isl_map_simplify.c
144 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2012-2013 Ecole Normale Superieure
* Copyright 2014-2015 INRIA Rocquencourt
* Copyright 2016 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include "isl_equalities.h"
#include <isl/map.h>
#include <isl_seq.h>
#include "isl_tab.h"
#include <isl_space_private.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <bset_to_bmap.c>
#include <bset_from_bmap.c>
#include <set_to_map.c>
#include <set_from_map.c>
static void swap_equality(struct isl_basic_map *bmap, int a, int b)
{
isl_int *t = bmap->eq[a];
bmap->eq[a] = bmap->eq[b];
bmap->eq[b] = t;
}
static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
{
if (a != b) {
isl_int *t = bmap->ineq[a];
bmap->ineq[a] = bmap->ineq[b];
bmap->ineq[b] = t;
}
}
__isl_give isl_basic_map *isl_basic_map_normalize_constraints(
__isl_take isl_basic_map *bmap)
{
int i;
isl_int gcd;
unsigned total = isl_basic_map_total_dim(bmap);
if (!bmap)
return NULL;
isl_int_init(gcd);
for (i = bmap->n_eq - 1; i >= 0; --i) {
isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
if (isl_int_is_zero(gcd)) {
if (!isl_int_is_zero(bmap->eq[i][0])) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_basic_map_drop_equality(bmap, i);
continue;
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
if (isl_int_is_one(gcd))
continue;
if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
}
for (i = bmap->n_ineq - 1; i >= 0; --i) {
isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
if (isl_int_is_zero(gcd)) {
if (isl_int_is_neg(bmap->ineq[i][0])) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_basic_map_drop_inequality(bmap, i);
continue;
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
if (isl_int_is_one(gcd))
continue;
isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
}
isl_int_clear(gcd);
return bmap;
}
__isl_give isl_basic_set *isl_basic_set_normalize_constraints(
__isl_take isl_basic_set *bset)
{
isl_basic_map *bmap = bset_to_bmap(bset);
return bset_from_bmap(isl_basic_map_normalize_constraints(bmap));
}
/* Reduce the coefficient of the variable at position "pos"
* in integer division "div", such that it lies in the half-open
* interval (1/2,1/2], extracting any excess value from this integer division.
* "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
* corresponds to the constant term.
*
* That is, the integer division is of the form
*
* floor((... + (c * d + r) * x_pos + ...)/d)
*
* with -d < 2 * r <= d.
* Replace it by
*
* floor((... + r * x_pos + ...)/d) + c * x_pos
*
* If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
* Otherwise, c = floor((c * d + r)/d) + 1.
*
* This is the same normalization that is performed by isl_aff_floor.
*/
static __isl_give isl_basic_map *reduce_coefficient_in_div(
__isl_take isl_basic_map *bmap, int div, int pos)
{
isl_int shift;
int add_one;
isl_int_init(shift);
isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
isl_int_mul_ui(shift, shift, 2);
add_one = isl_int_gt(shift, bmap->div[div][0]);
isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
if (add_one)
isl_int_add_ui(shift, shift, 1);
isl_int_neg(shift, shift);
bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
isl_int_clear(shift);
return bmap;
}
/* Does the coefficient of the variable at position "pos"
* in integer division "div" need to be reduced?
* That is, does it lie outside the half-open interval (1/2,1/2]?
* The coefficient c/d lies outside this interval if abs(2 * c) >= d and
* 2 * c != d.
*/
static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div,
int pos)
{
isl_bool r;
if (isl_int_is_zero(bmap->div[div][1 + pos]))
return isl_bool_false;
isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2);
r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) &&
!isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]);
isl_int_divexact_ui(bmap->div[div][1 + pos],
bmap->div[div][1 + pos], 2);
return r;
}
/* Reduce the coefficients (including the constant term) of
* integer division "div", if needed.
* In particular, make sure all coefficients lie in
* the half-open interval (1/2,1/2].
*/
static __isl_give isl_basic_map *reduce_div_coefficients_of_div(
__isl_take isl_basic_map *bmap, int div)
{
int i;
unsigned total = 1 + isl_basic_map_total_dim(bmap);
for (i = 0; i < total; ++i) {
isl_bool reduce;
reduce = needs_reduction(bmap, div, i);
if (reduce < 0)
return isl_basic_map_free(bmap);
if (!reduce)
continue;
bmap = reduce_coefficient_in_div(bmap, div, i);
if (!bmap)
break;
}
return bmap;
}
/* Reduce the coefficients (including the constant term) of
* the known integer divisions, if needed
* In particular, make sure all coefficients lie in
* the half-open interval (1/2,1/2].
*/
static __isl_give isl_basic_map *reduce_div_coefficients(
__isl_take isl_basic_map *bmap)
{
int i;
if (!bmap)
return NULL;
if (bmap->n_div == 0)
return bmap;
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
bmap = reduce_div_coefficients_of_div(bmap, i);
if (!bmap)
break;
}
return bmap;
}
/* Remove any common factor in numerator and denominator of the div expression,
* not taking into account the constant term.
* That is, if the div is of the form
*
* floor((a + m f(x))/(m d))
*
* then replace it by
*
* floor((floor(a/m) + f(x))/d)
*
* The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
* and can therefore not influence the result of the floor.
*/
static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
{
unsigned total = isl_basic_map_total_dim(bmap);
isl_ctx *ctx = bmap->ctx;
if (isl_int_is_zero(bmap->div[div][0]))
return;
isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
if (isl_int_is_one(ctx->normalize_gcd))
return;
isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
ctx->normalize_gcd);
isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
ctx->normalize_gcd);
isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
ctx->normalize_gcd, total);
}
/* Remove any common factor in numerator and denominator of a div expression,
* not taking into account the constant term.
* That is, look for any div of the form
*
* floor((a + m f(x))/(m d))
*
* and replace it by
*
* floor((floor(a/m) + f(x))/d)
*
* The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
* and can therefore not influence the result of the floor.
*/
static __isl_give isl_basic_map *normalize_div_expressions(
__isl_take isl_basic_map *bmap)
{
int i;
if (!bmap)
return NULL;
if (bmap->n_div == 0)
return bmap;
for (i = 0; i < bmap->n_div; ++i)
normalize_div_expression(bmap, i);
return bmap;
}
/* Assumes divs have been ordered if keep_divs is set.
*/
static void eliminate_var_using_equality(struct isl_basic_map *bmap,
unsigned pos, isl_int *eq, int keep_divs, int *progress)
{
unsigned total;
unsigned space_total;
int k;
int last_div;
total = isl_basic_map_total_dim(bmap);
space_total = isl_space_dim(bmap->dim, isl_dim_all);
last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
for (k = 0; k < bmap->n_eq; ++k) {
if (bmap->eq[k] == eq)
continue;
if (isl_int_is_zero(bmap->eq[k][1+pos]))
continue;
if (progress)
*progress = 1;
isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
}
for (k = 0; k < bmap->n_ineq; ++k) {
if (isl_int_is_zero(bmap->ineq[k][1+pos]))
continue;
if (progress)
*progress = 1;
isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
}
for (k = 0; k < bmap->n_div; ++k) {
if (isl_int_is_zero(bmap->div[k][0]))
continue;
if (isl_int_is_zero(bmap->div[k][1+1+pos]))
continue;
if (progress)
*progress = 1;
/* We need to be careful about circular definitions,
* so for now we just remove the definition of div k
* if the equality contains any divs.
* If keep_divs is set, then the divs have been ordered
* and we can keep the definition as long as the result
* is still ordered.
*/
if (last_div == -1 || (keep_divs && last_div < k)) {
isl_seq_elim(bmap->div[k]+1, eq,
1+pos, 1+total, &bmap->div[k][0]);
normalize_div_expression(bmap, k);
} else
isl_seq_clr(bmap->div[k], 1 + total);
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
}
}
/* Assumes divs have been ordered if keep_divs is set.
*/
static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
isl_int *eq, unsigned div, int keep_divs)
{
unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
bmap = isl_basic_map_drop_div(bmap, div);
return bmap;
}
/* Check if elimination of div "div" using equality "eq" would not
* result in a div depending on a later div.
*/
static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq,
unsigned div)
{
int k;
int last_div;
unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
unsigned pos = space_total + div;
last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
if (last_div < 0 || last_div <= div)
return isl_bool_true;
for (k = 0; k <= last_div; ++k) {
if (isl_int_is_zero(bmap->div[k][0]))
continue;
if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
return isl_bool_false;
}
return isl_bool_true;
}
/* Eliminate divs based on equalities
*/
static __isl_give isl_basic_map *eliminate_divs_eq(
__isl_take isl_basic_map *bmap, int *progress)
{
int d;
int i;
int modified = 0;
unsigned off;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap)
return NULL;
off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
for (d = bmap->n_div - 1; d >= 0 ; --d) {
for (i = 0; i < bmap->n_eq; ++i) {
isl_bool ok;
if (!isl_int_is_one(bmap->eq[i][off + d]) &&
!isl_int_is_negone(bmap->eq[i][off + d]))
continue;
ok = ok_to_eliminate_div(bmap, bmap->eq[i], d);
if (ok < 0)
return isl_basic_map_free(bmap);
if (!ok)
continue;
modified = 1;
*progress = 1;
bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
if (isl_basic_map_drop_equality(bmap, i) < 0)
return isl_basic_map_free(bmap);
break;
}
}
if (modified)
return eliminate_divs_eq(bmap, progress);
return bmap;
}
/* Eliminate divs based on inequalities
*/
static __isl_give isl_basic_map *eliminate_divs_ineq(
__isl_take isl_basic_map *bmap, int *progress)
{
int d;
int i;
unsigned off;
struct isl_ctx *ctx;
if (!bmap)
return NULL;
ctx = bmap->ctx;
off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
for (d = bmap->n_div - 1; d >= 0 ; --d) {
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][off + d]))
break;
if (i < bmap->n_eq)
continue;
for (i = 0; i < bmap->n_ineq; ++i)
if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
break;
if (i < bmap->n_ineq)
continue;
*progress = 1;
bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
break;
bmap = isl_basic_map_drop_div(bmap, d);
if (!bmap)
break;
}
return bmap;
}
/* Does the equality constraint at position "eq" in "bmap" involve
* any local variables in the range [first, first + n)
* that are not marked as having an explicit representation?
*/
static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap,
int eq, unsigned first, unsigned n)
{
unsigned o_div;
int i;
if (!bmap)
return isl_bool_error;
o_div = isl_basic_map_offset(bmap, isl_dim_div);
for (i = 0; i < n; ++i) {
isl_bool unknown;
if (isl_int_is_zero(bmap->eq[eq][o_div + first + i]))
continue;
unknown = isl_basic_map_div_is_marked_unknown(bmap, first + i);
if (unknown < 0)
return isl_bool_error;
if (unknown)
return isl_bool_true;
}
return isl_bool_false;
}
/* The last local variable involved in the equality constraint
* at position "eq" in "bmap" is the local variable at position "div".
* It can therefore be used to extract an explicit representation
* for that variable.
* Do so unless the local variable already has an explicit representation or
* the explicit representation would involve any other local variables
* that in turn do not have an explicit representation.
* An equality constraint involving local variables without an explicit
* representation can be used in isl_basic_map_drop_redundant_divs
* to separate out an independent local variable. Introducing
* an explicit representation here would block this transformation,
* while the partial explicit representation in itself is not very useful.
* Set *progress if anything is changed.
*
* The equality constraint is of the form
*
* f(x) + n e >= 0
*
* with n a positive number. The explicit representation derived from
* this constraint is
*
* floor((-f(x))/n)
*/
static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap,
int div, int eq, int *progress)
{
unsigned total, o_div;
isl_bool involves;
if (!bmap)
return NULL;
if (!isl_int_is_zero(bmap->div[div][0]))
return bmap;
involves = bmap_eq_involves_unknown_divs(bmap, eq, 0, div);
if (involves < 0)
return isl_basic_map_free(bmap);
if (involves)
return bmap;
total = isl_basic_map_dim(bmap, isl_dim_all);
o_div = isl_basic_map_offset(bmap, isl_dim_div);
isl_seq_neg(bmap->div[div] + 1, bmap->eq[eq], 1 + total);
isl_int_set_si(bmap->div[div][1 + o_div + div], 0);
isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]);
if (progress)
*progress = 1;
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
return bmap;
}
__isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap,
int *progress)
{
int k;
int done;
int last_var;
unsigned total_var;
unsigned total;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap)
return NULL;
total = isl_basic_map_total_dim(bmap);
total_var = total - bmap->n_div;
last_var = total - 1;
for (done = 0; done < bmap->n_eq; ++done) {
for (; last_var >= 0; --last_var) {
for (k = done; k < bmap->n_eq; ++k)
if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
break;
if (k < bmap->n_eq)
break;
}
if (last_var < 0)
break;
if (k != done)
swap_equality(bmap, k, done);
if (isl_int_is_neg(bmap->eq[done][1+last_var]))
isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
progress);
if (last_var >= total_var)
bmap = set_div_from_eq(bmap, last_var - total_var,
done, progress);
if (!bmap)
return NULL;
}
if (done == bmap->n_eq)
return bmap;
for (k = done; k < bmap->n_eq; ++k) {
if (isl_int_is_zero(bmap->eq[k][0]))
continue;
return isl_basic_map_set_to_empty(bmap);
}
isl_basic_map_free_equality(bmap, bmap->n_eq-done);
return bmap;
}
__isl_give isl_basic_set *isl_basic_set_gauss(
__isl_take isl_basic_set *bset, int *progress)
{
return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset),
progress));
}
static unsigned int round_up(unsigned int v)
{
int old_v = v;
while (v) {
old_v = v;
v ^= v & -v;
}
return old_v << 1;
}
/* Hash table of inequalities in a basic map.
* "index" is an array of addresses of inequalities in the basic map, some
* of which are NULL. The inequalities are hashed on the coefficients
* except the constant term.
* "size" is the number of elements in the array and is always a power of two
* "bits" is the number of bits need to represent an index into the array.
* "total" is the total dimension of the basic map.
*/
struct isl_constraint_index {
unsigned int size;
int bits;
isl_int ***index;
unsigned total;
};
/* Fill in the "ci" data structure for holding the inequalities of "bmap".
*/
static isl_stat create_constraint_index(struct isl_constraint_index *ci,
__isl_keep isl_basic_map *bmap)
{
isl_ctx *ctx;
ci->index = NULL;
if (!bmap)
return isl_stat_error;
ci->total = isl_basic_set_total_dim(bmap);
if (bmap->n_ineq == 0)
return isl_stat_ok;
ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
ci->bits = ffs(ci->size) - 1;
ctx = isl_basic_map_get_ctx(bmap);
ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
if (!ci->index)
return isl_stat_error;
return isl_stat_ok;
}
/* Free the memory allocated by create_constraint_index.
*/
static void constraint_index_free(struct isl_constraint_index *ci)
{
free(ci->index);
}
/* Return the position in ci->index that contains the address of
* an inequality that is equal to *ineq up to the constant term,
* provided this address is not identical to "ineq".
* If there is no such inequality, then return the position where
* such an inequality should be inserted.
*/
static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
{
int h;
uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
for (h = hash; ci->index[h]; h = (h+1) % ci->size)
if (ineq != ci->index[h] &&
isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
break;
return h;
}
/* Return the position in ci->index that contains the address of
* an inequality that is equal to the k'th inequality of "bmap"
* up to the constant term, provided it does not point to the very
* same inequality.
* If there is no such inequality, then return the position where
* such an inequality should be inserted.
*/
static int hash_index(struct isl_constraint_index *ci,
__isl_keep isl_basic_map *bmap, int k)
{
return hash_index_ineq(ci, &bmap->ineq[k]);
}
static int set_hash_index(struct isl_constraint_index *ci,
__isl_keep isl_basic_set *bset, int k)
{
return hash_index(ci, bset, k);
}
/* Fill in the "ci" data structure with the inequalities of "bset".
*/
static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
__isl_keep isl_basic_set *bset)
{
int k, h;
if (create_constraint_index(ci, bset) < 0)
return isl_stat_error;
for (k = 0; k < bset->n_ineq; ++k) {
h = set_hash_index(ci, bset, k);
ci->index[h] = &bset->ineq[k];
}
return isl_stat_ok;
}
/* Is the inequality ineq (obviously) redundant with respect
* to the constraints in "ci"?
*
* Look for an inequality in "ci" with the same coefficients and then
* check if the contant term of "ineq" is greater than or equal
* to the constant term of that inequality. If so, "ineq" is clearly
* redundant.
*
* Note that hash_index_ineq ignores a stored constraint if it has
* the same address as the passed inequality. It is ok to pass
* the address of a local variable here since it will never be
* the same as the address of a constraint in "ci".
*/
static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
isl_int *ineq)
{
int h;
h = hash_index_ineq(ci, &ineq);
if (!ci->index[h])
return isl_bool_false;
return isl_int_ge(ineq[0], (*ci->index[h])[0]);
}
/* If we can eliminate more than one div, then we need to make
* sure we do it from last div to first div, in order not to
* change the position of the other divs that still need to
* be removed.
*/
static __isl_give isl_basic_map *remove_duplicate_divs(
__isl_take isl_basic_map *bmap, int *progress)
{
unsigned int size;
int *index;
int *elim_for;
int k, l, h;
int bits;
struct isl_blk eq;
unsigned total_var;
unsigned total;
struct isl_ctx *ctx;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap || bmap->n_div <= 1)
return bmap;
total_var = isl_space_dim(bmap->dim, isl_dim_all);
total = total_var + bmap->n_div;
ctx = bmap->ctx;
for (k = bmap->n_div - 1; k >= 0; --k)
if (!isl_int_is_zero(bmap->div[k][0]))
break;
if (k <= 0)
return bmap;
size = round_up(4 * bmap->n_div / 3 - 1);
if (size == 0)
return bmap;
elim_for = isl_calloc_array(ctx, int, bmap->n_div);
bits = ffs(size) - 1;
index = isl_calloc_array(ctx, int, size);
if (!elim_for || !index)
goto out;
eq = isl_blk_alloc(ctx, 1+total);
if (isl_blk_is_error(eq))
goto out;
isl_seq_clr(eq.data, 1+total);
index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
for (--k; k >= 0; --k) {
uint32_t hash;
if (isl_int_is_zero(bmap->div[k][0]))
continue;
hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
for (h = hash; index[h]; h = (h+1) % size)
if (isl_seq_eq(bmap->div[k],
bmap->div[index[h]-1], 2+total))
break;
if (index[h]) {
*progress = 1;
l = index[h] - 1;
elim_for[l] = k + 1;
}
index[h] = k+1;
}
for (l = bmap->n_div - 1; l >= 0; --l) {
if (!elim_for[l])
continue;
k = elim_for[l] - 1;
isl_int_set_si(eq.data[1+total_var+k], -1);
isl_int_set_si(eq.data[1+total_var+l], 1);
bmap = eliminate_div(bmap, eq.data, l, 1);
if (!bmap)
break;
isl_int_set_si(eq.data[1+total_var+k], 0);
isl_int_set_si(eq.data[1+total_var+l], 0);
}
isl_blk_free(ctx, eq);
out:
free(index);
free(elim_for);
return bmap;
}
static int n_pure_div_eq(struct isl_basic_map *bmap)
{
int i, j;
unsigned total;
total = isl_space_dim(bmap->dim, isl_dim_all);
for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
--j;
if (j < 0)
break;
if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
return 0;
}
return i;
}
/* Normalize divs that appear in equalities.
*
* In particular, we assume that bmap contains some equalities
* of the form
*
* a x = m * e_i
*
* and we want to replace the set of e_i by a minimal set and
* such that the new e_i have a canonical representation in terms
* of the vector x.
* If any of the equalities involves more than one divs, then
* we currently simply bail out.
*
* Let us first additionally assume that all equalities involve
* a div. The equalities then express modulo constraints on the
* remaining variables and we can use "parameter compression"
* to find a minimal set of constraints. The result is a transformation
*
* x = T(x') = x_0 + G x'
*
* with G a lower-triangular matrix with all elements below the diagonal
* non-negative and smaller than the diagonal element on the same row.
* We first normalize x_0 by making the same property hold in the affine
* T matrix.
* The rows i of G with a 1 on the diagonal do not impose any modulo
* constraint and simply express x_i = x'_i.
* For each of the remaining rows i, we introduce a div and a corresponding
* equality. In particular
*
* g_ii e_j = x_i - g_i(x')
*
* where each x'_k is replaced either by x_k (if g_kk = 1) or the
* corresponding div (if g_kk != 1).
*
* If there are any equalities not involving any div, then we
* first apply a variable compression on the variables x:
*
* x = C x'' x'' = C_2 x
*
* and perform the above parameter compression on A C instead of on A.
* The resulting compression is then of the form
*
* x'' = T(x') = x_0 + G x'
*
* and in constructing the new divs and the corresponding equalities,
* we have to replace each x'', i.e., the x'_k with (g_kk = 1),
* by the corresponding row from C_2.
*/
static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap,
int *progress)
{
int i, j, k;
int total;
int div_eq;
struct isl_mat *B;
struct isl_vec *d;
struct isl_mat *T = NULL;
struct isl_mat *C = NULL;
struct isl_mat *C2 = NULL;
isl_int v;
int *pos = NULL;
int dropped, needed;
if (!bmap)
return NULL;
if (bmap->n_div == 0)
return bmap;
if (bmap->n_eq == 0)
return bmap;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
return bmap;
total = isl_space_dim(bmap->dim, isl_dim_all);
div_eq = n_pure_div_eq(bmap);
if (div_eq == 0)
return bmap;
if (div_eq < bmap->n_eq) {
B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
bmap->n_eq - div_eq, 0, 1 + total);
C = isl_mat_variable_compression(B, &C2);
if (!C || !C2)
goto error;
if (C->n_col == 0) {
bmap = isl_basic_map_set_to_empty(bmap);
isl_mat_free(C);
isl_mat_free(C2);
goto done;
}
}
d = isl_vec_alloc(bmap->ctx, div_eq);
if (!d)
goto error;
for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
--j;
isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
}
B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
if (C) {
B = isl_mat_product(B, C);
C = NULL;
}
T = isl_mat_parameter_compression(B, d);
if (!T)
goto error;
if (T->n_col == 0) {
bmap = isl_basic_map_set_to_empty(bmap);
isl_mat_free(C2);
isl_mat_free(T);
goto done;
}
isl_int_init(v);
for (i = 0; i < T->n_row - 1; ++i) {
isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
if (isl_int_is_zero(v))
continue;
isl_mat_col_submul(T, 0, v, 1 + i);
}
isl_int_clear(v);
pos = isl_alloc_array(bmap->ctx, int, T->n_row);
if (!pos)
goto error;
/* We have to be careful because dropping equalities may reorder them */
dropped = 0;
for (j = bmap->n_div - 1; j >= 0; --j) {
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
break;
if (i < bmap->n_eq) {
bmap = isl_basic_map_drop_div(bmap, j);
isl_basic_map_drop_equality(bmap, i);
++dropped;
}
}
pos[0] = 0;
needed = 0;
for (i = 1; i < T->n_row; ++i) {
if (isl_int_is_one(T->row[i][i]))
pos[i] = i;
else
needed++;
}
if (needed > dropped) {
bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
needed, needed, 0);
if (!bmap)
goto error;
}
for (i = 1; i < T->n_row; ++i) {
if (isl_int_is_one(T->row[i][i]))
continue;
k = isl_basic_map_alloc_div(bmap);
pos[i] = 1 + total + k;
isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
isl_int_set(bmap->div[k][0], T->row[i][i]);
if (C2)
isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
else
isl_int_set_si(bmap->div[k][1 + i], 1);
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(T->row[i][j]))
continue;
if (pos[j] < T->n_row && C2)
isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
C2->row[pos[j]], 1 + total);
else
isl_int_neg(bmap->div[k][1 + pos[j]],
T->row[i][j]);
}
j = isl_basic_map_alloc_equality(bmap);
isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
}
free(pos);
isl_mat_free(C2);
isl_mat_free(T);
if (progress)
*progress = 1;
done:
ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
return bmap;
error:
free(pos);
isl_mat_free(C);
isl_mat_free(C2);
isl_mat_free(T);
return bmap;
}
static __isl_give isl_basic_map *set_div_from_lower_bound(
__isl_take isl_basic_map *bmap, int div, int ineq)
{
unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
isl_int_set_si(bmap->div[div][1 + total + div], 0);
return bmap;
}
/* Check whether it is ok to define a div based on an inequality.
* To avoid the introduction of circular definitions of divs, we
* do not allow such a definition if the resulting expression would refer to
* any other undefined divs or if any known div is defined in
* terms of the unknown div.
*/
static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap,
int div, int ineq)
{
int j;
unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
/* Not defined in terms of unknown divs */
for (j = 0; j < bmap->n_div; ++j) {
if (div == j)
continue;
if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
continue;
if (isl_int_is_zero(bmap->div[j][0]))
return isl_bool_false;
}
/* No other div defined in terms of this one => avoid loops */
for (j = 0; j < bmap->n_div; ++j) {
if (div == j)
continue;
if (isl_int_is_zero(bmap->div[j][0]))
continue;
if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
return isl_bool_false;
}
return isl_bool_true;
}
/* Would an expression for div "div" based on inequality "ineq" of "bmap"
* be a better expression than the current one?
*
* If we do not have any expression yet, then any expression would be better.
* Otherwise we check if the last variable involved in the inequality
* (disregarding the div that it would define) is in an earlier position
* than the last variable involved in the current div expression.
*/
static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap,
int div, int ineq)
{
unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
int last_div;
int last_ineq;
if (isl_int_is_zero(bmap->div[div][0]))
return isl_bool_true;
if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
bmap->n_div - (div + 1)) >= 0)
return isl_bool_false;
last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
total + bmap->n_div);
return last_ineq < last_div;
}
/* Given two constraints "k" and "l" that are opposite to each other,
* except for the constant term, check if we can use them
* to obtain an expression for one of the hitherto unknown divs or
* a "better" expression for a div for which we already have an expression.
* "sum" is the sum of the constant terms of the constraints.
* If this sum is strictly smaller than the coefficient of one
* of the divs, then this pair can be used define the div.
* To avoid the introduction of circular definitions of divs, we
* do not use the pair if the resulting expression would refer to
* any other undefined divs or if any known div is defined in
* terms of the unknown div.
*/
static __isl_give isl_basic_map *check_for_div_constraints(
__isl_take isl_basic_map *bmap, int k, int l, isl_int sum,
int *progress)
{
int i;
unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
for (i = 0; i < bmap->n_div; ++i) {
isl_bool set_div;
if (isl_int_is_zero(bmap->ineq[k][total + i]))
continue;
if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
continue;
set_div = better_div_constraint(bmap, i, k);
if (set_div >= 0 && set_div)
set_div = ok_to_set_div_from_bound(bmap, i, k);
if (set_div < 0)
return isl_basic_map_free(bmap);
if (!set_div)
break;
if (isl_int_is_pos(bmap->ineq[k][total + i]))
bmap = set_div_from_lower_bound(bmap, i, k);
else
bmap = set_div_from_lower_bound(bmap, i, l);
if (progress)
*progress = 1;
break;
}
return bmap;
}
__isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
__isl_take isl_basic_map *bmap, int *progress, int detect_divs)
{
struct isl_constraint_index ci;
int k, l, h;
unsigned total = isl_basic_map_total_dim(bmap);
isl_int sum;
if (!bmap || bmap->n_ineq <= 1)
return bmap;
if (create_constraint_index(&ci, bmap) < 0)
return bmap;
h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
ci.index[h] = &bmap->ineq[0];
for (k = 1; k < bmap->n_ineq; ++k) {
h = hash_index(&ci, bmap, k);
if (!ci.index[h]) {
ci.index[h] = &bmap->ineq[k];
continue;
}
if (progress)
*progress = 1;
l = ci.index[h] - &bmap->ineq[0];
if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
swap_inequality(bmap, k, l);
isl_basic_map_drop_inequality(bmap, k);
--k;
}
isl_int_init(sum);
for (k = 0; k < bmap->n_ineq-1; ++k) {
isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
h = hash_index(&ci, bmap, k);
isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
if (!ci.index[h])
continue;
l = ci.index[h] - &bmap->ineq[0];
isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
if (isl_int_is_pos(sum)) {
if (detect_divs)
bmap = check_for_div_constraints(bmap, k, l,
sum, progress);
continue;
}
if (isl_int_is_zero(sum)) {
/* We need to break out of the loop after these
* changes since the contents of the hash
* will no longer be valid.
* Plus, we probably we want to regauss first.
*/
if (progress)
*progress = 1;
isl_basic_map_drop_inequality(bmap, l);
isl_basic_map_inequality_to_equality(bmap, k);
} else
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_int_clear(sum);
constraint_index_free(&ci);
return bmap;
}
/* Detect all pairs of inequalities that form an equality.
*
* isl_basic_map_remove_duplicate_constraints detects at most one such pair.
* Call it repeatedly while it is making progress.
*/
__isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
__isl_take isl_basic_map *bmap, int *progress)
{
int duplicate;
do {
duplicate = 0;
bmap = isl_basic_map_remove_duplicate_constraints(bmap,
&duplicate, 0);
if (progress && duplicate)
*progress = 1;
} while (duplicate);
return bmap;
}
/* Eliminate knowns divs from constraints where they appear with
* a (positive or negative) unit coefficient.
*
* That is, replace
*
* floor(e/m) + f >= 0
*
* by
*
* e + m f >= 0
*
* and
*
* -floor(e/m) + f >= 0
*
* by
*
* -e + m f + m - 1 >= 0
*
* The first conversion is valid because floor(e/m) >= -f is equivalent
* to e/m >= -f because -f is an integral expression.
* The second conversion follows from the fact that
*
* -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
*
*
* Note that one of the div constraints may have been eliminated
* due to being redundant with respect to the constraint that is
* being modified by this function. The modified constraint may
* no longer imply this div constraint, so we add it back to make
* sure we do not lose any information.
*
* We skip integral divs, i.e., those with denominator 1, as we would
* risk eliminating the div from the div constraints. We do not need
* to handle those divs here anyway since the div constraints will turn
* out to form an equality and this equality can then be used to eliminate
* the div from all constraints.
*/
static __isl_give isl_basic_map *eliminate_unit_divs(
__isl_take isl_basic_map *bmap, int *progress)
{
int i, j;
isl_ctx *ctx;
unsigned total;
if (!bmap)
return NULL;
ctx = isl_basic_map_get_ctx(bmap);
total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (isl_int_is_one(bmap->div[i][0]))
continue;
for (j = 0; j < bmap->n_ineq; ++j) {
int s;
if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
!isl_int_is_negone(bmap->ineq[j][total + i]))
continue;
*progress = 1;
s = isl_int_sgn(bmap->ineq[j][total + i]);
isl_int_set_si(bmap->ineq[j][total + i], 0);
if (s < 0)
isl_seq_combine(bmap->ineq[j],
ctx->negone, bmap->div[i] + 1,
bmap->div[i][0], bmap->ineq[j],
total + bmap->n_div);
else
isl_seq_combine(bmap->ineq[j],
ctx->one, bmap->div[i] + 1,
bmap->div[i][0], bmap->ineq[j],
total + bmap->n_div);
if (s < 0) {
isl_int_add(bmap->ineq[j][0],
bmap->ineq[j][0], bmap->div[i][0]);
isl_int_sub_ui(bmap->ineq[j][0],
bmap->ineq[j][0], 1);
}
bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
return isl_basic_map_free(bmap);
}
}
return bmap;
}
__isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap)
{
int progress = 1;
if (!bmap)
return NULL;
while (progress) {
isl_bool empty;
progress = 0;
empty = isl_basic_map_plain_is_empty(bmap);
if (empty < 0)
return isl_basic_map_free(bmap);
if (empty)
break;
bmap = isl_basic_map_normalize_constraints(bmap);
bmap = reduce_div_coefficients(bmap);
bmap = normalize_div_expressions(bmap);
bmap = remove_duplicate_divs(bmap, &progress);
bmap = eliminate_unit_divs(bmap, &progress);
bmap = eliminate_divs_eq(bmap, &progress);
bmap = eliminate_divs_ineq(bmap, &progress);
bmap = isl_basic_map_gauss(bmap, &progress);
/* requires equalities in normal form */
bmap = normalize_divs(bmap, &progress);
bmap = isl_basic_map_remove_duplicate_constraints(bmap,
&progress, 1);
if (bmap && progress)
ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
}
return bmap;
}
struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
{
return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset)));
}
isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
isl_int *constraint, unsigned div)
{
unsigned pos;
if (!bmap)
return isl_bool_error;
pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
int neg;
isl_int_sub(bmap->div[div][1],
bmap->div[div][1], bmap->div[div][0]);
isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
isl_int_add(bmap->div[div][1],
bmap->div[div][1], bmap->div[div][0]);
if (!neg)
return isl_bool_false;
if (isl_seq_first_non_zero(constraint+pos+1,
bmap->n_div-div-1) != -1)
return isl_bool_false;
} else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
return isl_bool_false;
if (isl_seq_first_non_zero(constraint+pos+1,
bmap->n_div-div-1) != -1)
return isl_bool_false;
} else
return isl_bool_false;
return isl_bool_true;
}
isl_bool isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
isl_int *constraint, unsigned div)
{
return isl_basic_map_is_div_constraint(bset, constraint, div);
}
/* If the only constraints a div d=floor(f/m)
* appears in are its two defining constraints
*
* f - m d >=0
* -(f - (m - 1)) + m d >= 0
*
* then it can safely be removed.
*/
static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div)
{
int i;
unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][pos]))
return isl_bool_false;
for (i = 0; i < bmap->n_ineq; ++i) {
isl_bool red;
if (isl_int_is_zero(bmap->ineq[i][pos]))
continue;
red = isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div);
if (red < 0 || !red)
return red;
}
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (!isl_int_is_zero(bmap->div[i][1+pos]))
return isl_bool_false;
}
return isl_bool_true;
}
/*
* Remove divs that don't occur in any of the constraints or other divs.
* These can arise when dropping constraints from a basic map or
* when the divs of a basic map have been temporarily aligned
* with the divs of another basic map.
*/
static __isl_give isl_basic_map *remove_redundant_divs(
__isl_take isl_basic_map *bmap)
{
int i;
if (!bmap)
return NULL;
for (i = bmap->n_div-1; i >= 0; --i) {
isl_bool redundant;
redundant = div_is_redundant(bmap, i);
if (redundant < 0)
return isl_basic_map_free(bmap);
if (!redundant)
continue;
bmap = isl_basic_map_drop_div(bmap, i);
}
return bmap;
}
/* Mark "bmap" as final, without checking for obviously redundant
* integer divisions. This function should be used when "bmap"
* is known not to involve any such integer divisions.
*/
__isl_give isl_basic_map *isl_basic_map_mark_final(
__isl_take isl_basic_map *bmap)
{
if (!bmap)
return NULL;
ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
return bmap;
}
/* Mark "bmap" as final, after removing obviously redundant integer divisions.
*/
__isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap)
{
bmap = remove_redundant_divs(bmap);
bmap = isl_basic_map_mark_final(bmap);
return bmap;
}
struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
{
return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset)));
}
/* Remove definition of any div that is defined in terms of the given variable.
* The div itself is not removed. Functions such as
* eliminate_divs_ineq depend on the other divs remaining in place.
*/
static __isl_give isl_basic_map *remove_dependent_vars(
__isl_take isl_basic_map *bmap, int pos)
{
int i;
if (!bmap)
return NULL;
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (isl_int_is_zero(bmap->div[i][1+1+pos]))
continue;
bmap = isl_basic_map_mark_div_unknown(bmap, i);
if (!bmap)
return NULL;
}
return bmap;
}
/* Eliminate the specified variables from the constraints using
* Fourier-Motzkin. The variables themselves are not removed.
*/
__isl_give isl_basic_map *isl_basic_map_eliminate_vars(
__isl_take isl_basic_map *bmap, unsigned pos, unsigned n)
{
int d;
int i, j, k;
unsigned total;
int need_gauss = 0;
if (n == 0)
return bmap;
if (!bmap)
return NULL;
total = isl_basic_map_total_dim(bmap);
bmap = isl_basic_map_cow(bmap);
for (d = pos + n - 1; d >= 0 && d >= pos; --d)
bmap = remove_dependent_vars(bmap, d);
if (!bmap)
return NULL;
for (d = pos + n - 1;
d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
int n_lower, n_upper;
if (!bmap)
return NULL;
for (i = 0; i < bmap->n_eq; ++i) {
if (isl_int_is_zero(bmap->eq[i][1+d]))
continue;
eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
isl_basic_map_drop_equality(bmap, i);
need_gauss = 1;
break;
}
if (i < bmap->n_eq)
continue;
n_lower = 0;
n_upper = 0;
for (i = 0; i < bmap->n_ineq; ++i) {
if (isl_int_is_pos(bmap->ineq[i][1+d]))
n_lower++;
else if (isl_int_is_neg(bmap->ineq[i][1+d]))
n_upper++;
}
bmap = isl_basic_map_extend_constraints(bmap,
0, n_lower * n_upper);
if (!bmap)
goto error;
for (i = bmap->n_ineq - 1; i >= 0; --i) {
int last;
if (isl_int_is_zero(bmap->ineq[i][1+d]))
continue;
last = -1;
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(bmap->ineq[j][1+d]))
continue;
last = j;
if (isl_int_sgn(bmap->ineq[i][1+d]) ==
isl_int_sgn(bmap->ineq[j][1+d]))
continue;
k = isl_basic_map_alloc_inequality(bmap);
if (k < 0)
goto error;
isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1+total);
isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1+d, 1+total, NULL);
}
isl_basic_map_drop_inequality(bmap, i);
i = last + 1;
}
if (n_lower > 0 && n_upper > 0) {
bmap = isl_basic_map_normalize_constraints(bmap);
bmap = isl_basic_map_remove_duplicate_constraints(bmap,
NULL, 0);
bmap = isl_basic_map_gauss(bmap, NULL);
bmap = isl_basic_map_remove_redundancies(bmap);
need_gauss = 0;
if (!bmap)
goto error;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
break;
}
}
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
if (need_gauss)
bmap = isl_basic_map_gauss(bmap, NULL);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
struct isl_basic_set *isl_basic_set_eliminate_vars(
struct isl_basic_set *bset, unsigned pos, unsigned n)
{
return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset),
pos, n));
}
/* Eliminate the specified n dimensions starting at first from the
* constraints, without removing the dimensions from the space.
* If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
* Otherwise, they are projected out and the original space is restored.
*/
__isl_give isl_basic_map *isl_basic_map_eliminate(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned first, unsigned n)
{
isl_space *space;
if (!bmap)
return NULL;
if (n == 0)
return bmap;
if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
isl_die(bmap->ctx, isl_error_invalid,
"index out of bounds", goto error);
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
first += isl_basic_map_offset(bmap, type) - 1;
bmap = isl_basic_map_eliminate_vars(bmap, first, n);
return isl_basic_map_finalize(bmap);
}
space = isl_basic_map_get_space(bmap);
bmap = isl_basic_map_project_out(bmap, type, first, n);
bmap = isl_basic_map_insert_dims(bmap, type, first, n);
bmap = isl_basic_map_reset_space(bmap, space);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
__isl_give isl_basic_set *isl_basic_set_eliminate(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned first, unsigned n)
{
return isl_basic_map_eliminate(bset, type, first, n);
}
/* Remove all constraints from "bmap" that reference any unknown local
* variables (directly or indirectly).
*
* Dropping all constraints on a local variable will make it redundant,
* so it will get removed implicitly by
* isl_basic_map_drop_constraints_involving_dims. Some other local
* variables may also end up becoming redundant if they only appear
* in constraints together with the unknown local variable.
* Therefore, start over after calling
* isl_basic_map_drop_constraints_involving_dims.
*/
__isl_give isl_basic_map *isl_basic_map_drop_constraint_involving_unknown_divs(
__isl_take isl_basic_map *bmap)
{
isl_bool known;
int i, n_div, o_div;
known = isl_basic_map_divs_known(bmap);
if (known < 0)
return isl_basic_map_free(bmap);
if (known)
return bmap;
n_div = isl_basic_map_dim(bmap, isl_dim_div);
o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1;
for (i = 0; i < n_div; ++i) {
known = isl_basic_map_div_is_known(bmap, i);
if (known < 0)
return isl_basic_map_free(bmap);
if (known)
continue;
bmap = remove_dependent_vars(bmap, o_div + i);
bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
isl_dim_div, i, 1);
if (!bmap)
return NULL;
n_div = isl_basic_map_dim(bmap, isl_dim_div);
i = -1;
}
return bmap;
}
/* Remove all constraints from "map" that reference any unknown local
* variables (directly or indirectly).
*
* Since constraints may get dropped from the basic maps,
* they may no longer be disjoint from each other.
*/
__isl_give isl_map *isl_map_drop_constraint_involving_unknown_divs(
__isl_take isl_map *map)
{
int i;
isl_bool known;
known = isl_map_divs_known(map);
if (known < 0)
return isl_map_free(map);
if (known)
return map;
map = isl_map_cow(map);
if (!map)
return NULL;
for (i = 0; i < map->n; ++i) {
map->p[i] =
isl_basic_map_drop_constraint_involving_unknown_divs(
map->p[i]);
if (!map->p[i])
return isl_map_free(map);
}
if (map->n > 1)
ISL_F_CLR(map, ISL_MAP_DISJOINT);
return map;
}
/* Don't assume equalities are in order, because align_divs
* may have changed the order of the divs.
*/
static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim)
{
int d, i;
unsigned total;
total = isl_space_dim(bmap->dim, isl_dim_all);
for (d = 0; d < total; ++d)
elim[d] = -1;
for (i = 0; i < bmap->n_eq; ++i) {
for (d = total - 1; d >= 0; --d) {
if (isl_int_is_zero(bmap->eq[i][1+d]))
continue;
elim[d] = i;
break;
}
}
}
static void set_compute_elimination_index(__isl_keep isl_basic_set *bset,
int *elim)
{
compute_elimination_index(bset_to_bmap(bset), elim);
}
static int reduced_using_equalities(isl_int *dst, isl_int *src,
__isl_keep isl_basic_map *bmap, int *elim)
{
int d;
int copied = 0;
unsigned total;
total = isl_space_dim(bmap->dim, isl_dim_all);
for (d = total - 1; d >= 0; --d) {
if (isl_int_is_zero(src[1+d]))
continue;
if (elim[d] == -1)
continue;
if (!copied) {
isl_seq_cpy(dst, src, 1 + total);
copied = 1;
}
isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
}
return copied;
}
static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
__isl_keep isl_basic_set *bset, int *elim)
{
return reduced_using_equalities(dst, src,
bset_to_bmap(bset), elim);
}
static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities(
__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
{
int i;
int *elim;
if (!bset || !context)
goto error;
if (context->n_eq == 0) {
isl_basic_set_free(context);
return bset;
}
bset = isl_basic_set_cow(bset);
if (!bset)
goto error;
elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
if (!elim)
goto error;
set_compute_elimination_index(context, elim);
for (i = 0; i < bset->n_eq; ++i)
set_reduced_using_equalities(bset->eq[i], bset->eq[i],
context, elim);
for (i = 0; i < bset->n_ineq; ++i)
set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
context, elim);
isl_basic_set_free(context);
free(elim);
bset = isl_basic_set_simplify(bset);
bset = isl_basic_set_finalize(bset);
return bset;
error:
isl_basic_set_free(bset);
isl_basic_set_free(context);
return NULL;
}
/* For each inequality in "ineq" that is a shifted (more relaxed)
* copy of an inequality in "context", mark the corresponding entry
* in "row" with -1.
* If an inequality only has a non-negative constant term, then
* mark it as well.
*/
static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
__isl_keep isl_basic_set *context, int *row)
{
struct isl_constraint_index ci;
int n_ineq;
unsigned total;
int k;
if (!ineq || !context)
return isl_stat_error;
if (context->n_ineq == 0)
return isl_stat_ok;
if (setup_constraint_index(&ci, context) < 0)
return isl_stat_error;
n_ineq = isl_mat_rows(ineq);
total = isl_mat_cols(ineq) - 1;
for (k = 0; k < n_ineq; ++k) {
int l;
isl_bool redundant;
l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
row[k] = -1;
continue;
}
redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
if (redundant < 0)
goto error;
if (!redundant)
continue;
row[k] = -1;
}
constraint_index_free(&ci);
return isl_stat_ok;
error:
constraint_index_free(&ci);
return isl_stat_error;
}
static __isl_give isl_basic_set *remove_shifted_constraints(
__isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context)
{
struct isl_constraint_index ci;
int k;
if (!bset || !context)
return bset;
if (context->n_ineq == 0)
return bset;
if (setup_constraint_index(&ci, context) < 0)
return bset;
for (k = 0; k < bset->n_ineq; ++k) {
isl_bool redundant;
redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
if (redundant < 0)
goto error;
if (!redundant)
continue;
bset = isl_basic_set_cow(bset);
if (!bset)
goto error;
isl_basic_set_drop_inequality(bset, k);
--k;
}
constraint_index_free(&ci);
return bset;
error:
constraint_index_free(&ci);
return bset;
}
/* Remove constraints from "bmap" that are identical to constraints
* in "context" or that are more relaxed (greater constant term).
*
* We perform the test for shifted copies on the pure constraints
* in remove_shifted_constraints.
*/
static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
{
isl_basic_set *bset, *bset_context;
if (!bmap || !context)
goto error;
if (bmap->n_ineq == 0 || context->n_ineq == 0) {
isl_basic_map_free(context);
return bmap;
}
context = isl_basic_map_align_divs(context, bmap);
bmap = isl_basic_map_align_divs(bmap, context);
bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
bset_context = isl_basic_map_underlying_set(context);
bset = remove_shifted_constraints(bset, bset_context);
isl_basic_set_free(bset_context);
bmap = isl_basic_map_overlying_set(bset, bmap);
return bmap;
error:
isl_basic_map_free(bmap);
isl_basic_map_free(context);
return NULL;
}
/* Does the (linear part of a) constraint "c" involve any of the "len"
* "relevant" dimensions?
*/
static int is_related(isl_int *c, int len, int *relevant)
{
int i;
for (i = 0; i < len; ++i) {
if (!relevant[i])
continue;
if (!isl_int_is_zero(c[i]))
return 1;
}
return 0;
}
/* Drop constraints from "bmap" that do not involve any of
* the dimensions marked "relevant".
*/
static __isl_give isl_basic_map *drop_unrelated_constraints(
__isl_take isl_basic_map *bmap, int *relevant)
{
int i, dim;
dim = isl_basic_map_dim(bmap, isl_dim_all);
for (i = 0; i < dim; ++i)
if (!relevant[i])
break;
if (i >= dim)
return bmap;
for (i = bmap->n_eq - 1; i >= 0; --i)
if (!is_related(bmap->eq[i] + 1, dim, relevant)) {
bmap = isl_basic_map_cow(bmap);
if (isl_basic_map_drop_equality(bmap, i) < 0)
return isl_basic_map_free(bmap);
}
for (i = bmap->n_ineq - 1; i >= 0; --i)
if (!is_related(bmap->ineq[i] + 1, dim, relevant)) {
bmap = isl_basic_map_cow(bmap);
if (isl_basic_map_drop_inequality(bmap, i) < 0)
return isl_basic_map_free(bmap);
}
return bmap;
}
/* Update the groups in "group" based on the (linear part of a) constraint "c".
*
* In particular, for any variable involved in the constraint,
* find the actual group id from before and replace the group
* of the corresponding variable by the minimal group of all
* the variables involved in the constraint considered so far
* (if this minimum is smaller) or replace the minimum by this group
* (if the minimum is larger).
*
* At the end, all the variables in "c" will (indirectly) point
* to the minimal of the groups that they referred to originally.
*/
static void update_groups(int dim, int *group, isl_int *c)
{
int j;
int min = dim;
for (j = 0; j < dim; ++j) {
if (isl_int_is_zero(c[j]))
continue;
while (group[j] >= 0 && group[group[j]] != group[j])
group[j] = group[group[j]];
if (group[j] == min)
continue;
if (group[j] < min) {
if (min >= 0 && min < dim)
group[min] = group[j];
min = group[j];
} else
group[group[j]] = min;
}
}
/* Allocate an array of groups of variables, one for each variable
* in "context", initialized to zero.
*/
static int *alloc_groups(__isl_keep isl_basic_set *context)
{
isl_ctx *ctx;
int dim;
dim = isl_basic_set_dim(context, isl_dim_set);
ctx = isl_basic_set_get_ctx(context);
return isl_calloc_array(ctx, int, dim);
}
/* Drop constraints from "bmap" that only involve variables that are
* not related to any of the variables marked with a "-1" in "group".
*
* We construct groups of variables that collect variables that
* (indirectly) appear in some common constraint of "bmap".
* Each group is identified by the first variable in the group,
* except for the special group of variables that was already identified
* in the input as -1 (or are related to those variables).
* If group[i] is equal to i (or -1), then the group of i is i (or -1),
* otherwise the group of i is the group of group[i].
*
* We first initialize groups for the remaining variables.
* Then we iterate over the constraints of "bmap" and update the
* group of the variables in the constraint by the smallest group.
* Finally, we resolve indirect references to groups by running over
* the variables.
*
* After computing the groups, we drop constraints that do not involve
* any variables in the -1 group.
*/
__isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints(
__isl_take isl_basic_map *bmap, __isl_take int *group)
{
int dim;
int i;
int last;
if (!bmap)
return NULL;
dim = isl_basic_map_dim(bmap, isl_dim_all);
last = -1;
for (i = 0; i < dim; ++i)
if (group[i] >= 0)
last = group[i] = i;
if (last < 0) {
free(group);
return bmap;
}
for (i = 0; i < bmap->n_eq; ++i)
update_groups(dim, group, bmap->eq[i] + 1);
for (i = 0; i < bmap->n_ineq; ++i)
update_groups(dim, group, bmap->ineq[i] + 1);
for (i = 0; i < dim; ++i)
if (group[i] >= 0)
group[i] = group[group[i]];
for (i = 0; i < dim; ++i)
group[i] = group[i] == -1;
bmap = drop_unrelated_constraints(bmap, group);
free(group);
return bmap;
}
/* Drop constraints from "context" that are irrelevant for computing
* the gist of "bset".
*
* In particular, drop constraints in variables that are not related
* to any of the variables involved in the constraints of "bset"
* in the sense that there is no sequence of constraints that connects them.
*
* We first mark all variables that appear in "bset" as belonging
* to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
*/
static __isl_give isl_basic_set *drop_irrelevant_constraints(
__isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
{
int *group;
int dim;
int i, j;
if (!context || !bset)
return isl_basic_set_free(context);
group = alloc_groups(context);
if (!group)
return isl_basic_set_free(context);
dim = isl_basic_set_dim(bset, isl_dim_set);
for (i = 0; i < dim; ++i) {
for (j = 0; j < bset->n_eq; ++j)
if (!isl_int_is_zero(bset->eq[j][1 + i]))
break;
if (j < bset->n_eq) {
group[i] = -1;
continue;
}
for (j = 0; j < bset->n_ineq; ++j)
if (!isl_int_is_zero(bset->ineq[j][1 + i]))
break;
if (j < bset->n_ineq)
group[i] = -1;
}
return isl_basic_map_drop_unrelated_constraints(context, group);
}
/* Drop constraints from "context" that are irrelevant for computing
* the gist of the inequalities "ineq".
* Inequalities in "ineq" for which the corresponding element of row
* is set to -1 have already been marked for removal and should be ignored.
*
* In particular, drop constraints in variables that are not related
* to any of the variables involved in "ineq"
* in the sense that there is no sequence of constraints that connects them.
*
* We first mark all variables that appear in "bset" as belonging
* to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
*/
static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
__isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
{
int *group;
int dim;
int i, j, n;
if (!context || !ineq)
return isl_basic_set_free(context);
group = alloc_groups(context);
if (!group)
return isl_basic_set_free(context);
dim = isl_basic_set_dim(context, isl_dim_set);
n = isl_mat_rows(ineq);
for (i = 0; i < dim; ++i) {
for (j = 0; j < n; ++j) {
if (row[j] < 0)
continue;
if (!isl_int_is_zero(ineq->row[j][1 + i]))
break;
}
if (j < n)
group[i] = -1;
}
return isl_basic_map_drop_unrelated_constraints(context, group);
}
/* Do all "n" entries of "row" contain a negative value?
*/
static int all_neg(int *row, int n)
{
int i;
for (i = 0; i < n; ++i)
if (row[i] >= 0)
return 0;
return 1;
}
/* Update the inequalities in "bset" based on the information in "row"
* and "tab".
*
* In particular, the array "row" contains either -1, meaning that
* the corresponding inequality of "bset" is redundant, or the index
* of an inequality in "tab".
*
* If the row entry is -1, then drop the inequality.
* Otherwise, if the constraint is marked redundant in the tableau,
* then drop the inequality. Similarly, if it is marked as an equality
* in the tableau, then turn the inequality into an equality and
* perform Gaussian elimination.
*/
static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
__isl_keep int *row, struct isl_tab *tab)
{
int i;
unsigned n_ineq;
unsigned n_eq;
int found_equality = 0;
if (!bset)
return NULL;
if (tab && tab->empty)
return isl_basic_set_set_to_empty(bset);
n_ineq = bset->n_ineq;
for (i = n_ineq - 1; i >= 0; --i) {
if (row[i] < 0) {
if (isl_basic_set_drop_inequality(bset, i) < 0)
return isl_basic_set_free(bset);
continue;
}
if (!tab)
continue;
n_eq = tab->n_eq;
if (isl_tab_is_equality(tab, n_eq + row[i])) {
isl_basic_map_inequality_to_equality(bset, i);
found_equality = 1;
} else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
if (isl_basic_set_drop_inequality(bset, i) < 0)
return isl_basic_set_free(bset);
}
}
if (found_equality)
bset = isl_basic_set_gauss(bset, NULL);
bset = isl_basic_set_finalize(bset);
return bset;
}
/* Update the inequalities in "bset" based on the information in "row"
* and "tab" and free all arguments (other than "bset").
*/
static __isl_give isl_basic_set *update_ineq_free(
__isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
__isl_take isl_basic_set *context, __isl_take int *row,
struct isl_tab *tab)
{
isl_mat_free(ineq);
isl_basic_set_free(context);
bset = update_ineq(bset, row, tab);
free(row);
isl_tab_free(tab);
return bset;
}
/* Remove all information from bset that is redundant in the context
* of context.
* "ineq" contains the (possibly transformed) inequalities of "bset",
* in the same order.
* The (explicit) equalities of "bset" are assumed to have been taken
* into account by the transformation such that only the inequalities
* are relevant.
* "context" is assumed not to be empty.
*
* "row" keeps track of the constraint index of a "bset" inequality in "tab".
* A value of -1 means that the inequality is obviously redundant and may
* not even appear in "tab".
*
* We first mark the inequalities of "bset"
* that are obviously redundant with respect to some inequality in "context".
* Then we remove those constraints from "context" that have become
* irrelevant for computing the gist of "bset".
* Note that this removal of constraints cannot be replaced by
* a factorization because factors in "bset" may still be connected
* to each other through constraints in "context".
*
* If there are any inequalities left, we construct a tableau for
* the context and then add the inequalities of "bset".
* Before adding these inequalities, we freeze all constraints such that
* they won't be considered redundant in terms of the constraints of "bset".
* Then we detect all redundant constraints (among the
* constraints that weren't frozen), first by checking for redundancy in the
* the tableau and then by checking if replacing a constraint by its negation
* would lead to an empty set. This last step is fairly expensive
* and could be optimized by more reuse of the tableau.
* Finally, we update bset according to the results.
*/
static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
__isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
{
int i, r;
int *row = NULL;
isl_ctx *ctx;
isl_basic_set *combined = NULL;
struct isl_tab *tab = NULL;
unsigned n_eq, context_ineq;
if (!bset || !ineq || !context)
goto error;
if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(context)) {
isl_basic_set_free(context);
isl_mat_free(ineq);
return bset;
}
ctx = isl_basic_set_get_ctx(context);
row = isl_calloc_array(ctx, int, bset->n_ineq);
if (!row)
goto error;
if (mark_shifted_constraints(ineq, context, row) < 0)
goto error;
if (all_neg(row, bset->n_ineq))
return update_ineq_free(bset, ineq, context, row, NULL);
context = drop_irrelevant_constraints_marked(context, ineq, row);
if (!context)
goto error;
if (isl_basic_set_plain_is_universe(context))
return update_ineq_free(bset, ineq, context, row, NULL);
n_eq = context->n_eq;
context_ineq = context->n_ineq;
combined = isl_basic_set_cow(isl_basic_set_copy(context));
combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
tab = isl_tab_from_basic_set(combined, 0);
for (i = 0; i < context_ineq; ++i)
if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
goto error;
if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
goto error;
r = context_ineq;
for (i = 0; i < bset->n_ineq; ++i) {
if (row[i] < 0)
continue;
combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
goto error;
row[i] = r++;
}
if (isl_tab_detect_implicit_equalities(tab) < 0)
goto error;
if (isl_tab_detect_redundant(tab) < 0)
goto error;
for (i = bset->n_ineq - 1; i >= 0; --i) {
isl_basic_set *test;
int is_empty;
if (row[i] < 0)
continue;
r = row[i];
if (tab->con[n_eq + r].is_redundant)
continue;
test = isl_basic_set_dup(combined);
if (isl_inequality_negate(test, r) < 0)
test = isl_basic_set_free(test);
test = isl_basic_set_update_from_tab(test, tab);
is_empty = isl_basic_set_is_empty(test);
isl_basic_set_free(test);
if (is_empty < 0)
goto error;
if (is_empty)
tab->con[n_eq + r].is_redundant = 1;
}
bset = update_ineq_free(bset, ineq, context, row, tab);
if (bset) {
ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
}
isl_basic_set_free(combined);
return bset;
error:
free(row);
isl_mat_free(ineq);
isl_tab_free(tab);
isl_basic_set_free(combined);
isl_basic_set_free(context);
isl_basic_set_free(bset);
return NULL;
}
/* Extract the inequalities of "bset" as an isl_mat.
*/
static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
{
unsigned total;
isl_ctx *ctx;
isl_mat *ineq;
if (!bset)
return NULL;
ctx = isl_basic_set_get_ctx(bset);
total = isl_basic_set_total_dim(bset);
ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
0, 1 + total);
return ineq;
}
/* Remove all information from "bset" that is redundant in the context
* of "context", for the case where both "bset" and "context" are
* full-dimensional.
*/
static __isl_give isl_basic_set *uset_gist_uncompressed(
__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
{
isl_mat *ineq;
ineq = extract_ineq(bset);
return uset_gist_full(bset, ineq, context);
}
/* Remove all information from "bset" that is redundant in the context
* of "context", for the case where the combined equalities of
* "bset" and "context" allow for a compression that can be obtained
* by preapplication of "T".
*
* "bset" itself is not transformed by "T". Instead, the inequalities
* are extracted from "bset" and those are transformed by "T".
* uset_gist_full then determines which of the transformed inequalities
* are redundant with respect to the transformed "context" and removes
* the corresponding inequalities from "bset".
*
* After preapplying "T" to the inequalities, any common factor is
* removed from the coefficients. If this results in a tightening
* of the constant term, then the same tightening is applied to
* the corresponding untransformed inequality in "bset".
* That is, if after plugging in T, a constraint f(x) >= 0 is of the form
*
* g f'(x) + r >= 0
*
* with 0 <= r < g, then it is equivalent to
*
* f'(x) >= 0
*
* This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
* subspace compressed by T since the latter would be transformed to
*
* g f'(x) >= 0
*/
static __isl_give isl_basic_set *uset_gist_compressed(
__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
__isl_take isl_mat *T)
{
isl_ctx *ctx;
isl_mat *ineq;
int i, n_row, n_col;
isl_int rem;
ineq = extract_ineq(bset);
ineq = isl_mat_product(ineq, isl_mat_copy(T));
context = isl_basic_set_preimage(context, T);
if (!ineq || !context)
goto error;
if (isl_basic_set_plain_is_empty(context)) {
isl_mat_free(ineq);
isl_basic_set_free(context);
return isl_basic_set_set_to_empty(bset);
}
ctx = isl_mat_get_ctx(ineq);
n_row = isl_mat_rows(ineq);
n_col = isl_mat_cols(ineq);
isl_int_init(rem);
for (i = 0; i < n_row; ++i) {
isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
if (isl_int_is_zero(ctx->normalize_gcd))
continue;
if (isl_int_is_one(ctx->normalize_gcd))
continue;
isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
ctx->normalize_gcd, n_col - 1);
isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
isl_int_fdiv_q(ineq->row[i][0],
ineq->row[i][0], ctx->normalize_gcd);
if (isl_int_is_zero(rem))
continue;
bset = isl_basic_set_cow(bset);
if (!bset)
break;
isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
}
isl_int_clear(rem);
return uset_gist_full(bset, ineq, context);
error:
isl_mat_free(ineq);
isl_basic_set_free(context);
isl_basic_set_free(bset);
return NULL;
}
/* Project "bset" onto the variables that are involved in "template".
*/
static __isl_give isl_basic_set *project_onto_involved(
__isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template)
{
int i, n;
if (!bset || !template)
return isl_basic_set_free(bset);
n = isl_basic_set_dim(template, isl_dim_set);
for (i = 0; i < n; ++i) {
isl_bool involved;
involved = isl_basic_set_involves_dims(template,
isl_dim_set, i, 1);
if (involved < 0)
return isl_basic_set_free(bset);
if (involved)
continue;
bset = isl_basic_set_eliminate_vars(bset, i, 1);
}
return bset;
}
/* Remove all information from bset that is redundant in the context
* of context. In particular, equalities that are linear combinations
* of those in context are removed. Then the inequalities that are
* redundant in the context of the equalities and inequalities of
* context are removed.
*
* First of all, we drop those constraints from "context"
* that are irrelevant for computing the gist of "bset".
* Alternatively, we could factorize the intersection of "context" and "bset".
*
* We first compute the intersection of the integer affine hulls
* of "bset" and "context",
* compute the gist inside this intersection and then reduce
* the constraints with respect to the equalities of the context
* that only involve variables already involved in the input.
*
* If two constraints are mutually redundant, then uset_gist_full
* will remove the second of those constraints. We therefore first
* sort the constraints so that constraints not involving existentially
* quantified variables are given precedence over those that do.
* We have to perform this sorting before the variable compression,
* because that may effect the order of the variables.
*/
static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *context)
{
isl_mat *eq;
isl_mat *T;
isl_basic_set *aff;
isl_basic_set *aff_context;
unsigned total;
if (!bset || !context)
goto error;
context = drop_irrelevant_constraints(context, bset);
bset = isl_basic_set_detect_equalities(bset);
aff = isl_basic_set_copy(bset);
aff = isl_basic_set_plain_affine_hull(aff);
context = isl_basic_set_detect_equalities(context);
aff_context = isl_basic_set_copy(context);
aff_context = isl_basic_set_plain_affine_hull(aff_context);
aff = isl_basic_set_intersect(aff, aff_context);
if (!aff)
goto error;
if (isl_basic_set_plain_is_empty(aff)) {
isl_basic_set_free(bset);
isl_basic_set_free(context);
return aff;
}
bset = isl_basic_set_sort_constraints(bset);
if (aff->n_eq == 0) {
isl_basic_set_free(aff);
return uset_gist_uncompressed(bset, context);
}
total = isl_basic_set_total_dim(bset);
eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
eq = isl_mat_cow(eq);
T = isl_mat_variable_compression(eq, NULL);
isl_basic_set_free(aff);
if (T && T->n_col == 0) {
isl_mat_free(T);
isl_basic_set_free(context);
return isl_basic_set_set_to_empty(bset);
}
aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
aff_context = project_onto_involved(aff_context, bset);
bset = uset_gist_compressed(bset, context, T);
bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
if (bset) {
ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
}
return bset;
error:
isl_basic_set_free(bset);
isl_basic_set_free(context);
return NULL;
}
/* Return the number of equality constraints in "bmap" that involve
* local variables. This function assumes that Gaussian elimination
* has been applied to the equality constraints.
*/
static int n_div_eq(__isl_keep isl_basic_map *bmap)
{
int i;
int total, n_div;
if (!bmap)
return -1;
if (bmap->n_eq == 0)
return 0;
total = isl_basic_map_dim(bmap, isl_dim_all);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
total -= n_div;
for (i = 0; i < bmap->n_eq; ++i)
if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total,
n_div) == -1)
return i;
return bmap->n_eq;
}
/* Construct a basic map in "space" defined by the equality constraints in "eq".
* The constraints are assumed not to involve any local variables.
*/
static __isl_give isl_basic_map *basic_map_from_equalities(
__isl_take isl_space *space, __isl_take isl_mat *eq)
{
int i, k;
isl_basic_map *bmap = NULL;
if (!space || !eq)
goto error;
if (1 + isl_space_dim(space, isl_dim_all) != eq->n_col)
isl_die(isl_space_get_ctx(space), isl_error_internal,
"unexpected number of columns", goto error);
bmap = isl_basic_map_alloc_space(isl_space_copy(space),
0, eq->n_row, 0);
for (i = 0; i < eq->n_row; ++i) {
k = isl_basic_map_alloc_equality(bmap);
if (k < 0)
goto error;
isl_seq_cpy(bmap->eq[k], eq->row[i], eq->n_col);
}
isl_space_free(space);
isl_mat_free(eq);
return bmap;
error:
isl_space_free(space);
isl_mat_free(eq);
isl_basic_map_free(bmap);
return NULL;
}
/* Construct and return a variable compression based on the equality
* constraints in "bmap1" and "bmap2" that do not involve the local variables.
* "n1" is the number of (initial) equality constraints in "bmap1"
* that do involve local variables.
* "n2" is the number of (initial) equality constraints in "bmap2"
* that do involve local variables.
* "total" is the total number of other variables.
* This function assumes that Gaussian elimination
* has been applied to the equality constraints in both "bmap1" and "bmap2"
* such that the equality constraints not involving local variables
* are those that start at "n1" or "n2".
*
* If either of "bmap1" and "bmap2" does not have such equality constraints,
* then simply compute the compression based on the equality constraints
* in the other basic map.
* Otherwise, combine the equality constraints from both into a new
* basic map such that Gaussian elimination can be applied to this combination
* and then construct a variable compression from the resulting
* equality constraints.
*/
static __isl_give isl_mat *combined_variable_compression(
__isl_keep isl_basic_map *bmap1, int n1,
__isl_keep isl_basic_map *bmap2, int n2, int total)
{
isl_ctx *ctx;
isl_mat *E1, *E2, *V;
isl_basic_map *bmap;
ctx = isl_basic_map_get_ctx(bmap1);
if (bmap1->n_eq == n1) {
E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
n2, bmap2->n_eq - n2, 0, 1 + total);
return isl_mat_variable_compression(E2, NULL);
}
if (bmap2->n_eq == n2) {
E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
n1, bmap1->n_eq - n1, 0, 1 + total);
return isl_mat_variable_compression(E1, NULL);
}
E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
n1, bmap1->n_eq - n1, 0, 1 + total);
E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
n2, bmap2->n_eq - n2, 0, 1 + total);
E1 = isl_mat_concat(E1, E2);
bmap = basic_map_from_equalities(isl_basic_map_get_space(bmap1), E1);
bmap = isl_basic_map_gauss(bmap, NULL);
if (!bmap)
return NULL;
E1 = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
V = isl_mat_variable_compression(E1, NULL);
isl_basic_map_free(bmap);
return V;
}
/* Extract the stride constraints from "bmap", compressed
* with respect to both the stride constraints in "context" and
* the remaining equality constraints in both "bmap" and "context".
* "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
* "context_n_eq" is the number of (initial) stride constraints in "context".
*
* Let x be all variables in "bmap" (and "context") other than the local
* variables. First compute a variable compression
*
* x = V x'
*
* based on the non-stride equality constraints in "bmap" and "context".
* Consider the stride constraints of "context",
*
* A(x) + B(y) = 0
*
* with y the local variables and plug in the variable compression,
* resulting in
*
* A(V x') + B(y) = 0
*
* Use these constraints to compute a parameter compression on x'
*
* x' = T x''
*
* Now consider the stride constraints of "bmap"
*
* C(x) + D(y) = 0
*
* and plug in x = V*T x''.
* That is, return A = [C*V*T D].
*/
static __isl_give isl_mat *extract_compressed_stride_constraints(
__isl_keep isl_basic_map *bmap, int bmap_n_eq,
__isl_keep isl_basic_map *context, int context_n_eq)
{
int total, n_div;
isl_ctx *ctx;
isl_mat *A, *B, *T, *V;
total = isl_basic_map_dim(context, isl_dim_all);
n_div = isl_basic_map_dim(context, isl_dim_div);
total -= n_div;
ctx = isl_basic_map_get_ctx(bmap);
V = combined_variable_compression(bmap, bmap_n_eq,
context, context_n_eq, total);
A = isl_mat_sub_alloc6(ctx, context->eq, 0, context_n_eq, 0, 1 + total);
B = isl_mat_sub_alloc6(ctx, context->eq,
0, context_n_eq, 1 + total, n_div);
A = isl_mat_product(A, isl_mat_copy(V));
T = isl_mat_parameter_compression_ext(A, B);
T = isl_mat_product(V, T);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
T = isl_mat_diagonal(T, isl_mat_identity(ctx, n_div));
A = isl_mat_sub_alloc6(ctx, bmap->eq,
0, bmap_n_eq, 0, 1 + total + n_div);
A = isl_mat_product(A, T);
return A;
}
/* Remove the prime factors from *g that have an exponent that
* is strictly smaller than the exponent in "c".
* All exponents in *g are known to be smaller than or equal
* to those in "c".
*
* That is, if *g is equal to
*
* p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
*
* and "c" is equal to
*
* p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
*
* then update *g to
*
* p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
* p_n^{e_n * (e_n = f_n)}
*
* If e_i = f_i, then c / *g does not have any p_i factors and therefore
* neither does the gcd of *g and c / *g.
* If e_i < f_i, then the gcd of *g and c / *g has a positive
* power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
* Dividing *g by this gcd therefore strictly reduces the exponent
* of the prime factors that need to be removed, while leaving the
* other prime factors untouched.
* Repeating this process until gcd(*g, c / *g) = 1 therefore
* removes all undesired factors, without removing any others.
*/
static void remove_incomplete_powers(isl_int *g, isl_int c)
{
isl_int t;
isl_int_init(t);
for (;;) {
isl_int_divexact(t, c, *g);
isl_int_gcd(t, t, *g);
if (isl_int_is_one(t))
break;
isl_int_divexact(*g, *g, t);
}
isl_int_clear(t);
}
/* Reduce the "n" stride constraints in "bmap" based on a copy "A"
* of the same stride constraints in a compressed space that exploits
* all equalities in the context and the other equalities in "bmap".
*
* If the stride constraints of "bmap" are of the form
*
* C(x) + D(y) = 0
*
* then A is of the form
*
* B(x') + D(y) = 0
*
* If any of these constraints involves only a single local variable y,
* then the constraint appears as
*
* f(x) + m y_i = 0
*
* in "bmap" and as
*
* h(x') + m y_i = 0
*
* in "A".
*
* Let g be the gcd of m and the coefficients of h.
* Then, in particular, g is a divisor of the coefficients of h and
*
* f(x) = h(x')
*
* is known to be a multiple of g.
* If some prime factor in m appears with the same exponent in g,
* then it can be removed from m because f(x) is already known
* to be a multiple of g and therefore in particular of this power
* of the prime factors.
* Prime factors that appear with a smaller exponent in g cannot
* be removed from m.
* Let g' be the divisor of g containing all prime factors that
* appear with the same exponent in m and g, then
*
* f(x) + m y_i = 0
*
* can be replaced by
*
* f(x) + m/g' y_i' = 0
*
* Note that (if g' != 1) this changes the explicit representation
* of y_i to that of y_i', so the integer division at position i
* is marked unknown and later recomputed by a call to
* isl_basic_map_gauss.
*/
static __isl_give isl_basic_map *reduce_stride_constraints(
__isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A)
{
int i;
int total, n_div;
int any = 0;
isl_int gcd;
if (!bmap || !A)
return isl_basic_map_free(bmap);
total = isl_basic_map_dim(bmap, isl_dim_all);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
total -= n_div;
isl_int_init(gcd);
for (i = 0; i < n; ++i) {
int div;
div = isl_seq_first_non_zero(bmap->eq[i] + 1 + total, n_div);
if (div < 0)
isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
"equality constraints modified unexpectedly",
goto error);
if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total + div + 1,
n_div - div - 1) != -1)
continue;
if (isl_mat_row_gcd(A, i, &gcd) < 0)
goto error;
if (isl_int_is_one(gcd))
continue;
remove_incomplete_powers(&gcd, bmap->eq[i][1 + total + div]);
if (isl_int_is_one(gcd))
continue;
isl_int_divexact(bmap->eq[i][1 + total + div],
bmap->eq[i][1 + total + div], gcd);
bmap = isl_basic_map_mark_div_unknown(bmap, div);
if (!bmap)
goto error;
any = 1;
}
isl_int_clear(gcd);
if (any)
bmap = isl_basic_map_gauss(bmap, NULL);
return bmap;
error:
isl_int_clear(gcd);
isl_basic_map_free(bmap);
return NULL;
}
/* Simplify the stride constraints in "bmap" based on
* the remaining equality constraints in "bmap" and all equality
* constraints in "context".
* Only do this if both "bmap" and "context" have stride constraints.
*
* First extract a copy of the stride constraints in "bmap" in a compressed
* space exploiting all the other equality constraints and then
* use this compressed copy to simplify the original stride constraints.
*/
static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap,
__isl_keep isl_basic_map *context)
{
int bmap_n_eq, context_n_eq;
isl_mat *A;
if (!bmap || !context)
return isl_basic_map_free(bmap);
bmap_n_eq = n_div_eq(bmap);
context_n_eq = n_div_eq(context);
if (bmap_n_eq < 0 || context_n_eq < 0)
return isl_basic_map_free(bmap);
if (bmap_n_eq == 0 || context_n_eq == 0)
return bmap;
A = extract_compressed_stride_constraints(bmap, bmap_n_eq,
context, context_n_eq);
bmap = reduce_stride_constraints(bmap, bmap_n_eq, A);
isl_mat_free(A);
return bmap;
}
/* Return a basic map that has the same intersection with "context" as "bmap"
* and that is as "simple" as possible.
*
* The core computation is performed on the pure constraints.
* When we add back the meaning of the integer divisions, we need
* to (re)introduce the div constraints. If we happen to have
* discovered that some of these integer divisions are equal to
* some affine combination of other variables, then these div
* constraints may end up getting simplified in terms of the equalities,
* resulting in extra inequalities on the other variables that
* may have been removed already or that may not even have been
* part of the input. We try and remove those constraints of
* this form that are most obviously redundant with respect to
* the context. We also remove those div constraints that are
* redundant with respect to the other constraints in the result.
*
* The stride constraints among the equality constraints in "bmap" are
* also simplified with respecting to the other equality constraints
* in "bmap" and with respect to all equality constraints in "context".
*/
__isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap,
__isl_take isl_basic_map *context)
{
isl_basic_set *bset, *eq;
isl_basic_map *eq_bmap;
unsigned total, n_div, extra, n_eq, n_ineq;
if (!bmap || !context)
goto error;
if (isl_basic_map_plain_is_universe(bmap)) {
isl_basic_map_free(context);
return bmap;
}
if (isl_basic_map_plain_is_empty(context)) {
isl_space *space = isl_basic_map_get_space(bmap);
isl_basic_map_free(bmap);
isl_basic_map_free(context);
return isl_basic_map_universe(space);
}
if (isl_basic_map_plain_is_empty(bmap)) {
isl_basic_map_free(context);
return bmap;
}
bmap = isl_basic_map_remove_redundancies(bmap);
context = isl_basic_map_remove_redundancies(context);
context = isl_basic_map_align_divs(context, bmap);
if (!context)
goto error;
n_div = isl_basic_map_dim(context, isl_dim_div);
total = isl_basic_map_dim(bmap, isl_dim_all);
extra = n_div - isl_basic_map_dim(bmap, isl_dim_div);
bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
bset = isl_basic_set_add_dims(bset, isl_dim_set, extra);
bset = uset_gist(bset,
isl_basic_map_underlying_set(isl_basic_map_copy(context)));
bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra);
if (!bset || bset->n_eq == 0 || n_div == 0 ||
isl_basic_set_plain_is_empty(bset)) {
isl_basic_map_free(context);
return isl_basic_map_overlying_set(bset, bmap);
}
n_eq = bset->n_eq;
n_ineq = bset->n_ineq;
eq = isl_basic_set_copy(bset);
eq = isl_basic_set_cow(eq);
if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
eq = isl_basic_set_free(eq);
if (isl_basic_set_free_equality(bset, n_eq) < 0)
bset = isl_basic_set_free(bset);
eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
eq_bmap = gist_strides(eq_bmap, context);
eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
bmap = isl_basic_map_overlying_set(bset, bmap);
bmap = isl_basic_map_intersect(bmap, eq_bmap);
bmap = isl_basic_map_remove_redundancies(bmap);
return bmap;
error:
isl_basic_map_free(bmap);
isl_basic_map_free(context);
return NULL;
}
/*
* Assumes context has no implicit divs.
*/
__isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
__isl_take isl_basic_map *context)
{
int i;
if (!map || !context)
goto error;
if (isl_basic_map_plain_is_empty(context)) {
isl_space *space = isl_map_get_space(map);
isl_map_free(map);
isl_basic_map_free(context);
return isl_map_universe(space);
}
context = isl_basic_map_remove_redundancies(context);
map = isl_map_cow(map);
if (!map || !context)
goto error;
isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
map = isl_map_compute_divs(map);
if (!map)
goto error;
for (i = map->n - 1; i >= 0; --i) {
map->p[i] = isl_basic_map_gist(map->p[i],
isl_basic_map_copy(context));
if (!map->p[i])
goto error;
if (isl_basic_map_plain_is_empty(map->p[i])) {
isl_basic_map_free(map->p[i]);
if (i != map->n - 1)
map->p[i] = map->p[map->n - 1];
map->n--;
}
}
isl_basic_map_free(context);
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
isl_basic_map_free(context);
return NULL;
}
/* Drop all inequalities from "bmap" that also appear in "context".
* "context" is assumed to have only known local variables and
* the initial local variables of "bmap" are assumed to be the same
* as those of "context".
* The constraints of both "bmap" and "context" are assumed
* to have been sorted using isl_basic_map_sort_constraints.
*
* Run through the inequality constraints of "bmap" and "context"
* in sorted order.
* If a constraint of "bmap" involves variables not in "context",
* then it cannot appear in "context".
* If a matching constraint is found, it is removed from "bmap".
*/
static __isl_give isl_basic_map *drop_inequalities(
__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
{
int i1, i2;
unsigned total, extra;
if (!bmap || !context)
return isl_basic_map_free(bmap);
total = isl_basic_map_total_dim(context);
extra = isl_basic_map_total_dim(bmap) - total;
i1 = bmap->n_ineq - 1;
i2 = context->n_ineq - 1;
while (bmap && i1 >= 0 && i2 >= 0) {
int cmp;
if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total,
extra) != -1) {
--i1;
continue;
}
cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1],
context->ineq[i2]);
if (cmp < 0) {
--i2;
continue;
}
if (cmp > 0) {
--i1;
continue;
}
if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) {
bmap = isl_basic_map_cow(bmap);
if (isl_basic_map_drop_inequality(bmap, i1) < 0)
bmap = isl_basic_map_free(bmap);
}
--i1;
--i2;
}
return bmap;
}
/* Drop all equalities from "bmap" that also appear in "context".
* "context" is assumed to have only known local variables and
* the initial local variables of "bmap" are assumed to be the same
* as those of "context".
*
* Run through the equality constraints of "bmap" and "context"
* in sorted order.
* If a constraint of "bmap" involves variables not in "context",
* then it cannot appear in "context".
* If a matching constraint is found, it is removed from "bmap".
*/
static __isl_give isl_basic_map *drop_equalities(
__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
{
int i1, i2;
unsigned total, extra;
if (!bmap || !context)
return isl_basic_map_free(bmap);
total = isl_basic_map_total_dim(context);
extra = isl_basic_map_total_dim(bmap) - total;
i1 = bmap->n_eq - 1;
i2 = context->n_eq - 1;
while (bmap && i1 >= 0 && i2 >= 0) {
int last1, last2;
if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total,
extra) != -1)
break;
last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total);
last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total);
if (last1 > last2) {
--i2;
continue;
}
if (last1 < last2) {
--i1;
continue;
}
if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) {
bmap = isl_basic_map_cow(bmap);
if (isl_basic_map_drop_equality(bmap, i1) < 0)
bmap = isl_basic_map_free(bmap);
}
--i1;
--i2;
}
return bmap;
}
/* Remove the constraints in "context" from "bmap".
* "context" is assumed to have explicit representations
* for all local variables.
*
* First align the divs of "bmap" to those of "context" and
* sort the constraints. Then drop all constraints from "bmap"
* that appear in "context".
*/
__isl_give isl_basic_map *isl_basic_map_plain_gist(
__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
{
isl_bool done, known;
done = isl_basic_map_plain_is_universe(context);
if (done == isl_bool_false)
done = isl_basic_map_plain_is_universe(bmap);
if (done == isl_bool_false)
done = isl_basic_map_plain_is_empty(context);
if (done == isl_bool_false)
done = isl_basic_map_plain_is_empty(bmap);
if (done < 0)
goto error;
if (done) {
isl_basic_map_free(context);
return bmap;
}
known = isl_basic_map_divs_known(context);
if (known < 0)
goto error;
if (!known)
isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
"context has unknown divs", goto error);
bmap = isl_basic_map_align_divs(bmap, context);
bmap = isl_basic_map_gauss(bmap, NULL);
bmap = isl_basic_map_sort_constraints(bmap);
context = isl_basic_map_sort_constraints(context);
bmap = drop_inequalities(bmap, context);
bmap = drop_equalities(bmap, context);
isl_basic_map_free(context);
bmap = isl_basic_map_finalize(bmap);
return bmap;
error:
isl_basic_map_free(bmap);
isl_basic_map_free(context);
return NULL;
}
/* Replace "map" by the disjunct at position "pos" and free "context".
*/
static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map,
int pos, __isl_take isl_basic_map *context)
{
isl_basic_map *bmap;
bmap = isl_basic_map_copy(map->p[pos]);
isl_map_free(map);
isl_basic_map_free(context);
return isl_map_from_basic_map(bmap);
}
/* Remove the constraints in "context" from "map".
* If any of the disjuncts in the result turns out to be the universe,
* then return this universe.
* "context" is assumed to have explicit representations
* for all local variables.
*/
__isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map,
__isl_take isl_basic_map *context)
{
int i;
isl_bool univ, known;
univ = isl_basic_map_plain_is_universe(context);
if (univ < 0)
goto error;
if (univ) {
isl_basic_map_free(context);
return map;
}
known = isl_basic_map_divs_known(context);
if (known < 0)
goto error;
if (!known)
isl_die(isl_map_get_ctx(map), isl_error_invalid,
"context has unknown divs", goto error);
map = isl_map_cow(map);
if (!map)
goto error;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_plain_gist(map->p[i],
isl_basic_map_copy(context));
univ = isl_basic_map_plain_is_universe(map->p[i]);
if (univ < 0)
goto error;
if (univ && map->n > 1)
return replace_by_disjunct(map, i, context);
}
isl_basic_map_free(context);
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
if (map->n > 1)
ISL_F_CLR(map, ISL_MAP_DISJOINT);
return map;
error:
isl_map_free(map);
isl_basic_map_free(context);
return NULL;
}
/* Remove the constraints in "context" from "set".
* If any of the disjuncts in the result turns out to be the universe,
* then return this universe.
* "context" is assumed to have explicit representations
* for all local variables.
*/
__isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set,
__isl_take isl_basic_set *context)
{
return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set),
bset_to_bmap(context)));
}
/* Remove the constraints in "context" from "map".
* If any of the disjuncts in the result turns out to be the universe,
* then return this universe.
* "context" is assumed to consist of a single disjunct and
* to have explicit representations for all local variables.
*/
__isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map,
__isl_take isl_map *context)
{
isl_basic_map *hull;
hull = isl_map_unshifted_simple_hull(context);
return isl_map_plain_gist_basic_map(map, hull);
}
/* Replace "map" by a universe map in the same space and free "drop".
*/
static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map,
__isl_take isl_map *drop)
{
isl_map *res;
res = isl_map_universe(isl_map_get_space(map));
isl_map_free(map);
isl_map_free(drop);
return res;
}
/* Return a map that has the same intersection with "context" as "map"
* and that is as "simple" as possible.
*
* If "map" is already the universe, then we cannot make it any simpler.
* Similarly, if "context" is the universe, then we cannot exploit it
* to simplify "map"
* If "map" and "context" are identical to each other, then we can
* return the corresponding universe.
*
* If either "map" or "context" consists of multiple disjuncts,
* then check if "context" happens to be a subset of "map",
* in which case all constraints can be removed.
* In case of multiple disjuncts, the standard procedure
* may not be able to detect that all constraints can be removed.
*
* If none of these cases apply, we have to work a bit harder.
* During this computation, we make use of a single disjunct context,
* so if the original context consists of more than one disjunct
* then we need to approximate the context by a single disjunct set.
* Simply taking the simple hull may drop constraints that are
* only implicitly available in each disjunct. We therefore also
* look for constraints among those defining "map" that are valid
* for the context. These can then be used to simplify away
* the corresponding constraints in "map".
*/
static __isl_give isl_map *map_gist(__isl_take isl_map *map,
__isl_take isl_map *context)
{
int equal;
int is_universe;
int single_disjunct_map, single_disjunct_context;
isl_bool subset;
isl_basic_map *hull;
is_universe = isl_map_plain_is_universe(map);
if (is_universe >= 0 && !is_universe)
is_universe = isl_map_plain_is_universe(context);
if (is_universe < 0)
goto error;
if (is_universe) {
isl_map_free(context);
return map;
}
equal = isl_map_plain_is_equal(map, context);
if (equal < 0)
goto error;
if (equal)
return replace_by_universe(map, context);
single_disjunct_map = isl_map_n_basic_map(map) == 1;
single_disjunct_context = isl_map_n_basic_map(context) == 1;
if (!single_disjunct_map || !single_disjunct_context) {
subset = isl_map_is_subset(context, map);
if (subset < 0)
goto error;
if (subset)
return replace_by_universe(map, context);
}
context = isl_map_compute_divs(context);
if (!context)
goto error;
if (single_disjunct_context) {
hull = isl_map_simple_hull(context);
} else {
isl_ctx *ctx;
isl_map_list *list;
ctx = isl_map_get_ctx(map);
list = isl_map_list_alloc(ctx, 2);
list = isl_map_list_add(list, isl_map_copy(context));
list = isl_map_list_add(list, isl_map_copy(map));
hull = isl_map_unshifted_simple_hull_from_map_list(context,
list);
}
return isl_map_gist_basic_map(map, hull);
error:
isl_map_free(map);
isl_map_free(context);
return NULL;
}
__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
__isl_take isl_map *context)
{
return isl_map_align_params_map_map_and(map, context, &map_gist);
}
struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
struct isl_basic_set *context)
{
return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset),
bset_to_bmap(context)));
}
__isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
__isl_take isl_basic_set *context)
{
return set_from_map(isl_map_gist_basic_map(set_to_map(set),
bset_to_bmap(context)));
}
__isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
__isl_take isl_basic_set *context)
{
isl_space *space = isl_set_get_space(set);
isl_basic_set *dom_context = isl_basic_set_universe(space);
dom_context = isl_basic_set_intersect_params(dom_context, context);
return isl_set_gist_basic_set(set, dom_context);
}
__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
__isl_take isl_set *context)
{
return set_from_map(isl_map_gist(set_to_map(set), set_to_map(context)));
}
/* Compute the gist of "bmap" with respect to the constraints "context"
* on the domain.
*/
__isl_give isl_basic_map *isl_basic_map_gist_domain(
__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
{
isl_space *space = isl_basic_map_get_space(bmap);
isl_basic_map *bmap_context = isl_basic_map_universe(space);
bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
return isl_basic_map_gist(bmap, bmap_context);
}
__isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
__isl_take isl_set *context)
{
isl_map *map_context = isl_map_universe(isl_map_get_space(map));
map_context = isl_map_intersect_domain(map_context, context);
return isl_map_gist(map, map_context);
}
__isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
__isl_take isl_set *context)
{
isl_map *map_context = isl_map_universe(isl_map_get_space(map));
map_context = isl_map_intersect_range(map_context, context);
return isl_map_gist(map, map_context);
}
__isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
__isl_take isl_set *context)
{
isl_map *map_context = isl_map_universe(isl_map_get_space(map));
map_context = isl_map_intersect_params(map_context, context);
return isl_map_gist(map, map_context);
}
__isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
__isl_take isl_set *context)
{
return isl_map_gist_params(set, context);
}
/* Quick check to see if two basic maps are disjoint.
* In particular, we reduce the equalities and inequalities of
* one basic map in the context of the equalities of the other
* basic map and check if we get a contradiction.
*/
isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2)
{
struct isl_vec *v = NULL;
int *elim = NULL;
unsigned total;
int i;
if (!bmap1 || !bmap2)
return isl_bool_error;
isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
return isl_bool_error);
if (bmap1->n_div || bmap2->n_div)
return isl_bool_false;
if (!bmap1->n_eq && !bmap2->n_eq)
return isl_bool_false;
total = isl_space_dim(bmap1->dim, isl_dim_all);
if (total == 0)
return isl_bool_false;
v = isl_vec_alloc(bmap1->ctx, 1 + total);
if (!v)
goto error;
elim = isl_alloc_array(bmap1->ctx, int, total);
if (!elim)
goto error;
compute_elimination_index(bmap1, elim);
for (i = 0; i < bmap2->n_eq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
bmap1, elim);
if (reduced && !isl_int_is_zero(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
for (i = 0; i < bmap2->n_ineq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data,
bmap2->ineq[i], bmap1, elim);
if (reduced && isl_int_is_neg(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
compute_elimination_index(bmap2, elim);
for (i = 0; i < bmap1->n_ineq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data,
bmap1->ineq[i], bmap2, elim);
if (reduced && isl_int_is_neg(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
isl_vec_free(v);
free(elim);
return isl_bool_false;
disjoint:
isl_vec_free(v);
free(elim);
return isl_bool_true;
error:
isl_vec_free(v);
free(elim);
return isl_bool_error;
}
int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
__isl_keep isl_basic_set *bset2)
{
return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1),
bset_to_bmap(bset2));
}
/* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
*/
static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2,
isl_bool (*test)(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2))
{
int i, j;
if (!map1 || !map2)
return isl_bool_error;
for (i = 0; i < map1->n; ++i) {
for (j = 0; j < map2->n; ++j) {
isl_bool d = test(map1->p[i], map2->p[j]);
if (d != isl_bool_true)
return d;
}
}
return isl_bool_true;
}
/* Are "map1" and "map2" obviously disjoint, based on information
* that can be derived without looking at the individual basic maps?
*
* In particular, if one of them is empty or if they live in different spaces
* (ignoring parameters), then they are clearly disjoint.
*/
static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1,
__isl_keep isl_map *map2)
{
isl_bool disjoint;
isl_bool match;
if (!map1 || !map2)
return isl_bool_error;
disjoint = isl_map_plain_is_empty(map1);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_map_plain_is_empty(map2);
if (disjoint < 0 || disjoint)
return disjoint;
match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
map2->dim, isl_dim_in);
if (match < 0 || !match)
return match < 0 ? isl_bool_error : isl_bool_true;
match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
map2->dim, isl_dim_out);
if (match < 0 || !match)
return match < 0 ? isl_bool_error : isl_bool_true;
return isl_bool_false;
}
/* Are "map1" and "map2" obviously disjoint?
*
* If one of them is empty or if they live in different spaces (ignoring
* parameters), then they are clearly disjoint.
* This is checked by isl_map_plain_is_disjoint_global.
*
* If they have different parameters, then we skip any further tests.
*
* If they are obviously equal, but not obviously empty, then we will
* not be able to detect if they are disjoint.
*
* Otherwise we check if each basic map in "map1" is obviously disjoint
* from each basic map in "map2".
*/
isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
__isl_keep isl_map *map2)
{
isl_bool disjoint;
isl_bool intersect;
isl_bool match;
disjoint = isl_map_plain_is_disjoint_global(map1, map2);
if (disjoint < 0 || disjoint)
return disjoint;
match = isl_map_has_equal_params(map1, map2);
if (match < 0 || !match)
return match < 0 ? isl_bool_error : isl_bool_false;
intersect = isl_map_plain_is_equal(map1, map2);
if (intersect < 0 || intersect)
return intersect < 0 ? isl_bool_error : isl_bool_false;
return all_pairs(map1, map2, &isl_basic_map_plain_is_disjoint);
}
/* Are "map1" and "map2" disjoint?
* The parameters are assumed to have been aligned.
*
* In particular, check whether all pairs of basic maps are disjoint.
*/
static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1,
__isl_keep isl_map *map2)
{
return all_pairs(map1, map2, &isl_basic_map_is_disjoint);
}
/* Are "map1" and "map2" disjoint?
*
* They are disjoint if they are "obviously disjoint" or if one of them
* is empty. Otherwise, they are not disjoint if one of them is universal.
* If the two inputs are (obviously) equal and not empty, then they are
* not disjoint.
* If none of these cases apply, then check if all pairs of basic maps
* are disjoint after aligning the parameters.
*/
isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
{
isl_bool disjoint;
isl_bool intersect;
disjoint = isl_map_plain_is_disjoint_global(map1, map2);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_map_is_empty(map1);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_map_is_empty(map2);
if (disjoint < 0 || disjoint)
return disjoint;
intersect = isl_map_plain_is_universe(map1);
if (intersect < 0 || intersect)
return intersect < 0 ? isl_bool_error : isl_bool_false;
intersect = isl_map_plain_is_universe(map2);
if (intersect < 0 || intersect)
return intersect < 0 ? isl_bool_error : isl_bool_false;
intersect = isl_map_plain_is_equal(map1, map2);
if (intersect < 0 || intersect)
return isl_bool_not(intersect);
return isl_map_align_params_map_map_and_test(map1, map2,
&isl_map_is_disjoint_aligned);
}
/* Are "bmap1" and "bmap2" disjoint?
*
* They are disjoint if they are "obviously disjoint" or if one of them
* is empty. Otherwise, they are not disjoint if one of them is universal.
* If none of these cases apply, we compute the intersection and see if
* the result is empty.
*/
isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2)
{
isl_bool disjoint;
isl_bool intersect;
isl_basic_map *test;
disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_basic_map_is_empty(bmap1);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_basic_map_is_empty(bmap2);
if (disjoint < 0 || disjoint)
return disjoint;
intersect = isl_basic_map_plain_is_universe(bmap1);
if (intersect < 0 || intersect)
return intersect < 0 ? isl_bool_error : isl_bool_false;
intersect = isl_basic_map_plain_is_universe(bmap2);
if (intersect < 0 || intersect)
return intersect < 0 ? isl_bool_error : isl_bool_false;
test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
isl_basic_map_copy(bmap2));
disjoint = isl_basic_map_is_empty(test);
isl_basic_map_free(test);
return disjoint;
}
/* Are "bset1" and "bset2" disjoint?
*/
isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
__isl_keep isl_basic_set *bset2)
{
return isl_basic_map_is_disjoint(bset1, bset2);
}
isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
__isl_keep isl_set *set2)
{
return isl_map_plain_is_disjoint(set_to_map(set1), set_to_map(set2));
}
/* Are "set1" and "set2" disjoint?
*/
isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
{
return isl_map_is_disjoint(set1, set2);
}
/* Is "v" equal to 0, 1 or -1?
*/
static int is_zero_or_one(isl_int v)
{
return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v);
}
/* Check if we can combine a given div with lower bound l and upper
* bound u with some other div and if so return that other div.
* Otherwise return -1.
*
* We first check that
* - the bounds are opposites of each other (except for the constant
* term)
* - the bounds do not reference any other div
* - no div is defined in terms of this div
*
* Let m be the size of the range allowed on the div by the bounds.
* That is, the bounds are of the form
*
* e <= a <= e + m - 1
*
* with e some expression in the other variables.
* We look for another div b such that no third div is defined in terms
* of this second div b and such that in any constraint that contains
* a (except for the given lower and upper bound), also contains b
* with a coefficient that is m times that of b.
* That is, all constraints (except for the lower and upper bound)
* are of the form
*
* e + f (a + m b) >= 0
*
* Furthermore, in the constraints that only contain b, the coefficient
* of b should be equal to 1 or -1.
* If so, we return b so that "a + m b" can be replaced by
* a single div "c = a + m b".
*/
static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
unsigned div, unsigned l, unsigned u)
{
int i, j;
unsigned dim;
int coalesce = -1;
if (bmap->n_div <= 1)
return -1;
dim = isl_space_dim(bmap->dim, isl_dim_all);
if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
return -1;
if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
bmap->n_div - div - 1) != -1)
return -1;
if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
dim + bmap->n_div))
return -1;
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
return -1;
}
isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
if (isl_int_is_neg(bmap->ineq[l][0])) {
isl_int_sub(bmap->ineq[l][0],
bmap->ineq[l][0], bmap->ineq[u][0]);
bmap = isl_basic_map_copy(bmap);
bmap = isl_basic_map_set_to_empty(bmap);
isl_basic_map_free(bmap);
return -1;
}
isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
for (i = 0; i < bmap->n_div; ++i) {
if (i == div)
continue;
if (!pairs[i])
continue;
for (j = 0; j < bmap->n_div; ++j) {
if (isl_int_is_zero(bmap->div[j][0]))
continue;
if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
break;
}
if (j < bmap->n_div)
continue;
for (j = 0; j < bmap->n_ineq; ++j) {
int valid;
if (j == l || j == u)
continue;
if (isl_int_is_zero(bmap->ineq[j][1 + dim + div])) {
if (is_zero_or_one(bmap->ineq[j][1 + dim + i]))
continue;
break;
}
if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
break;
isl_int_mul(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + div],
bmap->ineq[l][0]);
valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + i]);
isl_int_divexact(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + div],
bmap->ineq[l][0]);
if (!valid)
break;
}
if (j < bmap->n_ineq)
continue;
coalesce = i;
break;
}
isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
return coalesce;
}
/* Internal data structure used during the construction and/or evaluation of
* an inequality that ensures that a pair of bounds always allows
* for an integer value.
*
* "tab" is the tableau in which the inequality is evaluated. It may
* be NULL until it is actually needed.
* "v" contains the inequality coefficients.
* "g", "fl" and "fu" are temporary scalars used during the construction and
* evaluation.
*/
struct test_ineq_data {
struct isl_tab *tab;
isl_vec *v;
isl_int g;
isl_int fl;
isl_int fu;
};
/* Free all the memory allocated by the fields of "data".
*/
static void test_ineq_data_clear(struct test_ineq_data *data)
{
isl_tab_free(data->tab);
isl_vec_free(data->v);
isl_int_clear(data->g);
isl_int_clear(data->fl);
isl_int_clear(data->fu);
}
/* Is the inequality stored in data->v satisfied by "bmap"?
* That is, does it only attain non-negative values?
* data->tab is a tableau corresponding to "bmap".
*/
static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap,
struct test_ineq_data *data)
{
isl_ctx *ctx;
enum isl_lp_result res;
ctx = isl_basic_map_get_ctx(bmap);
if (!data->tab)
data->tab = isl_tab_from_basic_map(bmap, 0);
res = isl_tab_min(data->tab, data->v->el, ctx->one, &data->g, NULL, 0);
if (res == isl_lp_error)
return isl_bool_error;
return res == isl_lp_ok && isl_int_is_nonneg(data->g);
}
/* Given a lower and an upper bound on div i, do they always allow
* for an integer value of the given div?
* Determine this property by constructing an inequality
* such that the property is guaranteed when the inequality is nonnegative.
* The lower bound is inequality l, while the upper bound is inequality u.
* The constructed inequality is stored in data->v.
*
* Let the upper bound be
*
* -n_u a + e_u >= 0
*
* and the lower bound
*
* n_l a + e_l >= 0
*
* Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
* We have
*
* - f_u e_l <= f_u f_l g a <= f_l e_u
*
* Since all variables are integer valued, this is equivalent to
*
* - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
*
* If this interval is at least f_u f_l g, then it contains at least
* one integer value for a.
* That is, the test constraint is
*
* f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
*
* or
*
* f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
*
* If the coefficients of f_l e_u + f_u e_l have a common divisor g',
* then the constraint can be scaled down by a factor g',
* with the constant term replaced by
* floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
* Note that the result of applying Fourier-Motzkin to this pair
* of constraints is
*
* f_l e_u + f_u e_l >= 0
*
* If the constant term of the scaled down version of this constraint,
* i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
* term of the scaled down test constraint, then the test constraint
* is known to hold and no explicit evaluation is required.
* This is essentially the Omega test.
*
* If the test constraint consists of only a constant term, then
* it is sufficient to look at the sign of this constant term.
*/
static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i,
int l, int u, struct test_ineq_data *data)
{
unsigned offset, n_div;
offset = isl_basic_map_offset(bmap, isl_dim_div);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
isl_int_gcd(data->g,
bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]);
isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g);
isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g);
isl_int_neg(data->fu, data->fu);
isl_seq_combine(data->v->el, data->fl, bmap->ineq[u],
data->fu, bmap->ineq[l], offset + n_div);
isl_int_mul(data->g, data->g, data->fl);
isl_int_mul(data->g, data->g, data->fu);
isl_int_sub(data->g, data->g, data->fl);
isl_int_sub(data->g, data->g, data->fu);
isl_int_add_ui(data->g, data->g, 1);
isl_int_sub(data->fl, data->v->el[0], data->g);
isl_seq_gcd(data->v->el + 1, offset - 1 + n_div, &data->g);
if (isl_int_is_zero(data->g))
return isl_int_is_nonneg(data->fl);
if (isl_int_is_one(data->g)) {
isl_int_set(data->v->el[0], data->fl);
return test_ineq_is_satisfied(bmap, data);
}
isl_int_fdiv_q(data->fl, data->fl, data->g);
isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g);
if (isl_int_eq(data->fl, data->v->el[0]))
return isl_bool_true;
isl_int_set(data->v->el[0], data->fl);
isl_seq_scale_down(data->v->el + 1, data->v->el + 1, data->g,
offset - 1 + n_div);
return test_ineq_is_satisfied(bmap, data);
}
/* Remove more kinds of divs that are not strictly needed.
* In particular, if all pairs of lower and upper bounds on a div
* are such that they allow at least one integer value of the div,
* then we can eliminate the div using Fourier-Motzkin without
* introducing any spurious solutions.
*
* If at least one of the two constraints has a unit coefficient for the div,
* then the presence of such a value is guaranteed so there is no need to check.
* In particular, the value attained by the bound with unit coefficient
* can serve as this intermediate value.
*/
static __isl_give isl_basic_map *drop_more_redundant_divs(
__isl_take isl_basic_map *bmap, __isl_take int *pairs, int n)
{
isl_ctx *ctx;
struct test_ineq_data data = { NULL, NULL };
unsigned off, n_div;
int remove = -1;
isl_int_init(data.g);
isl_int_init(data.fl);
isl_int_init(data.fu);
if (!bmap)
goto error;
ctx = isl_basic_map_get_ctx(bmap);
off = isl_basic_map_offset(bmap, isl_dim_div);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
data.v = isl_vec_alloc(ctx, off + n_div);
if (!data.v)
goto error;
while (n > 0) {
int i, l, u;
int best = -1;
isl_bool has_int;
for (i = 0; i < n_div; ++i) {
if (!pairs[i])
continue;
if (best >= 0 && pairs[best] <= pairs[i])
continue;
best = i;
}
i = best;
for (l = 0; l < bmap->n_ineq; ++l) {
if (!isl_int_is_pos(bmap->ineq[l][off + i]))
continue;
if (isl_int_is_one(bmap->ineq[l][off + i]))
continue;
for (u = 0; u < bmap->n_ineq; ++u) {
if (!isl_int_is_neg(bmap->ineq[u][off + i]))
continue;
if (isl_int_is_negone(bmap->ineq[u][off + i]))
continue;
has_int = int_between_bounds(bmap, i, l, u,
&data);
if (has_int < 0)
goto error;
if (data.tab && data.tab->empty)
break;
if (!has_int)
break;
}
if (u < bmap->n_ineq)
break;
}
if (data.tab && data.tab->empty) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
if (l == bmap->n_ineq) {
remove = i;
break;
}
pairs[i] = 0;
--n;
}
test_ineq_data_clear(&data);
free(pairs);
if (remove < 0)
return bmap;
bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
return isl_basic_map_drop_redundant_divs(bmap);
error:
free(pairs);
isl_basic_map_free(bmap);
test_ineq_data_clear(&data);
return NULL;
}
/* Given a pair of divs div1 and div2 such that, except for the lower bound l
* and the upper bound u, div1 always occurs together with div2 in the form
* (div1 + m div2), where m is the constant range on the variable div1
* allowed by l and u, replace the pair div1 and div2 by a single
* div that is equal to div1 + m div2.
*
* The new div will appear in the location that contains div2.
* We need to modify all constraints that contain
* div2 = (div - div1) / m
* The coefficient of div2 is known to be equal to 1 or -1.
* (If a constraint does not contain div2, it will also not contain div1.)
* If the constraint also contains div1, then we know they appear
* as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
* i.e., the coefficient of div is f.
*
* Otherwise, we first need to introduce div1 into the constraint.
* Let l be
*
* div1 + f >=0
*
* and u
*
* -div1 + f' >= 0
*
* A lower bound on div2
*
* div2 + t >= 0
*
* can be replaced by
*
* m div2 + div1 + m t + f >= 0
*
* An upper bound
*
* -div2 + t >= 0
*
* can be replaced by
*
* -(m div2 + div1) + m t + f' >= 0
*
* These constraint are those that we would obtain from eliminating
* div1 using Fourier-Motzkin.
*
* After all constraints have been modified, we drop the lower and upper
* bound and then drop div1.
* Since the new div is only placed in the same location that used
* to store div2, but otherwise has a different meaning, any possible
* explicit representation of the original div2 is removed.
*/
static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap,
unsigned div1, unsigned div2, unsigned l, unsigned u)
{
isl_ctx *ctx;
isl_int m;
unsigned dim, total;
int i;
ctx = isl_basic_map_get_ctx(bmap);
dim = isl_space_dim(bmap->dim, isl_dim_all);
total = 1 + dim + bmap->n_div;
isl_int_init(m);
isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
isl_int_add_ui(m, m, 1);
for (i = 0; i < bmap->n_ineq; ++i) {
if (i == l || i == u)
continue;
if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
continue;
if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
if (isl_int_is_pos(bmap->ineq[i][1 + dim + div2]))
isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
ctx->one, bmap->ineq[l], total);
else
isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
ctx->one, bmap->ineq[u], total);
}
isl_int_set(bmap->ineq[i][1 + dim + div2],
bmap->ineq[i][1 + dim + div1]);
isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
}
isl_int_clear(m);
if (l > u) {
isl_basic_map_drop_inequality(bmap, l);
isl_basic_map_drop_inequality(bmap, u);
} else {
isl_basic_map_drop_inequality(bmap, u);
isl_basic_map_drop_inequality(bmap, l);
}
bmap = isl_basic_map_mark_div_unknown(bmap, div2);
bmap = isl_basic_map_drop_div(bmap, div1);
return bmap;
}
/* First check if we can coalesce any pair of divs and
* then continue with dropping more redundant divs.
*
* We loop over all pairs of lower and upper bounds on a div
* with coefficient 1 and -1, respectively, check if there
* is any other div "c" with which we can coalesce the div
* and if so, perform the coalescing.
*/
static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs(
__isl_take isl_basic_map *bmap, int *pairs, int n)
{
int i, l, u;
unsigned dim;
dim = isl_space_dim(bmap->dim, isl_dim_all);
for (i = 0; i < bmap->n_div; ++i) {
if (!pairs[i])
continue;
for (l = 0; l < bmap->n_ineq; ++l) {
if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
continue;
for (u = 0; u < bmap->n_ineq; ++u) {
int c;
if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
continue;
c = div_find_coalesce(bmap, pairs, i, l, u);
if (c < 0)
continue;
free(pairs);
bmap = coalesce_divs(bmap, i, c, l, u);
return isl_basic_map_drop_redundant_divs(bmap);
}
}
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
free(pairs);
return bmap;
}
return drop_more_redundant_divs(bmap, pairs, n);
}
/* Are the "n" coefficients starting at "first" of inequality constraints
* "i" and "j" of "bmap" equal to each other?
*/
static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j,
int first, int n)
{
return isl_seq_eq(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
}
/* Are the "n" coefficients starting at "first" of inequality constraints
* "i" and "j" of "bmap" opposite to each other?
*/
static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j,
int first, int n)
{
return isl_seq_is_neg(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
}
/* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
* apart from the constant term?
*/
static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j)
{
unsigned total;
total = isl_basic_map_dim(bmap, isl_dim_all);
return is_opposite_part(bmap, i, j, 1, total);
}
/* Are inequality constraints "i" and "j" of "bmap" equal to each other,
* apart from the constant term and the coefficient at position "pos"?
*/
static int is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j,
int pos)
{
unsigned total;
total = isl_basic_map_dim(bmap, isl_dim_all);
return is_parallel_part(bmap, i, j, 1, pos - 1) &&
is_parallel_part(bmap, i, j, pos + 1, total - pos);
}
/* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
* apart from the constant term and the coefficient at position "pos"?
*/
static int is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j,
int pos)
{
unsigned total;
total = isl_basic_map_dim(bmap, isl_dim_all);
return is_opposite_part(bmap, i, j, 1, pos - 1) &&
is_opposite_part(bmap, i, j, pos + 1, total - pos);
}
/* Restart isl_basic_map_drop_redundant_divs after "bmap" has
* been modified, simplying it if "simplify" is set.
* Free the temporary data structure "pairs" that was associated
* to the old version of "bmap".
*/
static __isl_give isl_basic_map *drop_redundant_divs_again(
__isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify)
{
if (simplify)
bmap = isl_basic_map_simplify(bmap);
free(pairs);
return isl_basic_map_drop_redundant_divs(bmap);
}
/* Is "div" the single unknown existentially quantified variable
* in inequality constraint "ineq" of "bmap"?
* "div" is known to have a non-zero coefficient in "ineq".
*/
static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq,
int div)
{
int i;
unsigned n_div, o_div;
isl_bool known;
known = isl_basic_map_div_is_known(bmap, div);
if (known < 0 || known)
return isl_bool_not(known);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
if (n_div == 1)
return isl_bool_true;
o_div = isl_basic_map_offset(bmap, isl_dim_div);
for (i = 0; i < n_div; ++i) {
isl_bool known;
if (i == div)
continue;
if (isl_int_is_zero(bmap->ineq[ineq][o_div + i]))
continue;
known = isl_basic_map_div_is_known(bmap, i);
if (known < 0 || !known)
return known;
}
return isl_bool_true;
}
/* Does integer division "div" have coefficient 1 in inequality constraint
* "ineq" of "map"?
*/
static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq)
{
unsigned o_div;
o_div = isl_basic_map_offset(bmap, isl_dim_div);
if (isl_int_is_one(bmap->ineq[ineq][o_div + div]))
return isl_bool_true;
return isl_bool_false;
}
/* Turn inequality constraint "ineq" of "bmap" into an equality and
* then try and drop redundant divs again,
* freeing the temporary data structure "pairs" that was associated
* to the old version of "bmap".
*/
static __isl_give isl_basic_map *set_eq_and_try_again(
__isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs)
{
bmap = isl_basic_map_cow(bmap);
isl_basic_map_inequality_to_equality(bmap, ineq);
return drop_redundant_divs_again(bmap, pairs, 1);
}
/* Drop the integer division at position "div", along with the two
* inequality constraints "ineq1" and "ineq2" in which it appears
* from "bmap" and then try and drop redundant divs again,
* freeing the temporary data structure "pairs" that was associated
* to the old version of "bmap".
*/
static __isl_give isl_basic_map *drop_div_and_try_again(
__isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2,
__isl_take int *pairs)
{
if (ineq1 > ineq2) {
isl_basic_map_drop_inequality(bmap, ineq1);
isl_basic_map_drop_inequality(bmap, ineq2);
} else {
isl_basic_map_drop_inequality(bmap, ineq2);
isl_basic_map_drop_inequality(bmap, ineq1);
}
bmap = isl_basic_map_drop_div(bmap, div);
return drop_redundant_divs_again(bmap, pairs, 0);
}
/* Given two inequality constraints
*
* f(x) + n d + c >= 0, (ineq)
*
* with d the variable at position "pos", and
*
* f(x) + c0 >= 0, (lower)
*
* compute the maximal value of the lower bound ceil((-f(x) - c)/n)
* determined by the first constraint.
* That is, store
*
* ceil((c0 - c)/n)
*
* in *l.
*/
static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap,
int ineq, int lower, int pos, isl_int *l)
{
isl_int_neg(*l, bmap->ineq[ineq][0]);
isl_int_add(*l, *l, bmap->ineq[lower][0]);
isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]);
}
/* Given two inequality constraints
*
* f(x) + n d + c >= 0, (ineq)
*
* with d the variable at position "pos", and
*
* -f(x) - c0 >= 0, (upper)
*
* compute the minimal value of the lower bound ceil((-f(x) - c)/n)
* determined by the first constraint.
* That is, store
*
* ceil((-c1 - c)/n)
*
* in *u.
*/
static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap,
int ineq, int upper, int pos, isl_int *u)
{
isl_int_neg(*u, bmap->ineq[ineq][0]);
isl_int_sub(*u, *u, bmap->ineq[upper][0]);
isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]);
}
/* Given a lower bound constraint "ineq" on "div" in "bmap",
* does the corresponding lower bound have a fixed value in "bmap"?
*
* In particular, "ineq" is of the form
*
* f(x) + n d + c >= 0
*
* with n > 0, c the constant term and
* d the existentially quantified variable "div".
* That is, the lower bound is
*
* ceil((-f(x) - c)/n)
*
* Look for a pair of constraints
*
* f(x) + c0 >= 0
* -f(x) + c1 >= 0
*
* i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
* That is, check that
*
* ceil((-c1 - c)/n) = ceil((c0 - c)/n)
*
* If so, return the index of inequality f(x) + c0 >= 0.
* Otherwise, return -1.
*/
static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq)
{
int i;
int lower = -1, upper = -1;
unsigned o_div;
isl_int l, u;
int equal;
o_div = isl_basic_map_offset(bmap, isl_dim_div);
for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) {
if (i == ineq)
continue;
if (!isl_int_is_zero(bmap->ineq[i][o_div + div]))
continue;
if (lower < 0 &&
is_parallel_except(bmap, ineq, i, o_div + div)) {
lower = i;
continue;
}
if (upper < 0 &&
is_opposite_except(bmap, ineq, i, o_div + div)) {
upper = i;
}
}
if (lower < 0 || upper < 0)
return -1;
isl_int_init(l);
isl_int_init(u);
lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &l);
lower_bound_from_opposite(bmap, ineq, upper, o_div + div, &u);
equal = isl_int_eq(l, u);
isl_int_clear(l);
isl_int_clear(u);
return equal ? lower : -1;
}
/* Given a lower bound constraint "ineq" on the existentially quantified
* variable "div", such that the corresponding lower bound has
* a fixed value in "bmap", assign this fixed value to the variable and
* then try and drop redundant divs again,
* freeing the temporary data structure "pairs" that was associated
* to the old version of "bmap".
* "lower" determines the constant value for the lower bound.
*
* In particular, "ineq" is of the form
*
* f(x) + n d + c >= 0,
*
* while "lower" is of the form
*
* f(x) + c0 >= 0
*
* The lower bound is ceil((-f(x) - c)/n) and its constant value
* is ceil((c0 - c)/n).
*/
static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap,
int div, int ineq, int lower, int *pairs)
{
isl_int c;
unsigned o_div;
isl_int_init(c);
o_div = isl_basic_map_offset(bmap, isl_dim_div);
lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &c);
bmap = isl_basic_map_fix(bmap, isl_dim_div, div, c);
free(pairs);
isl_int_clear(c);
return isl_basic_map_drop_redundant_divs(bmap);
}
/* Remove divs that are not strictly needed based on the inequality
* constraints.
* In particular, if a div only occurs positively (or negatively)
* in constraints, then it can simply be dropped.
* Also, if a div occurs in only two constraints and if moreover
* those two constraints are opposite to each other, except for the constant
* term and if the sum of the constant terms is such that for any value
* of the other values, there is always at least one integer value of the
* div, i.e., if one plus this sum is greater than or equal to
* the (absolute value) of the coefficient of the div in the constraints,
* then we can also simply drop the div.
*
* If an existentially quantified variable does not have an explicit
* representation, appears in only a single lower bound that does not
* involve any other such existentially quantified variables and appears
* in this lower bound with coefficient 1,
* then fix the variable to the value of the lower bound. That is,
* turn the inequality into an equality.
* If for any value of the other variables, there is any value
* for the existentially quantified variable satisfying the constraints,
* then this lower bound also satisfies the constraints.
* It is therefore safe to pick this lower bound.
*
* The same reasoning holds even if the coefficient is not one.
* However, fixing the variable to the value of the lower bound may
* in general introduce an extra integer division, in which case
* it may be better to pick another value.
* If this integer division has a known constant value, then plugging
* in this constant value removes the existentially quantified variable
* completely. In particular, if the lower bound is of the form
* ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
* -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
* then the existentially quantified variable can be assigned this
* shared value.
*
* We skip divs that appear in equalities or in the definition of other divs.
* Divs that appear in the definition of other divs usually occur in at least
* 4 constraints, but the constraints may have been simplified.
*
* If any divs are left after these simple checks then we move on
* to more complicated cases in drop_more_redundant_divs.
*/
static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq(
__isl_take isl_basic_map *bmap)
{
int i, j;
unsigned off;
int *pairs = NULL;
int n = 0;
if (!bmap)
goto error;
if (bmap->n_div == 0)
return bmap;
off = isl_space_dim(bmap->dim, isl_dim_all);
pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
if (!pairs)
goto error;
for (i = 0; i < bmap->n_div; ++i) {
int pos, neg;
int last_pos, last_neg;
int redundant;
int defined;
isl_bool opp, set_div;
defined = !isl_int_is_zero(bmap->div[i][0]);
for (j = i; j < bmap->n_div; ++j)
if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
break;
if (j < bmap->n_div)
continue;
for (j = 0; j < bmap->n_eq; ++j)
if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
break;
if (j < bmap->n_eq)
continue;
++n;
pos = neg = 0;
for (j = 0; j < bmap->n_ineq; ++j) {
if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
last_pos = j;
++pos;
}
if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
last_neg = j;
++neg;
}
}
pairs[i] = pos * neg;
if (pairs[i] == 0) {
for (j = bmap->n_ineq - 1; j >= 0; --j)
if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
isl_basic_map_drop_inequality(bmap, j);
bmap = isl_basic_map_drop_div(bmap, i);
return drop_redundant_divs_again(bmap, pairs, 0);
}
if (pairs[i] != 1)
opp = isl_bool_false;
else
opp = is_opposite(bmap, last_pos, last_neg);
if (opp < 0)
goto error;
if (!opp) {
int lower;
isl_bool single, one;
if (pos != 1)
continue;
single = single_unknown(bmap, last_pos, i);
if (single < 0)
goto error;
if (!single)
continue;
one = has_coef_one(bmap, i, last_pos);
if (one < 0)
goto error;
if (one)
return set_eq_and_try_again(bmap, last_pos,
pairs);
lower = lower_bound_is_cst(bmap, i, last_pos);
if (lower >= 0)
return fix_cst_lower(bmap, i, last_pos, lower,
pairs);
continue;
}
isl_int_add(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
isl_int_add_ui(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], 1);
redundant = isl_int_ge(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][1+off+i]);
isl_int_sub_ui(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], 1);
isl_int_sub(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
if (redundant)
return drop_div_and_try_again(bmap, i,
last_pos, last_neg, pairs);
if (defined)
set_div = isl_bool_false;
else
set_div = ok_to_set_div_from_bound(bmap, i, last_pos);
if (set_div < 0)
return isl_basic_map_free(bmap);
if (set_div) {
bmap = set_div_from_lower_bound(bmap, i, last_pos);
return drop_redundant_divs_again(bmap, pairs, 1);
}
pairs[i] = 0;
--n;
}
if (n > 0)
return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
free(pairs);
return bmap;
error:
free(pairs);
isl_basic_map_free(bmap);
return NULL;
}
/* Consider the coefficients at "c" as a row vector and replace
* them with their product with "T". "T" is assumed to be a square matrix.
*/
static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T)
{
int n;
isl_ctx *ctx;
isl_vec *v;
if (!T)
return isl_stat_error;
n = isl_mat_rows(T);
if (isl_seq_first_non_zero(c, n) == -1)
return isl_stat_ok;
ctx = isl_mat_get_ctx(T);
v = isl_vec_alloc(ctx, n);
if (!v)
return isl_stat_error;
isl_seq_swp_or_cpy(v->el, c, n);
v = isl_vec_mat_product(v, isl_mat_copy(T));
if (!v)
return isl_stat_error;
isl_seq_swp_or_cpy(c, v->el, n);
isl_vec_free(v);
return isl_stat_ok;
}
/* Plug in T for the variables in "bmap" starting at "pos".
* T is a linear unimodular matrix, i.e., without constant term.
*/
static __isl_give isl_basic_map *isl_basic_map_preimage_vars(
__isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T)
{
int i;
unsigned n, total;
bmap = isl_basic_map_cow(bmap);
if (!bmap || !T)
goto error;
n = isl_mat_cols(T);
if (n != isl_mat_rows(T))
isl_die(isl_mat_get_ctx(T), isl_error_invalid,
"expecting square matrix", goto error);
total = isl_basic_map_dim(bmap, isl_dim_all);
if (pos + n > total || pos + n < pos)
isl_die(isl_mat_get_ctx(T), isl_error_invalid,
"invalid range", goto error);
for (i = 0; i < bmap->n_eq; ++i)
if (preimage(bmap->eq[i] + 1 + pos, T) < 0)
goto error;
for (i = 0; i < bmap->n_ineq; ++i)
if (preimage(bmap->ineq[i] + 1 + pos, T) < 0)
goto error;
for (i = 0; i < bmap->n_div; ++i) {
if (isl_basic_map_div_is_marked_unknown(bmap, i))
continue;
if (preimage(bmap->div[i] + 1 + 1 + pos, T) < 0)
goto error;
}
isl_mat_free(T);
return bmap;
error:
isl_basic_map_free(bmap);
isl_mat_free(T);
return NULL;
}
/* Remove divs that are not strictly needed.
*
* First look for an equality constraint involving two or more
* existentially quantified variables without an explicit
* representation. Replace the combination that appears
* in the equality constraint by a single existentially quantified
* variable such that the equality can be used to derive
* an explicit representation for the variable.
* If there are no more such equality constraints, then continue
* with isl_basic_map_drop_redundant_divs_ineq.
*
* In particular, if the equality constraint is of the form
*
* f(x) + \sum_i c_i a_i = 0
*
* with a_i existentially quantified variable without explicit
* representation, then apply a transformation on the existentially
* quantified variables to turn the constraint into
*
* f(x) + g a_1' = 0
*
* with g the gcd of the c_i.
* In order to easily identify which existentially quantified variables
* have a complete explicit representation, i.e., without being defined
* in terms of other existentially quantified variables without
* an explicit representation, the existentially quantified variables
* are first sorted.
*
* The variable transformation is computed by extending the row
* [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
*
* [a_1'] [c_1/g ... c_n/g] [ a_1 ]
* [a_2'] [ a_2 ]
* ... = U ....
* [a_n'] [ a_n ]
*
* with [c_1/g ... c_n/g] representing the first row of U.
* The inverse of U is then plugged into the original constraints.
* The call to isl_basic_map_simplify makes sure the explicit
* representation for a_1' is extracted from the equality constraint.
*/
__isl_give isl_basic_map *isl_basic_map_drop_redundant_divs(
__isl_take isl_basic_map *bmap)
{
int first;
int i;
unsigned o_div, n_div;
int l;
isl_ctx *ctx;
isl_mat *T;
if (!bmap)
return NULL;
if (isl_basic_map_divs_known(bmap))
return isl_basic_map_drop_redundant_divs_ineq(bmap);
if (bmap->n_eq == 0)
return isl_basic_map_drop_redundant_divs_ineq(bmap);
bmap = isl_basic_map_sort_divs(bmap);
if (!bmap)
return NULL;
first = isl_basic_map_first_unknown_div(bmap);
if (first < 0)
return isl_basic_map_free(bmap);
o_div = isl_basic_map_offset(bmap, isl_dim_div);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
for (i = 0; i < bmap->n_eq; ++i) {
l = isl_seq_first_non_zero(bmap->eq[i] + o_div + first,
n_div - (first));
if (l < 0)
continue;
l += first;
if (isl_seq_first_non_zero(bmap->eq[i] + o_div + l + 1,
n_div - (l + 1)) == -1)
continue;
break;
}
if (i >= bmap->n_eq)
return isl_basic_map_drop_redundant_divs_ineq(bmap);
ctx = isl_basic_map_get_ctx(bmap);
T = isl_mat_alloc(ctx, n_div - l, n_div - l);
if (!T)
return isl_basic_map_free(bmap);
isl_seq_cpy(T->row[0], bmap->eq[i] + o_div + l, n_div - l);
T = isl_mat_normalize_row(T, 0);
T = isl_mat_unimodular_complete(T, 1);
T = isl_mat_right_inverse(T);
for (i = l; i < n_div; ++i)
bmap = isl_basic_map_mark_div_unknown(bmap, i);
bmap = isl_basic_map_preimage_vars(bmap, o_div - 1 + l, T);
bmap = isl_basic_map_simplify(bmap);
return isl_basic_map_drop_redundant_divs(bmap);
}
/* Does "bmap" satisfy any equality that involves more than 2 variables
* and/or has coefficients different from -1 and 1?
*/
static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
{
int i;
unsigned total;
total = isl_basic_map_dim(bmap, isl_dim_all);
for (i = 0; i < bmap->n_eq; ++i) {
int j, k;
j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
if (j < 0)
continue;
if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
!isl_int_is_negone(bmap->eq[i][1 + j]))
return 1;
j += 1;
k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
if (k < 0)
continue;
j += k;
if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
!isl_int_is_negone(bmap->eq[i][1 + j]))
return 1;
j += 1;
k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
if (k >= 0)
return 1;
}
return 0;
}
/* Remove any common factor g from the constraint coefficients in "v".
* The constant term is stored in the first position and is replaced
* by floor(c/g). If any common factor is removed and if this results
* in a tightening of the constraint, then set *tightened.
*/
static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
int *tightened)
{
isl_ctx *ctx;
if (!v)
return NULL;
ctx = isl_vec_get_ctx(v);
isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
if (isl_int_is_zero(ctx->normalize_gcd))
return v;
if (isl_int_is_one(ctx->normalize_gcd))
return v;
v = isl_vec_cow(v);
if (!v)
return NULL;
if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
*tightened = 1;
isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
v->size - 1);
return v;
}
/* If "bmap" is an integer set that satisfies any equality involving
* more than 2 variables and/or has coefficients different from -1 and 1,
* then use variable compression to reduce the coefficients by removing
* any (hidden) common factor.
* In particular, apply the variable compression to each constraint,
* factor out any common factor in the non-constant coefficients and
* then apply the inverse of the compression.
* At the end, we mark the basic map as having reduced constants.
* If this flag is still set on the next invocation of this function,
* then we skip the computation.
*
* Removing a common factor may result in a tightening of some of
* the constraints. If this happens, then we may end up with two
* opposite inequalities that can be replaced by an equality.
* We therefore call isl_basic_map_detect_inequality_pairs,
* which checks for such pairs of inequalities as well as eliminate_divs_eq
* and isl_basic_map_gauss if such a pair was found.
*
* Note that this function may leave the result in an inconsistent state.
* In particular, the constraints may not be gaussed.
* Unfortunately, isl_map_coalesce actually depends on this inconsistent state
* for some of the test cases to pass successfully.
* Any potential modification of the representation is therefore only
* performed on a single copy of the basic map.
*/
__isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
__isl_take isl_basic_map *bmap)
{
unsigned total;
isl_ctx *ctx;
isl_vec *v;
isl_mat *eq, *T, *T2;
int i;
int tightened;
if (!bmap)
return NULL;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
return bmap;
if (isl_basic_map_is_rational(bmap))
return bmap;
if (bmap->n_eq == 0)
return bmap;
if (!has_multiple_var_equality(bmap))
return bmap;
total = isl_basic_map_dim(bmap, isl_dim_all);
ctx = isl_basic_map_get_ctx(bmap);
v = isl_vec_alloc(ctx, 1 + total);
if (!v)
return isl_basic_map_free(bmap);
eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
T = isl_mat_variable_compression(eq, &T2);
if (!T || !T2)
goto error;
if (T->n_col == 0) {
isl_mat_free(T);
isl_mat_free(T2);
isl_vec_free(v);
return isl_basic_map_set_to_empty(bmap);
}
bmap = isl_basic_map_cow(bmap);
if (!bmap)
goto error;
tightened = 0;
for (i = 0; i < bmap->n_ineq; ++i) {
isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
v = isl_vec_mat_product(v, isl_mat_copy(T));
v = normalize_constraint(v, &tightened);
v = isl_vec_mat_product(v, isl_mat_copy(T2));
if (!v)
goto error;
isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
}
isl_mat_free(T);
isl_mat_free(T2);
isl_vec_free(v);
ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
if (tightened) {
int progress = 0;
bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
if (progress) {
bmap = eliminate_divs_eq(bmap, &progress);
bmap = isl_basic_map_gauss(bmap, NULL);
}
}
return bmap;
error:
isl_mat_free(T);
isl_mat_free(T2);
isl_vec_free(v);
return isl_basic_map_free(bmap);
}
/* Shift the integer division at position "div" of "bmap"
* by "shift" times the variable at position "pos".
* "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
* corresponds to the constant term.
*
* That is, if the integer division has the form
*
* floor(f(x)/d)
*
* then replace it by
*
* floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
*/
__isl_give isl_basic_map *isl_basic_map_shift_div(
__isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
{
int i;
unsigned total;
if (isl_int_is_zero(shift))
return bmap;
if (!bmap)
return NULL;
total = isl_basic_map_dim(bmap, isl_dim_all);
total -= isl_basic_map_dim(bmap, isl_dim_div);
isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
for (i = 0; i < bmap->n_eq; ++i) {
if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
continue;
isl_int_submul(bmap->eq[i][pos],
shift, bmap->eq[i][1 + total + div]);
}
for (i = 0; i < bmap->n_ineq; ++i) {
if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
continue;
isl_int_submul(bmap->ineq[i][pos],
shift, bmap->ineq[i][1 + total + div]);
}
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
continue;
isl_int_submul(bmap->div[i][1 + pos],
shift, bmap->div[i][1 + 1 + total + div]);
}
return bmap;
}