directive.
  static void EmitOMPTargetTeamsDistributeDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetTeamsDistributeDirective &S);
  /// Emit device code for the target teams distribute simd directive.
  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetTeamsDistributeSimdDirective &S);
  /// Emit device code for the target simd directive.
  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
                                              StringRef ParentName,
                                              const OMPTargetSimdDirective &S);
  /// Emit device code for the target teams distribute parallel for simd
  /// directive.
  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);

  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetTeamsDistributeParallelForDirective &S);
  /// Emit inner loop of the worksharing/simd construct.
  ///
  /// \param S Directive, for which the inner loop must be emitted.
  /// \param RequiresCleanup true, if directive has some associated private
  /// variables.
  /// \param LoopCond Bollean condition for loop continuation.
  /// \param IncExpr Increment expression for loop control variable.
  /// \param BodyGen Generator for the inner body of the inner loop.
  /// \param PostIncGen Genrator for post-increment code (required for ordered
  /// loop directvies).
  void EmitOMPInnerLoop(
      const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
      const Expr *IncExpr,
      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);

  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
  /// Emit initial code for loop counters of loop-based directives.
  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
                                  OMPPrivateScope &LoopScope);

  /// Helper for the OpenMP loop directives.
  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);

  /// Emit code for the worksharing loop-based directive.
  /// \return true, if this construct has any lastprivate clause, false -
  /// otherwise.
  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
                              const CodeGenDispatchBoundsTy &CGDispatchBounds);

  /// Emit code for the distribute loop-based directive.
  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);

  /// Helpers for the OpenMP loop directives.
  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
  void EmitOMPSimdFinal(
      const OMPLoopDirective &D,
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);

  /// Emits the lvalue for the expression with possibly captured variable.
  LValue EmitOMPSharedLValue(const Expr *E);

private:
  /// Helpers for blocks.
  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);

  /// struct with the values to be passed to the OpenMP loop-related functions
  struct OMPLoopArguments {
    /// loop lower bound
    Address LB = Address::invalid();
    /// loop upper bound
    Address UB = Address::invalid();
    /// loop stride
    Address ST = Address::invalid();
    /// isLastIteration argument for runtime functions
    Address IL = Address::invalid();
    /// Chunk value generated by sema
    llvm::Value *Chunk = nullptr;
    /// EnsureUpperBound
    Expr *EUB = nullptr;
    /// IncrementExpression
    Expr *IncExpr = nullptr;
    /// Loop initialization
    Expr *Init = nullptr;
    /// Loop exit condition
    Expr *Cond = nullptr;
    /// Update of LB after a whole chunk has been executed
    Expr *NextLB = nullptr;
    /// Update of UB after a whole chunk has been executed
    Expr *NextUB = nullptr;
    OMPLoopArguments() = default;
    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
                     Expr *NextUB = nullptr)
        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
          NextUB(NextUB) {}
  };
  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
                        const OMPLoopArguments &LoopArgs,
                        const CodeGenLoopTy &CodeGenLoop,
                        const CodeGenOrderedTy &CodeGenOrdered);
  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
                           bool IsMonotonic, const OMPLoopDirective &S,
                           OMPPrivateScope &LoopScope, bool Ordered,
                           const OMPLoopArguments &LoopArgs,
                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
                                  const OMPLoopDirective &S,
                                  OMPPrivateScope &LoopScope,
                                  const OMPLoopArguments &LoopArgs,
                                  const CodeGenLoopTy &CodeGenLoopContent);
  /// Emit code for sections directive.
  void EmitSections(const OMPExecutableDirective &S);

public:

  //===--------------------------------------------------------------------===//
  //                         LValue Expression Emission
  //===--------------------------------------------------------------------===//

  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
  RValue GetUndefRValue(QualType Ty);

  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
  /// and issue an ErrorUnsupported style diagnostic (using the
  /// provided Name).
  RValue EmitUnsupportedRValue(const Expr *E,
                               const char *Name);

  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
  /// an ErrorUnsupported style diagnostic (using the provided Name).
  LValue EmitUnsupportedLValue(const Expr *E,
                               const char *Name);

  /// EmitLValue - Emit code to compute a designator that specifies the location
  /// of the expression.
  ///
  /// This can return one of two things: a simple address or a bitfield
  /// reference.  In either case, the LLVM Value* in the LValue structure is
  /// guaranteed to be an LLVM pointer type.
  ///
  /// If this returns a bitfield reference, nothing about the pointee type of
  /// the LLVM value is known: For example, it may not be a pointer to an
  /// integer.
  ///
  /// If this returns a normal address, and if the lvalue's C type is fixed
  /// size, this method guarantees that the returned pointer type will point to
  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
  /// variable length type, this is not possible.
  ///
  LValue EmitLValue(const Expr *E);

  /// Same as EmitLValue but additionally we generate checking code to
  /// guard against undefined behavior.  This is only suitable when we know
  /// that the address will be used to access the object.
  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);

  RValue convertTempToRValue(Address addr, QualType type,
                             SourceLocation Loc);

  void EmitAtomicInit(Expr *E, LValue lvalue);

  bool LValueIsSuitableForInlineAtomic(LValue Src);

  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
                        AggValueSlot Slot = AggValueSlot::ignored());

  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
                        llvm::AtomicOrdering AO, bool IsVolatile = false,
                        AggValueSlot slot = AggValueSlot::ignored());

  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);

  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
                       bool IsVolatile, bool isInit);

  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
      llvm::AtomicOrdering Success =
          llvm::AtomicOrdering::SequentiallyConsistent,
      llvm::AtomicOrdering Failure =
          llvm::AtomicOrdering::SequentiallyConsistent,
      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());

  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
                        bool IsVolatile);

  /// EmitToMemory - Change a scalar value from its value
  /// representation to its in-memory representation.
  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);

  /// EmitFromMemory - Change a scalar value from its memory
  /// representation to its value representation.
  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);

  /// Check if the scalar \p Value is within the valid range for the given
  /// type \p Ty.
  ///
  /// Returns true if a check is needed (even if the range is unknown).
  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
                            SourceLocation Loc);

  /// EmitLoadOfScalar - Load a scalar value from an address, taking
  /// care to appropriately convert from the memory representation to
  /// the LLVM value representation.
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
                                SourceLocation Loc,
                                AlignmentSource Source = AlignmentSource::Type,
                                bool isNontemporal = false) {
    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
  }

  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
                                SourceLocation Loc, LValueBaseInfo BaseInfo,
                                TBAAAccessInfo TBAAInfo,
                                bool isNontemporal = false);

  /// EmitLoadOfScalar - Load a scalar value from an address, taking
  /// care to appropriately convert from the memory representation to
  /// the LLVM value representation.  The l-value must be a simple
  /// l-value.
  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);

  /// EmitStoreOfScalar - Store a scalar value to an address, taking
  /// care to appropriately convert from the memory representation to
  /// the LLVM value representation.
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
                         bool Volatile, QualType Ty,
                         AlignmentSource Source = AlignmentSource::Type,
                         bool isInit = false, bool isNontemporal = false) {
    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
  }

  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
                         bool Volatile, QualType Ty,
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
                         bool isInit = false, bool isNontemporal = false);

  /// EmitStoreOfScalar - Store a scalar value to an address, taking
  /// care to appropriately convert from the memory representation to
  /// the LLVM value representation.  The l-value must be a simple
  /// l-value.  The isInit flag indicates whether this is an initialization.
  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);

  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
  /// this method emits the address of the lvalue, then loads the result as an
  /// rvalue, returning the rvalue.
  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
  RValue EmitLoadOfExtVectorElementLValue(LValue V);
  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
  RValue EmitLoadOfGlobalRegLValue(LValue LV);

  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
  /// lvalue, where both are guaranteed to the have the same type, and that type
  /// is 'Ty'.
  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);

  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
  /// as EmitStoreThroughLValue.
  ///
  /// \param Result [out] - If non-null, this will be set to a Value* for the
  /// bit-field contents after the store, appropriate for use as the result of
  /// an assignment to the bit-field.
  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
                                      llvm::Value **Result=nullptr);

  /// Emit an l-value for an assignment (simple or compound) of complex type.
  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
                                             llvm::Value *&Result);

  // Note: only available for agg return types
  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
  // Note: only available for agg return types
  LValue EmitCallExprLValue(const CallExpr *E);
  // Note: only available for agg return types
  LValue EmitVAArgExprLValue(const VAArgExpr *E);
  LValue EmitDeclRefLValue(const DeclRefExpr *E);
  LValue EmitStringLiteralLValue(const StringLiteral *E);
  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
  LValue EmitPredefinedLValue(const PredefinedExpr *E);
  LValue EmitUnaryOpLValue(const UnaryOperator *E);
  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
                                bool Accessed = false);
  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
                                 bool IsLowerBound = true);
  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
  LValue EmitMemberExpr(const MemberExpr *E);
  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
  LValue EmitInitListLValue(const InitListExpr *E);
  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
  LValue EmitCastLValue(const CastExpr *E);
  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);

  Address EmitExtVectorElementLValue(LValue V);

  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);

  Address EmitArrayToPointerDecay(const Expr *Array,
                                  LValueBaseInfo *BaseInfo = nullptr,
                                  TBAAAccessInfo *TBAAInfo = nullptr);

  class ConstantEmission {
    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
    ConstantEmission(llvm::Constant *C, bool isReference)
      : ValueAndIsReference(C, isReference) {}
  public:
    ConstantEmission() {}
    static ConstantEmission forReference(llvm::Constant *C) {
      return ConstantEmission(C, true);
    }
    static ConstantEmission forValue(llvm::Constant *C) {
      return ConstantEmission(C, false);
    }

    explicit operator bool() const {
      return ValueAndIsReference.getOpaqueValue() != nullptr;
    }

    bool isReference() const { return ValueAndIsReference.getInt(); }
    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
      assert(isReference());
      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
                                            refExpr->getType());
    }

    llvm::Constant *getValue() const {
      assert(!isReference());
      return ValueAndIsReference.getPointer();
    }
  };

  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);

  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
                                AggValueSlot slot = AggValueSlot::ignored());
  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);

  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
                              const ObjCIvarDecl *Ivar);
  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
  LValue EmitLValueForLambdaField(const FieldDecl *Field);

  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
  /// if the Field is a reference, this will return the address of the reference
  /// and not the address of the value stored in the reference.
  LValue EmitLValueForFieldInitialization(LValue Base,
                                          const FieldDecl* Field);

  LValue EmitLValueForIvar(QualType ObjectTy,
                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
                           unsigned CVRQualifiers);

  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);

  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
  LValue EmitStmtExprLValue(const StmtExpr *E);
  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);

  //===--------------------------------------------------------------------===//
  //                         Scalar Expression Emission
  //===--------------------------------------------------------------------===//

  /// EmitCall - Generate a call of the given function, expecting the given
  /// result type, and using the given argument list which specifies both the
  /// LLVM arguments and the types they were derived from.
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
                  llvm::CallBase **callOrInvoke, SourceLocation Loc);
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
                  llvm::CallBase **callOrInvoke = nullptr) {
    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
                    SourceLocation());
  }
  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
  RValue EmitCallExpr(const CallExpr *E,
                      ReturnValueSlot ReturnValue = ReturnValueSlot());
  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
  CGCallee EmitCallee(const Expr *E);

  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);

  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
                                  const Twine &name = "");
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
                                  ArrayRef<llvm::Value *> args,
                                  const Twine &name = "");
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
                                          const Twine &name = "");
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
                                          ArrayRef<llvm::Value *> args,
                                          const Twine &name = "");

  SmallVector<llvm::OperandBundleDef, 1>
  getBundlesForFunclet(llvm::Value *Callee);

  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
                                   ArrayRef<llvm::Value *> Args,
                                   const Twine &Name = "");
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
                                          ArrayRef<llvm::Value *> args,
                                          const Twine &name = "");
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
                                          const Twine &name = "");
  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
                                       ArrayRef<llvm::Value *> args);

  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
                                     NestedNameSpecifier *Qual,
                                     llvm::Type *Ty);

  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
                                               CXXDtorType Type,
                                               const CXXRecordDecl *RD);

  // Return the copy constructor name with the prefix "__copy_constructor_"
  // removed.
  static std::string getNonTrivialCopyConstructorStr(QualType QT,
                                                     CharUnits Alignment,
                                                     bool IsVolatile,
                                                     ASTContext &Ctx);

  // Return the destructor name with the prefix "__destructor_" removed.
  static std::string getNonTrivialDestructorStr(QualType QT,
                                                CharUnits Alignment,
                                                bool IsVolatile,
                                                ASTContext &Ctx);

  // These functions emit calls to the special functions of non-trivial C
  // structs.
  void defaultInitNonTrivialCStructVar(LValue Dst);
  void callCStructDefaultConstructor(LValue Dst);
  void callCStructDestructor(LValue Dst);
  void callCStructCopyConstructor(LValue Dst, LValue Src);
  void callCStructMoveConstructor(LValue Dst, LValue Src);
  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);

  RValue
  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
                              const CGCallee &Callee,
                              ReturnValueSlot ReturnValue, llvm::Value *This,
                              llvm::Value *ImplicitParam,
                              QualType ImplicitParamTy, const CallExpr *E,
                              CallArgList *RtlArgs);
  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
                               llvm::Value *This, QualType ThisTy,
                               llvm::Value *ImplicitParam,
                               QualType ImplicitParamTy, const CallExpr *E);
  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
                               ReturnValueSlot ReturnValue);
  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
                                               const CXXMethodDecl *MD,
                                               ReturnValueSlot ReturnValue,
                                               bool HasQualifier,
                                               NestedNameSpecifier *Qualifier,
                                               bool IsArrow, const Expr *Base);
  // Compute the object pointer.
  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
                                          llvm::Value *memberPtr,
                                          const MemberPointerType *memberPtrType,
                                          LValueBaseInfo *BaseInfo = nullptr,
                                          TBAAAccessInfo *TBAAInfo = nullptr);
  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
                                      ReturnValueSlot ReturnValue);

  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
                                       const CXXMethodDecl *MD,
                                       ReturnValueSlot ReturnValue);
  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);

  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
                                ReturnValueSlot ReturnValue);

  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
                                       ReturnValueSlot ReturnValue);

  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
                         const CallExpr *E, ReturnValueSlot ReturnValue);

  RValue emitRotate(const CallExpr *E, bool IsRotateRight);

  /// Emit IR for __builtin_os_log_format.
  RValue emitBuiltinOSLogFormat(const CallExpr &E);

  /// Emit IR for __builtin_is_aligned.
  RValue EmitBuiltinIsAligned(const CallExpr *E);
  /// Emit IR for __builtin_align_up/__builtin_align_down.
  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);

  llvm::Function *generateBuiltinOSLogHelperFunction(
      const analyze_os_log::OSLogBufferLayout &Layout,
      CharUnits BufferAlignment);

  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);

  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
  /// is unhandled by the current target.
  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
                                     ReturnValueSlot ReturnValue);

  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
                                             const llvm::CmpInst::Predicate Fp,
                                             const llvm::CmpInst::Predicate Ip,
                                             const llvm::Twine &Name = "");
  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
                                  ReturnValueSlot ReturnValue,
                                  llvm::Triple::ArchType Arch);
  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
                                     ReturnValueSlot ReturnValue,
                                     llvm::Triple::ArchType Arch);

  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
                                         unsigned LLVMIntrinsic,
                                         unsigned AltLLVMIntrinsic,
                                         const char *NameHint,
                                         unsigned Modifier,
                                         const CallExpr *E,
                                         SmallVectorImpl<llvm::Value *> &Ops,
                                         Address PtrOp0, Address PtrOp1,
                                         llvm::Triple::ArchType Arch);

  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
                                          unsigned Modifier, llvm::Type *ArgTy,
                                          const CallExpr *E);
  llvm::Value *EmitNeonCall(llvm::Function *F,
                            SmallVectorImpl<llvm::Value*> &O,
                            const char *name,
                            unsigned shift = 0, bool rightshift = false);
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
                                   bool negateForRightShift);
  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
                                 llvm::Type *Ty, bool usgn, const char *name);
  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
                                      llvm::Triple::ArchType Arch);
  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);

  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
                                          const CallExpr *E);
  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);

private:
  enum class MSVCIntrin;

public:
  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);

  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);

  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
                                const ObjCMethodDecl *MethodWithObjects);
  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
                             ReturnValueSlot Return = ReturnValueSlot());

  /// Retrieves the default cleanup kind for an ARC cleanup.
  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
  CleanupKind getARCCleanupKind() {
    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
             ? NormalAndEHCleanup : NormalCleanup;
  }

  // ARC primitives.
  void EmitARCInitWeak(Address addr, llvm::Value *value);
  void EmitARCDestroyWeak(Address addr);
  llvm::Value *EmitARCLoadWeak(Address addr);
  llvm::Value *EmitARCLoadWeakRetained(Address addr);
  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
  void EmitARCCopyWeak(Address dst, Address src);
  void EmitARCMoveWeak(Address dst, Address src);
  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
                                  bool resultIgnored);
  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
                                      bool resultIgnored);
  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
  llvm::Value *EmitARCAutorelease(llvm::Value *value);
  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);

  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
                                      llvm::Type *returnType);
  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);

  std::pair<LValue,llvm::Value*>
  EmitARCStoreAutoreleasing(const BinaryOperator *e);
  std::pair<LValue,llvm::Value*>
  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
  std::pair<LValue,llvm::Value*>
  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);

  llvm::Value *EmitObjCAlloc(llvm::Value *value,
                             llvm::Type *returnType);
  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
                                     llvm::Type *returnType);
  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);

  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);

  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
                                            bool allowUnsafeClaim);
  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);

  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);

  static Destroyer destroyARCStrongImprecise;
  static Destroyer destroyARCStrongPrecise;
  static Destroyer destroyARCWeak;
  static Destroyer emitARCIntrinsicUse;
  static Destroyer destroyNonTrivialCStruct;

  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
  llvm::Value *EmitObjCAutoreleasePoolPush();
  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);

  /// Emits a reference binding to the passed in expression.
  RValue EmitReferenceBindingToExpr(const Expr *E);

  //===--------------------------------------------------------------------===//
  //                           Expression Emission
  //===--------------------------------------------------------------------===//

  // Expressions are broken into three classes: scalar, complex, aggregate.

  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
  /// scalar type, returning the result.
  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);

  /// Emit a conversion from the specified type to the specified destination
  /// type, both of which are LLVM scalar types.
  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
                                    QualType DstTy, SourceLocation Loc);

  /// Emit a conversion from the specified complex type to the specified
  /// destination type, where the destination type is an LLVM scalar type.
  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
                                             QualType DstTy,
                                             SourceLocation Loc);

  /// EmitAggExpr - Emit the computation of the specified expression
  /// of aggregate type.  The result is computed into the given slot,
  /// which may be null to indicate that the value is not needed.
  void EmitAggExpr(const Expr *E, AggValueSlot AS);

  /// EmitAggExprToLValue - Emit the computation of the specified expression of
  /// aggregate type into a temporary LValue.
  LValue EmitAggExprToLValue(const Expr *E);

  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
  /// make sure it survives garbage collection until this point.
  void EmitExtendGCLifetime(llvm::Value *object);

  /// EmitComplexExpr - Emit the computation of the specified expression of
  /// complex type, returning the result.
  ComplexPairTy EmitComplexExpr(const Expr *E,
                                bool IgnoreReal = false,
                                bool IgnoreImag = false);

  /// EmitComplexExprIntoLValue - Emit the given expression of complex
  /// type and place its result into the specified l-value.
  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);

  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);

  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);

  Address emitAddrOfRealComponent(Address complex, QualType complexType);
  Address emitAddrOfImagComponent(Address complex, QualType complexType);

  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
  /// global variable that has already been created for it.  If the initializer
  /// has a different type than GV does, this may free GV and return a different
  /// one.  Otherwise it just returns GV.
  llvm::GlobalVariable *
  AddInitializerToStaticVarDecl(const VarDecl &D,
                                llvm::GlobalVariable *GV);

  // Emit an @llvm.invariant.start call for the given memory region.
  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);

  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
  /// variable with global storage.
  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
                                bool PerformInit);

  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
                                   llvm::Constant *Addr);

  /// Call atexit() with a function that passes the given argument to
  /// the given function.
  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
                                    llvm::Constant *addr);

  /// Call atexit() with function dtorStub.
  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);

  /// Emit code in this function to perform a guarded variable
  /// initialization.  Guarded initializations are used when it's not
  /// possible to prove that an initialization will be done exactly
  /// once, e.g. with a static local variable or a static data member
  /// of a class template.
  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
                          bool PerformInit);

  enum class GuardKind { VariableGuard, TlsGuard };

  /// Emit a branch to select whether or not to perform guarded initialization.
  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
                                llvm::BasicBlock *InitBlock,
                                llvm::BasicBlock *NoInitBlock,
                                GuardKind Kind, const VarDecl *D);

  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
  /// variables.
  void
  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
                            ArrayRef<llvm::Function *> CXXThreadLocals,
                            ConstantAddress Guard = ConstantAddress::invalid());

  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
  /// variables.
  void GenerateCXXGlobalDtorsFunc(
      llvm::Function *Fn,
      const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
                                   llvm::Constant *>> &DtorsAndObjects);

  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
                                        const VarDecl *D,
                                        llvm::GlobalVariable *Addr,
                                        bool PerformInit);

  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);

  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);

  void enterFullExpression(const FullExpr *E) {
    if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
      if (EWC->getNumObjects() == 0)
        return;
    enterNonTrivialFullExpression(E);
  }
  void enterNonTrivialFullExpression(const FullExpr *E);

  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);

  RValue EmitAtomicExpr(AtomicExpr *E);

  //===--------------------------------------------------------------------===//
  //                         Annotations Emission
  //===--------------------------------------------------------------------===//

  /// Emit an annotation call (intrinsic).
  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
                                  llvm::Value *AnnotatedVal,
                                  StringRef AnnotationStr,
                                  SourceLocation Location);

  /// Emit local annotations for the local variable V, declared by D.
  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);

  /// Emit field annotations for the given field & value. Returns the
  /// annotation result.
  Address EmitFieldAnnotations(const FieldDecl *D, Address V);

  //===--------------------------------------------------------------------===//
  //                             Internal Helpers
  //===--------------------------------------------------------------------===//

  /// ContainsLabel - Return true if the statement contains a label in it.  If
  /// this statement is not executed normally, it not containing a label means
  /// that we can just remove the code.
  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);

  /// containsBreak - Return true if the statement contains a break out of it.
  /// If the statement (recursively) contains a switch or loop with a break
  /// inside of it, this is fine.
  static bool containsBreak(const Stmt *S);

  /// Determine if the given statement might introduce a declaration into the
  /// current scope, by being a (possibly-labelled) DeclStmt.
  static bool mightAddDeclToScope(const Stmt *S);

  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
  /// to a constant, or if it does but contains a label, return false.  If it
  /// constant folds return true and set the boolean result in Result.
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
                                    bool AllowLabels = false);

  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
  /// to a constant, or if it does but contains a label, return false.  If it
  /// constant folds return true and set the folded value.
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
                                    bool AllowLabels = false);

  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
  /// if statement) to the specified blocks.  Based on the condition, this might
  /// try to simplify the codegen of the conditional based on the branch.
  /// TrueCount should be the number of times we expect the condition to
  /// evaluate to true based on PGO data.
  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount);

  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
  /// nonnull, if \p LHS is marked _Nonnull.
  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);

  /// An enumeration which makes it easier to specify whether or not an
  /// operation is a subtraction.
  enum { NotSubtraction = false, IsSubtraction = true };

  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
  /// \p SignedIndices indicates whether any of the GEP indices are signed.
  /// \p IsSubtraction indicates whether the expression used to form the GEP
  /// is a subtraction.
  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
                                      ArrayRef<llvm::Value *> IdxList,
                                      bool SignedIndices,
                                      bool IsSubtraction,
                                      SourceLocation Loc,
                                      const Twine &Name = "");

  /// Specifies which type of sanitizer check to apply when handling a
  /// particular builtin.
  enum BuiltinCheckKind {
    BCK_CTZPassedZero,
    BCK_CLZPassedZero,
  };

  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
  /// enabled, a runtime check specified by \p Kind is also emitted.
  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);

  /// Emit a description of a type in a format suitable for passing to
  /// a runtime sanitizer handler.
  llvm::Constant *EmitCheckTypeDescriptor(QualType T);

  /// Convert a value into a format suitable for passing to a runtime
  /// sanitizer handler.
  llvm::Value *EmitCheckValue(llvm::Value *V);

  /// Emit a description of a source location in a format suitable for
  /// passing to a runtime sanitizer handler.
  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);

  /// Create a basic block that will either trap or call a handler function in
  /// the UBSan runtime with the provided arguments, and create a conditional
  /// branch to it.
  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
                 ArrayRef<llvm::Value *> DynamicArgs);

  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
  /// if Cond if false.
  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
                            ArrayRef<llvm::Constant *> StaticArgs);

  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
  /// checking is enabled. Otherwise, just emit an unreachable instruction.
  void EmitUnreachable(SourceLocation Loc);

  /// Create a basic block that will call the trap intrinsic, and emit a
  /// conditional branch to it, for the -ftrapv checks.
  void EmitTrapCheck(llvm::Value *Checked);

  /// Emit a call to trap or debugtrap and attach function attribute
  /// "trap-func-name" if specified.
  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);

  /// Emit a stub for the cross-DSO CFI check function.
  void EmitCfiCheckStub();

  /// Emit a cross-DSO CFI failure handling function.
  void EmitCfiCheckFail();

  /// Create a check for a function parameter that may potentially be
  /// declared as non-null.
  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
                           AbstractCallee AC, unsigned ParmNum);

  /// EmitCallArg - Emit a single call argument.
  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);

  /// EmitDelegateCallArg - We are performing a delegate call; that
  /// is, the current function is delegating to another one.  Produce
  /// a r-value suitable for passing the given parameter.
  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
                           SourceLocation loc);

  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
  /// point operation, expressed as the maximum relative error in ulp.
  void SetFPAccuracy(llvm::Value *Val, float Accuracy);

  /// SetFPModel - Control floating point behavior via fp-model settings.
  void SetFPModel();

private:
  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
  void EmitReturnOfRValue(RValue RV, QualType Ty);

  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);

  llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
  DeferredReplacements;

  /// Set the address of a local variable.
  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
    LocalDeclMap.insert({VD, Addr});
  }

  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
  ///
  /// \param AI - The first function argument of the expansion.
  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
                          SmallVectorImpl<llvm::Value *>::iterator &AI);

  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
                        unsigned &IRCallArgPos);

  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
                            const Expr *InputExpr, std::string &ConstraintStr);

  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
                                  LValue InputValue, QualType InputType,
                                  std::string &ConstraintStr,
                                  SourceLocation Loc);

  /// Attempts to statically evaluate the object size of E. If that
  /// fails, emits code to figure the size of E out for us. This is
  /// pass_object_size aware.
  ///
  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
                                               llvm::IntegerType *ResType,
                                               llvm::Value *EmittedE,
                                               bool IsDynamic);

  /// Emits the size of E, as required by __builtin_object_size. This
  /// function is aware of pass_object_size parameters, and will act accordingly
  /// if E is a parameter with the pass_object_size attribute.
  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
                                     llvm::IntegerType *ResType,
                                     llvm::Value *EmittedE,
                                     bool IsDynamic);

  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
                                       Address Loc);

public:
#ifndef NDEBUG
  // Determine whether the given argument is an Objective-C method
  // that may have type parameters in its signature.
  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
    const DeclContext *dc = method->getDeclContext();
    if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
      return classDecl->getTypeParamListAsWritten();
    }

    if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
      return catDecl->getTypeParamList();
    }

    return false;
  }

  template<typename T>
  static bool isObjCMethodWithTypeParams(const T *) { return false; }
#endif

  enum class EvaluationOrder {
    ///! No language constraints on evaluation order.
    Default,
    ///! Language semantics require left-to-right evaluation.
    ForceLeftToRight,
    ///! Language semantics require right-to-left evaluation.
    ForceRightToLeft
  };

  /// EmitCallArgs - Emit call arguments for a function.
  template <typename T>
  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
                    AbstractCallee AC = AbstractCallee(),
                    unsigned ParamsToSkip = 0,
                    EvaluationOrder Order = EvaluationOrder::Default) {
    SmallVector<QualType, 16> ArgTypes;
    CallExpr::const_arg_iterator Arg = ArgRange.begin();

    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
           "Can't skip parameters if type info is not provided");
    if (CallArgTypeInfo) {
#ifndef NDEBUG
      bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
#endif

      // First, use the argument types that the type info knows about
      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
                E = CallArgTypeInfo->param_type_end();
           I != E; ++I, ++Arg) {
        assert(Arg != ArgRange.end() && "Running over edge of argument list!");
        assert((isGenericMethod ||
                ((*I)->isVariablyModifiedType() ||
                 (*I).getNonReferenceType()->isObjCRetainableType() ||
                 getContext()
                         .getCanonicalType((*I).getNonReferenceType())
                         .getTypePtr() ==
                     getContext()
                         .getCanonicalType((*Arg)->getType())
                         .getTypePtr())) &&
               "type mismatch in call argument!");
        ArgTypes.push_back(*I);
      }
    }

    // Either we've emitted all the call args, or we have a call to variadic
    // function.
    assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
            CallArgTypeInfo->isVariadic()) &&
           "Extra arguments in non-variadic function!");

    // If we still have any arguments, emit them using the type of the argument.
    for (auto *A : llvm::make_range(Arg, ArgRange.end()))
      ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());

    EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
  }

  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
                    AbstractCallee AC = AbstractCallee(),
                    unsigned ParamsToSkip = 0,
                    EvaluationOrder Order = EvaluationOrder::Default);

  /// EmitPointerWithAlignment - Given an expression with a pointer type,
  /// emit the value and compute our best estimate of the alignment of the
  /// pointee.
  ///
  /// \param BaseInfo - If non-null, this will be initialized with
  /// information about the source of the alignment and the may-alias
  /// attribute.  Note that this function will conservatively fall back on
  /// the type when it doesn't recognize the expression and may-alias will
  /// be set to false.
  ///
  /// One reasonable way to use this information is when there's a language
  /// guarantee that the pointer must be aligned to some stricter value, and
  /// we're simply trying to ensure that sufficiently obvious uses of under-
  /// aligned objects don't get miscompiled; for example, a placement new
  /// into the address of a local variable.  In such a case, it's quite
  /// reasonable to just ignore the returned alignment when it isn't from an
  /// explicit source.
  Address EmitPointerWithAlignment(const Expr *Addr,
                                   LValueBaseInfo *BaseInfo = nullptr,
                                   TBAAAccessInfo *TBAAInfo = nullptr);

  /// If \p E references a parameter with pass_object_size info or a constant
  /// array size modifier, emit the object size divided by the size of \p EltTy.
  /// Otherwise return null.
  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);

  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);

  struct MultiVersionResolverOption {
    llvm::Function *Function;
    FunctionDecl *FD;
    struct Conds {
      StringRef Architecture;
      llvm::SmallVector<StringRef, 8> Features;

      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
    } Conditions;

    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
                               ArrayRef<StringRef> Feats)
        : Function(F), Conditions(Arch, Feats) {}
  };

  // Emits the body of a multiversion function's resolver. Assumes that the
  // options are already sorted in the proper order, with the 'default' option
  // last (if it exists).
  void EmitMultiVersionResolver(llvm::Function *Resolver,
                                ArrayRef<MultiVersionResolverOption> Options);

  static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);

private:
  QualType getVarArgType(const Expr *Arg);

  void EmitDeclMetadata();

  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
                                  const AutoVarEmission &emission);

  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);

  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
  llvm::Value *EmitX86CpuIs(const CallExpr *E);
  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
  llvm::Value *EmitX86CpuInit();
  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
};

inline DominatingLLVMValue::saved_type
DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
  if (!needsSaving(value)) return saved_type(value, false);

  // Otherwise, we need an alloca.
  auto align = CharUnits::fromQuantity(
            CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
  Address alloca =
    CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
  CGF.Builder.CreateStore(value, alloca);

  return saved_type(alloca.getPointer(), true);
}

inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
                                                 saved_type value) {
  // If the value says it wasn't saved, trust that it's still dominating.
  if (!value.getInt()) return value.getPointer();

  // Otherwise, it should be an alloca instruction, as set up in save().
  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
}

}  // end namespace CodeGen
}  // end namespace clang

#endif