CloneDetection.cpp 22.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file implements classes for searching and analyzing source code clones.
///
//===----------------------------------------------------------------------===//

#include "clang/Analysis/CloneDetection.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DataCollection.h"
#include "clang/AST/DeclTemplate.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"

using namespace clang;

StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
                           unsigned StartIndex, unsigned EndIndex)
    : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
  assert(Stmt && "Stmt must not be a nullptr");
  assert(StartIndex < EndIndex && "Given array should not be empty");
  assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
}

StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
    : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}

StmtSequence::StmtSequence()
    : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}

bool StmtSequence::contains(const StmtSequence &Other) const {
  // If both sequences reside in different declarations, they can never contain
  // each other.
  if (D != Other.D)
    return false;

  const SourceManager &SM = getASTContext().getSourceManager();

  // Otherwise check if the start and end locations of the current sequence
  // surround the other sequence.
  bool StartIsInBounds =
      SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
      getBeginLoc() == Other.getBeginLoc();
  if (!StartIsInBounds)
    return false;

  bool EndIsInBounds =
      SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
      Other.getEndLoc() == getEndLoc();
  return EndIsInBounds;
}

StmtSequence::iterator StmtSequence::begin() const {
  if (!holdsSequence()) {
    return &S;
  }
  auto CS = cast<CompoundStmt>(S);
  return CS->body_begin() + StartIndex;
}

StmtSequence::iterator StmtSequence::end() const {
  if (!holdsSequence()) {
    return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
  }
  auto CS = cast<CompoundStmt>(S);
  return CS->body_begin() + EndIndex;
}

ASTContext &StmtSequence::getASTContext() const {
  assert(D);
  return D->getASTContext();
}

SourceLocation StmtSequence::getBeginLoc() const {
  return front()->getBeginLoc();
}

SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }

SourceRange StmtSequence::getSourceRange() const {
  return SourceRange(getBeginLoc(), getEndLoc());
}

void CloneDetector::analyzeCodeBody(const Decl *D) {
  assert(D);
  assert(D->hasBody());

  Sequences.push_back(StmtSequence(D->getBody(), D));
}

/// Returns true if and only if \p Stmt contains at least one other
/// sequence in the \p Group.
static bool containsAnyInGroup(StmtSequence &Seq,
                               CloneDetector::CloneGroup &Group) {
  for (StmtSequence &GroupSeq : Group) {
    if (Seq.contains(GroupSeq))
      return true;
  }
  return false;
}

/// Returns true if and only if all sequences in \p OtherGroup are
/// contained by a sequence in \p Group.
static bool containsGroup(CloneDetector::CloneGroup &Group,
                          CloneDetector::CloneGroup &OtherGroup) {
  // We have less sequences in the current group than we have in the other,
  // so we will never fulfill the requirement for returning true. This is only
  // possible because we know that a sequence in Group can contain at most
  // one sequence in OtherGroup.
  if (Group.size() < OtherGroup.size())
    return false;

  for (StmtSequence &Stmt : Group) {
    if (!containsAnyInGroup(Stmt, OtherGroup))
      return false;
  }
  return true;
}

void OnlyLargestCloneConstraint::constrain(
    std::vector<CloneDetector::CloneGroup> &Result) {
  std::vector<unsigned> IndexesToRemove;

  // Compare every group in the result with the rest. If one groups contains
  // another group, we only need to return the bigger group.
  // Note: This doesn't scale well, so if possible avoid calling any heavy
  // function from this loop to minimize the performance impact.
  for (unsigned i = 0; i < Result.size(); ++i) {
    for (unsigned j = 0; j < Result.size(); ++j) {
      // Don't compare a group with itself.
      if (i == j)
        continue;

      if (containsGroup(Result[j], Result[i])) {
        IndexesToRemove.push_back(i);
        break;
      }
    }
  }

  // Erasing a list of indexes from the vector should be done with decreasing
  // indexes. As IndexesToRemove is constructed with increasing values, we just
  // reverse iterate over it to get the desired order.
  for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
    Result.erase(Result.begin() + *I);
  }
}

bool FilenamePatternConstraint::isAutoGenerated(
    const CloneDetector::CloneGroup &Group) {
  if (IgnoredFilesPattern.empty() || Group.empty() ||
      !IgnoredFilesRegex->isValid())
    return false;

  for (const StmtSequence &S : Group) {
    const SourceManager &SM = S.getASTContext().getSourceManager();
    StringRef Filename = llvm::sys::path::filename(
        SM.getFilename(S.getContainingDecl()->getLocation()));
    if (IgnoredFilesRegex->match(Filename))
      return true;
  }

  return false;
}

/// This class defines what a type II code clone is: If it collects for two
/// statements the same data, then those two statements are considered to be
/// clones of each other.
///
/// All collected data is forwarded to the given data consumer of the type T.
/// The data consumer class needs to provide a member method with the signature:
///   update(StringRef Str)
namespace {
template <class T>
class CloneTypeIIStmtDataCollector
    : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
  ASTContext &Context;
  /// The data sink to which all data is forwarded.
  T &DataConsumer;

  template <class Ty> void addData(const Ty &Data) {
    data_collection::addDataToConsumer(DataConsumer, Data);
  }

public:
  CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
                               T &DataConsumer)
      : Context(Context), DataConsumer(DataConsumer) {
    this->Visit(S);
  }

// Define a visit method for each class to collect data and subsequently visit
// all parent classes. This uses a template so that custom visit methods by us
// take precedence.
#define DEF_ADD_DATA(CLASS, CODE)                                              \
  template <class = void> void Visit##CLASS(const CLASS *S) {                  \
    CODE;                                                                      \
    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
  }

#include "clang/AST/StmtDataCollectors.inc"

// Type II clones ignore variable names and literals, so let's skip them.
#define SKIP(CLASS)                                                            \
  void Visit##CLASS(const CLASS *S) {                                          \
    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
  }
  SKIP(DeclRefExpr)
  SKIP(MemberExpr)
  SKIP(IntegerLiteral)
  SKIP(FloatingLiteral)
  SKIP(StringLiteral)
  SKIP(CXXBoolLiteralExpr)
  SKIP(CharacterLiteral)
#undef SKIP
};
} // end anonymous namespace

static size_t createHash(llvm::MD5 &Hash) {
  size_t HashCode;

  // Create the final hash code for the current Stmt.
  llvm::MD5::MD5Result HashResult;
  Hash.final(HashResult);

  // Copy as much as possible of the generated hash code to the Stmt's hash
  // code.
  std::memcpy(&HashCode, &HashResult,
              std::min(sizeof(HashCode), sizeof(HashResult)));

  return HashCode;
}

/// Generates and saves a hash code for the given Stmt.
/// \param S The given Stmt.
/// \param D The Decl containing S.
/// \param StmtsByHash Output parameter that will contain the hash codes for
///                    each StmtSequence in the given Stmt.
/// \return The hash code of the given Stmt.
///
/// If the given Stmt is a CompoundStmt, this method will also generate
/// hashes for all possible StmtSequences in the children of this Stmt.
static size_t
saveHash(const Stmt *S, const Decl *D,
         std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
  llvm::MD5 Hash;
  ASTContext &Context = D->getASTContext();

  CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);

  auto CS = dyn_cast<CompoundStmt>(S);
  SmallVector<size_t, 8> ChildHashes;

  for (const Stmt *Child : S->children()) {
    if (Child == nullptr) {
      ChildHashes.push_back(0);
      continue;
    }
    size_t ChildHash = saveHash(Child, D, StmtsByHash);
    Hash.update(
        StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
    ChildHashes.push_back(ChildHash);
  }

  if (CS) {
    // If we're in a CompoundStmt, we hash all possible combinations of child
    // statements to find clones in those subsequences.
    // We first go through every possible starting position of a subsequence.
    for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
      // Then we try all possible lengths this subsequence could have and
      // reuse the same hash object to make sure we only hash every child
      // hash exactly once.
      llvm::MD5 Hash;
      for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
        // Grab the current child hash and put it into our hash. We do
        // -1 on the index because we start counting the length at 1.
        size_t ChildHash = ChildHashes[Pos + Length - 1];
        Hash.update(
            StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
        // If we have at least two elements in our subsequence, we can start
        // saving it.
        if (Length > 1) {
          llvm::MD5 SubHash = Hash;
          StmtsByHash.push_back(std::make_pair(
              createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
        }
      }
    }
  }

  size_t HashCode = createHash(Hash);
  StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
  return HashCode;
}

namespace {
/// Wrapper around FoldingSetNodeID that it can be used as the template
/// argument of the StmtDataCollector.
class FoldingSetNodeIDWrapper {

  llvm::FoldingSetNodeID &FS;

public:
  FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}

  void update(StringRef Str) { FS.AddString(Str); }
};
} // end anonymous namespace

/// Writes the relevant data from all statements and child statements
/// in the given StmtSequence into the given FoldingSetNodeID.
static void CollectStmtSequenceData(const StmtSequence &Sequence,
                                    FoldingSetNodeIDWrapper &OutputData) {
  for (const Stmt *S : Sequence) {
    CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
        S, Sequence.getASTContext(), OutputData);

    for (const Stmt *Child : S->children()) {
      if (!Child)
        continue;

      CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
                              OutputData);
    }
  }
}

/// Returns true if both sequences are clones of each other.
static bool areSequencesClones(const StmtSequence &LHS,
                               const StmtSequence &RHS) {
  // We collect the data from all statements in the sequence as we did before
  // when generating a hash value for each sequence. But this time we don't
  // hash the collected data and compare the whole data set instead. This
  // prevents any false-positives due to hash code collisions.
  llvm::FoldingSetNodeID DataLHS, DataRHS;
  FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
  FoldingSetNodeIDWrapper RHSWrapper(DataRHS);

  CollectStmtSequenceData(LHS, LHSWrapper);
  CollectStmtSequenceData(RHS, RHSWrapper);

  return DataLHS == DataRHS;
}

void RecursiveCloneTypeIIHashConstraint::constrain(
    std::vector<CloneDetector::CloneGroup> &Sequences) {
  // FIXME: Maybe we can do this in-place and don't need this additional vector.
  std::vector<CloneDetector::CloneGroup> Result;

  for (CloneDetector::CloneGroup &Group : Sequences) {
    // We assume in the following code that the Group is non-empty, so we
    // skip all empty groups.
    if (Group.empty())
      continue;

    std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;

    // Generate hash codes for all children of S and save them in StmtsByHash.
    for (const StmtSequence &S : Group) {
      saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
    }

    // Sort hash_codes in StmtsByHash.
    llvm::stable_sort(StmtsByHash, llvm::less_first());

    // Check for each StmtSequence if its successor has the same hash value.
    // We don't check the last StmtSequence as it has no successor.
    // Note: The 'size - 1 ' in the condition is safe because we check for an
    // empty Group vector at the beginning of this function.
    for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
      const auto Current = StmtsByHash[i];

      // It's likely that we just found a sequence of StmtSequences that
      // represent a CloneGroup, so we create a new group and start checking and
      // adding the StmtSequences in this sequence.
      CloneDetector::CloneGroup NewGroup;

      size_t PrototypeHash = Current.first;

      for (; i < StmtsByHash.size(); ++i) {
        // A different hash value means we have reached the end of the sequence.
        if (PrototypeHash != StmtsByHash[i].first) {
          // The current sequence could be the start of a new CloneGroup. So we
          // decrement i so that we visit it again in the outer loop.
          // Note: i can never be 0 at this point because we are just comparing
          // the hash of the Current StmtSequence with itself in the 'if' above.
          assert(i != 0);
          --i;
          break;
        }
        // Same hash value means we should add the StmtSequence to the current
        // group.
        NewGroup.push_back(StmtsByHash[i].second);
      }

      // We created a new clone group with matching hash codes and move it to
      // the result vector.
      Result.push_back(NewGroup);
    }
  }
  // Sequences is the output parameter, so we copy our result into it.
  Sequences = Result;
}

void RecursiveCloneTypeIIVerifyConstraint::constrain(
    std::vector<CloneDetector::CloneGroup> &Sequences) {
  CloneConstraint::splitCloneGroups(
      Sequences, [](const StmtSequence &A, const StmtSequence &B) {
        return areSequencesClones(A, B);
      });
}

size_t MinComplexityConstraint::calculateStmtComplexity(
    const StmtSequence &Seq, std::size_t Limit,
    const std::string &ParentMacroStack) {
  if (Seq.empty())
    return 0;

  size_t Complexity = 1;

  ASTContext &Context = Seq.getASTContext();

  // Look up what macros expanded into the current statement.
  std::string MacroStack =
      data_collection::getMacroStack(Seq.getBeginLoc(), Context);

  // First, check if ParentMacroStack is not empty which means we are currently
  // dealing with a parent statement which was expanded from a macro.
  // If this parent statement was expanded from the same macros as this
  // statement, we reduce the initial complexity of this statement to zero.
  // This causes that a group of statements that were generated by a single
  // macro expansion will only increase the total complexity by one.
  // Note: This is not the final complexity of this statement as we still
  // add the complexity of the child statements to the complexity value.
  if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
    Complexity = 0;
  }

  // Iterate over the Stmts in the StmtSequence and add their complexity values
  // to the current complexity value.
  if (Seq.holdsSequence()) {
    for (const Stmt *S : Seq) {
      Complexity += calculateStmtComplexity(
          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
      if (Complexity >= Limit)
        return Limit;
    }
  } else {
    for (const Stmt *S : Seq.front()->children()) {
      Complexity += calculateStmtComplexity(
          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
      if (Complexity >= Limit)
        return Limit;
    }
  }
  return Complexity;
}

void MatchingVariablePatternConstraint::constrain(
    std::vector<CloneDetector::CloneGroup> &CloneGroups) {
  CloneConstraint::splitCloneGroups(
      CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
        VariablePattern PatternA(A);
        VariablePattern PatternB(B);
        return PatternA.countPatternDifferences(PatternB) == 0;
      });
}

void CloneConstraint::splitCloneGroups(
    std::vector<CloneDetector::CloneGroup> &CloneGroups,
    llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
        Compare) {
  std::vector<CloneDetector::CloneGroup> Result;
  for (auto &HashGroup : CloneGroups) {
    // Contains all indexes in HashGroup that were already added to a
    // CloneGroup.
    std::vector<char> Indexes;
    Indexes.resize(HashGroup.size());

    for (unsigned i = 0; i < HashGroup.size(); ++i) {
      // Skip indexes that are already part of a CloneGroup.
      if (Indexes[i])
        continue;

      // Pick the first unhandled StmtSequence and consider it as the
      // beginning
      // of a new CloneGroup for now.
      // We don't add i to Indexes because we never iterate back.
      StmtSequence Prototype = HashGroup[i];
      CloneDetector::CloneGroup PotentialGroup = {Prototype};
      ++Indexes[i];

      // Check all following StmtSequences for clones.
      for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
        // Skip indexes that are already part of a CloneGroup.
        if (Indexes[j])
          continue;

        // If a following StmtSequence belongs to our CloneGroup, we add it.
        const StmtSequence &Candidate = HashGroup[j];

        if (!Compare(Prototype, Candidate))
          continue;

        PotentialGroup.push_back(Candidate);
        // Make sure we never visit this StmtSequence again.
        ++Indexes[j];
      }

      // Otherwise, add it to the result and continue searching for more
      // groups.
      Result.push_back(PotentialGroup);
    }

    assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
  }
  CloneGroups = Result;
}

void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
                                           const Stmt *Mention) {
  // First check if we already reference this variable
  for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
    if (Variables[KindIndex] == VarDecl) {
      // If yes, add a new occurrence that points to the existing entry in
      // the Variables vector.
      Occurences.emplace_back(KindIndex, Mention);
      return;
    }
  }
  // If this variable wasn't already referenced, add it to the list of
  // referenced variables and add a occurrence that points to this new entry.
  Occurences.emplace_back(Variables.size(), Mention);
  Variables.push_back(VarDecl);
}

void VariablePattern::addVariables(const Stmt *S) {
  // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
  // children). We skip such statements as they don't reference any
  // variables.
  if (!S)
    return;

  // Check if S is a reference to a variable. If yes, add it to the pattern.
  if (auto D = dyn_cast<DeclRefExpr>(S)) {
    if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
      addVariableOccurence(VD, D);
  }

  // Recursively check all children of the given statement.
  for (const Stmt *Child : S->children()) {
    addVariables(Child);
  }
}

unsigned VariablePattern::countPatternDifferences(
    const VariablePattern &Other,
    VariablePattern::SuspiciousClonePair *FirstMismatch) {
  unsigned NumberOfDifferences = 0;

  assert(Other.Occurences.size() == Occurences.size());
  for (unsigned i = 0; i < Occurences.size(); ++i) {
    auto ThisOccurence = Occurences[i];
    auto OtherOccurence = Other.Occurences[i];
    if (ThisOccurence.KindID == OtherOccurence.KindID)
      continue;

    ++NumberOfDifferences;

    // If FirstMismatch is not a nullptr, we need to store information about
    // the first difference between the two patterns.
    if (FirstMismatch == nullptr)
      continue;

    // Only proceed if we just found the first difference as we only store
    // information about the first difference.
    if (NumberOfDifferences != 1)
      continue;

    const VarDecl *FirstSuggestion = nullptr;
    // If there is a variable available in the list of referenced variables
    // which wouldn't break the pattern if it is used in place of the
    // current variable, we provide this variable as the suggested fix.
    if (OtherOccurence.KindID < Variables.size())
      FirstSuggestion = Variables[OtherOccurence.KindID];

    // Store information about the first clone.
    FirstMismatch->FirstCloneInfo =
        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
            Variables[ThisOccurence.KindID], ThisOccurence.Mention,
            FirstSuggestion);

    // Same as above but with the other clone. We do this for both clones as
    // we don't know which clone is the one containing the unintended
    // pattern error.
    const VarDecl *SecondSuggestion = nullptr;
    if (ThisOccurence.KindID < Other.Variables.size())
      SecondSuggestion = Other.Variables[ThisOccurence.KindID];

    // Store information about the second clone.
    FirstMismatch->SecondCloneInfo =
        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
            Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
            SecondSuggestion);

    // SuspiciousClonePair guarantees that the first clone always has a
    // suggested variable associated with it. As we know that one of the two
    // clones in the pair always has suggestion, we swap the two clones
    // in case the first clone has no suggested variable which means that
    // the second clone has a suggested variable and should be first.
    if (!FirstMismatch->FirstCloneInfo.Suggestion)
      std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);

    // This ensures that we always have at least one suggestion in a pair.
    assert(FirstMismatch->FirstCloneInfo.Suggestion);
  }

  return NumberOfDifferences;
}