isl_affine_hull.c 32.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 * Copyright 2012      Ecole Normale Superieure
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 */

#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_seq.h>
#include <isl/set.h>
#include <isl/lp.h>
#include <isl/map.h>
#include "isl_equalities.h"
#include "isl_sample.h"
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_vec_private.h>

#include <bset_to_bmap.c>
#include <bset_from_bmap.c>
#include <set_to_map.c>
#include <set_from_map.c>

__isl_give isl_basic_map *isl_basic_map_implicit_equalities(
	__isl_take isl_basic_map *bmap)
{
	struct isl_tab *tab;

	if (!bmap)
		return bmap;

	bmap = isl_basic_map_gauss(bmap, NULL);
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
		return bmap;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
		return bmap;
	if (bmap->n_ineq <= 1)
		return bmap;

	tab = isl_tab_from_basic_map(bmap, 0);
	if (isl_tab_detect_implicit_equalities(tab) < 0)
		goto error;
	bmap = isl_basic_map_update_from_tab(bmap, tab);
	isl_tab_free(tab);
	bmap = isl_basic_map_gauss(bmap, NULL);
	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
	return bmap;
error:
	isl_tab_free(tab);
	isl_basic_map_free(bmap);
	return NULL;
}

struct isl_basic_set *isl_basic_set_implicit_equalities(
						struct isl_basic_set *bset)
{
	return bset_from_bmap(
		isl_basic_map_implicit_equalities(bset_to_bmap(bset)));
}

/* Make eq[row][col] of both bmaps equal so we can add the row
 * add the column to the common matrix.
 * Note that because of the echelon form, the columns of row row
 * after column col are zero.
 */
static void set_common_multiple(
	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
	unsigned row, unsigned col)
{
	isl_int m, c;

	if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
		return;

	isl_int_init(c);
	isl_int_init(m);
	isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
	isl_int_divexact(c, m, bset1->eq[row][col]);
	isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
	isl_int_divexact(c, m, bset2->eq[row][col]);
	isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
	isl_int_clear(c);
	isl_int_clear(m);
}

/* Delete a given equality, moving all the following equalities one up.
 */
static void delete_row(struct isl_basic_set *bset, unsigned row)
{
	isl_int *t;
	int r;

	t = bset->eq[row];
	bset->n_eq--;
	for (r = row; r < bset->n_eq; ++r)
		bset->eq[r] = bset->eq[r+1];
	bset->eq[bset->n_eq] = t;
}

/* Make first row entries in column col of bset1 identical to
 * those of bset2, using the fact that entry bset1->eq[row][col]=a
 * is non-zero.  Initially, these elements of bset1 are all zero.
 * For each row i < row, we set
 *		A[i] = a * A[i] + B[i][col] * A[row]
 *		B[i] = a * B[i]
 * so that
 *		A[i][col] = B[i][col] = a * old(B[i][col])
 */
static void construct_column(
	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
	unsigned row, unsigned col)
{
	int r;
	isl_int a;
	isl_int b;
	unsigned total;

	isl_int_init(a);
	isl_int_init(b);
	total = 1 + isl_basic_set_n_dim(bset1);
	for (r = 0; r < row; ++r) {
		if (isl_int_is_zero(bset2->eq[r][col]))
			continue;
		isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
		isl_int_divexact(a, bset1->eq[row][col], b);
		isl_int_divexact(b, bset2->eq[r][col], b);
		isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
					      b, bset1->eq[row], total);
		isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
	}
	isl_int_clear(a);
	isl_int_clear(b);
	delete_row(bset1, row);
}

/* Make first row entries in column col of bset1 identical to
 * those of bset2, using only these entries of the two matrices.
 * Let t be the last row with different entries.
 * For each row i < t, we set
 *	A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
 *	B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
 * so that
 *	A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
 */
static int transform_column(
	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
	unsigned row, unsigned col)
{
	int i, t;
	isl_int a, b, g;
	unsigned total;

	for (t = row-1; t >= 0; --t)
		if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
			break;
	if (t < 0)
		return 0;

	total = 1 + isl_basic_set_n_dim(bset1);
	isl_int_init(a);
	isl_int_init(b);
	isl_int_init(g);
	isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
	for (i = 0; i < t; ++i) {
		isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
		isl_int_gcd(g, a, b);
		isl_int_divexact(a, a, g);
		isl_int_divexact(g, b, g);
		isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
				total);
		isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
				total);
	}
	isl_int_clear(a);
	isl_int_clear(b);
	isl_int_clear(g);
	delete_row(bset1, t);
	delete_row(bset2, t);
	return 1;
}

/* The implementation is based on Section 5.2 of Michael Karr,
 * "Affine Relationships Among Variables of a Program",
 * except that the echelon form we use starts from the last column
 * and that we are dealing with integer coefficients.
 */
static struct isl_basic_set *affine_hull(
	struct isl_basic_set *bset1, struct isl_basic_set *bset2)
{
	unsigned total;
	int col;
	int row;

	if (!bset1 || !bset2)
		goto error;

	total = 1 + isl_basic_set_n_dim(bset1);

	row = 0;
	for (col = total-1; col >= 0; --col) {
		int is_zero1 = row >= bset1->n_eq ||
			isl_int_is_zero(bset1->eq[row][col]);
		int is_zero2 = row >= bset2->n_eq ||
			isl_int_is_zero(bset2->eq[row][col]);
		if (!is_zero1 && !is_zero2) {
			set_common_multiple(bset1, bset2, row, col);
			++row;
		} else if (!is_zero1 && is_zero2) {
			construct_column(bset1, bset2, row, col);
		} else if (is_zero1 && !is_zero2) {
			construct_column(bset2, bset1, row, col);
		} else {
			if (transform_column(bset1, bset2, row, col))
				--row;
		}
	}
	isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
	isl_basic_set_free(bset2);
	bset1 = isl_basic_set_normalize_constraints(bset1);
	return bset1;
error:
	isl_basic_set_free(bset1);
	isl_basic_set_free(bset2);
	return NULL;
}

/* Find an integer point in the set represented by "tab"
 * that lies outside of the equality "eq" e(x) = 0.
 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
 * The point, if found, is returned.
 * If no point can be found, a zero-length vector is returned.
 *
 * Before solving an ILP problem, we first check if simply
 * adding the normal of the constraint to one of the known
 * integer points in the basic set represented by "tab"
 * yields another point inside the basic set.
 *
 * The caller of this function ensures that the tableau is bounded or
 * that tab->basis and tab->n_unbounded have been set appropriately.
 */
static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
{
	struct isl_ctx *ctx;
	struct isl_vec *sample = NULL;
	struct isl_tab_undo *snap;
	unsigned dim;

	if (!tab)
		return NULL;
	ctx = tab->mat->ctx;

	dim = tab->n_var;
	sample = isl_vec_alloc(ctx, 1 + dim);
	if (!sample)
		return NULL;
	isl_int_set_si(sample->el[0], 1);
	isl_seq_combine(sample->el + 1,
		ctx->one, tab->bmap->sample->el + 1,
		up ? ctx->one : ctx->negone, eq + 1, dim);
	if (isl_basic_map_contains(tab->bmap, sample))
		return sample;
	isl_vec_free(sample);
	sample = NULL;

	snap = isl_tab_snap(tab);

	if (!up)
		isl_seq_neg(eq, eq, 1 + dim);
	isl_int_sub_ui(eq[0], eq[0], 1);

	if (isl_tab_extend_cons(tab, 1) < 0)
		goto error;
	if (isl_tab_add_ineq(tab, eq) < 0)
		goto error;

	sample = isl_tab_sample(tab);

	isl_int_add_ui(eq[0], eq[0], 1);
	if (!up)
		isl_seq_neg(eq, eq, 1 + dim);

	if (sample && isl_tab_rollback(tab, snap) < 0)
		goto error;

	return sample;
error:
	isl_vec_free(sample);
	return NULL;
}

__isl_give isl_basic_set *isl_basic_set_recession_cone(
	__isl_take isl_basic_set *bset)
{
	int i;

	bset = isl_basic_set_cow(bset);
	if (!bset)
		return NULL;
	isl_assert(bset->ctx, bset->n_div == 0, goto error);

	for (i = 0; i < bset->n_eq; ++i)
		isl_int_set_si(bset->eq[i][0], 0);

	for (i = 0; i < bset->n_ineq; ++i)
		isl_int_set_si(bset->ineq[i][0], 0);

	ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
	return isl_basic_set_implicit_equalities(bset);
error:
	isl_basic_set_free(bset);
	return NULL;
}

/* Move "sample" to a point that is one up (or down) from the original
 * point in dimension "pos".
 */
static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
{
	if (up)
		isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
	else
		isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
}

/* Check if any points that are adjacent to "sample" also belong to "bset".
 * If so, add them to "hull" and return the updated hull.
 *
 * Before checking whether and adjacent point belongs to "bset", we first
 * check whether it already belongs to "hull" as this test is typically
 * much cheaper.
 */
static __isl_give isl_basic_set *add_adjacent_points(
	__isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
	__isl_keep isl_basic_set *bset)
{
	int i, up;
	int dim;

	if (!sample)
		goto error;

	dim = isl_basic_set_dim(hull, isl_dim_set);

	for (i = 0; i < dim; ++i) {
		for (up = 0; up <= 1; ++up) {
			int contains;
			isl_basic_set *point;

			adjacent_point(sample, i, up);
			contains = isl_basic_set_contains(hull, sample);
			if (contains < 0)
				goto error;
			if (contains) {
				adjacent_point(sample, i, !up);
				continue;
			}
			contains = isl_basic_set_contains(bset, sample);
			if (contains < 0)
				goto error;
			if (contains) {
				point = isl_basic_set_from_vec(
							isl_vec_copy(sample));
				hull = affine_hull(hull, point);
			}
			adjacent_point(sample, i, !up);
			if (contains)
				break;
		}
	}

	isl_vec_free(sample);

	return hull;
error:
	isl_vec_free(sample);
	isl_basic_set_free(hull);
	return NULL;
}

/* Extend an initial (under-)approximation of the affine hull of basic
 * set represented by the tableau "tab"
 * by looking for points that do not satisfy one of the equalities
 * in the current approximation and adding them to that approximation
 * until no such points can be found any more.
 *
 * The caller of this function ensures that "tab" is bounded or
 * that tab->basis and tab->n_unbounded have been set appropriately.
 *
 * "bset" may be either NULL or the basic set represented by "tab".
 * If "bset" is not NULL, we check for any point we find if any
 * of its adjacent points also belong to "bset".
 */
static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
	__isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
{
	int i, j;
	unsigned dim;

	if (!tab || !hull)
		goto error;

	dim = tab->n_var;

	if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
		goto error;

	for (i = 0; i < dim; ++i) {
		struct isl_vec *sample;
		struct isl_basic_set *point;
		for (j = 0; j < hull->n_eq; ++j) {
			sample = outside_point(tab, hull->eq[j], 1);
			if (!sample)
				goto error;
			if (sample->size > 0)
				break;
			isl_vec_free(sample);
			sample = outside_point(tab, hull->eq[j], 0);
			if (!sample)
				goto error;
			if (sample->size > 0)
				break;
			isl_vec_free(sample);

			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
				goto error;
		}
		if (j == hull->n_eq)
			break;
		if (tab->samples &&
		    isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
			hull = isl_basic_set_free(hull);
		if (bset)
			hull = add_adjacent_points(hull, isl_vec_copy(sample),
						    bset);
		point = isl_basic_set_from_vec(sample);
		hull = affine_hull(hull, point);
		if (!hull)
			return NULL;
	}

	return hull;
error:
	isl_basic_set_free(hull);
	return NULL;
}

/* Construct an initial underapproximation of the hull of "bset"
 * from "sample" and any of its adjacent points that also belong to "bset".
 */
static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
	__isl_take isl_vec *sample)
{
	isl_basic_set *hull;

	hull = isl_basic_set_from_vec(isl_vec_copy(sample));
	hull = add_adjacent_points(hull, sample, bset);

	return hull;
}

/* Look for all equalities satisfied by the integer points in bset,
 * which is assumed to be bounded.
 *
 * The equalities are obtained by successively looking for
 * a point that is affinely independent of the points found so far.
 * In particular, for each equality satisfied by the points so far,
 * we check if there is any point on a hyperplane parallel to the
 * corresponding hyperplane shifted by at least one (in either direction).
 */
static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
{
	struct isl_vec *sample = NULL;
	struct isl_basic_set *hull;
	struct isl_tab *tab = NULL;
	unsigned dim;

	if (isl_basic_set_plain_is_empty(bset))
		return bset;

	dim = isl_basic_set_n_dim(bset);

	if (bset->sample && bset->sample->size == 1 + dim) {
		int contains = isl_basic_set_contains(bset, bset->sample);
		if (contains < 0)
			goto error;
		if (contains) {
			if (dim == 0)
				return bset;
			sample = isl_vec_copy(bset->sample);
		} else {
			isl_vec_free(bset->sample);
			bset->sample = NULL;
		}
	}

	tab = isl_tab_from_basic_set(bset, 1);
	if (!tab)
		goto error;
	if (tab->empty) {
		isl_tab_free(tab);
		isl_vec_free(sample);
		return isl_basic_set_set_to_empty(bset);
	}

	if (!sample) {
		struct isl_tab_undo *snap;
		snap = isl_tab_snap(tab);
		sample = isl_tab_sample(tab);
		if (isl_tab_rollback(tab, snap) < 0)
			goto error;
		isl_vec_free(tab->bmap->sample);
		tab->bmap->sample = isl_vec_copy(sample);
	}

	if (!sample)
		goto error;
	if (sample->size == 0) {
		isl_tab_free(tab);
		isl_vec_free(sample);
		return isl_basic_set_set_to_empty(bset);
	}

	hull = initialize_hull(bset, sample);

	hull = extend_affine_hull(tab, hull, bset);
	isl_basic_set_free(bset);
	isl_tab_free(tab);

	return hull;
error:
	isl_vec_free(sample);
	isl_tab_free(tab);
	isl_basic_set_free(bset);
	return NULL;
}

/* Given an unbounded tableau and an integer point satisfying the tableau,
 * construct an initial affine hull containing the recession cone
 * shifted to the given point.
 *
 * The unbounded directions are taken from the last rows of the basis,
 * which is assumed to have been initialized appropriately.
 */
static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
	__isl_take isl_vec *vec)
{
	int i;
	int k;
	struct isl_basic_set *bset = NULL;
	struct isl_ctx *ctx;
	unsigned dim;

	if (!vec || !tab)
		return NULL;
	ctx = vec->ctx;
	isl_assert(ctx, vec->size != 0, goto error);

	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
	if (!bset)
		goto error;
	dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
	for (i = 0; i < dim; ++i) {
		k = isl_basic_set_alloc_equality(bset);
		if (k < 0)
			goto error;
		isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
			    vec->size - 1);
		isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
				      vec->size - 1, &bset->eq[k][0]);
		isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
	}
	bset->sample = vec;
	bset = isl_basic_set_gauss(bset, NULL);

	return bset;
error:
	isl_basic_set_free(bset);
	isl_vec_free(vec);
	return NULL;
}

/* Given a tableau of a set and a tableau of the corresponding
 * recession cone, detect and add all equalities to the tableau.
 * If the tableau is bounded, then we can simply keep the
 * tableau in its state after the return from extend_affine_hull.
 * However, if the tableau is unbounded, then
 * isl_tab_set_initial_basis_with_cone will add some additional
 * constraints to the tableau that have to be removed again.
 * In this case, we therefore rollback to the state before
 * any constraints were added and then add the equalities back in.
 */
struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
	struct isl_tab *tab_cone)
{
	int j;
	struct isl_vec *sample;
	struct isl_basic_set *hull = NULL;
	struct isl_tab_undo *snap;

	if (!tab || !tab_cone)
		goto error;

	snap = isl_tab_snap(tab);

	isl_mat_free(tab->basis);
	tab->basis = NULL;

	isl_assert(tab->mat->ctx, tab->bmap, goto error);
	isl_assert(tab->mat->ctx, tab->samples, goto error);
	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
	isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);

	if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
		goto error;

	sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
	if (!sample)
		goto error;

	isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);

	isl_vec_free(tab->bmap->sample);
	tab->bmap->sample = isl_vec_copy(sample);

	if (tab->n_unbounded == 0)
		hull = isl_basic_set_from_vec(isl_vec_copy(sample));
	else
		hull = initial_hull(tab, isl_vec_copy(sample));

	for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
		isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
		hull = affine_hull(hull,
				isl_basic_set_from_vec(isl_vec_copy(sample)));
	}

	isl_vec_free(sample);

	hull = extend_affine_hull(tab, hull, NULL);
	if (!hull)
		goto error;

	if (tab->n_unbounded == 0) {
		isl_basic_set_free(hull);
		return tab;
	}

	if (isl_tab_rollback(tab, snap) < 0)
		goto error;

	if (hull->n_eq > tab->n_zero) {
		for (j = 0; j < hull->n_eq; ++j) {
			isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
				goto error;
		}
	}

	isl_basic_set_free(hull);

	return tab;
error:
	isl_basic_set_free(hull);
	isl_tab_free(tab);
	return NULL;
}

/* Compute the affine hull of "bset", where "cone" is the recession cone
 * of "bset".
 *
 * We first compute a unimodular transformation that puts the unbounded
 * directions in the last dimensions.  In particular, we take a transformation
 * that maps all equalities to equalities (in HNF) on the first dimensions.
 * Let x be the original dimensions and y the transformed, with y_1 bounded
 * and y_2 unbounded.
 *
 *	       [ y_1 ]			[ y_1 ]   [ Q_1 ]
 *	x = U  [ y_2 ]			[ y_2 ] = [ Q_2 ] x
 *
 * Let's call the input basic set S.  We compute S' = preimage(S, U)
 * and drop the final dimensions including any constraints involving them.
 * This results in set S''.
 * Then we compute the affine hull A'' of S''.
 * Let F y_1 >= g be the constraint system of A''.  In the transformed
 * space the y_2 are unbounded, so we can add them back without any constraints,
 * resulting in
 *
 *		        [ y_1 ]
 *		[ F 0 ] [ y_2 ] >= g
 * or
 *		        [ Q_1 ]
 *		[ F 0 ] [ Q_2 ] x >= g
 * or
 *		F Q_1 x >= g
 *
 * The affine hull in the original space is then obtained as
 * A = preimage(A'', Q_1).
 */
static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
	struct isl_basic_set *cone)
{
	unsigned total;
	unsigned cone_dim;
	struct isl_basic_set *hull;
	struct isl_mat *M, *U, *Q;

	if (!bset || !cone)
		goto error;

	total = isl_basic_set_total_dim(cone);
	cone_dim = total - cone->n_eq;

	M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
	M = isl_mat_left_hermite(M, 0, &U, &Q);
	if (!M)
		goto error;
	isl_mat_free(M);

	U = isl_mat_lin_to_aff(U);
	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));

	bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
							cone_dim);
	bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);

	Q = isl_mat_lin_to_aff(Q);
	Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);

	if (bset && bset->sample && bset->sample->size == 1 + total)
		bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);

	hull = uset_affine_hull_bounded(bset);

	if (!hull) {
		isl_mat_free(Q);
		isl_mat_free(U);
	} else {
		struct isl_vec *sample = isl_vec_copy(hull->sample);
		U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
		if (sample && sample->size > 0)
			sample = isl_mat_vec_product(U, sample);
		else
			isl_mat_free(U);
		hull = isl_basic_set_preimage(hull, Q);
		if (hull) {
			isl_vec_free(hull->sample);
			hull->sample = sample;
		} else
			isl_vec_free(sample);
	}

	isl_basic_set_free(cone);

	return hull;
error:
	isl_basic_set_free(bset);
	isl_basic_set_free(cone);
	return NULL;
}

/* Look for all equalities satisfied by the integer points in bset,
 * which is assumed not to have any explicit equalities.
 *
 * The equalities are obtained by successively looking for
 * a point that is affinely independent of the points found so far.
 * In particular, for each equality satisfied by the points so far,
 * we check if there is any point on a hyperplane parallel to the
 * corresponding hyperplane shifted by at least one (in either direction).
 *
 * Before looking for any outside points, we first compute the recession
 * cone.  The directions of this recession cone will always be part
 * of the affine hull, so there is no need for looking for any points
 * in these directions.
 * In particular, if the recession cone is full-dimensional, then
 * the affine hull is simply the whole universe.
 */
static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
{
	struct isl_basic_set *cone;

	if (isl_basic_set_plain_is_empty(bset))
		return bset;

	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
	if (!cone)
		goto error;
	if (cone->n_eq == 0) {
		isl_space *space;
		space = isl_basic_set_get_space(bset);
		isl_basic_set_free(cone);
		isl_basic_set_free(bset);
		return isl_basic_set_universe(space);
	}

	if (cone->n_eq < isl_basic_set_total_dim(cone))
		return affine_hull_with_cone(bset, cone);

	isl_basic_set_free(cone);
	return uset_affine_hull_bounded(bset);
error:
	isl_basic_set_free(bset);
	return NULL;
}

/* Look for all equalities satisfied by the integer points in bmap
 * that are independent of the equalities already explicitly available
 * in bmap.
 *
 * We first remove all equalities already explicitly available,
 * then look for additional equalities in the reduced space
 * and then transform the result to the original space.
 * The original equalities are _not_ added to this set.  This is
 * the responsibility of the calling function.
 * The resulting basic set has all meaning about the dimensions removed.
 * In particular, dimensions that correspond to existential variables
 * in bmap and that are found to be fixed are not removed.
 */
static struct isl_basic_set *equalities_in_underlying_set(
						struct isl_basic_map *bmap)
{
	struct isl_mat *T1 = NULL;
	struct isl_mat *T2 = NULL;
	struct isl_basic_set *bset = NULL;
	struct isl_basic_set *hull = NULL;

	bset = isl_basic_map_underlying_set(bmap);
	if (!bset)
		return NULL;
	if (bset->n_eq)
		bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
	if (!bset)
		goto error;

	hull = uset_affine_hull(bset);
	if (!T2)
		return hull;

	if (!hull) {
		isl_mat_free(T1);
		isl_mat_free(T2);
	} else {
		struct isl_vec *sample = isl_vec_copy(hull->sample);
		if (sample && sample->size > 0)
			sample = isl_mat_vec_product(T1, sample);
		else
			isl_mat_free(T1);
		hull = isl_basic_set_preimage(hull, T2);
		if (hull) {
			isl_vec_free(hull->sample);
			hull->sample = sample;
		} else
			isl_vec_free(sample);
	}

	return hull;
error:
	isl_mat_free(T1);
	isl_mat_free(T2);
	isl_basic_set_free(bset);
	isl_basic_set_free(hull);
	return NULL;
}

/* Detect and make explicit all equalities satisfied by the (integer)
 * points in bmap.
 */
__isl_give isl_basic_map *isl_basic_map_detect_equalities(
	__isl_take isl_basic_map *bmap)
{
	int i, j;
	struct isl_basic_set *hull = NULL;

	if (!bmap)
		return NULL;
	if (bmap->n_ineq == 0)
		return bmap;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
		return bmap;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
		return bmap;
	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
		return isl_basic_map_implicit_equalities(bmap);

	hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
	if (!hull)
		goto error;
	if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
		isl_basic_set_free(hull);
		return isl_basic_map_set_to_empty(bmap);
	}
	bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0,
					hull->n_eq, 0);
	for (i = 0; i < hull->n_eq; ++i) {
		j = isl_basic_map_alloc_equality(bmap);
		if (j < 0)
			goto error;
		isl_seq_cpy(bmap->eq[j], hull->eq[i],
				1 + isl_basic_set_total_dim(hull));
	}
	isl_vec_free(bmap->sample);
	bmap->sample = isl_vec_copy(hull->sample);
	isl_basic_set_free(hull);
	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
	bmap = isl_basic_map_simplify(bmap);
	return isl_basic_map_finalize(bmap);
error:
	isl_basic_set_free(hull);
	isl_basic_map_free(bmap);
	return NULL;
}

__isl_give isl_basic_set *isl_basic_set_detect_equalities(
						__isl_take isl_basic_set *bset)
{
	return bset_from_bmap(
		isl_basic_map_detect_equalities(bset_to_bmap(bset)));
}

__isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
{
	return isl_map_inline_foreach_basic_map(map,
					    &isl_basic_map_detect_equalities);
}

__isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
{
	return set_from_map(isl_map_detect_equalities(set_to_map(set)));
}

/* Return the superset of "bmap" described by the equalities
 * satisfied by "bmap" that are already known.
 */
__isl_give isl_basic_map *isl_basic_map_plain_affine_hull(
	__isl_take isl_basic_map *bmap)
{
	bmap = isl_basic_map_cow(bmap);
	if (bmap)
		isl_basic_map_free_inequality(bmap, bmap->n_ineq);
	bmap = isl_basic_map_finalize(bmap);
	return bmap;
}

/* Return the superset of "bset" described by the equalities
 * satisfied by "bset" that are already known.
 */
__isl_give isl_basic_set *isl_basic_set_plain_affine_hull(
	__isl_take isl_basic_set *bset)
{
	return isl_basic_map_plain_affine_hull(bset);
}

/* After computing the rational affine hull (by detecting the implicit
 * equalities), we compute the additional equalities satisfied by
 * the integer points (if any) and add the original equalities back in.
 */
__isl_give isl_basic_map *isl_basic_map_affine_hull(
	__isl_take isl_basic_map *bmap)
{
	bmap = isl_basic_map_detect_equalities(bmap);
	bmap = isl_basic_map_plain_affine_hull(bmap);
	return bmap;
}

struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
{
	return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset)));
}

/* Given a rational affine matrix "M", add stride constraints to "bmap"
 * that ensure that
 *
 *		M(x)
 *
 * is an integer vector.  The variables x include all the variables
 * of "bmap" except the unknown divs.
 *
 * If d is the common denominator of M, then we need to impose that
 *
 *		d M(x) = 0 	mod d
 *
 * or
 *
 *		exists alpha : d M(x) = d alpha
 *
 * This function is similar to add_strides in isl_morph.c
 */
static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
	__isl_keep isl_mat *M, int n_known)
{
	int i, div, k;
	isl_int gcd;

	if (isl_int_is_one(M->row[0][0]))
		return bmap;

	bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
					M->n_row - 1, M->n_row - 1, 0);

	isl_int_init(gcd);
	for (i = 1; i < M->n_row; ++i) {
		isl_seq_gcd(M->row[i], M->n_col, &gcd);
		if (isl_int_is_divisible_by(gcd, M->row[0][0]))
			continue;
		div = isl_basic_map_alloc_div(bmap);
		if (div < 0)
			goto error;
		isl_int_set_si(bmap->div[div][0], 0);
		k = isl_basic_map_alloc_equality(bmap);
		if (k < 0)
			goto error;
		isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
		isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
		isl_int_set(bmap->eq[k][M->n_col - n_known + div],
			    M->row[0][0]);
	}
	isl_int_clear(gcd);

	return bmap;
error:
	isl_int_clear(gcd);
	isl_basic_map_free(bmap);
	return NULL;
}

/* If there are any equalities that involve (multiple) unknown divs,
 * then extract the stride information encoded by those equalities
 * and make it explicitly available in "bmap".
 *
 * We first sort the divs so that the unknown divs appear last and
 * then we count how many equalities involve these divs.
 *
 * Let these equalities be of the form
 *
 *		A(x) + B y = 0
 *
 * where y represents the unknown divs and x the remaining variables.
 * Let [H 0] be the Hermite Normal Form of B, i.e.,
 *
 *		B = [H 0] Q
 *
 * Then x is a solution of the equalities iff
 *
 *		H^-1 A(x) (= - [I 0] Q y)
 *
 * is an integer vector.  Let d be the common denominator of H^-1.
 * We impose
 *
 *		d H^-1 A(x) = d alpha
 *
 * in add_strides, with alpha fresh existentially quantified variables.
 */
static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
	__isl_take isl_basic_map *bmap)
{
	int known;
	int n_known;
	int n, n_col;
	int total;
	isl_ctx *ctx;
	isl_mat *A, *B, *M;

	known = isl_basic_map_divs_known(bmap);
	if (known < 0)
		return isl_basic_map_free(bmap);
	if (known)
		return bmap;
	bmap = isl_basic_map_sort_divs(bmap);
	bmap = isl_basic_map_gauss(bmap, NULL);
	if (!bmap)
		return NULL;

	for (n_known = 0; n_known < bmap->n_div; ++n_known)
		if (isl_int_is_zero(bmap->div[n_known][0]))
			break;
	ctx = isl_basic_map_get_ctx(bmap);
	total = isl_space_dim(bmap->dim, isl_dim_all);
	for (n = 0; n < bmap->n_eq; ++n)
		if (isl_seq_first_non_zero(bmap->eq[n] + 1 + total + n_known,
					    bmap->n_div - n_known) == -1)
			break;
	if (n == 0)
		return bmap;
	B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + total + n_known);
	n_col = bmap->n_div - n_known;
	A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + total + n_known, n_col);
	A = isl_mat_left_hermite(A, 0, NULL, NULL);
	A = isl_mat_drop_cols(A, n, n_col - n);
	A = isl_mat_lin_to_aff(A);
	A = isl_mat_right_inverse(A);
	B = isl_mat_insert_zero_rows(B, 0, 1);
	B = isl_mat_set_element_si(B, 0, 0, 1);
	M = isl_mat_product(A, B);
	if (!M)
		return isl_basic_map_free(bmap);
	bmap = add_strides(bmap, M, n_known);
	bmap = isl_basic_map_gauss(bmap, NULL);
	isl_mat_free(M);

	return bmap;
}

/* Compute the affine hull of each basic map in "map" separately
 * and make all stride information explicit so that we can remove
 * all unknown divs without losing this information.
 * The result is also guaranteed to be gaussed.
 *
 * In simple cases where a div is determined by an equality,
 * calling isl_basic_map_gauss is enough to make the stride information
 * explicit, as it will derive an explicit representation for the div
 * from the equality.  If, however, the stride information
 * is encoded through multiple unknown divs then we need to make
 * some extra effort in isl_basic_map_make_strides_explicit.
 */
static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
{
	int i;

	map = isl_map_cow(map);
	if (!map)
		return NULL;

	for (i = 0; i < map->n; ++i) {
		map->p[i] = isl_basic_map_affine_hull(map->p[i]);
		map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
		map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
		if (!map->p[i])
			return isl_map_free(map);
	}

	return map;
}

static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
{
	return isl_map_local_affine_hull(set);
}

/* Return an empty basic map living in the same space as "map".
 */
static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
	__isl_take isl_map *map)
{
	isl_space *space;

	space = isl_map_get_space(map);
	isl_map_free(map);
	return isl_basic_map_empty(space);
}

/* Compute the affine hull of "map".
 *
 * We first compute the affine hull of each basic map separately.
 * Then we align the divs and recompute the affine hulls of the basic
 * maps since some of them may now have extra divs.
 * In order to avoid performing parametric integer programming to
 * compute explicit expressions for the divs, possible leading to
 * an explosion in the number of basic maps, we first drop all unknown
 * divs before aligning the divs.  Note that isl_map_local_affine_hull tries
 * to make sure that all stride information is explicitly available
 * in terms of known divs.  This involves calling isl_basic_set_gauss,
 * which is also needed because affine_hull assumes its input has been gaussed,
 * while isl_map_affine_hull may be called on input that has not been gaussed,
 * in particular from initial_facet_constraint.
 * Similarly, align_divs may reorder some divs so that we need to
 * gauss the result again.
 * Finally, we combine the individual affine hulls into a single
 * affine hull.
 */
__isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
{
	struct isl_basic_map *model = NULL;
	struct isl_basic_map *hull = NULL;
	struct isl_set *set;
	isl_basic_set *bset;

	map = isl_map_detect_equalities(map);
	map = isl_map_local_affine_hull(map);
	map = isl_map_remove_empty_parts(map);
	map = isl_map_remove_unknown_divs(map);
	map = isl_map_align_divs_internal(map);

	if (!map)
		return NULL;

	if (map->n == 0)
		return replace_map_by_empty_basic_map(map);

	model = isl_basic_map_copy(map->p[0]);
	set = isl_map_underlying_set(map);
	set = isl_set_cow(set);
	set = isl_set_local_affine_hull(set);
	if (!set)
		goto error;

	while (set->n > 1)
		set->p[0] = affine_hull(set->p[0], set->p[--set->n]);

	bset = isl_basic_set_copy(set->p[0]);
	hull = isl_basic_map_overlying_set(bset, model);
	isl_set_free(set);
	hull = isl_basic_map_simplify(hull);
	return isl_basic_map_finalize(hull);
error:
	isl_basic_map_free(model);
	isl_set_free(set);
	return NULL;
}

struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
{
	return bset_from_bmap(isl_map_affine_hull(set_to_map(set)));
}