user.pod 400 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268
=head1 Introduction

C<isl> is a thread-safe C library for manipulating
sets and relations of integer points bounded by affine constraints.
The descriptions of the sets and relations may involve
both parameters and existentially quantified variables.
All computations are performed in exact integer arithmetic
using C<GMP> or C<imath>.
The C<isl> library offers functionality that is similar
to that offered by the C<Omega> and C<Omega+> libraries,
but the underlying algorithms are in most cases completely different.

The library is by no means complete and some fairly basic
functionality is still missing.
Still, even in its current form, the library has been successfully
used as a backend polyhedral library for the polyhedral
scanner C<CLooG> and as part of an equivalence checker of
static affine programs.
For bug reports, feature requests and questions,
visit the discussion group at
L<http://groups.google.com/group/isl-development>.

=head2 Backward Incompatible Changes

=head3 Changes since isl-0.02

=over

=item * The old printing functions have been deprecated
and replaced by C<isl_printer> functions, see L<Input and Output>.

=item * Most functions related to dependence analysis have acquired
an extra C<must> argument.  To obtain the old behavior, this argument
should be given the value 1.  See L<Dependence Analysis>.

=back

=head3 Changes since isl-0.03

=over

=item * The function C<isl_pw_qpolynomial_fold_add> has been
renamed to C<isl_pw_qpolynomial_fold_fold>.
Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
renamed to C<isl_union_pw_qpolynomial_fold_fold>.

=back

=head3 Changes since isl-0.04

=over

=item * All header files have been renamed from C<isl_header.h>
to C<isl/header.h>.

=back

=head3 Changes since isl-0.05

=over

=item * The functions C<isl_printer_print_basic_set> and
C<isl_printer_print_basic_map> no longer print a newline.

=item * The functions C<isl_flow_get_no_source>
and C<isl_union_map_compute_flow> now return
the accesses for which no source could be found instead of
the iterations where those accesses occur.

=item * The functions C<isl_basic_map_identity> and
C<isl_map_identity> now take a B<map> space as input.  An old call
C<isl_map_identity(space)> can be rewritten to
C<isl_map_identity(isl_space_map_from_set(space))>.

=item * The function C<isl_map_power> no longer takes
a parameter position as input.  Instead, the exponent
is now expressed as the domain of the resulting relation.

=back

=head3 Changes since isl-0.06

=over

=item * The format of C<isl_printer_print_qpolynomial>'s
C<ISL_FORMAT_ISL> output has changed.
Use C<ISL_FORMAT_C> to obtain the old output.

=item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
Some of the old names have been kept for backward compatibility,
but they will be removed in the future.

=back

=head3 Changes since isl-0.07

=over

=item * The function C<isl_pw_aff_max> has been renamed to
C<isl_pw_aff_union_max>.
Similarly, the function C<isl_pw_aff_add> has been renamed to
C<isl_pw_aff_union_add>.

=item * The C<isl_dim> type has been renamed to C<isl_space>
along with the associated functions.
Some of the old names have been kept for backward compatibility,
but they will be removed in the future.

=item * Spaces of maps, sets and parameter domains are now
treated differently.  The distinction between map spaces and set spaces
has always been made on a conceptual level, but proper use of such spaces
was never checked.  Furthermore, up until isl-0.07 there was no way
of explicitly creating a parameter space.  These can now be created
directly using C<isl_space_params_alloc> or from other spaces using
C<isl_space_params>.

=item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
objects live is now a map space
instead of a set space.  This means, for example, that the dimensions
of the domain of an C<isl_aff> are now considered to be of type
C<isl_dim_in> instead of C<isl_dim_set>.  Extra functions have been
added to obtain the domain space.  Some of the constructors still
take a domain space and have therefore been renamed.

=item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
now take an C<isl_local_space> instead of an C<isl_space>.
An C<isl_local_space> can be created from an C<isl_space>
using C<isl_local_space_from_space>.

=item * The C<isl_div> type has been removed.  Functions that used
to return an C<isl_div> now return an C<isl_aff>.
Note that the space of an C<isl_aff> is that of relation.
When replacing a call to C<isl_div_get_coefficient> by a call to
C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
to be replaced by C<isl_dim_in>.
A call to C<isl_aff_from_div> can be replaced by a call
to C<isl_aff_floor>.
A call to C<isl_qpolynomial_div(div)> call be replaced by
the nested call

	isl_qpolynomial_from_aff(isl_aff_floor(div))

The function C<isl_constraint_div> has also been renamed
to C<isl_constraint_get_div>.

=item * The C<nparam> argument has been removed from
C<isl_map_read_from_str> and similar functions.
When reading input in the original PolyLib format,
the result will have no parameters.
If parameters are expected, the caller may want to perform
dimension manipulation on the result.

=back

=head3 Changes since isl-0.09

=over

=item * The C<schedule_split_parallel> option has been replaced
by the C<schedule_split_scaled> option.

=item * The first argument of C<isl_pw_aff_cond> is now
an C<isl_pw_aff> instead of an C<isl_set>.
A call C<isl_pw_aff_cond(a, b, c)> can be replaced by

	isl_pw_aff_cond(isl_set_indicator_function(a), b, c)

=back

=head3 Changes since isl-0.10

=over

=item * The functions C<isl_set_dim_has_lower_bound> and
C<isl_set_dim_has_upper_bound> have been renamed to
C<isl_set_dim_has_any_lower_bound> and
C<isl_set_dim_has_any_upper_bound>.
The new C<isl_set_dim_has_lower_bound> and
C<isl_set_dim_has_upper_bound> have slightly different meanings.

=back

=head3 Changes since isl-0.12

=over

=item * C<isl_int> has been replaced by C<isl_val>.
Some of the old functions are still available in C<isl/deprecated/*.h>
but they will be removed in the future.

=item * The functions C<isl_pw_qpolynomial_eval>,
C<isl_union_pw_qpolynomial_eval>, C<isl_pw_qpolynomial_fold_eval>
and C<isl_union_pw_qpolynomial_fold_eval> have been changed to return
an C<isl_val> instead of an C<isl_qpolynomial>.

=item * The function C<isl_band_member_is_zero_distance>
has been removed.  Essentially the same functionality is available
through C<isl_band_member_is_coincident>, except that it requires
setting up coincidence constraints.
The option C<schedule_outer_zero_distance> has accordingly been
replaced by the option C<schedule_outer_coincidence>.

=item * The function C<isl_vertex_get_expr> has been changed
to return an C<isl_multi_aff> instead of a rational C<isl_basic_set>.
The function C<isl_vertex_get_domain> has been changed to return
a regular basic set, rather than a rational basic set.

=back

=head3 Changes since isl-0.14

=over

=item * The function C<isl_union_pw_multi_aff_add> now consistently
computes the sum on the shared definition domain.
The function C<isl_union_pw_multi_aff_union_add> has been added
to compute the sum on the union of definition domains.
The original behavior of C<isl_union_pw_multi_aff_add> was
confused and is no longer available.

=item * Band forests have been replaced by schedule trees.

=item * The function C<isl_union_map_compute_flow> has been
replaced by the function C<isl_union_access_info_compute_flow>.
Note that the may dependence relation returned by
C<isl_union_flow_get_may_dependence> is the union of
the two dependence relations returned by
C<isl_union_map_compute_flow>.  Similarly for the no source relations.
The function C<isl_union_map_compute_flow> is still available
for backward compatibility, but it will be removed in the future.

=item * The function C<isl_basic_set_drop_constraint> has been
deprecated.

=item * The function C<isl_ast_build_ast_from_schedule> has been
renamed to C<isl_ast_build_node_from_schedule_map>.
The original name is still available
for backward compatibility, but it will be removed in the future.

=item * The C<separation_class> AST generation option has been
deprecated.

=item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
have been renamed to C<isl_constraint_alloc_equality> and
C<isl_constraint_alloc_inequality>.  The original names have been
kept for backward compatibility, but they will be removed in the future.

=item * The C<schedule_fuse> option has been replaced
by the C<schedule_serialize_sccs> option.  The effect
of setting the C<schedule_fuse> option to C<ISL_SCHEDULE_FUSE_MIN>
is now obtained by turning on the C<schedule_serialize_sccs> option.

=back

=head3 Changes since isl-0.17

=over

=item * The function C<isl_printer_print_ast_expr> no longer prints
in C format by default.  To print in C format, the output format
of the printer needs to have been explicitly set to C<ISL_FORMAT_C>.
As a result, the function C<isl_ast_expr_to_str> no longer prints
the expression in C format.  Use C<isl_ast_expr_to_C_str> instead.

=item * The functions C<isl_set_align_divs> and C<isl_map_align_divs>
have been deprecated.  The function C<isl_set_lift> has an effect
that is similar to C<isl_set_align_divs> and could in some cases
be used as an alternative.

=back

=head3 Changes since isl-0.19

=over

=item * Zero-dimensional objects of type C<isl_multi_pw_aff> or
C<isl_multi_union_pw_aff> can now keep track of an explicit domain.
This explicit domain, if present, is taken into account
by various operations that take such objects as input.

=back

=head1 License

C<isl> is released under the MIT license.

=over

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

=back

Note that by default C<isl> requires C<GMP>, which is released
under the GNU Lesser General Public License (LGPL).  This means
that code linked against C<isl> is also linked against LGPL code.

When configuring with C<--with-int=imath> or C<--with-int=imath-32>, C<isl>
will link against C<imath>, a library for exact integer arithmetic released
under the MIT license.

=head1 Installation

The source of C<isl> can be obtained either as a tarball
or from the git repository.  Both are available from
L<http://isl.gforge.inria.fr/>.
The installation process depends on how you obtained
the source.

=head2 Installation from the git repository

=over

=item 1 Clone or update the repository

The first time the source is obtained, you need to clone
the repository.

	git clone git://repo.or.cz/isl.git

To obtain updates, you need to pull in the latest changes

	git pull

=item 2 Optionally get C<imath> submodule

To build C<isl> with C<imath>, you need to obtain the C<imath>
submodule by running in the git source tree of C<isl>

       git submodule init
       git submodule update

This will fetch the required version of C<imath> in a subdirectory of C<isl>.

=item 2 Generate C<configure>

	./autogen.sh

=back

After performing the above steps, continue
with the L<Common installation instructions>.

=head2 Common installation instructions

=over

=item 1 Obtain C<GMP>

By default, building C<isl> requires C<GMP>, including its headers files.
Your distribution may not provide these header files by default
and you may need to install a package called C<gmp-devel> or something
similar.  Alternatively, C<GMP> can be built from
source, available from L<http://gmplib.org/>.
C<GMP> is not needed if you build C<isl> with C<imath>.

=item 2 Configure

C<isl> uses the standard C<autoconf> C<configure> script.
To run it, just type

	./configure

optionally followed by some configure options.
A complete list of options can be obtained by running

	./configure --help

Below we discuss some of the more common options.

=over

=item C<--prefix>

Installation prefix for C<isl>

=item C<--with-int=[gmp|imath|imath-32]>

Select the integer library to be used by C<isl>, the default is C<gmp>.
With C<imath-32>, C<isl> will use 32 bit integers, but fall back to C<imath>
for values out of the 32 bit range. In most applications, C<isl> will run
fastest with the C<imath-32> option, followed by C<gmp> and C<imath>, the
slowest.

=item C<--with-gmp-prefix>

Installation prefix for C<GMP> (architecture-independent files).

=item C<--with-gmp-exec-prefix>

Installation prefix for C<GMP> (architecture-dependent files).

=back

=item 3 Compile

	make

=item 4 Install (optional)

	make install

=back

=head1 Integer Set Library

=head2 Memory Management

Since a high-level operation on isl objects usually involves
several substeps and since the user is usually not interested in
the intermediate results, most functions that return a new object
will also release all the objects passed as arguments.
If the user still wants to use one or more of these arguments
after the function call, she should pass along a copy of the
object rather than the object itself.
The user is then responsible for making sure that the original
object gets used somewhere else or is explicitly freed.

The arguments and return values of all documented functions are
annotated to make clear which arguments are released and which
arguments are preserved.  In particular, the following annotations
are used

=over

=item C<__isl_give>

C<__isl_give> means that a new object is returned.
The user should make sure that the returned pointer is
used exactly once as a value for an C<__isl_take> argument.
In between, it can be used as a value for as many
C<__isl_keep> arguments as the user likes.
There is one exception, and that is the case where the
pointer returned is C<NULL>.  Is this case, the user
is free to use it as an C<__isl_take> argument or not.
When applied to a C<char *>, the returned pointer needs to be
freed using C<free>.

=item C<__isl_null>

C<__isl_null> means that a C<NULL> value is returned.

=item C<__isl_take>

C<__isl_take> means that the object the argument points to
is taken over by the function and may no longer be used
by the user as an argument to any other function.
The pointer value must be one returned by a function
returning an C<__isl_give> pointer.
If the user passes in a C<NULL> value, then this will
be treated as an error in the sense that the function will
not perform its usual operation.  However, it will still
make sure that all the other C<__isl_take> arguments
are released.

=item C<__isl_keep>

C<__isl_keep> means that the function will only use the object
temporarily.  After the function has finished, the user
can still use it as an argument to other functions.
A C<NULL> value will be treated in the same way as
a C<NULL> value for an C<__isl_take> argument.
This annotation may also be used on return values of
type C<const char *>, in which case the returned pointer should
not be freed by the user and is only valid until the object
from which it was derived is updated or freed.

=back

=head2 Initialization

All manipulations of integer sets and relations occur within
the context of an C<isl_ctx>.
A given C<isl_ctx> can only be used within a single thread.
All arguments of a function are required to have been allocated
within the same context.
There are currently no functions available for moving an object
from one C<isl_ctx> to another C<isl_ctx>.  This means that
there is currently no way of safely moving an object from one
thread to another, unless the whole C<isl_ctx> is moved.

An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
freed using C<isl_ctx_free>.
All objects allocated within an C<isl_ctx> should be freed
before the C<isl_ctx> itself is freed.

	isl_ctx *isl_ctx_alloc();
	void isl_ctx_free(isl_ctx *ctx);

The user can impose a bound on the number of low-level I<operations>
that can be performed by an C<isl_ctx>.  This bound can be set and
retrieved using the following functions.  A bound of zero means that
no bound is imposed.  The number of operations performed can be
reset using C<isl_ctx_reset_operations>.  Note that the number
of low-level operations needed to perform a high-level computation
may differ significantly across different versions
of C<isl>, but it should be the same across different platforms
for the same version of C<isl>.

Warning: This feature is experimental.  C<isl> has good support to abort and
bail out during the computation, but this feature may exercise error code paths
that are normally not used that much. Consequently, it is not unlikely that
hidden bugs will be exposed.

	void isl_ctx_set_max_operations(isl_ctx *ctx,
		unsigned long max_operations);
	unsigned long isl_ctx_get_max_operations(isl_ctx *ctx);
	void isl_ctx_reset_operations(isl_ctx *ctx);

In order to be able to create an object in the same context
as another object, most object types (described later in
this document) provide a function to obtain the context
in which the object was created.

	#include <isl/val.h>
	isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val);
	isl_ctx *isl_multi_val_get_ctx(
		__isl_keep isl_multi_val *mv);

	#include <isl/id.h>
	isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);

	#include <isl/local_space.h>
	isl_ctx *isl_local_space_get_ctx(
		__isl_keep isl_local_space *ls);

	#include <isl/set.h>
	isl_ctx *isl_set_list_get_ctx(
		__isl_keep isl_set_list *list);

	#include <isl/aff.h>
	isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
	isl_ctx *isl_multi_aff_get_ctx(
		__isl_keep isl_multi_aff *maff);
	isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pa);
	isl_ctx *isl_pw_multi_aff_get_ctx(
		__isl_keep isl_pw_multi_aff *pma);
	isl_ctx *isl_multi_pw_aff_get_ctx(
		__isl_keep isl_multi_pw_aff *mpa);
	isl_ctx *isl_union_pw_aff_get_ctx(
		__isl_keep isl_union_pw_aff *upa);
	isl_ctx *isl_union_pw_multi_aff_get_ctx(
		__isl_keep isl_union_pw_multi_aff *upma);
	isl_ctx *isl_multi_union_pw_aff_get_ctx(
		__isl_keep isl_multi_union_pw_aff *mupa);

	#include <isl/id_to_ast_expr.h>
	isl_ctx *isl_id_to_ast_expr_get_ctx(
		__isl_keep isl_id_to_ast_expr *id2expr);

	#include <isl/point.h>
	isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);

	#include <isl/vec.h>
	isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);

	#include <isl/mat.h>
	isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);

	#include <isl/vertices.h>
	isl_ctx *isl_vertices_get_ctx(
		__isl_keep isl_vertices *vertices);
	isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
	isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);

	#include <isl/flow.h>
	isl_ctx *isl_restriction_get_ctx(
		__isl_keep isl_restriction *restr);
	isl_ctx *isl_union_access_info_get_ctx(
		__isl_keep isl_union_access_info *access);
	isl_ctx *isl_union_flow_get_ctx(
		__isl_keep isl_union_flow *flow);

	#include <isl/schedule.h>
	isl_ctx *isl_schedule_get_ctx(
		__isl_keep isl_schedule *sched);
	isl_ctx *isl_schedule_constraints_get_ctx(
		__isl_keep isl_schedule_constraints *sc);

	#include <isl/schedule_node.h>
	isl_ctx *isl_schedule_node_get_ctx(
		__isl_keep isl_schedule_node *node);

	#include <isl/ast_build.h>
	isl_ctx *isl_ast_build_get_ctx(
		__isl_keep isl_ast_build *build);

	#include <isl/ast.h>
	isl_ctx *isl_ast_expr_get_ctx(
		__isl_keep isl_ast_expr *expr);
	isl_ctx *isl_ast_node_get_ctx(
		__isl_keep isl_ast_node *node);

	#include <isl/stride_info.h>
	isl_ctx *isl_stride_info_get_ctx(
		__isl_keep isl_stride_info *si);

	#include <isl/fixed_box.h>
	isl_ctx *isl_fixed_box_get_ctx(
		__isl_keep isl_fixed_box *box);

=head2 Return Types

C<isl> uses two special return types for functions that either return
a boolean or that in principle do not return anything.
In particular, the C<isl_bool> type has three possible values:
C<isl_bool_true> (a positive integer value), indicating I<true> or I<yes>;
C<isl_bool_false> (the integer value zero), indicating I<false> or I<no>; and
C<isl_bool_error> (a negative integer value), indicating that something
went wrong.  The following function can be used to negate an C<isl_bool>,
where the negation of C<isl_bool_error> is C<isl_bool_error> again.

	#include <isl/val.h>
	isl_bool isl_bool_not(isl_bool b);

The C<isl_stat> type has two possible values:
C<isl_stat_ok> (the integer value zero), indicating a successful
operation; and
C<isl_stat_error> (a negative integer value), indicating that something
went wrong.
See L</"Error Handling"> for more information on
C<isl_bool_error> and C<isl_stat_error>.

=head2 Values

An C<isl_val> represents an integer value, a rational value
or one of three special values, infinity, negative infinity and NaN.
Some predefined values can be created using the following functions.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_zero(isl_ctx *ctx);
	__isl_give isl_val *isl_val_one(isl_ctx *ctx);
	__isl_give isl_val *isl_val_negone(isl_ctx *ctx);
	__isl_give isl_val *isl_val_nan(isl_ctx *ctx);
	__isl_give isl_val *isl_val_infty(isl_ctx *ctx);
	__isl_give isl_val *isl_val_neginfty(isl_ctx *ctx);

Specific integer values can be created using the following functions.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx,
		long i);
	__isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx,
		unsigned long u);
	__isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx,
		size_t n, size_t size, const void *chunks);

The function C<isl_val_int_from_chunks> constructs an C<isl_val>
from the C<n> I<digits>, each consisting of C<size> bytes, stored at C<chunks>.
The least significant digit is assumed to be stored first.

Value objects can be copied and freed using the following functions.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_copy(__isl_keep isl_val *v);
	__isl_null isl_val *isl_val_free(__isl_take isl_val *v);

They can be inspected using the following functions.

	#include <isl/val.h>
	long isl_val_get_num_si(__isl_keep isl_val *v);
	long isl_val_get_den_si(__isl_keep isl_val *v);
	__isl_give isl_val *isl_val_get_den_val(
		__isl_keep isl_val *v);
	double isl_val_get_d(__isl_keep isl_val *v);
	size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v,
		size_t size);
	int isl_val_get_abs_num_chunks(__isl_keep isl_val *v,
		size_t size, void *chunks);

C<isl_val_n_abs_num_chunks> returns the number of I<digits>
of C<size> bytes needed to store the absolute value of the
numerator of C<v>.
C<isl_val_get_abs_num_chunks> stores these digits at C<chunks>,
which is assumed to have been preallocated by the caller.
The least significant digit is stored first.
Note that C<isl_val_get_num_si>, C<isl_val_get_den_si>,
C<isl_val_get_d>, C<isl_val_n_abs_num_chunks>
and C<isl_val_get_abs_num_chunks> can only be applied to rational values.

An C<isl_val> can be modified using the following function.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_set_si(__isl_take isl_val *v,
		long i);

The following unary properties are defined on C<isl_val>s.

	#include <isl/val.h>
	int isl_val_sgn(__isl_keep isl_val *v);
	isl_bool isl_val_is_zero(__isl_keep isl_val *v);
	isl_bool isl_val_is_one(__isl_keep isl_val *v);
	isl_bool isl_val_is_negone(__isl_keep isl_val *v);
	isl_bool isl_val_is_nonneg(__isl_keep isl_val *v);
	isl_bool isl_val_is_nonpos(__isl_keep isl_val *v);
	isl_bool isl_val_is_pos(__isl_keep isl_val *v);
	isl_bool isl_val_is_neg(__isl_keep isl_val *v);
	isl_bool isl_val_is_int(__isl_keep isl_val *v);
	isl_bool isl_val_is_rat(__isl_keep isl_val *v);
	isl_bool isl_val_is_nan(__isl_keep isl_val *v);
	isl_bool isl_val_is_infty(__isl_keep isl_val *v);
	isl_bool isl_val_is_neginfty(__isl_keep isl_val *v);

Note that the sign of NaN is undefined.

The following binary properties are defined on pairs of C<isl_val>s.

	#include <isl/val.h>
	isl_bool isl_val_lt(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	isl_bool isl_val_le(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	isl_bool isl_val_gt(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	isl_bool isl_val_ge(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	isl_bool isl_val_eq(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	isl_bool isl_val_ne(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);
	isl_bool isl_val_abs_eq(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);

Comparisons to NaN always return false.
That is, a NaN is not considered to hold any relative position
with respect to any value.  In particular, a NaN
is neither considered to be equal to nor to be different from
any value (including another NaN).
The function C<isl_val_abs_eq> checks whether its two arguments
are equal in absolute value.

For integer C<isl_val>s we additionally have the following binary property.

	#include <isl/val.h>
	isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1,
		__isl_keep isl_val *v2);

An C<isl_val> can also be compared to an integer using the following
functions.  The result of C<isl_val_cmp_si> undefined for NaN.

	#include <isl/val.h>
	isl_bool isl_val_gt_si(__isl_keep isl_val *v, long i);
	int isl_val_cmp_si(__isl_keep isl_val *v, long i);

The following unary operations are available on C<isl_val>s.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_abs(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_neg(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_floor(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_ceil(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_trunc(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_inv(__isl_take isl_val *v);

The following binary operations are available on C<isl_val>s.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_min(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_max(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_add(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1,
		unsigned long v2);
	__isl_give isl_val *isl_val_sub(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1,
		unsigned long v2);
	__isl_give isl_val *isl_val_mul(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1,
		unsigned long v2);
	__isl_give isl_val *isl_val_div(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_div_ui(__isl_take isl_val *v1,
		unsigned long v2);

On integer values, we additionally have the following operations.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_pow2(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_2exp(__isl_take isl_val *v);
	__isl_give isl_val *isl_val_mod(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1,
		__isl_take isl_val *v2);
	__isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1,
		__isl_take isl_val *v2, __isl_give isl_val **x,
		__isl_give isl_val **y);

C<isl_val_2exp> is an alternative name for C<isl_val_pow2>.
The function C<isl_val_gcdext> returns the greatest common divisor g
of C<v1> and C<v2> as well as two integers C<*x> and C<*y> such
that C<*x> * C<v1> + C<*y> * C<v2> = g.

=head3 GMP specific functions

These functions are only available if C<isl> has been compiled with C<GMP>
support.

Specific integer and rational values can be created from C<GMP> values using
the following functions.

	#include <isl/val_gmp.h>
	__isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx,
		mpz_t z);
	__isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx,
		const mpz_t n, const mpz_t d);

The numerator and denominator of a rational value can be extracted as
C<GMP> values using the following functions.

	#include <isl/val_gmp.h>
	int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z);
	int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z);

=head2 Sets and Relations

C<isl> uses six types of objects for representing sets and relations,
C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
C<isl_union_set> and C<isl_union_map>.
C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
can be described as a conjunction of affine constraints, while
C<isl_set> and C<isl_map> represent unions of
C<isl_basic_set>s and C<isl_basic_map>s, respectively.
However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
to live in the same space.  C<isl_union_set>s and C<isl_union_map>s
represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
where spaces are considered different if they have a different number
of dimensions and/or different names (see L<"Spaces">).
The difference between sets and relations (maps) is that sets have
one set of variables, while relations have two sets of variables,
input variables and output variables.

=head2 Error Handling

C<isl> supports different ways to react in case a runtime error is triggered.
Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
with two maps that have incompatible spaces. There are three possible ways
to react on error: to warn, to continue or to abort.

The default behavior is to warn. In this mode, C<isl> prints a warning, stores
the last error in the corresponding C<isl_ctx> and the function in which the
error was triggered returns a value indicating that some error has
occurred.  In case of functions returning a pointer, this value is
C<NULL>.  In case of functions returning an C<isl_bool> or an
C<isl_stat>, this value is C<isl_bool_error> or C<isl_stat_error>.
An error does not corrupt internal state,
such that isl can continue to be used. C<isl> also provides functions to
read the last error, including the specific error message,
the isl source file where the error occurred and the line number,
and to reset all information about the last error. The
last error is only stored for information purposes. Its presence does not
change the behavior of C<isl>. Hence, resetting an error is not required to
continue to use isl, but only to observe new errors.

	#include <isl/ctx.h>
	enum isl_error isl_ctx_last_error(isl_ctx *ctx);
	const char *isl_ctx_last_error_msg(isl_ctx *ctx);
	const char *isl_ctx_last_error_file(isl_ctx *ctx);
	int isl_ctx_last_error_line(isl_ctx *ctx);
	void isl_ctx_reset_error(isl_ctx *ctx);

If no error has occurred since the last call to C<isl_ctx_reset_error>,
then the functions C<isl_ctx_last_error_msg> and
C<isl_ctx_last_error_file> return C<NULL>.

Another option is to continue on error. This is similar to warn on error mode,
except that C<isl> does not print any warning. This allows a program to
implement its own error reporting.

The last option is to directly abort the execution of the program from within
the isl library. This makes it obviously impossible to recover from an error,
but it allows to directly spot the error location. By aborting on error,
debuggers break at the location the error occurred and can provide a stack
trace. Other tools that automatically provide stack traces on abort or that do
not want to continue execution after an error was triggered may also prefer to
abort on error.

The on error behavior of isl can be specified by calling
C<isl_options_set_on_error> or by setting the command line option
C<--isl-on-error>. Valid arguments for the function call are
C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
choices for the command line option are C<warn>, C<continue> and C<abort>.
It is also possible to query the current error mode.

	#include <isl/options.h>
	isl_stat isl_options_set_on_error(isl_ctx *ctx, int val);
	int isl_options_get_on_error(isl_ctx *ctx);

=head2 Identifiers

Identifiers are used to identify both individual dimensions
and tuples of dimensions.  They consist of an optional name and an optional
user pointer.  The name and the user pointer cannot both be C<NULL>, however.
Identifiers with the same name but different pointer values
are considered to be distinct.
Similarly, identifiers with different names but the same pointer value
are also considered to be distinct.
Equal identifiers are represented using the same object.
Pairs of identifiers can therefore be tested for equality using the
C<==> operator.
Identifiers can be constructed, copied, freed, inspected and printed
using the following functions.

	#include <isl/id.h>
	__isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
		__isl_keep const char *name, void *user);
	__isl_give isl_id *isl_id_set_free_user(
		__isl_take isl_id *id,
		void (*free_user)(void *user));
	__isl_give isl_id *isl_id_copy(isl_id *id);
	__isl_null isl_id *isl_id_free(__isl_take isl_id *id);

	void *isl_id_get_user(__isl_keep isl_id *id);
	__isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);

	__isl_give isl_printer *isl_printer_print_id(
		__isl_take isl_printer *p, __isl_keep isl_id *id);

The callback set by C<isl_id_set_free_user> is called on the user
pointer when the last reference to the C<isl_id> is freed.
Note that C<isl_id_get_name> returns a pointer to some internal
data structure, so the result can only be used while the
corresponding C<isl_id> is alive.

=head2 Spaces

Whenever a new set, relation or similar object is created from scratch,
the space in which it lives needs to be specified using an C<isl_space>.
Each space involves zero or more parameters and zero, one or two
tuples of set or input/output dimensions.  The parameters and dimensions
are identified by an C<isl_dim_type> and a position.
The type C<isl_dim_param> refers to parameters,
the type C<isl_dim_set> refers to set dimensions (for spaces
with a single tuple of dimensions) and the types C<isl_dim_in>
and C<isl_dim_out> refer to input and output dimensions
(for spaces with two tuples of dimensions).
Local spaces (see L</"Local Spaces">) also contain dimensions
of type C<isl_dim_div>.
Note that parameters are only identified by their position within
a given object.  Across different objects, parameters are (usually)
identified by their names or identifiers.  Only unnamed parameters
are identified by their positions across objects.  The use of unnamed
parameters is discouraged.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
		unsigned nparam, unsigned n_in, unsigned n_out);
	__isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
		unsigned nparam);
	__isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
		unsigned nparam, unsigned dim);
	__isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
	__isl_null isl_space *isl_space_free(__isl_take isl_space *space);

The space used for creating a parameter domain
needs to be created using C<isl_space_params_alloc>.
For other sets, the space
needs to be created using C<isl_space_set_alloc>, while
for a relation, the space
needs to be created using C<isl_space_alloc>.

To check whether a given space is that of a set or a map
or whether it is a parameter space, use these functions:

	#include <isl/space.h>
	isl_bool isl_space_is_params(__isl_keep isl_space *space);
	isl_bool isl_space_is_set(__isl_keep isl_space *space);
	isl_bool isl_space_is_map(__isl_keep isl_space *space);

Spaces can be compared using the following functions:

	#include <isl/space.h>
	isl_bool isl_space_is_equal(__isl_keep isl_space *space1,
		__isl_keep isl_space *space2);
	isl_bool isl_space_has_equal_params(
		__isl_keep isl_space *space1,
		__isl_keep isl_space *space2);
	isl_bool isl_space_has_equal_tuples(
		__isl_keep isl_space *space1,
		__isl_keep isl_space *space2);
	isl_bool isl_space_is_domain(__isl_keep isl_space *space1,
		__isl_keep isl_space *space2);
	isl_bool isl_space_is_range(__isl_keep isl_space *space1,
		__isl_keep isl_space *space2);
	isl_bool isl_space_tuple_is_equal(
		__isl_keep isl_space *space1,
		enum isl_dim_type type1,
		__isl_keep isl_space *space2,
		enum isl_dim_type type2);

C<isl_space_is_domain> checks whether the first argument is equal
to the domain of the second argument.  This requires in particular that
the first argument is a set space and that the second argument
is a map space.  C<isl_space_tuple_is_equal> checks whether the given
tuples (C<isl_dim_in>, C<isl_dim_out> or C<isl_dim_set>) of the given
spaces are the same.  That is, it checks if they have the same
identifier (if any), the same dimension and the same internal structure
(if any).
The function
C<isl_space_has_equal_params> checks whether two spaces
have the same parameters in the same order.
C<isl_space_has_equal_tuples> check whether two spaces have
the same tuples.  In contrast to C<isl_space_is_equal> below,
it does not check the
parameters.  This is useful because many C<isl> functions align the
parameters before they perform their operations, such that equivalence
is not necessary.
C<isl_space_is_equal> checks whether two spaces are identical,
meaning that they have the same parameters and the same tuples.
That is, it checks whether both C<isl_space_has_equal_params> and
C<isl_space_has_equal_tuples> hold.

It is often useful to create objects that live in the
same space as some other object.  This can be accomplished
by creating the new objects
(see L</"Creating New Sets and Relations"> or
L</"Functions">) based on the space
of the original object.

	#include <isl/set.h>
	__isl_give isl_space *isl_basic_set_get_space(
		__isl_keep isl_basic_set *bset);
	__isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);

	#include <isl/union_set.h>
	__isl_give isl_space *isl_union_set_get_space(
		__isl_keep isl_union_set *uset);

	#include <isl/map.h>
	__isl_give isl_space *isl_basic_map_get_space(
		__isl_keep isl_basic_map *bmap);
	__isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_space *isl_union_map_get_space(
		__isl_keep isl_union_map *umap);

	#include <isl/constraint.h>
	__isl_give isl_space *isl_constraint_get_space(
		__isl_keep isl_constraint *constraint);

	#include <isl/polynomial.h>
	__isl_give isl_space *isl_qpolynomial_get_domain_space(
		__isl_keep isl_qpolynomial *qp);
	__isl_give isl_space *isl_qpolynomial_get_space(
		__isl_keep isl_qpolynomial *qp);
	__isl_give isl_space *
	isl_qpolynomial_fold_get_domain_space(
		__isl_keep isl_qpolynomial_fold *fold);
	__isl_give isl_space *isl_qpolynomial_fold_get_space(
		__isl_keep isl_qpolynomial_fold *fold);
	__isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
		__isl_keep isl_pw_qpolynomial *pwqp);
	__isl_give isl_space *isl_pw_qpolynomial_get_space(
		__isl_keep isl_pw_qpolynomial *pwqp);
	__isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_space *isl_union_pw_qpolynomial_get_space(
		__isl_keep isl_union_pw_qpolynomial *upwqp);
	__isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);

	#include <isl/val.h>
	__isl_give isl_space *isl_multi_val_get_space(
		__isl_keep isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_space *isl_aff_get_domain_space(
		__isl_keep isl_aff *aff);
	__isl_give isl_space *isl_aff_get_space(
		__isl_keep isl_aff *aff);
	__isl_give isl_space *isl_pw_aff_get_domain_space(
		__isl_keep isl_pw_aff *pwaff);
	__isl_give isl_space *isl_pw_aff_get_space(
		__isl_keep isl_pw_aff *pwaff);
	__isl_give isl_space *isl_multi_aff_get_domain_space(
		__isl_keep isl_multi_aff *maff);
	__isl_give isl_space *isl_multi_aff_get_space(
		__isl_keep isl_multi_aff *maff);
	__isl_give isl_space *isl_pw_multi_aff_get_domain_space(
		__isl_keep isl_pw_multi_aff *pma);
	__isl_give isl_space *isl_pw_multi_aff_get_space(
		__isl_keep isl_pw_multi_aff *pma);
	__isl_give isl_space *isl_union_pw_aff_get_space(
		__isl_keep isl_union_pw_aff *upa);
	__isl_give isl_space *isl_union_pw_multi_aff_get_space(
		__isl_keep isl_union_pw_multi_aff *upma);
	__isl_give isl_space *isl_multi_pw_aff_get_domain_space(
		__isl_keep isl_multi_pw_aff *mpa);
	__isl_give isl_space *isl_multi_pw_aff_get_space(
		__isl_keep isl_multi_pw_aff *mpa);
	__isl_give isl_space *
	isl_multi_union_pw_aff_get_domain_space(
		__isl_keep isl_multi_union_pw_aff *mupa);
	__isl_give isl_space *
	isl_multi_union_pw_aff_get_space(
		__isl_keep isl_multi_union_pw_aff *mupa);

	#include <isl/point.h>
	__isl_give isl_space *isl_point_get_space(
		__isl_keep isl_point *pnt);

	#include <isl/fixed_box.h>
	__isl_give isl_space *isl_fixed_box_get_space(
		__isl_keep isl_fixed_box *box);

The number of dimensions of a given type of space
may be read off from a space or an object that lives
in a space using the following functions.
In case of C<isl_space_dim>, type may be
C<isl_dim_param>, C<isl_dim_in> (only for relations),
C<isl_dim_out> (only for relations), C<isl_dim_set>
(only for sets) or C<isl_dim_all>.

	#include <isl/space.h>
	unsigned isl_space_dim(__isl_keep isl_space *space,
		enum isl_dim_type type);

	#include <isl/local_space.h>
	int isl_local_space_dim(__isl_keep isl_local_space *ls,
		enum isl_dim_type type);

	#include <isl/set.h>
	unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
		enum isl_dim_type type);
	unsigned isl_set_dim(__isl_keep isl_set *set,
		enum isl_dim_type type);

	#include <isl/union_set.h>
	unsigned isl_union_set_dim(__isl_keep isl_union_set *uset,
		enum isl_dim_type type);

	#include <isl/map.h>
	unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type);
	unsigned isl_map_dim(__isl_keep isl_map *map,
		enum isl_dim_type type);

	#include <isl/union_map.h>
	unsigned isl_union_map_dim(__isl_keep isl_union_map *umap,
		enum isl_dim_type type);

	#include <isl/val.h>
	unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv,
		enum isl_dim_type type);

	#include <isl/aff.h>
	int isl_aff_dim(__isl_keep isl_aff *aff,
		enum isl_dim_type type);
	unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
		enum isl_dim_type type);
	unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
		enum isl_dim_type type);
	unsigned isl_pw_multi_aff_dim(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	unsigned isl_multi_pw_aff_dim(
		__isl_keep isl_multi_pw_aff *mpa,
		enum isl_dim_type type);
	unsigned isl_union_pw_aff_dim(
		__isl_keep isl_union_pw_aff *upa,
		enum isl_dim_type type);
	unsigned isl_union_pw_multi_aff_dim(
		__isl_keep isl_union_pw_multi_aff *upma,
		enum isl_dim_type type);
	unsigned isl_multi_union_pw_aff_dim(
		__isl_keep isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type);

	#include <isl/polynomial.h>
	unsigned isl_union_pw_qpolynomial_dim(
		__isl_keep isl_union_pw_qpolynomial *upwqp,
		enum isl_dim_type type);
	unsigned isl_union_pw_qpolynomial_fold_dim(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf,
		enum isl_dim_type type);

Note that an C<isl_union_set>, an C<isl_union_map>,
an C<isl_union_pw_multi_aff>,
an C<isl_union_pw_qpolynomial> and
an C<isl_union_pw_qpolynomial_fold>
only have parameters.

Additional parameters can be added to a space using the following function.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_add_param_id(
		__isl_take isl_space *space,
		__isl_take isl_id *id);

If a parameter with the given identifier already appears in the space,
then it is not added again.

The identifiers or names of the individual dimensions of spaces
may be set or read off using the following functions on spaces
or objects that live in spaces.
These functions are mostly useful to obtain the identifiers, positions
or names of the parameters.  Identifiers of individual dimensions are
essentially only useful for printing.  They are ignored by all other
operations and may not be preserved across those operations.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_set_dim_id(
		__isl_take isl_space *space,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	isl_bool isl_space_has_dim_id(__isl_keep isl_space *space,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_space_get_dim_id(
		__isl_keep isl_space *space,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_space *isl_space_set_dim_name(
		__isl_take isl_space *space,
		 enum isl_dim_type type, unsigned pos,
		 __isl_keep const char *name);
	isl_bool isl_space_has_dim_name(__isl_keep isl_space *space,
		enum isl_dim_type type, unsigned pos);
	__isl_keep const char *isl_space_get_dim_name(
		__isl_keep isl_space *space,
		enum isl_dim_type type, unsigned pos);

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_set_dim_id(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	isl_bool isl_local_space_has_dim_id(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_local_space_get_dim_id(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_local_space *isl_local_space_set_dim_name(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned pos, const char *s);
	isl_bool isl_local_space_has_dim_name(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, unsigned pos)
	const char *isl_local_space_get_dim_name(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);

	#include <isl/constraint.h>
	const char *isl_constraint_get_dim_name(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, unsigned pos);

	#include <isl/set.h>
	__isl_give isl_id *isl_basic_set_get_dim_id(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_set *isl_set_set_dim_id(
		__isl_take isl_set *set, enum isl_dim_type type,
		unsigned pos, __isl_take isl_id *id);
	isl_bool isl_set_has_dim_id(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_set_get_dim_id(
		__isl_keep isl_set *set, enum isl_dim_type type,
		unsigned pos);
	const char *isl_basic_set_get_dim_name(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos);
	isl_bool isl_set_has_dim_name(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	const char *isl_set_get_dim_name(
		__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);

	#include <isl/map.h>
	__isl_give isl_map *isl_map_set_dim_id(
		__isl_take isl_map *map, enum isl_dim_type type,
		unsigned pos, __isl_take isl_id *id);
	isl_bool isl_basic_map_has_dim_id(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos);
	isl_bool isl_map_has_dim_id(__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_map_get_dim_id(
		__isl_keep isl_map *map, enum isl_dim_type type,
		unsigned pos);
	__isl_give isl_id *isl_union_map_get_dim_id(
		__isl_keep isl_union_map *umap,
		enum isl_dim_type type, unsigned pos);
	const char *isl_basic_map_get_dim_name(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos);
	isl_bool isl_map_has_dim_name(__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos);
	const char *isl_map_get_dim_name(
		__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_set_dim_id(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	__isl_give isl_id *isl_multi_val_get_dim_id(
		__isl_keep isl_multi_val *mv,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_multi_val *isl_multi_val_set_dim_name(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned pos, const char *s);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_set_dim_id(
		__isl_take isl_aff *aff, enum isl_dim_type type,
		unsigned pos, __isl_take isl_id *id);
	__isl_give isl_multi_aff *isl_multi_aff_set_dim_id(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	__isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
		__isl_take isl_pw_aff *pma,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_set_dim_id(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_set_dim_id(
		__isl_take isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_id *id);
	__isl_give isl_id *isl_multi_aff_get_dim_id(
		__isl_keep isl_multi_aff *ma,
		enum isl_dim_type type, unsigned pos);
	isl_bool isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_pw_aff_get_dim_id(
		__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_pw_multi_aff_get_dim_id(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_multi_pw_aff_get_dim_id(
		__isl_keep isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_id *isl_multi_union_pw_aff_get_dim_id(
		__isl_keep isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_aff *isl_aff_set_dim_name(
		__isl_take isl_aff *aff, enum isl_dim_type type,
		unsigned pos, const char *s);
	__isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, unsigned pos, const char *s);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_set_dim_name(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned pos, const char *s);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_set_dim_name(
		__isl_take isl_union_pw_aff *upa,
		enum isl_dim_type type, unsigned pos,
		const char *s);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_set_dim_name(
		__isl_take isl_union_pw_multi_aff *upma,
		enum isl_dim_type type, unsigned pos,
		const char *s);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_set_dim_name(
		__isl_take isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type, unsigned pos,
	const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
		enum isl_dim_type type, unsigned pos);
	const char *isl_pw_aff_get_dim_name(
		__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type, unsigned pos);
	const char *isl_pw_multi_aff_get_dim_name(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type, unsigned pos);

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
		__isl_take isl_qpolynomial *qp,
		enum isl_dim_type type, unsigned pos,
		const char *s);
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_set_dim_name(
		__isl_take isl_pw_qpolynomial *pwqp,
		enum isl_dim_type type, unsigned pos,
		const char *s);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_set_dim_name(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		enum isl_dim_type type, unsigned pos,
		const char *s);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_set_dim_name(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		enum isl_dim_type type, unsigned pos,
		const char *s);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_set_dim_name(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		enum isl_dim_type type, unsigned pos,
		const char *s);

Note that C<isl_space_get_name> returns a pointer to some internal
data structure, so the result can only be used while the
corresponding C<isl_space> is alive.
Also note that every function that operates on two sets or relations
requires that both arguments have the same parameters.  This also
means that if one of the arguments has named parameters, then the
other needs to have named parameters too and the names need to match.
Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
arguments may have different parameters (as long as they are named),
in which case the result will have as parameters the union of the parameters of
the arguments.

Given the identifier or name of a dimension (typically a parameter),
its position can be obtained from the following functions.

	#include <isl/space.h>
	int isl_space_find_dim_by_id(__isl_keep isl_space *space,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_space_find_dim_by_name(__isl_keep isl_space *space,
		enum isl_dim_type type, const char *name);

	#include <isl/local_space.h>
	int isl_local_space_find_dim_by_name(
		__isl_keep isl_local_space *ls,
		enum isl_dim_type type, const char *name);

	#include <isl/val.h>
	int isl_multi_val_find_dim_by_id(
		__isl_keep isl_multi_val *mv,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_multi_val_find_dim_by_name(
		__isl_keep isl_multi_val *mv,
		enum isl_dim_type type, const char *name);

	#include <isl/set.h>
	int isl_set_find_dim_by_id(__isl_keep isl_set *set,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_set_find_dim_by_name(__isl_keep isl_set *set,
		enum isl_dim_type type, const char *name);

	#include <isl/map.h>
	int isl_map_find_dim_by_id(__isl_keep isl_map *map,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_basic_map_find_dim_by_name(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, const char *name);
	int isl_map_find_dim_by_name(__isl_keep isl_map *map,
		enum isl_dim_type type, const char *name);
	int isl_union_map_find_dim_by_name(
		__isl_keep isl_union_map *umap,
		enum isl_dim_type type, const char *name);

	#include <isl/aff.h>
	int isl_multi_aff_find_dim_by_id(
		__isl_keep isl_multi_aff *ma,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_multi_pw_aff_find_dim_by_id(
		__isl_keep isl_multi_pw_aff *mpa,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_multi_union_pw_aff_find_dim_by_id(
		__isl_keep isl_union_multi_pw_aff *mupa,
		enum isl_dim_type type, __isl_keep isl_id *id);
	int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff,
		enum isl_dim_type type, const char *name);
	int isl_multi_aff_find_dim_by_name(
		__isl_keep isl_multi_aff *ma,
		enum isl_dim_type type, const char *name);
	int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type, const char *name);
	int isl_multi_pw_aff_find_dim_by_name(
		__isl_keep isl_multi_pw_aff *mpa,
		enum isl_dim_type type, const char *name);
	int isl_pw_multi_aff_find_dim_by_name(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type, const char *name);
	int isl_union_pw_aff_find_dim_by_name(
		__isl_keep isl_union_pw_aff *upa,
		enum isl_dim_type type, const char *name);
	int isl_union_pw_multi_aff_find_dim_by_name(
		__isl_keep isl_union_pw_multi_aff *upma,
		enum isl_dim_type type, const char *name);
	int isl_multi_union_pw_aff_find_dim_by_name(
		__isl_keep isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type, const char *name);

	#include <isl/polynomial.h>
	int isl_pw_qpolynomial_find_dim_by_name(
		__isl_keep isl_pw_qpolynomial *pwqp,
		enum isl_dim_type type, const char *name);
	int isl_pw_qpolynomial_fold_find_dim_by_name(
		__isl_keep isl_pw_qpolynomial_fold *pwf,
		enum isl_dim_type type, const char *name);
	int isl_union_pw_qpolynomial_find_dim_by_name(
		__isl_keep isl_union_pw_qpolynomial *upwqp,
		enum isl_dim_type type, const char *name);
	int isl_union_pw_qpolynomial_fold_find_dim_by_name(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf,
		enum isl_dim_type type, const char *name);

The identifiers or names of entire spaces may be set or read off
using the following functions.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_set_tuple_id(
		__isl_take isl_space *space,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_space *isl_space_reset_tuple_id(
		__isl_take isl_space *space, enum isl_dim_type type);
	isl_bool isl_space_has_tuple_id(
		__isl_keep isl_space *space,
		enum isl_dim_type type);
	__isl_give isl_id *isl_space_get_tuple_id(
		__isl_keep isl_space *space, enum isl_dim_type type);
	__isl_give isl_space *isl_space_set_tuple_name(
		__isl_take isl_space *space,
		enum isl_dim_type type, const char *s);
	isl_bool isl_space_has_tuple_name(
		__isl_keep isl_space *space,
		enum isl_dim_type type);
	__isl_keep const char *isl_space_get_tuple_name(
		__isl_keep isl_space *space,
		enum isl_dim_type type);

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_set_tuple_id(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, __isl_take isl_id *id);

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_set_tuple_id(
		__isl_take isl_basic_set *bset,
		__isl_take isl_id *id);
	__isl_give isl_set *isl_set_set_tuple_id(
		__isl_take isl_set *set, __isl_take isl_id *id);
	__isl_give isl_set *isl_set_reset_tuple_id(
		__isl_take isl_set *set);
	isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set);
	__isl_give isl_id *isl_set_get_tuple_id(
		__isl_keep isl_set *set);
	__isl_give isl_basic_set *isl_basic_set_set_tuple_name(
		__isl_take isl_basic_set *set, const char *s);
	__isl_give isl_set *isl_set_set_tuple_name(
		__isl_take isl_set *set, const char *s);
	const char *isl_basic_set_get_tuple_name(
		__isl_keep isl_basic_set *bset);
	isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set);
	const char *isl_set_get_tuple_name(
		__isl_keep isl_set *set);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_set_tuple_id(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_map *isl_map_set_tuple_id(
		__isl_take isl_map *map, enum isl_dim_type type,
		__isl_take isl_id *id);
	__isl_give isl_map *isl_map_reset_tuple_id(
		__isl_take isl_map *map, enum isl_dim_type type);
	isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map,
		enum isl_dim_type type);
	__isl_give isl_id *isl_map_get_tuple_id(
		__isl_keep isl_map *map, enum isl_dim_type type);
	__isl_give isl_map *isl_map_set_tuple_name(
		__isl_take isl_map *map,
		enum isl_dim_type type, const char *s);
	const char *isl_basic_map_get_tuple_name(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type);
	__isl_give isl_basic_map *isl_basic_map_set_tuple_name(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, const char *s);
	isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map,
		enum isl_dim_type type);
	const char *isl_map_get_tuple_name(
		__isl_keep isl_map *map,
		enum isl_dim_type type);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_set_tuple_id(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_multi_val *isl_multi_val_reset_tuple_id(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type);
	isl_bool isl_multi_val_has_tuple_id(
		__isl_keep isl_multi_val *mv,
		enum isl_dim_type type);
	__isl_give isl_id *isl_multi_val_get_tuple_id(
		__isl_keep isl_multi_val *mv,
		enum isl_dim_type type);
	__isl_give isl_multi_val *isl_multi_val_set_tuple_name(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, const char *s);
	const char *isl_multi_val_get_tuple_name(
		__isl_keep isl_multi_val *mv,
		enum isl_dim_type type);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_set_tuple_id(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
		__isl_take isl_pw_aff *pwaff,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
		__isl_take isl_pw_multi_aff *pma,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_set_tuple_id(
		__isl_take isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type, __isl_take isl_id *id);
	__isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id(
		__isl_take isl_multi_aff *ma,
		enum isl_dim_type type);
	__isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id(
		__isl_take isl_pw_aff *pa,
		enum isl_dim_type type);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_reset_tuple_id(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_reset_tuple_id(
		__isl_take isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_reset_tuple_id(
		__isl_take isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type);
	isl_bool isl_multi_aff_has_tuple_id(
		__isl_keep isl_multi_aff *ma,
		enum isl_dim_type type);
	__isl_give isl_id *isl_multi_aff_get_tuple_id(
		__isl_keep isl_multi_aff *ma,
		enum isl_dim_type type);
	isl_bool isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type);
	__isl_give isl_id *isl_pw_aff_get_tuple_id(
		__isl_keep isl_pw_aff *pa,
		enum isl_dim_type type);
	isl_bool isl_pw_multi_aff_has_tuple_id(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	__isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	isl_bool isl_multi_pw_aff_has_tuple_id(
		__isl_keep isl_multi_pw_aff *mpa,
		enum isl_dim_type type);
	__isl_give isl_id *isl_multi_pw_aff_get_tuple_id(
		__isl_keep isl_multi_pw_aff *mpa,
		enum isl_dim_type type);
	isl_bool isl_multi_union_pw_aff_has_tuple_id(
		__isl_keep isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type);
	__isl_give isl_id *isl_multi_union_pw_aff_get_tuple_id(
		__isl_keep isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type);
	__isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, const char *s);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_set_tuple_name(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, const char *s);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_set_tuple_name(
		__isl_take isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type, const char *s);
	const char *isl_multi_aff_get_tuple_name(
		__isl_keep isl_multi_aff *multi,
		enum isl_dim_type type);
	isl_bool isl_pw_multi_aff_has_tuple_name(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	const char *isl_pw_multi_aff_get_tuple_name(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type);
	const char *isl_multi_union_pw_aff_get_tuple_name(
		__isl_keep isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type);

The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
or C<isl_dim_set>.  As with C<isl_space_get_name>,
the C<isl_space_get_tuple_name> function returns a pointer to some internal
data structure.
Binary operations require the corresponding spaces of their arguments
to have the same name.

To keep the names of all parameters and tuples, but reset the user pointers
of all the corresponding identifiers, use the following function.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_reset_user(
		__isl_take isl_space *space);

	#include <isl/set.h>
	__isl_give isl_set *isl_set_reset_user(
		__isl_take isl_set *set);

	#include <isl/map.h>
	__isl_give isl_map *isl_map_reset_user(
		__isl_take isl_map *map);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_reset_user(
		__isl_take isl_union_set *uset);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_reset_user(
		__isl_take isl_union_map *umap);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_reset_user(
		__isl_take isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_reset_user(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *isl_pw_aff_reset_user(
		__isl_take isl_pw_aff *pa);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_user(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_reset_user(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_reset_user(
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_reset_user(
		__isl_take isl_union_pw_multi_aff *upma);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_reset_user(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_reset_user(
		__isl_take isl_union_pw_qpolynomial *upwqp);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_reset_user(
		__isl_take isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_reset_user(
		__isl_take isl_union_pw_qpolynomial_fold *upwf);

Spaces can be nested.  In particular, the domain of a set or
the domain or range of a relation can be a nested relation.
This process is also called I<wrapping>.
The functions for detecting, constructing and deconstructing
such nested spaces can be found in the wrapping properties
of L</"Unary Properties">, the wrapping operations
of L</"Unary Operations"> and the Cartesian product operations
of L</"Basic Operations">.

Spaces can be created from other spaces
using the functions described in L</"Unary Operations">
and L</"Binary Operations">.

=head2 Local Spaces

A local space is essentially a space with
zero or more existentially quantified variables.
The local space of various objects can be obtained
using the following functions.

	#include <isl/constraint.h>
	__isl_give isl_local_space *isl_constraint_get_local_space(
		__isl_keep isl_constraint *constraint);

	#include <isl/set.h>
	__isl_give isl_local_space *isl_basic_set_get_local_space(
		__isl_keep isl_basic_set *bset);

	#include <isl/map.h>
	__isl_give isl_local_space *isl_basic_map_get_local_space(
		__isl_keep isl_basic_map *bmap);

	#include <isl/aff.h>
	__isl_give isl_local_space *isl_aff_get_domain_local_space(
		__isl_keep isl_aff *aff);
	__isl_give isl_local_space *isl_aff_get_local_space(
		__isl_keep isl_aff *aff);

A new local space can be created from a space using

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_from_space(
		__isl_take isl_space *space);

They can be inspected, modified, copied and freed using the following functions.

	#include <isl/local_space.h>
	isl_bool isl_local_space_is_params(
		__isl_keep isl_local_space *ls);
	isl_bool isl_local_space_is_set(
		__isl_keep isl_local_space *ls);
	__isl_give isl_space *isl_local_space_get_space(
		__isl_keep isl_local_space *ls);
	__isl_give isl_aff *isl_local_space_get_div(
		__isl_keep isl_local_space *ls, int pos);
	__isl_give isl_local_space *isl_local_space_copy(
		__isl_keep isl_local_space *ls);
	__isl_null isl_local_space *isl_local_space_free(
		__isl_take isl_local_space *ls);

Note that C<isl_local_space_get_div> can only be used on local spaces
of sets.

Two local spaces can be compared using

	isl_bool isl_local_space_is_equal(
		__isl_keep isl_local_space *ls1,
		__isl_keep isl_local_space *ls2);

Local spaces can be created from other local spaces
using the functions described in L</"Unary Operations">
and L</"Binary Operations">.

=head2 Creating New Sets and Relations

C<isl> has functions for creating some standard sets and relations.

=over

=item * Empty sets and relations

	__isl_give isl_basic_set *isl_basic_set_empty(
		__isl_take isl_space *space);
	__isl_give isl_basic_map *isl_basic_map_empty(
		__isl_take isl_space *space);
	__isl_give isl_set *isl_set_empty(
		__isl_take isl_space *space);
	__isl_give isl_map *isl_map_empty(
		__isl_take isl_space *space);
	__isl_give isl_union_set *isl_union_set_empty(
		__isl_take isl_space *space);
	__isl_give isl_union_map *isl_union_map_empty(
		__isl_take isl_space *space);

For C<isl_union_set>s and C<isl_union_map>s, the space
is only used to specify the parameters.

=item * Universe sets and relations

	__isl_give isl_basic_set *isl_basic_set_universe(
		__isl_take isl_space *space);
	__isl_give isl_basic_map *isl_basic_map_universe(
		__isl_take isl_space *space);
	__isl_give isl_set *isl_set_universe(
		__isl_take isl_space *space);
	__isl_give isl_map *isl_map_universe(
		__isl_take isl_space *space);
	__isl_give isl_union_set *isl_union_set_universe(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_universe(
		__isl_take isl_union_map *umap);

The sets and relations constructed by the functions above
contain all integer values, while those constructed by the
functions below only contain non-negative values.

	__isl_give isl_basic_set *isl_basic_set_nat_universe(
		__isl_take isl_space *space);
	__isl_give isl_basic_map *isl_basic_map_nat_universe(
		__isl_take isl_space *space);
	__isl_give isl_set *isl_set_nat_universe(
		__isl_take isl_space *space);
	__isl_give isl_map *isl_map_nat_universe(
		__isl_take isl_space *space);

=item * Identity relations

	__isl_give isl_basic_map *isl_basic_map_identity(
		__isl_take isl_space *space);
	__isl_give isl_map *isl_map_identity(
		__isl_take isl_space *space);

The number of input and output dimensions in C<space> needs
to be the same.

=item * Lexicographic order

	__isl_give isl_map *isl_map_lex_lt(
		__isl_take isl_space *set_space);
	__isl_give isl_map *isl_map_lex_le(
		__isl_take isl_space *set_space);
	__isl_give isl_map *isl_map_lex_gt(
		__isl_take isl_space *set_space);
	__isl_give isl_map *isl_map_lex_ge(
		__isl_take isl_space *set_space);
	__isl_give isl_map *isl_map_lex_lt_first(
		__isl_take isl_space *space, unsigned n);
	__isl_give isl_map *isl_map_lex_le_first(
		__isl_take isl_space *space, unsigned n);
	__isl_give isl_map *isl_map_lex_gt_first(
		__isl_take isl_space *space, unsigned n);
	__isl_give isl_map *isl_map_lex_ge_first(
		__isl_take isl_space *space, unsigned n);

The first four functions take a space for a B<set>
and return relations that express that the elements in the domain
are lexicographically less
(C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
than the elements in the range.
The last four functions take a space for a map
and return relations that express that the first C<n> dimensions
in the domain are lexicographically less
(C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
than the first C<n> dimensions in the range.

=back

A basic set or relation can be converted to a set or relation
using the following functions.

	__isl_give isl_set *isl_set_from_basic_set(
		__isl_take isl_basic_set *bset);
	__isl_give isl_map *isl_map_from_basic_map(
		__isl_take isl_basic_map *bmap);

Sets and relations can be converted to union sets and relations
using the following functions.

	__isl_give isl_union_set *isl_union_set_from_basic_set(
		__isl_take isl_basic_set *bset);
	__isl_give isl_union_map *isl_union_map_from_basic_map(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_union_set *isl_union_set_from_set(
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_map_from_map(
		__isl_take isl_map *map);

The inverse conversions below can only be used if the input
union set or relation is known to contain elements in exactly one
space.

	__isl_give isl_set *isl_set_from_union_set(
		__isl_take isl_union_set *uset);
	__isl_give isl_map *isl_map_from_union_map(
		__isl_take isl_union_map *umap);

Sets and relations can be copied and freed again using the following
functions.

	__isl_give isl_basic_set *isl_basic_set_copy(
		__isl_keep isl_basic_set *bset);
	__isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
	__isl_give isl_union_set *isl_union_set_copy(
		__isl_keep isl_union_set *uset);
	__isl_give isl_basic_map *isl_basic_map_copy(
		__isl_keep isl_basic_map *bmap);
	__isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
	__isl_give isl_union_map *isl_union_map_copy(
		__isl_keep isl_union_map *umap);
	__isl_null isl_basic_set *isl_basic_set_free(
		__isl_take isl_basic_set *bset);
	__isl_null isl_set *isl_set_free(__isl_take isl_set *set);
	__isl_null isl_union_set *isl_union_set_free(
		__isl_take isl_union_set *uset);
	__isl_null isl_basic_map *isl_basic_map_free(
		__isl_take isl_basic_map *bmap);
	__isl_null isl_map *isl_map_free(__isl_take isl_map *map);
	__isl_null isl_union_map *isl_union_map_free(
		__isl_take isl_union_map *umap);

Other sets and relations can be constructed by starting
from a universe set or relation, adding equality and/or
inequality constraints and then projecting out the
existentially quantified variables, if any.
Constraints can be constructed, manipulated and
added to (or removed from) (basic) sets and relations
using the following functions.

	#include <isl/constraint.h>
	__isl_give isl_constraint *isl_constraint_alloc_equality(
		__isl_take isl_local_space *ls);
	__isl_give isl_constraint *isl_constraint_alloc_inequality(
		__isl_take isl_local_space *ls);
	__isl_give isl_constraint *isl_constraint_set_constant_si(
		__isl_take isl_constraint *constraint, int v);
	__isl_give isl_constraint *isl_constraint_set_constant_val(
		__isl_take isl_constraint *constraint,
		__isl_take isl_val *v);
	__isl_give isl_constraint *isl_constraint_set_coefficient_si(
		__isl_take isl_constraint *constraint,
		enum isl_dim_type type, int pos, int v);
	__isl_give isl_constraint *
	isl_constraint_set_coefficient_val(
		__isl_take isl_constraint *constraint,
		enum isl_dim_type type, int pos,
		__isl_take isl_val *v);
	__isl_give isl_basic_map *isl_basic_map_add_constraint(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_constraint *constraint);
	__isl_give isl_basic_set *isl_basic_set_add_constraint(
		__isl_take isl_basic_set *bset,
		__isl_take isl_constraint *constraint);
	__isl_give isl_map *isl_map_add_constraint(
		__isl_take isl_map *map,
		__isl_take isl_constraint *constraint);
	__isl_give isl_set *isl_set_add_constraint(
		__isl_take isl_set *set,
		__isl_take isl_constraint *constraint);

For example, to create a set containing the even integers
between 10 and 42, you would use the following code.

	isl_space *space;
	isl_local_space *ls;
	isl_constraint *c;
	isl_basic_set *bset;

	space = isl_space_set_alloc(ctx, 0, 2);
	bset = isl_basic_set_universe(isl_space_copy(space));
	ls = isl_local_space_from_space(space);

	c = isl_constraint_alloc_equality(isl_local_space_copy(ls));
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
	bset = isl_basic_set_add_constraint(bset, c);

	c = isl_constraint_alloc_inequality(isl_local_space_copy(ls));
	c = isl_constraint_set_constant_si(c, -10);
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
	bset = isl_basic_set_add_constraint(bset, c);

	c = isl_constraint_alloc_inequality(ls);
	c = isl_constraint_set_constant_si(c, 42);
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
	bset = isl_basic_set_add_constraint(bset, c);

	bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);

Or, alternatively,

	isl_basic_set *bset;
	bset = isl_basic_set_read_from_str(ctx,
		"{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");

A basic set or relation can also be constructed from two matrices
describing the equalities and the inequalities.

	__isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
		__isl_take isl_space *space,
		__isl_take isl_mat *eq, __isl_take isl_mat *ineq,
		enum isl_dim_type c1,
		enum isl_dim_type c2, enum isl_dim_type c3,
		enum isl_dim_type c4);
	__isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
		__isl_take isl_space *space,
		__isl_take isl_mat *eq, __isl_take isl_mat *ineq,
		enum isl_dim_type c1,
		enum isl_dim_type c2, enum isl_dim_type c3,
		enum isl_dim_type c4, enum isl_dim_type c5);

The C<isl_dim_type> arguments indicate the order in which
different kinds of variables appear in the input matrices
and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_set> and C<isl_dim_div> for sets and
of C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.

A (basic or union) set or relation can also be constructed from a
(union) (piecewise) (multiple) affine expression
or a list of affine expressions
(See L</"Functions">), provided these affine expressions do not
involve any NaN.

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_from_multi_aff(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_set *isl_set_from_multi_aff(
		__isl_take isl_multi_aff *ma);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_map *isl_map_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_basic_map *isl_basic_map_from_aff_list(
		__isl_take isl_space *domain_space,
		__isl_take isl_aff_list *list);
	__isl_give isl_basic_map *isl_basic_map_from_multi_aff(
		__isl_take isl_multi_aff *maff)
	__isl_give isl_map *isl_map_from_multi_aff(
		__isl_take isl_multi_aff *maff)

	#include <isl/aff.h>
	__isl_give isl_set *isl_set_from_pw_aff(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_map *isl_map_from_pw_aff(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_set *isl_set_from_pw_multi_aff(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_map *isl_map_from_pw_multi_aff(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_set *isl_set_from_multi_pw_aff(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_map *isl_map_from_multi_pw_aff(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_union_map *isl_union_map_from_union_pw_aff(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_union_map *
	isl_union_map_from_union_pw_multi_aff(
		__isl_take isl_union_pw_multi_aff *upma);
	__isl_give isl_union_map *
	isl_union_map_from_multi_union_pw_aff(
		__isl_take isl_multi_union_pw_aff *mupa);

The C<domain_space> argument describes the domain of the resulting
basic relation.  It is required because the C<list> may consist
of zero affine expressions.
The C<mupa> passed to C<isl_union_map_from_multi_union_pw_aff>
is not allowed to be zero-dimensional.  The domain of the result
is the shared domain of the union piecewise affine elements.

=head2 Inspecting Sets and Relations

Usually, the user should not have to care about the actual constraints
of the sets and maps, but should instead apply the abstract operations
explained in the following sections.
Occasionally, however, it may be required to inspect the individual
coefficients of the constraints.  This section explains how to do so.
In these cases, it may also be useful to have C<isl> compute
an explicit representation of the existentially quantified variables.

	__isl_give isl_set *isl_set_compute_divs(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_compute_divs(
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_compute_divs(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_compute_divs(
		__isl_take isl_union_map *umap);

This explicit representation defines the existentially quantified
variables as integer divisions of the other variables, possibly
including earlier existentially quantified variables.
An explicitly represented existentially quantified variable therefore
has a unique value when the values of the other variables are known.

Alternatively, the existentially quantified variables can be removed
using the following functions, which compute an overapproximation.

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_remove_divs(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_remove_divs(
		__isl_take isl_set *set);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_remove_divs(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_remove_divs(
		__isl_take isl_map *map);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_remove_divs(
		__isl_take isl_union_set *bset);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_remove_divs(
		__isl_take isl_union_map *bmap);

It is also possible to only remove those divs that are defined
in terms of a given range of dimensions or only those for which
no explicit representation is known.

	__isl_give isl_basic_set *
	isl_basic_set_remove_divs_involving_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_basic_map *
	isl_basic_map_remove_divs_involving_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_set *isl_set_remove_divs_involving_dims(
		__isl_take isl_set *set, enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_map *isl_map_remove_divs_involving_dims(
		__isl_take isl_map *map, enum isl_dim_type type,
		unsigned first, unsigned n);

	__isl_give isl_basic_set *
	isl_basic_set_remove_unknown_divs(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_remove_unknown_divs(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_remove_unknown_divs(
		__isl_take isl_map *map);

To iterate over all the sets or maps in a union set or map, use

	#include <isl/union_set.h>
	isl_stat isl_union_set_foreach_set(
		__isl_keep isl_union_set *uset,
		isl_stat (*fn)(__isl_take isl_set *set, void *user),
		void *user);

	#include <isl/union_map.h>
	isl_stat isl_union_map_foreach_map(
		__isl_keep isl_union_map *umap,
		isl_stat (*fn)(__isl_take isl_map *map, void *user),
		void *user);
	isl_bool isl_union_map_every_map(
		__isl_keep isl_union_map *umap,
		isl_bool (*test)(__isl_keep isl_map *map,
			void *user),
		void *user);

These functions call the callback function once for each
(pair of) space(s) for which there are elements in the input.
The argument to the callback contains all elements in the input
with that (pair of) space(s).
The C<isl_union_map_every_map> variant check whether each
call to the callback returns true and stops checking as soon as one
of these calls returns false.

The number of sets or maps in a union set or map can be obtained
from

	int isl_union_set_n_set(__isl_keep isl_union_set *uset);
	int isl_union_map_n_map(__isl_keep isl_union_map *umap);

To extract the set or map in a given space from a union, use

	__isl_give isl_set *isl_union_set_extract_set(
		__isl_keep isl_union_set *uset,
		__isl_take isl_space *space);
	__isl_give isl_map *isl_union_map_extract_map(
		__isl_keep isl_union_map *umap,
		__isl_take isl_space *space);

To iterate over all the basic sets or maps in a set or map, use

	isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set,
		isl_stat (*fn)(__isl_take isl_basic_set *bset,
			void *user),
		void *user);
	isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map,
		isl_stat (*fn)(__isl_take isl_basic_map *bmap,
			void *user),
		void *user);

The callback function C<fn> should return C<isl_stat_ok> if successful and
C<isl_stat_error> if an error occurs.  In the latter case, or if any other error
occurs, the above functions will return C<isl_stat_error>.

It should be noted that C<isl> does not guarantee that
the basic sets or maps passed to C<fn> are disjoint.
If this is required, then the user should call one of
the following functions first.

	__isl_give isl_set *isl_set_make_disjoint(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_make_disjoint(
		__isl_take isl_map *map);

The number of basic sets in a set can be obtained
or the number of basic maps in a map can be obtained
from

	#include <isl/set.h>
	int isl_set_n_basic_set(__isl_keep isl_set *set);

	#include <isl/map.h>
	int isl_map_n_basic_map(__isl_keep isl_map *map);

It is also possible to obtain a list of (basic) sets from a set
or union set, a list of basic maps from a map and a list of maps from a union
map.

	#include <isl/set.h>
	__isl_give isl_basic_set_list *isl_set_get_basic_set_list(
		__isl_keep isl_set *set);

	#include <isl/union_set.h>
	__isl_give isl_basic_set_list *
	isl_union_set_get_basic_set_list(
		__isl_keep isl_union_set *uset);
	__isl_give isl_set_list *isl_union_set_get_set_list(
		__isl_keep isl_union_set *uset);

	#include <isl/map.h>
	__isl_give isl_basic_map_list *isl_map_get_basic_map_list(
		__isl_keep isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_map_list *isl_union_map_get_map_list(
		__isl_keep isl_union_map *umap);

The returned list can be manipulated using the functions in L<"Lists">.

To iterate over the constraints of a basic set or map, use

	#include <isl/constraint.h>

	int isl_basic_set_n_constraint(
		__isl_keep isl_basic_set *bset);
	isl_stat isl_basic_set_foreach_constraint(
		__isl_keep isl_basic_set *bset,
		isl_stat (*fn)(__isl_take isl_constraint *c,
			void *user),
		void *user);
	int isl_basic_map_n_constraint(
		__isl_keep isl_basic_map *bmap);
	isl_stat isl_basic_map_foreach_constraint(
		__isl_keep isl_basic_map *bmap,
		isl_stat (*fn)(__isl_take isl_constraint *c,
			void *user),
		void *user);
	__isl_null isl_constraint *isl_constraint_free(
		__isl_take isl_constraint *c);

Again, the callback function C<fn> should return C<isl_stat_ok>
if successful and
C<isl_stat_error> if an error occurs.  In the latter case, or if any other error
occurs, the above functions will return C<isl_stat_error>.
The constraint C<c> represents either an equality or an inequality.
Use the following function to find out whether a constraint
represents an equality.  If not, it represents an inequality.

	isl_bool isl_constraint_is_equality(
		__isl_keep isl_constraint *constraint);

It is also possible to obtain a list of constraints from a basic
map or set

	#include <isl/constraint.h>
	__isl_give isl_constraint_list *
	isl_basic_map_get_constraint_list(
		__isl_keep isl_basic_map *bmap);
	__isl_give isl_constraint_list *
	isl_basic_set_get_constraint_list(
		__isl_keep isl_basic_set *bset);

These functions require that all existentially quantified variables
have an explicit representation.
The returned list can be manipulated using the functions in L<"Lists">.

The coefficients of the constraints can be inspected using
the following functions.

	isl_bool isl_constraint_is_lower_bound(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, unsigned pos);
	isl_bool isl_constraint_is_upper_bound(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_val *isl_constraint_get_constant_val(
		__isl_keep isl_constraint *constraint);
	__isl_give isl_val *isl_constraint_get_coefficient_val(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, int pos);

The explicit representations of the existentially quantified
variables can be inspected using the following function.
Note that the user is only allowed to use this function
if the inspected set or map is the result of a call
to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
The existentially quantified variable is equal to the floor
of the returned affine expression.  The affine expression
itself can be inspected using the functions in
L</"Functions">.

	__isl_give isl_aff *isl_constraint_get_div(
		__isl_keep isl_constraint *constraint, int pos);

To obtain the constraints of a basic set or map in matrix
form, use the following functions.

	__isl_give isl_mat *isl_basic_set_equalities_matrix(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type c1, enum isl_dim_type c2,
		enum isl_dim_type c3, enum isl_dim_type c4);
	__isl_give isl_mat *isl_basic_set_inequalities_matrix(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type c1, enum isl_dim_type c2,
		enum isl_dim_type c3, enum isl_dim_type c4);
	__isl_give isl_mat *isl_basic_map_equalities_matrix(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type c1,
		enum isl_dim_type c2, enum isl_dim_type c3,
		enum isl_dim_type c4, enum isl_dim_type c5);
	__isl_give isl_mat *isl_basic_map_inequalities_matrix(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type c1,
		enum isl_dim_type c2, enum isl_dim_type c3,
		enum isl_dim_type c4, enum isl_dim_type c5);

The C<isl_dim_type> arguments dictate the order in which
different kinds of variables appear in the resulting matrix.
For set inputs, they should be a permutation of
C<isl_dim_cst>, C<isl_dim_param>, C<isl_dim_set> and C<isl_dim_div>.
For map inputs, they should be a permutation of
C<isl_dim_cst>, C<isl_dim_param>,
C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.

=head2 Points

Points are elements of a set.  They can be used to construct
simple sets (boxes) or they can be used to represent the
individual elements of a set.
The zero point (the origin) can be created using

	__isl_give isl_point *isl_point_zero(__isl_take isl_space *space);

The coordinates of a point can be inspected, set and changed
using

	__isl_give isl_val *isl_point_get_coordinate_val(
		__isl_keep isl_point *pnt,
		enum isl_dim_type type, int pos);
	__isl_give isl_point *isl_point_set_coordinate_val(
		__isl_take isl_point *pnt,
		enum isl_dim_type type, int pos,
		__isl_take isl_val *v);

	__isl_give isl_point *isl_point_add_ui(
		__isl_take isl_point *pnt,
		enum isl_dim_type type, int pos, unsigned val);
	__isl_give isl_point *isl_point_sub_ui(
		__isl_take isl_point *pnt,
		enum isl_dim_type type, int pos, unsigned val);

Points can be copied or freed using

	__isl_give isl_point *isl_point_copy(
		__isl_keep isl_point *pnt);
	__isl_null isl_point *isl_point_free(
		__isl_take isl_point *pnt);

A singleton set can be created from a point using

	__isl_give isl_basic_set *isl_basic_set_from_point(
		__isl_take isl_point *pnt);
	__isl_give isl_set *isl_set_from_point(
		__isl_take isl_point *pnt);
	__isl_give isl_union_set *isl_union_set_from_point(
		__isl_take isl_point *pnt);

and a box can be created from two opposite extremal points using

	__isl_give isl_basic_set *isl_basic_set_box_from_points(
		__isl_take isl_point *pnt1,
		__isl_take isl_point *pnt2);
	__isl_give isl_set *isl_set_box_from_points(
		__isl_take isl_point *pnt1,
		__isl_take isl_point *pnt2);

All elements of a B<bounded> (union) set can be enumerated using
the following functions.

	isl_stat isl_set_foreach_point(__isl_keep isl_set *set,
		isl_stat (*fn)(__isl_take isl_point *pnt,
			void *user),
		void *user);
	isl_stat isl_union_set_foreach_point(
		__isl_keep isl_union_set *uset,
		isl_stat (*fn)(__isl_take isl_point *pnt,
			void *user),
		void *user);

The function C<fn> is called for each integer point in
C<set> with as second argument the last argument of
the C<isl_set_foreach_point> call.  The function C<fn>
should return C<isl_stat_ok> on success and C<isl_stat_error> on failure.
In the latter case, C<isl_set_foreach_point> will stop
enumerating and return C<isl_stat_error> as well.
If the enumeration is performed successfully and to completion,
then C<isl_set_foreach_point> returns C<isl_stat_ok>.

To obtain a single point of a (basic or union) set, use

	__isl_give isl_point *isl_basic_set_sample_point(
		__isl_take isl_basic_set *bset);
	__isl_give isl_point *isl_set_sample_point(
		__isl_take isl_set *set);
	__isl_give isl_point *isl_union_set_sample_point(
		__isl_take isl_union_set *uset);

If C<set> does not contain any (integer) points, then the
resulting point will be ``void'', a property that can be
tested using

	isl_bool isl_point_is_void(__isl_keep isl_point *pnt);

=head2 Functions

Besides sets and relation, C<isl> also supports various types of functions.
Each of these types is derived from the value type (see L</"Values">)
or from one of two primitive function types
through the application of zero or more type constructors.
We first describe the primitive type and then we describe
the types derived from these primitive types.

=head3 Primitive Functions

C<isl> support two primitive function types, quasi-affine
expressions and quasipolynomials.
A quasi-affine expression is defined either over a parameter
space or over a set and is composed of integer constants,
parameters and set variables, addition, subtraction and
integer division by an integer constant.
For example, the quasi-affine expression

	[n] -> { [x] -> [2*floor((4 n + x)/9)] }

maps C<x> to C<2*floor((4 n + x)/9>.
A quasipolynomial is a polynomial expression in quasi-affine
expression.  That is, it additionally allows for multiplication.
Note, though, that it is not allowed to construct an integer
division of an expression involving multiplications.
Here is an example of a quasipolynomial that is not
quasi-affine expression

	[n] -> { [x] -> (n*floor((4 n + x)/9)) }

Note that the external representations of quasi-affine expressions
and quasipolynomials are different.  Quasi-affine expressions
use a notation with square brackets just like binary relations,
while quasipolynomials do not.  This might change at some point.

If a primitive function is defined over a parameter space,
then the space of the function itself is that of a set.
If it is defined over a set, then the space of the function
is that of a relation.  In both cases, the set space (or
the output space) is single-dimensional, anonymous and unstructured.
To create functions with multiple dimensions or with other kinds
of set or output spaces, use multiple expressions
(see L</"Multiple Expressions">).

=over

=item * Quasi-affine Expressions

Besides the expressions described above, a quasi-affine
expression can also be set to NaN.  Such expressions
typically represent a failure to represent a result
as a quasi-affine expression.

The zero quasi affine expression or the quasi affine expression
that is equal to a given value, parameter or
a specified dimension on a given domain can be created using

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_zero_on_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_aff *isl_aff_val_on_domain(
		__isl_take isl_local_space *ls,
		__isl_take isl_val *val);
	__isl_give isl_aff *isl_aff_param_on_domain_space_id(
		__isl_take isl_space *space,
		__isl_take isl_id *id);
	__isl_give isl_aff *isl_aff_var_on_domain(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_aff *isl_aff_nan_on_domain(
		__isl_take isl_local_space *ls);

The space passed to C<isl_aff_param_on_domain_space_id>
is required to have a parameter with the given identifier.

Quasi affine expressions can be copied and freed using

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_copy(
		__isl_keep isl_aff *aff);
	__isl_null isl_aff *isl_aff_free(
		__isl_take isl_aff *aff);

A (rational) bound on a dimension can be extracted from an C<isl_constraint>
using the following function.  The constraint is required to have
a non-zero coefficient for the specified dimension.

	#include <isl/constraint.h>
	__isl_give isl_aff *isl_constraint_get_bound(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, int pos);

The entire affine expression of the constraint can also be extracted
using the following function.

	#include <isl/constraint.h>
	__isl_give isl_aff *isl_constraint_get_aff(
		__isl_keep isl_constraint *constraint);

Conversely, an equality constraint equating
the affine expression to zero or an inequality constraint enforcing
the affine expression to be non-negative, can be constructed using

	__isl_give isl_constraint *isl_equality_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_constraint *isl_inequality_from_aff(
		__isl_take isl_aff *aff);

The coefficients and the integer divisions of an affine expression
can be inspected using the following functions.

	#include <isl/aff.h>
	__isl_give isl_val *isl_aff_get_constant_val(
		__isl_keep isl_aff *aff);
	__isl_give isl_val *isl_aff_get_coefficient_val(
		__isl_keep isl_aff *aff,
		enum isl_dim_type type, int pos);
	int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff,
		enum isl_dim_type type, int pos);
	__isl_give isl_val *isl_aff_get_denominator_val(
		__isl_keep isl_aff *aff);
	__isl_give isl_aff *isl_aff_get_div(
		__isl_keep isl_aff *aff, int pos);

They can be modified using the following functions.

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_set_constant_si(
		__isl_take isl_aff *aff, int v);
	__isl_give isl_aff *isl_aff_set_constant_val(
		__isl_take isl_aff *aff, __isl_take isl_val *v);
	__isl_give isl_aff *isl_aff_set_coefficient_si(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos, int v);
	__isl_give isl_aff *isl_aff_set_coefficient_val(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos,
		__isl_take isl_val *v);

	__isl_give isl_aff *isl_aff_add_constant_si(
		__isl_take isl_aff *aff, int v);
	__isl_give isl_aff *isl_aff_add_constant_val(
		__isl_take isl_aff *aff, __isl_take isl_val *v);
	__isl_give isl_aff *isl_aff_add_constant_num_si(
		__isl_take isl_aff *aff, int v);
	__isl_give isl_aff *isl_aff_add_coefficient_si(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos, int v);
	__isl_give isl_aff *isl_aff_add_coefficient_val(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, int pos,
		__isl_take isl_val *v);

Note that C<isl_aff_set_constant_si> and C<isl_aff_set_coefficient_si>
set the I<numerator> of the constant or coefficient, while
C<isl_aff_set_constant_val> and C<isl_aff_set_coefficient_val> set
the constant or coefficient as a whole.
The C<add_constant> and C<add_coefficient> functions add an integer
or rational value to
the possibly rational constant or coefficient.
The C<add_constant_num> functions add an integer value to
the numerator.

=item * Quasipolynomials

Some simple quasipolynomials can be created using the following functions.

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
		__isl_take isl_space *domain);
	__isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
		__isl_take isl_space *domain,
		__isl_take isl_val *val);
	__isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
		__isl_take isl_space *domain,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
		__isl_take isl_aff *aff);

Recall that the space in which a quasipolynomial lives is a map space
with a one-dimensional range.  The C<domain> argument in some of
the functions above corresponds to the domain of this map space.

Quasipolynomials can be copied and freed again using the following
functions.

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_copy(
		__isl_keep isl_qpolynomial *qp);
	__isl_null isl_qpolynomial *isl_qpolynomial_free(
		__isl_take isl_qpolynomial *qp);

The constant term of a quasipolynomial can be extracted using

	__isl_give isl_val *isl_qpolynomial_get_constant_val(
		__isl_keep isl_qpolynomial *qp);

To iterate over all terms in a quasipolynomial,
use

	isl_stat isl_qpolynomial_foreach_term(
		__isl_keep isl_qpolynomial *qp,
		isl_stat (*fn)(__isl_take isl_term *term,
			  void *user), void *user);

The terms themselves can be inspected and freed using
these functions

	unsigned isl_term_dim(__isl_keep isl_term *term,
		enum isl_dim_type type);
	__isl_give isl_val *isl_term_get_coefficient_val(
		__isl_keep isl_term *term);
	int isl_term_get_exp(__isl_keep isl_term *term,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_aff *isl_term_get_div(
		__isl_keep isl_term *term, unsigned pos);
	void isl_term_free(__isl_take isl_term *term);

Each term is a product of parameters, set variables and
integer divisions.  The function C<isl_term_get_exp>
returns the exponent of a given dimensions in the given term.

=back

=head3 Reductions

A reduction represents a maximum or a minimum of its
base expressions.
The only reduction type defined by C<isl> is
C<isl_qpolynomial_fold>.

There are currently no functions to directly create such
objects, but they do appear in the piecewise quasipolynomial
reductions returned by the C<isl_pw_qpolynomial_bound> function.
See
L</"Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions">.

Reductions can be copied and freed using
the following functions.

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial_fold *
	isl_qpolynomial_fold_copy(
		__isl_keep isl_qpolynomial_fold *fold);
	void isl_qpolynomial_fold_free(
		__isl_take isl_qpolynomial_fold *fold);

To iterate over all quasipolynomials in a reduction, use

	isl_stat isl_qpolynomial_fold_foreach_qpolynomial(
		__isl_keep isl_qpolynomial_fold *fold,
		isl_stat (*fn)(__isl_take isl_qpolynomial *qp,
			  void *user), void *user);

=head3 Multiple Expressions

A multiple expression represents a sequence of zero or
more base expressions, all defined on the same domain space.
The domain space of the multiple expression is the same
as that of the base expressions, but the range space
can be any space.  In case the base expressions have
a set space, the corresponding multiple expression
also has a set space.
Objects of the value type do not have an associated space.
The space of a multiple value is therefore always a set space.
Similarly, the space of a multiple union piecewise
affine expression is always a set space.
If the base expressions are not total, then
a corresponding zero-dimensional multiple expression may
have an explicit domain that keeps track of the domain
outside of any base expressions.

The multiple expression types defined by C<isl>
are C<isl_multi_val>, C<isl_multi_aff>, C<isl_multi_pw_aff>,
C<isl_multi_union_pw_aff>.

A multiple expression with the value zero for
each output (or set) dimension can be created
using the following functions.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_zero(
		__isl_take isl_space *space);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_zero(
		__isl_take isl_space *space);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
		__isl_take isl_space *space);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_zero(
		__isl_take isl_space *space);

Since there is no canonical way of representing a zero
value of type C<isl_union_pw_aff>, the space passed
to C<isl_multi_union_pw_aff_zero> needs to be zero-dimensional.

An identity function can be created using the following
functions.  The space needs to be that of a relation
with the same number of input and output dimensions.

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_identity(
		__isl_take isl_space *space);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
		__isl_take isl_space *space);

A function that performs a projection on a universe
relation or set can be created using the following functions.
See also the corresponding
projection operations in L</"Unary Operations">.

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_domain_map(
		__isl_take isl_space *space);
	__isl_give isl_multi_aff *isl_multi_aff_range_map(
		__isl_take isl_space *space);
	__isl_give isl_multi_aff *isl_multi_aff_project_out_map(
		__isl_take isl_space *space,
		enum isl_dim_type type,
		unsigned first, unsigned n);

A multiple expression can be created from a single
base expression using the following functions.
The space of the created multiple expression is the same
as that of the base expression, except for
C<isl_multi_union_pw_aff_from_union_pw_aff> where the input
lives in a parameter space and the output lives
in a single-dimensional set space.

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
		__isl_take isl_pw_aff *pa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_from_union_pw_aff(
		__isl_take isl_union_pw_aff *upa);

A multiple expression can be created from a list
of base expression in a specified space.
The domain of this space needs to be the same
as the domains of the base expressions in the list.
If the base expressions have a set space (or no associated space),
then this space also needs to be a set space.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_from_val_list(
		__isl_take isl_space *space,
		__isl_take isl_val_list *list);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
		__isl_take isl_space *space,
		__isl_take isl_aff_list *list);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_from_pw_aff_list(
		__isl_take isl_space *space,
		__isl_take isl_pw_aff_list *list);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_from_union_pw_aff_list(
		__isl_take isl_space *space,
		__isl_take isl_union_pw_aff_list *list);

As a convenience, a multiple piecewise expression can
also be created from a multiple expression.
Each piecewise expression in the result has a single
universe cell.

	#include <isl/aff.h>
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_from_multi_aff(
		__isl_take isl_multi_aff *ma);

Similarly, a multiple union expression can be
created from a multiple expression.

	#include <isl/aff.h>
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_from_multi_aff(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_from_multi_pw_aff(
		__isl_take isl_multi_pw_aff *mpa);

A multiple quasi-affine expression can be created from
a multiple value with a given domain space using the following
function.

	#include <isl/aff.h>
	__isl_give isl_multi_aff *
	isl_multi_aff_multi_val_on_space(
		__isl_take isl_space *space,
		__isl_take isl_multi_val *mv);

Similarly,
a multiple union piecewise affine expression can be created from
a multiple value with a given domain or
a (piecewise) multiple affine expression with a given domain
using the following functions.

	#include <isl/aff.h>
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_multi_val_on_domain(
		__isl_take isl_union_set *domain,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_multi_aff_on_domain(
		__isl_take isl_union_set *domain,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_pw_multi_aff_on_domain(
		__isl_take isl_union_set *domain,
		__isl_take isl_pw_multi_aff *pma);

Multiple expressions can be copied and freed using
the following functions.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_copy(
		__isl_keep isl_multi_val *mv);
	__isl_null isl_multi_val *isl_multi_val_free(
		__isl_take isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_copy(
		__isl_keep isl_multi_aff *maff);
	__isl_null isl_multi_aff *isl_multi_aff_free(
		__isl_take isl_multi_aff *maff);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
		__isl_keep isl_multi_pw_aff *mpa);
	__isl_null isl_multi_pw_aff *isl_multi_pw_aff_free(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_copy(
		__isl_keep isl_multi_union_pw_aff *mupa);
	__isl_null isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_free(
		__isl_take isl_multi_union_pw_aff *mupa);

The base expression at a given position of a multiple
expression can be extracted using the following functions.

	#include <isl/val.h>
	__isl_give isl_val *isl_multi_val_get_val(
		__isl_keep isl_multi_val *mv, int pos);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_multi_aff_get_aff(
		__isl_keep isl_multi_aff *multi, int pos);
	__isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
		__isl_keep isl_multi_pw_aff *mpa, int pos);
	__isl_give isl_union_pw_aff *
	isl_multi_union_pw_aff_get_union_pw_aff(
		__isl_keep isl_multi_union_pw_aff *mupa, int pos);

It can be replaced using the following functions.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_set_val(
		__isl_take isl_multi_val *mv, int pos,
		__isl_take isl_val *val);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_set_aff(
		__isl_take isl_multi_aff *multi, int pos,
		__isl_take isl_aff *aff);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_set_union_pw_aff(
		__isl_take isl_multi_union_pw_aff *mupa, int pos,
		__isl_take isl_union_pw_aff *upa);

As a convenience, a sequence of base expressions that have
their domains in a given space can be extracted from a sequence
of union expressions using the following function.

	#include <isl/aff.h>
	__isl_give isl_multi_pw_aff *
	isl_multi_union_pw_aff_extract_multi_pw_aff(
		__isl_keep isl_multi_union_pw_aff *mupa,
		__isl_take isl_space *space);

Note that there is a difference between C<isl_multi_union_pw_aff>
and C<isl_union_pw_multi_aff> objects.  The first is a sequence
of unions of piecewise expressions, while the second is a union
of piecewise sequences.  In particular, multiple affine expressions
in an C<isl_union_pw_multi_aff> may live in different spaces,
while there is only a single multiple expression in
an C<isl_multi_union_pw_aff>, which can therefore only live
in a single space.  This means that not every
C<isl_union_pw_multi_aff> can be converted to
an C<isl_multi_union_pw_aff>.  Conversely, the elements
of an C<isl_multi_union_pw_aff> may be defined over different domains,
while each multiple expression inside an C<isl_union_pw_multi_aff>
has a single domain.  The conversion of an C<isl_union_pw_multi_aff>
of dimension greater than one may therefore not be exact.
The following functions can
be used to perform these conversions when they are possible.

	#include <isl/aff.h>
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_from_union_pw_multi_aff(
		__isl_take isl_union_pw_multi_aff *upma);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_multi_union_pw_aff(
		__isl_take isl_multi_union_pw_aff *mupa);

=head3 Piecewise Expressions

A piecewise expression is an expression that is described
using zero or more base expression defined over the same
number of cells in the domain space of the base expressions.
All base expressions are defined over the same
domain space and the cells are disjoint.
The space of a piecewise expression is the same as
that of the base expressions.
If the union of the cells is a strict subset of the domain
space, then the value of the piecewise expression outside
this union is different for types derived from quasi-affine
expressions and those derived from quasipolynomials.
Piecewise expressions derived from quasi-affine expressions
are considered to be undefined outside the union of their cells.
Piecewise expressions derived from quasipolynomials
are considered to be zero outside the union of their cells.

Piecewise quasipolynomials are mainly used by the C<barvinok>
library for representing the number of elements in a parametric set or map.
For example, the piecewise quasipolynomial

	[n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }

represents the number of points in the map

	[n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }

The piecewise expression types defined by C<isl>
are C<isl_pw_aff>, C<isl_pw_multi_aff>,
C<isl_pw_qpolynomial> and C<isl_pw_qpolynomial_fold>.

A piecewise expression with no cells can be created using
the following functions.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_empty(
		__isl_take isl_space *space);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
		__isl_take isl_space *space);

A piecewise expression with a single universe cell can be
created using the following functions.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_from_multi_aff(
		__isl_take isl_multi_aff *ma);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_from_qpolynomial(
		__isl_take isl_qpolynomial *qp);

A piecewise expression with a single specified cell can be
created using the following functions.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_alloc(
		__isl_take isl_set *set, __isl_take isl_aff *aff);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
		__isl_take isl_set *set,
		__isl_take isl_multi_aff *maff);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
		__isl_take isl_set *set,
		__isl_take isl_qpolynomial *qp);

The following convenience functions first create a base expression and
then create a piecewise expression over a universe domain.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(
		__isl_take isl_space *space);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
		__isl_take isl_space *space);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map(
		__isl_take isl_space *space);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_project_out_map(
		__isl_take isl_space *space,
		enum isl_dim_type type,
		unsigned first, unsigned n);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
		__isl_take isl_space *space);

The following convenience functions first create a base expression and
then create a piecewise expression over a given domain.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_val_on_domain(
		__isl_take isl_set *domain,
		__isl_take isl_val *v);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_multi_val_on_domain(
		__isl_take isl_set *domain,
		__isl_take isl_multi_val *mv);

As a convenience, a piecewise multiple expression can
also be created from a piecewise expression.
Each multiple expression in the result is derived
from the corresponding base expression.

	#include <isl/aff.h>
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff(
		__isl_take isl_pw_aff *pa);

Similarly, a piecewise quasipolynomial can be
created from a piecewise quasi-affine expression using
the following function.

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_from_pw_aff(
		__isl_take isl_pw_aff *pwaff);

Piecewise expressions can be copied and freed using the following functions.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_copy(
		__isl_keep isl_pw_aff *pwaff);
	__isl_null isl_pw_aff *isl_pw_aff_free(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
		__isl_keep isl_pw_multi_aff *pma);
	__isl_null isl_pw_multi_aff *isl_pw_multi_aff_free(
		__isl_take isl_pw_multi_aff *pma);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
		__isl_keep isl_pw_qpolynomial *pwqp);
	__isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_copy(
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	__isl_null isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_free(
		__isl_take isl_pw_qpolynomial_fold *pwf);

To iterate over the different cells of a piecewise expression,
use the following functions.

	#include <isl/aff.h>
	isl_bool isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
	int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
	isl_stat isl_pw_aff_foreach_piece(
		__isl_keep isl_pw_aff *pwaff,
		isl_stat (*fn)(__isl_take isl_set *set,
			  __isl_take isl_aff *aff,
			  void *user), void *user);
	int isl_pw_multi_aff_n_piece(
		__isl_keep isl_pw_multi_aff *pma);
	isl_stat isl_pw_multi_aff_foreach_piece(
		__isl_keep isl_pw_multi_aff *pma,
		isl_stat (*fn)(__isl_take isl_set *set,
			    __isl_take isl_multi_aff *maff,
			    void *user), void *user);

	#include <isl/polynomial.h>
	int isl_pw_qpolynomial_n_piece(
		__isl_keep isl_pw_qpolynomial *pwqp);
	isl_stat isl_pw_qpolynomial_foreach_piece(
		__isl_keep isl_pw_qpolynomial *pwqp,
		isl_stat (*fn)(__isl_take isl_set *set,
			  __isl_take isl_qpolynomial *qp,
			  void *user), void *user);
	isl_stat isl_pw_qpolynomial_foreach_lifted_piece(
		__isl_keep isl_pw_qpolynomial *pwqp,
		isl_stat (*fn)(__isl_take isl_set *set,
			  __isl_take isl_qpolynomial *qp,
			  void *user), void *user);
	int isl_pw_qpolynomial_fold_n_piece(
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	isl_stat isl_pw_qpolynomial_fold_foreach_piece(
		__isl_keep isl_pw_qpolynomial_fold *pwf,
		isl_stat (*fn)(__isl_take isl_set *set,
			  __isl_take isl_qpolynomial_fold *fold,
			  void *user), void *user);
	isl_stat isl_pw_qpolynomial_fold_foreach_lifted_piece(
		__isl_keep isl_pw_qpolynomial_fold *pwf,
		isl_stat (*fn)(__isl_take isl_set *set,
			  __isl_take isl_qpolynomial_fold *fold,
			  void *user), void *user);

As usual, the function C<fn> should return C<isl_stat_ok> on success
and C<isl_stat_error> on failure.  The difference between
C<isl_pw_qpolynomial_foreach_piece> and
C<isl_pw_qpolynomial_foreach_lifted_piece> is that
C<isl_pw_qpolynomial_foreach_lifted_piece> will first
compute unique representations for all existentially quantified
variables and then turn these existentially quantified variables
into extra set variables, adapting the associated quasipolynomial
accordingly.  This means that the C<set> passed to C<fn>
will not have any existentially quantified variables, but that
the dimensions of the sets may be different for different
invocations of C<fn>.
Similarly for C<isl_pw_qpolynomial_fold_foreach_piece>
and C<isl_pw_qpolynomial_fold_foreach_lifted_piece>.

A piecewise expression consisting of the expressions at a given
position of a piecewise multiple expression can be extracted
using the following function.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
		__isl_keep isl_pw_multi_aff *pma, int pos);

These expressions can be replaced using the following function.

	#include <isl/aff.h>
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
		__isl_take isl_pw_multi_aff *pma, unsigned pos,
		__isl_take isl_pw_aff *pa);

Note that there is a difference between C<isl_multi_pw_aff> and
C<isl_pw_multi_aff> objects.  The first is a sequence of piecewise
affine expressions, while the second is a piecewise sequence
of affine expressions.  In particular, each of the piecewise
affine expressions in an C<isl_multi_pw_aff> may have a different
domain, while all multiple expressions associated to a cell
in an C<isl_pw_multi_aff> have the same domain.
It is possible to convert between the two, but when converting
an C<isl_multi_pw_aff> to an C<isl_pw_multi_aff>, the domain
of the result is the intersection of the domains of the input.
The reverse conversion is exact.

	#include <isl/aff.h>
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_from_multi_pw_aff(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_from_pw_multi_aff(
		__isl_take isl_pw_multi_aff *pma);

=head3 Union Expressions

A union expression collects base expressions defined
over different domains.  The space of a union expression
is that of the shared parameter space.

The union expression types defined by C<isl>
are C<isl_union_pw_aff>, C<isl_union_pw_multi_aff>,
C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>.
In case of
C<isl_union_pw_aff>,
C<isl_union_pw_qpolynomial> and C<isl_union_pw_qpolynomial_fold>,
there can be at most one base expression for a given domain space.
In case of
C<isl_union_pw_multi_aff>,
there can be multiple such expressions for a given domain space,
but the domains of these expressions need to be disjoint.

An empty union expression can be created using the following functions.

	#include <isl/aff.h>
	__isl_give isl_union_pw_aff *isl_union_pw_aff_empty(
		__isl_take isl_space *space);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_empty(
		__isl_take isl_space *space);

	#include <isl/polynomial.h>
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_zero(
		__isl_take isl_space *space);

A union expression containing a single base expression
can be created using the following functions.

	#include <isl/aff.h>
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_from_pw_aff(
		__isl_take isl_pw_aff *pa);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_aff(
		__isl_take isl_aff *aff);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_pw_multi_aff(
		__isl_take isl_pw_multi_aff *pma);

	#include <isl/polynomial.h>
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_from_pw_qpolynomial(
		__isl_take isl_pw_qpolynomial *pwqp);

The following functions create a base expression on each
of the sets in the union set and collect the results.

	#include <isl/aff.h>
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_union_pw_aff(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_union_pw_aff *
	isl_union_pw_multi_aff_get_union_pw_aff(
		__isl_keep isl_union_pw_multi_aff *upma, int pos);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_val_on_domain(
		__isl_take isl_union_set *domain,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_multi_val_on_domain(
		__isl_take isl_union_set *domain,
		__isl_take isl_multi_val *mv);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_param_on_domain_id(
		__isl_take isl_union_set *domain,
		__isl_take isl_id *id);

The C<id> argument of C<isl_union_pw_aff_param_on_domain_id>
is the identifier of a parameter that may or may not already
be present in C<domain>.

An C<isl_union_pw_aff> that is equal to a (parametric) affine
or piecewise affine
expression on a given domain can be created using the following
functions.

	#include <isl/aff.h>
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_aff_on_domain(
		__isl_take isl_union_set *domain,
		__isl_take isl_aff *aff);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_pw_aff_on_domain(
		__isl_take isl_union_set *domain,
		__isl_take isl_pw_aff *pa);

A base expression can be added to a union expression using
the following functions.

	#include <isl/aff.h>
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_add_pw_aff(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_pw_aff *pa);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_add_pw_multi_aff(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_pw_multi_aff *pma);

	#include <isl/polynomial.h>
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_add_pw_qpolynomial(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_pw_qpolynomial *pwqp);

Union expressions can be copied and freed using
the following functions.

	#include <isl/aff.h>
	__isl_give isl_union_pw_aff *isl_union_pw_aff_copy(
		__isl_keep isl_union_pw_aff *upa);
	__isl_null isl_union_pw_aff *isl_union_pw_aff_free(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_copy(
		__isl_keep isl_union_pw_multi_aff *upma);
	__isl_null isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_free(
		__isl_take isl_union_pw_multi_aff *upma);

	#include <isl/polynomial.h>
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_copy(
		__isl_keep isl_union_pw_qpolynomial *upwqp);
	__isl_null isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_free(
		__isl_take isl_union_pw_qpolynomial *upwqp);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_copy(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);
	__isl_null isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_free(
		__isl_take isl_union_pw_qpolynomial_fold *upwf);

To iterate over the base expressions in a union expression,
use the following functions.

	#include <isl/aff.h>
	int isl_union_pw_aff_n_pw_aff(
		__isl_keep isl_union_pw_aff *upa);
	isl_stat isl_union_pw_aff_foreach_pw_aff(
		__isl_keep isl_union_pw_aff *upa,
		isl_stat (*fn)(__isl_take isl_pw_aff *pa,
			void *user), void *user);
	int isl_union_pw_multi_aff_n_pw_multi_aff(
		__isl_keep isl_union_pw_multi_aff *upma);
	isl_stat isl_union_pw_multi_aff_foreach_pw_multi_aff(
		__isl_keep isl_union_pw_multi_aff *upma,
		isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma,
			    void *user), void *user);

	#include <isl/polynomial.h>
	int isl_union_pw_qpolynomial_n_pw_qpolynomial(
		__isl_keep isl_union_pw_qpolynomial *upwqp);
	isl_stat isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
		__isl_keep isl_union_pw_qpolynomial *upwqp,
		isl_stat (*fn)(__isl_take isl_pw_qpolynomial *pwqp,
			    void *user), void *user);
	int isl_union_pw_qpolynomial_fold_n_pw_qpolynomial_fold(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);
	isl_stat isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf,
		isl_stat (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
			    void *user), void *user);

To extract the base expression in a given space from a union, use
the following functions.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_union_pw_aff_extract_pw_aff(
		__isl_keep isl_union_pw_aff *upa,
		__isl_take isl_space *space);
	__isl_give isl_pw_multi_aff *
	isl_union_pw_multi_aff_extract_pw_multi_aff(
		__isl_keep isl_union_pw_multi_aff *upma,
		__isl_take isl_space *space);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *
	isl_union_pw_qpolynomial_extract_pw_qpolynomial(
		__isl_keep isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_space *space);

It is also possible to obtain a list of the base expressions using
the following functions.

	#include <isl/aff.h>
	__isl_give isl_pw_aff_list *
	isl_union_pw_aff_get_pw_aff_list(
		__isl_keep isl_union_pw_aff *upa);
	__isl_give isl_pw_multi_aff_list *
	isl_union_pw_multi_aff_get_pw_multi_aff_list(
		__isl_keep isl_union_pw_multi_aff *upma);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial_list *
	isl_union_pw_qpolynomial_get_pw_qpolynomial_list(
		__isl_keep isl_union_pw_qpolynomial *upwqp);
	__isl_give isl_pw_qpolynomial_fold_list *
	isl_union_pw_qpolynomial_fold_get_pw_qpolynomial_fold_list(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);

The returned list can be manipulated using the functions in L<"Lists">.

=head2 Input and Output

For set and relation,
C<isl> supports its own input/output format, which is similar
to the C<Omega> format, but also supports the C<PolyLib> format
in some cases.
For other object types, typically only an C<isl> format is supported.

=head3 C<isl> format

The C<isl> format is similar to that of C<Omega>, but has a different
syntax for describing the parameters and allows for the definition
of an existentially quantified variable as the integer division
of an affine expression.
For example, the set of integers C<i> between C<0> and C<n>
such that C<i % 10 <= 6> can be described as

	[n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
				i - 10 a <= 6) }

A set or relation can have several disjuncts, separated
by the keyword C<or>.  Each disjunct is either a conjunction
of constraints or a projection (C<exists>) of a conjunction
of constraints.  The constraints are separated by the keyword
C<and>.

=head3 C<PolyLib> format

If the represented set is a union, then the first line
contains a single number representing the number of disjuncts.
Otherwise, a line containing the number C<1> is optional.

Each disjunct is represented by a matrix of constraints.
The first line contains two numbers representing
the number of rows and columns,
where the number of rows is equal to the number of constraints
and the number of columns is equal to two plus the number of variables.
The following lines contain the actual rows of the constraint matrix.
In each row, the first column indicates whether the constraint
is an equality (C<0>) or inequality (C<1>).  The final column
corresponds to the constant term.

If the set is parametric, then the coefficients of the parameters
appear in the last columns before the constant column.
The coefficients of any existentially quantified variables appear
between those of the set variables and those of the parameters.

=head3 Extended C<PolyLib> format

The extended C<PolyLib> format is nearly identical to the
C<PolyLib> format.  The only difference is that the line
containing the number of rows and columns of a constraint matrix
also contains four additional numbers:
the number of output dimensions, the number of input dimensions,
the number of local dimensions (i.e., the number of existentially
quantified variables) and the number of parameters.
For sets, the number of ``output'' dimensions is equal
to the number of set dimensions, while the number of ``input''
dimensions is zero.

=head3 Input

Objects can be read from input using the following functions.

	#include <isl/val.h>
	__isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx,
		const char *str);
	__isl_give isl_multi_val *isl_multi_val_read_from_str(
		isl_ctx *ctx, const char *str);

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_basic_set *isl_basic_set_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
		FILE *input);
	__isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
		const char *str);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_basic_map *isl_basic_map_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_map *isl_map_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
		const char *str);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_union_set *isl_union_set_read_from_str(
		isl_ctx *ctx, const char *str);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_union_map *isl_union_map_read_from_str(
		isl_ctx *ctx, const char *str);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_multi_aff *isl_multi_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_pw_aff *isl_pw_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_read_from_str(
		isl_ctx *ctx, const char *str);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_read_from_str(
		isl_ctx *ctx, const char *str);

	#include <isl/polynomial.h>
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_read_from_str(
		isl_ctx *ctx, const char *str);

For sets and relations,
the input format is autodetected and may be either the C<PolyLib> format
or the C<isl> format.

=head3 Output

Before anything can be printed, an C<isl_printer> needs to
be created.

	__isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
		FILE *file);
	__isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
	__isl_null isl_printer *isl_printer_free(
		__isl_take isl_printer *printer);

C<isl_printer_to_file> prints to the given file, while
C<isl_printer_to_str> prints to a string that can be extracted
using the following function.

	#include <isl/printer.h>
	__isl_give char *isl_printer_get_str(
		__isl_keep isl_printer *printer);

The printer can be inspected using the following functions.

	FILE *isl_printer_get_file(
		__isl_keep isl_printer *printer);
	int isl_printer_get_output_format(
		__isl_keep isl_printer *p);
	int isl_printer_get_yaml_style(__isl_keep isl_printer *p);

The behavior of the printer can be modified in various ways

	__isl_give isl_printer *isl_printer_set_output_format(
		__isl_take isl_printer *p, int output_format);
	__isl_give isl_printer *isl_printer_set_indent(
		__isl_take isl_printer *p, int indent);
	__isl_give isl_printer *isl_printer_set_indent_prefix(
		__isl_take isl_printer *p, const char *prefix);
	__isl_give isl_printer *isl_printer_indent(
		__isl_take isl_printer *p, int indent);
	__isl_give isl_printer *isl_printer_set_prefix(
		__isl_take isl_printer *p, const char *prefix);
	__isl_give isl_printer *isl_printer_set_suffix(
		__isl_take isl_printer *p, const char *suffix);
	__isl_give isl_printer *isl_printer_set_yaml_style(
		__isl_take isl_printer *p, int yaml_style);

The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
and defaults to C<ISL_FORMAT_ISL>.
Each line in the output is prefixed by C<indent_prefix>,
indented by C<indent> (set by C<isl_printer_set_indent>) spaces
(default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
In the C<PolyLib> format output,
the coefficients of the existentially quantified variables
appear between those of the set variables and those
of the parameters.
The function C<isl_printer_indent> increases the indentation
by the specified amount (which may be negative).
The YAML style may be either C<ISL_YAML_STYLE_BLOCK> or
C<ISL_YAML_STYLE_FLOW> and when we are printing something
in YAML format.

To actually print something, use

	#include <isl/printer.h>
	__isl_give isl_printer *isl_printer_print_double(
		__isl_take isl_printer *p, double d);

	#include <isl/val.h>
	__isl_give isl_printer *isl_printer_print_val(
		__isl_take isl_printer *p, __isl_keep isl_val *v);

	#include <isl/set.h>
	__isl_give isl_printer *isl_printer_print_basic_set(
		__isl_take isl_printer *printer,
		__isl_keep isl_basic_set *bset);
	__isl_give isl_printer *isl_printer_print_set(
		__isl_take isl_printer *printer,
		__isl_keep isl_set *set);

	#include <isl/map.h>
	__isl_give isl_printer *isl_printer_print_basic_map(
		__isl_take isl_printer *printer,
		__isl_keep isl_basic_map *bmap);
	__isl_give isl_printer *isl_printer_print_map(
		__isl_take isl_printer *printer,
		__isl_keep isl_map *map);

	#include <isl/union_set.h>
	__isl_give isl_printer *isl_printer_print_union_set(
		__isl_take isl_printer *p,
		__isl_keep isl_union_set *uset);

	#include <isl/union_map.h>
	__isl_give isl_printer *isl_printer_print_union_map(
		__isl_take isl_printer *p,
		__isl_keep isl_union_map *umap);

	#include <isl/val.h>
	__isl_give isl_printer *isl_printer_print_multi_val(
		__isl_take isl_printer *p,
		__isl_keep isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_printer *isl_printer_print_aff(
		__isl_take isl_printer *p, __isl_keep isl_aff *aff);
	__isl_give isl_printer *isl_printer_print_multi_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_multi_aff *maff);
	__isl_give isl_printer *isl_printer_print_pw_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_pw_aff *pwaff);
	__isl_give isl_printer *isl_printer_print_pw_multi_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_pw_multi_aff *pma);
	__isl_give isl_printer *isl_printer_print_multi_pw_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_multi_pw_aff *mpa);
	__isl_give isl_printer *isl_printer_print_union_pw_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_union_pw_aff *upa);
	__isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_union_pw_multi_aff *upma);
	__isl_give isl_printer *
	isl_printer_print_multi_union_pw_aff(
		__isl_take isl_printer *p,
		__isl_keep isl_multi_union_pw_aff *mupa);

	#include <isl/polynomial.h>
	__isl_give isl_printer *isl_printer_print_qpolynomial(
		__isl_take isl_printer *p,
		__isl_keep isl_qpolynomial *qp);
	__isl_give isl_printer *isl_printer_print_pw_qpolynomial(
		__isl_take isl_printer *p,
		__isl_keep isl_pw_qpolynomial *pwqp);
	__isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
		__isl_take isl_printer *p,
		__isl_keep isl_union_pw_qpolynomial *upwqp);

	__isl_give isl_printer *
	isl_printer_print_pw_qpolynomial_fold(
		__isl_take isl_printer *p,
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_printer *
	isl_printer_print_union_pw_qpolynomial_fold(
		__isl_take isl_printer *p,
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);

For C<isl_printer_print_qpolynomial>,
C<isl_printer_print_pw_qpolynomial> and
C<isl_printer_print_pw_qpolynomial_fold>,
the output format of the printer
needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
For C<isl_printer_print_union_pw_qpolynomial> and
C<isl_printer_print_union_pw_qpolynomial_fold>, only C<ISL_FORMAT_ISL>
is supported.
In case of printing in C<ISL_FORMAT_C>, the user may want
to set the names of all dimensions first.

C<isl> also provides limited support for printing YAML documents,
just enough for the internal use for printing such documents.

	#include <isl/printer.h>
	__isl_give isl_printer *isl_printer_yaml_start_mapping(
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_printer_yaml_end_mapping(
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_printer_yaml_start_sequence(
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_printer_yaml_end_sequence(
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_printer_yaml_next(
		__isl_take isl_printer *p);

A document is started by a call to either
C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
Anything printed to the printer after such a call belong to the
first key of the mapping or the first element in the sequence.
The function C<isl_printer_yaml_next> moves to the value if
we are currently printing a mapping key, the next key if we
are printing a value or the next element if we are printing
an element in a sequence.
Nested mappings and sequences are initiated by the same
C<isl_printer_yaml_start_mapping> or C<isl_printer_yaml_start_sequence>.
Each call to these functions needs to have a corresponding call to
C<isl_printer_yaml_end_mapping> or C<isl_printer_yaml_end_sequence>.

When called on a file printer, the following function flushes
the file.  When called on a string printer, the buffer is cleared.

	__isl_give isl_printer *isl_printer_flush(
		__isl_take isl_printer *p);

The following functions allow the user to attach
notes to a printer in order to keep track of additional state.

	#include <isl/printer.h>
	isl_bool isl_printer_has_note(__isl_keep isl_printer *p,
		__isl_keep isl_id *id);
	__isl_give isl_id *isl_printer_get_note(
		__isl_keep isl_printer *p, __isl_take isl_id *id);
	__isl_give isl_printer *isl_printer_set_note(
		__isl_take isl_printer *p,
		__isl_take isl_id *id, __isl_take isl_id *note);

C<isl_printer_set_note> associates the given note to the given
identifier in the printer.
C<isl_printer_get_note> retrieves a note associated to an
identifier, while
C<isl_printer_has_note> checks if there is such a note.
C<isl_printer_get_note> fails if the requested note does not exist.

Alternatively, a string representation can be obtained
directly using the following functions, which always print
in isl format.

	#include <isl/id.h>
	__isl_give char *isl_id_to_str(
		__isl_keep isl_id *id);

	#include <isl/space.h>
	__isl_give char *isl_space_to_str(
		__isl_keep isl_space *space);

	#include <isl/val.h>
	__isl_give char *isl_val_to_str(__isl_keep isl_val *v);
	__isl_give char *isl_multi_val_to_str(
		__isl_keep isl_multi_val *mv);

	#include <isl/set.h>
	__isl_give char *isl_basic_set_to_str(
		__isl_keep isl_basic_set *bset);
	__isl_give char *isl_set_to_str(
		__isl_keep isl_set *set);

	#include <isl/union_set.h>
	__isl_give char *isl_union_set_to_str(
		__isl_keep isl_union_set *uset);

	#include <isl/map.h>
	__isl_give char *isl_basic_map_to_str(
		__isl_keep isl_basic_map *bmap);
	__isl_give char *isl_map_to_str(
		__isl_keep isl_map *map);

	#include <isl/union_map.h>
	__isl_give char *isl_union_map_to_str(
		__isl_keep isl_union_map *umap);

	#include <isl/aff.h>
	__isl_give char *isl_aff_to_str(__isl_keep isl_aff *aff);
	__isl_give char *isl_pw_aff_to_str(
		__isl_keep isl_pw_aff *pa);
	__isl_give char *isl_multi_aff_to_str(
		__isl_keep isl_multi_aff *ma);
	__isl_give char *isl_pw_multi_aff_to_str(
		__isl_keep isl_pw_multi_aff *pma);
	__isl_give char *isl_multi_pw_aff_to_str(
		__isl_keep isl_multi_pw_aff *mpa);
	__isl_give char *isl_union_pw_aff_to_str(
		__isl_keep isl_union_pw_aff *upa);
	__isl_give char *isl_union_pw_multi_aff_to_str(
		__isl_keep isl_union_pw_multi_aff *upma);
	__isl_give char *isl_multi_union_pw_aff_to_str(
		__isl_keep isl_multi_union_pw_aff *mupa);

	#include <isl/point.h>
	__isl_give char *isl_point_to_str(
		__isl_keep isl_point *pnt);

	#include <isl/polynomial.h>
	__isl_give char *isl_pw_qpolynomial_to_str(
		__isl_keep isl_pw_qpolynomial *pwqp);
	__isl_give char *isl_union_pw_qpolynomial_to_str(
		__isl_keep isl_union_pw_qpolynomial *upwqp);

=head2 Properties

=head3 Unary Properties

=over

=item * Emptiness

The following functions test whether the given set or relation
contains any integer points.  The ``plain'' variants do not perform
any computations, but simply check if the given set or relation
is already known to be empty.

	#include <isl/set.h>
	isl_bool isl_basic_set_plain_is_empty(
		__isl_keep isl_basic_set *bset);
	isl_bool isl_basic_set_is_empty(
		__isl_keep isl_basic_set *bset);
	isl_bool isl_set_plain_is_empty(
		__isl_keep isl_set *set);
	isl_bool isl_set_is_empty(__isl_keep isl_set *set);

	#include <isl/union_set.h>
	isl_bool isl_union_set_is_empty(
		__isl_keep isl_union_set *uset);

	#include <isl/map.h>
	isl_bool isl_basic_map_plain_is_empty(
		__isl_keep isl_basic_map *bmap);
	isl_bool isl_basic_map_is_empty(
		__isl_keep isl_basic_map *bmap);
	isl_bool isl_map_plain_is_empty(
		__isl_keep isl_map *map);
	isl_bool isl_map_is_empty(__isl_keep isl_map *map);

	#include <isl/union_map.h>
	isl_bool isl_union_map_plain_is_empty(
		__isl_keep isl_union_map *umap);
	isl_bool isl_union_map_is_empty(
		__isl_keep isl_union_map *umap);

=item * Universality

	isl_bool isl_basic_set_plain_is_universe(
		__isl_keep isl_basic_set *bset);
	isl_bool isl_basic_set_is_universe(
		__isl_keep isl_basic_set *bset);
	isl_bool isl_basic_map_plain_is_universe(
		__isl_keep isl_basic_map *bmap);
	isl_bool isl_basic_map_is_universe(
		__isl_keep isl_basic_map *bmap);
	isl_bool isl_set_plain_is_universe(
		__isl_keep isl_set *set);
	isl_bool isl_map_plain_is_universe(
		__isl_keep isl_map *map);

=item * Single-valuedness

	#include <isl/set.h>
	isl_bool isl_set_is_singleton(__isl_keep isl_set *set);

	#include <isl/map.h>
	isl_bool isl_basic_map_is_single_valued(
		__isl_keep isl_basic_map *bmap);
	isl_bool isl_map_plain_is_single_valued(
		__isl_keep isl_map *map);
	isl_bool isl_map_is_single_valued(__isl_keep isl_map *map);

	#include <isl/union_map.h>
	isl_bool isl_union_map_is_single_valued(
		__isl_keep isl_union_map *umap);

=item * Injectivity

	isl_bool isl_map_plain_is_injective(
		__isl_keep isl_map *map);
	isl_bool isl_map_is_injective(
		__isl_keep isl_map *map);
	isl_bool isl_union_map_plain_is_injective(
		__isl_keep isl_union_map *umap);
	isl_bool isl_union_map_is_injective(
		__isl_keep isl_union_map *umap);

=item * Bijectivity

	isl_bool isl_map_is_bijective(
		__isl_keep isl_map *map);
	isl_bool isl_union_map_is_bijective(
		__isl_keep isl_union_map *umap);

=item * Identity

The following functions test whether the given relation
only maps elements to themselves.

	#include <isl/map.h>
	isl_bool isl_map_is_identity(
		__isl_keep isl_map *map);

	#include <isl/union_map.h>
	isl_bool isl_union_map_is_identity(
		__isl_keep isl_union_map *umap);

=item * Position

	__isl_give isl_val *
	isl_basic_map_plain_get_val_if_fixed(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_val *isl_set_plain_get_val_if_fixed(
		__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	__isl_give isl_val *isl_map_plain_get_val_if_fixed(
		__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned pos);

If the set or relation obviously lies on a hyperplane where the given dimension
has a fixed value, then return that value.
Otherwise return NaN.

=item * Stride

	isl_stat isl_set_dim_residue_class_val(
		__isl_keep isl_set *set,
		int pos, __isl_give isl_val **modulo,
		__isl_give isl_val **residue);

Check if the values of the given set dimension are equal to a fixed
value modulo some integer value.  If so, assign the modulo to C<*modulo>
and the fixed value to C<*residue>.  If the given dimension attains only
a single value, then assign C<0> to C<*modulo> and the fixed value to
C<*residue>.
If the dimension does not attain only a single value and if no modulo
can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>.

	#include <isl/set.h>
	__isl_give isl_stride_info *isl_set_get_stride_info(
		__isl_keep isl_set *set, int pos);
	__isl_give isl_val *isl_set_get_stride(
		__isl_keep isl_set *set, int pos);

	#include <isl/map.h>
	__isl_give isl_stride_info *
	isl_map_get_range_stride_info(
		__isl_keep isl_map *map, int pos);

Check if the values of the given set dimension are equal to
some affine expression of the other dimensions (the offset)
modulo some integer stride or
check if the values of the given output dimensions are equal to
some affine expression of the input dimensions (the offset)
modulo some integer stride.
If no more specific information can be found, then the stride
is taken to be one and the offset is taken to be the zero expression.
The function C<isl_set_get_stride> performs the same
computation as C<isl_set_get_stride_info> but only returns the stride.
For the other functions,
the stride and offset can be extracted from the returned object
using the following functions.

	#include <isl/stride_info.h>
	__isl_give isl_val *isl_stride_info_get_stride(
		__isl_keep isl_stride_info *si);
	__isl_give isl_aff *isl_stride_info_get_offset(
		__isl_keep isl_stride_info *si);

The stride info object can be copied and released using the following
functions.

	#include <isl/stride_info.h>
	__isl_give isl_stride_info *isl_stride_info_copy(
		__isl_keep isl_stride_info *si);
	__isl_null isl_stride_info *isl_stride_info_free(
		__isl_take isl_stride_info *si);

=item * Dependence

To check whether the description of a set, relation or function depends
on one or more given dimensions,
the following functions can be used.

	#include <isl/constraint.h>
	isl_bool isl_constraint_involves_dims(
		__isl_keep isl_constraint *constraint,
		enum isl_dim_type type, unsigned first, unsigned n);

	#include <isl/set.h>
	isl_bool isl_basic_set_involves_dims(
		__isl_keep isl_basic_set *bset,
		enum isl_dim_type type, unsigned first, unsigned n);
	isl_bool isl_set_involves_dims(__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned first, unsigned n);

	#include <isl/map.h>
	isl_bool isl_basic_map_involves_dims(
		__isl_keep isl_basic_map *bmap,
		enum isl_dim_type type, unsigned first, unsigned n);
	isl_bool isl_map_involves_dims(__isl_keep isl_map *map,
		enum isl_dim_type type, unsigned first, unsigned n);

	#include <isl/union_map.h>
	isl_bool isl_union_map_involves_dims(
		__isl_keep isl_union_map *umap,
		enum isl_dim_type type, unsigned first, unsigned n);

	#include <isl/aff.h>
	isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff,
		enum isl_dim_type type, unsigned first, unsigned n);
	isl_bool isl_pw_aff_involves_dims(
		__isl_keep isl_pw_aff *pwaff,
		enum isl_dim_type type, unsigned first, unsigned n);
	isl_bool isl_multi_aff_involves_dims(
		__isl_keep isl_multi_aff *ma,
		enum isl_dim_type type, unsigned first, unsigned n);
	isl_bool isl_pw_multi_aff_involves_dims(
		__isl_keep isl_pw_multi_aff *pma,
		enum isl_dim_type type, unsigned first, unsigned n);
	isl_bool isl_multi_pw_aff_involves_dims(
		__isl_keep isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned first, unsigned n);

	#include <isl/polynomial.h>
	isl_bool isl_qpolynomial_involves_dims(
		__isl_keep isl_qpolynomial *qp,
		enum isl_dim_type type, unsigned first, unsigned n);

Similarly, the following functions can be used to check whether
a given dimension is involved in any lower or upper bound.

	#include <isl/set.h>
	isl_bool isl_set_dim_has_any_lower_bound(
		__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	isl_bool isl_set_dim_has_any_upper_bound(
		__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);

Note that these functions return true even if there is a bound on
the dimension on only some of the basic sets of C<set>.
To check if they have a bound for all of the basic sets in C<set>,
use the following functions instead.

	#include <isl/set.h>
	isl_bool isl_set_dim_has_lower_bound(
		__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);
	isl_bool isl_set_dim_has_upper_bound(
		__isl_keep isl_set *set,
		enum isl_dim_type type, unsigned pos);

=item * Space

To check whether a set is a parameter domain, use this function:

	isl_bool isl_set_is_params(__isl_keep isl_set *set);
	isl_bool isl_union_set_is_params(
		__isl_keep isl_union_set *uset);

=item * Wrapping

The following functions check whether the space of the given
(basic) set or relation domain and/or range is a wrapped relation.

	#include <isl/space.h>
	isl_bool isl_space_is_wrapping(
		__isl_keep isl_space *space);
	isl_bool isl_space_domain_is_wrapping(
		__isl_keep isl_space *space);
	isl_bool isl_space_range_is_wrapping(
		__isl_keep isl_space *space);
	isl_bool isl_space_is_product(
		__isl_keep isl_space *space);

	#include <isl/set.h>
	isl_bool isl_basic_set_is_wrapping(
		__isl_keep isl_basic_set *bset);
	isl_bool isl_set_is_wrapping(__isl_keep isl_set *set);

	#include <isl/map.h>
	isl_bool isl_map_domain_is_wrapping(
		__isl_keep isl_map *map);
	isl_bool isl_map_range_is_wrapping(
		__isl_keep isl_map *map);
	isl_bool isl_map_is_product(__isl_keep isl_map *map);

	#include <isl/val.h>
	isl_bool isl_multi_val_range_is_wrapping(
		__isl_keep isl_multi_val *mv);

	#include <isl/aff.h>
	isl_bool isl_multi_aff_range_is_wrapping(
		__isl_keep isl_multi_aff *ma);
	isl_bool isl_multi_pw_aff_range_is_wrapping(
		__isl_keep isl_multi_pw_aff *mpa);
	isl_bool isl_multi_union_pw_aff_range_is_wrapping(
		__isl_keep isl_multi_union_pw_aff *mupa);

The input to C<isl_space_is_wrapping> should
be the space of a set, while that of
C<isl_space_domain_is_wrapping> and
C<isl_space_range_is_wrapping> should be the space of a relation.
The input to C<isl_space_is_product> can be either the space
of a set or that of a binary relation.
In case the input is the space of a binary relation, it checks
whether both domain and range are wrapping.

=item * Internal Product

	isl_bool isl_basic_map_can_zip(
		__isl_keep isl_basic_map *bmap);
	isl_bool isl_map_can_zip(__isl_keep isl_map *map);

Check whether the product of domain and range of the given relation
can be computed,
i.e., whether both domain and range are nested relations.

=item * Currying

	#include <isl/space.h>
	isl_bool isl_space_can_curry(
		__isl_keep isl_space *space);

	#include <isl/map.h>
	isl_bool isl_basic_map_can_curry(
		__isl_keep isl_basic_map *bmap);
	isl_bool isl_map_can_curry(__isl_keep isl_map *map);

Check whether the domain of the (basic) relation is a wrapped relation.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_uncurry(
		__isl_take isl_space *space);

	#include <isl/map.h>
	isl_bool isl_basic_map_can_uncurry(
		__isl_keep isl_basic_map *bmap);
	isl_bool isl_map_can_uncurry(__isl_keep isl_map *map);

Check whether the range of the (basic) relation is a wrapped relation.

	#include <isl/space.h>
	isl_bool isl_space_can_range_curry(
		__isl_keep isl_space *space);

	#include <isl/map.h>
	isl_bool isl_map_can_range_curry(
		__isl_keep isl_map *map);

Check whether the domain of the relation wrapped in the range of
the input is itself a wrapped relation.

=item * Special Values

	#include <isl/aff.h>
	isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff);
	isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
	isl_bool isl_multi_pw_aff_is_cst(
		__isl_keep isl_multi_pw_aff *mpa);

Check whether the given expression is a constant.

	#include <isl/val.h>
	isl_bool isl_multi_val_involves_nan(
		__isl_keep isl_multi_val *mv);

	#include <isl/aff.h>
	isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff);
	isl_bool isl_multi_aff_involves_nan(
		__isl_keep isl_multi_aff *ma);
	isl_bool isl_pw_aff_involves_nan(
		__isl_keep isl_pw_aff *pa);
	isl_bool isl_pw_multi_aff_involves_nan(
		__isl_keep isl_pw_multi_aff *pma);
	isl_bool isl_multi_pw_aff_involves_nan(
		__isl_keep isl_multi_pw_aff *mpa);
	isl_bool isl_union_pw_aff_involves_nan(
		__isl_keep isl_union_pw_aff *upa);
	isl_bool isl_union_pw_multi_aff_involves_nan(
		__isl_keep isl_union_pw_multi_aff *upma);
	isl_bool isl_multi_union_pw_aff_involves_nan(
		__isl_keep isl_multi_union_pw_aff *mupa);

	#include <isl/polynomial.h>
	isl_bool isl_qpolynomial_is_nan(
		__isl_keep isl_qpolynomial *qp);
	isl_bool isl_qpolynomial_fold_is_nan(
		__isl_keep isl_qpolynomial_fold *fold);
	isl_bool isl_pw_qpolynomial_involves_nan(
		__isl_keep isl_pw_qpolynomial *pwqp);
	isl_bool isl_pw_qpolynomial_fold_involves_nan(
		__isl_keep isl_pw_qpolynomial_fold *pwf);
	isl_bool isl_union_pw_qpolynomial_involves_nan(
		__isl_keep isl_union_pw_qpolynomial *upwqp);
	isl_bool isl_union_pw_qpolynomial_fold_involves_nan(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf);

Check whether the given expression is equal to or involves NaN.

	#include <isl/aff.h>
	isl_bool isl_aff_plain_is_zero(
		__isl_keep isl_aff *aff);

Check whether the affine expression is obviously zero.

=back

=head3 Binary Properties

=over

=item * Equality

The following functions check whether two objects
represent the same set, relation or function.
The C<plain> variants only return true if the objects
are obviously the same.  That is, they may return false
even if the objects are the same, but they will never
return true if the objects are not the same.

	#include <isl/set.h>
	isl_bool isl_basic_set_plain_is_equal(
		__isl_keep isl_basic_set *bset1,
		__isl_keep isl_basic_set *bset2);
	isl_bool isl_basic_set_is_equal(
		__isl_keep isl_basic_set *bset1,
		__isl_keep isl_basic_set *bset2);
	isl_bool isl_set_plain_is_equal(
		__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	isl_bool isl_set_is_equal(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);

	#include <isl/map.h>
	isl_bool isl_basic_map_is_equal(
		__isl_keep isl_basic_map *bmap1,
		__isl_keep isl_basic_map *bmap2);
	isl_bool isl_map_is_equal(__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);
	isl_bool isl_map_plain_is_equal(
		__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);

	#include <isl/union_set.h>
	isl_bool isl_union_set_is_equal(
		__isl_keep isl_union_set *uset1,
		__isl_keep isl_union_set *uset2);

	#include <isl/union_map.h>
	isl_bool isl_union_map_is_equal(
		__isl_keep isl_union_map *umap1,
		__isl_keep isl_union_map *umap2);

	#include <isl/val.h>
	isl_bool isl_multi_val_plain_is_equal(
		__isl_keep isl_multi_val *mv1,
		__isl_keep isl_multi_val *mv2);

	#include <isl/aff.h>
	isl_bool isl_aff_plain_is_equal(
		__isl_keep isl_aff *aff1,
		__isl_keep isl_aff *aff2);
	isl_bool isl_multi_aff_plain_is_equal(
		__isl_keep isl_multi_aff *maff1,
		__isl_keep isl_multi_aff *maff2);
	isl_bool isl_pw_aff_plain_is_equal(
		__isl_keep isl_pw_aff *pwaff1,
		__isl_keep isl_pw_aff *pwaff2);
	isl_bool isl_pw_aff_is_equal(
		__isl_keep isl_pw_aff *pa1,
		__isl_keep isl_pw_aff *pa2);
	isl_bool isl_pw_multi_aff_plain_is_equal(
		__isl_keep isl_pw_multi_aff *pma1,
		__isl_keep isl_pw_multi_aff *pma2);
	isl_bool isl_pw_multi_aff_is_equal(
		__isl_keep isl_pw_multi_aff *pma1,
		__isl_keep isl_pw_multi_aff *pma2);
	isl_bool isl_multi_pw_aff_plain_is_equal(
		__isl_keep isl_multi_pw_aff *mpa1,
		__isl_keep isl_multi_pw_aff *mpa2);
	isl_bool isl_multi_pw_aff_is_equal(
		__isl_keep isl_multi_pw_aff *mpa1,
		__isl_keep isl_multi_pw_aff *mpa2);
	isl_bool isl_union_pw_aff_plain_is_equal(
		__isl_keep isl_union_pw_aff *upa1,
		__isl_keep isl_union_pw_aff *upa2);
	isl_bool isl_union_pw_multi_aff_plain_is_equal(
		__isl_keep isl_union_pw_multi_aff *upma1,
		__isl_keep isl_union_pw_multi_aff *upma2);
	isl_bool isl_multi_union_pw_aff_plain_is_equal(
		__isl_keep isl_multi_union_pw_aff *mupa1,
		__isl_keep isl_multi_union_pw_aff *mupa2);

	#include <isl/polynomial.h>
	isl_bool isl_union_pw_qpolynomial_plain_is_equal(
		__isl_keep isl_union_pw_qpolynomial *upwqp1,
		__isl_keep isl_union_pw_qpolynomial *upwqp2);
	isl_bool isl_union_pw_qpolynomial_fold_plain_is_equal(
		__isl_keep isl_union_pw_qpolynomial_fold *upwf1,
		__isl_keep isl_union_pw_qpolynomial_fold *upwf2);

=item * Disjointness

	#include <isl/set.h>
	isl_bool isl_basic_set_is_disjoint(
		__isl_keep isl_basic_set *bset1,
		__isl_keep isl_basic_set *bset2);
	isl_bool isl_set_plain_is_disjoint(
		__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);

	#include <isl/map.h>
	isl_bool isl_basic_map_is_disjoint(
		__isl_keep isl_basic_map *bmap1,
		__isl_keep isl_basic_map *bmap2);
	isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);

	#include <isl/union_set.h>
	isl_bool isl_union_set_is_disjoint(
		__isl_keep isl_union_set *uset1,
		__isl_keep isl_union_set *uset2);

	#include <isl/union_map.h>
	isl_bool isl_union_map_is_disjoint(
		__isl_keep isl_union_map *umap1,
		__isl_keep isl_union_map *umap2);

=item * Subset

	isl_bool isl_basic_set_is_subset(
		__isl_keep isl_basic_set *bset1,
		__isl_keep isl_basic_set *bset2);
	isl_bool isl_set_is_subset(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	isl_bool isl_set_is_strict_subset(
		__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);
	isl_bool isl_union_set_is_subset(
		__isl_keep isl_union_set *uset1,
		__isl_keep isl_union_set *uset2);
	isl_bool isl_union_set_is_strict_subset(
		__isl_keep isl_union_set *uset1,
		__isl_keep isl_union_set *uset2);
	isl_bool isl_basic_map_is_subset(
		__isl_keep isl_basic_map *bmap1,
		__isl_keep isl_basic_map *bmap2);
	isl_bool isl_basic_map_is_strict_subset(
		__isl_keep isl_basic_map *bmap1,
		__isl_keep isl_basic_map *bmap2);
	isl_bool isl_map_is_subset(
		__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);
	isl_bool isl_map_is_strict_subset(
		__isl_keep isl_map *map1,
		__isl_keep isl_map *map2);
	isl_bool isl_union_map_is_subset(
		__isl_keep isl_union_map *umap1,
		__isl_keep isl_union_map *umap2);
	isl_bool isl_union_map_is_strict_subset(
		__isl_keep isl_union_map *umap1,
		__isl_keep isl_union_map *umap2);

Check whether the first argument is a (strict) subset of the
second argument.

=item * Order

Every comparison function returns a negative value if the first
argument is considered smaller than the second, a positive value
if the first argument is considered greater and zero if the two
constraints are considered the same by the comparison criterion.

	#include <isl/constraint.h>
	int isl_constraint_plain_cmp(
		__isl_keep isl_constraint *c1,
		__isl_keep isl_constraint *c2);

This function is useful for sorting C<isl_constraint>s.
The order depends on the internal representation of the inputs.
The order is fixed over different calls to the function (assuming
the internal representation of the inputs has not changed), but may
change over different versions of C<isl>.

	#include <isl/constraint.h>
	int isl_constraint_cmp_last_non_zero(
		__isl_keep isl_constraint *c1,
		__isl_keep isl_constraint *c2);

This function can be used to sort constraints that live in the same
local space.  Constraints that involve ``earlier'' dimensions or
that have a smaller coefficient for the shared latest dimension
are considered smaller than other constraints.
This function only defines a B<partial> order.

	#include <isl/set.h>
	int isl_set_plain_cmp(__isl_keep isl_set *set1,
		__isl_keep isl_set *set2);

This function is useful for sorting C<isl_set>s.
The order depends on the internal representation of the inputs.
The order is fixed over different calls to the function (assuming
the internal representation of the inputs has not changed), but may
change over different versions of C<isl>.

	#include <isl/aff.h>
	int isl_multi_aff_plain_cmp(
		__isl_keep isl_multi_aff *ma1,
		__isl_keep isl_multi_aff *ma2);
	int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1,
		__isl_keep isl_pw_aff *pa2);

The functions C<isl_multi_aff_plain_cmp> and
C<isl_pw_aff_plain_cmp> can be used to sort C<isl_multi_aff>s and
C<isl_pw_aff>s.  The order is not strictly defined.
The current order sorts expressions that only involve
earlier dimensions before those that involve later dimensions.

=back

=head2 Unary Operations

=over

=item * Complement

	__isl_give isl_set *isl_set_complement(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_complement(
		__isl_take isl_map *map);

=item * Inverse map

	#include <isl/space.h>
	__isl_give isl_space *isl_space_reverse(
		__isl_take isl_space *space);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_reverse(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_reverse(
		__isl_take isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_reverse(
		__isl_take isl_union_map *umap);

=item * Projection

	#include <isl/space.h>
	__isl_give isl_space *isl_space_domain(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_range(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_params(
		__isl_take isl_space *space);

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_local_space *isl_local_space_range(
		__isl_take isl_local_space *ls);

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_project_out(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_map *isl_set_project_onto_map(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned first,
		unsigned n);
	__isl_give isl_basic_set *isl_basic_set_params(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_params(__isl_take isl_set *set);

The function C<isl_set_project_onto_map> returns a relation
that projects the input set onto the given set dimensions.

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_project_out(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_basic_set *isl_basic_map_domain(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_set *isl_basic_map_range(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_map_params(__isl_take isl_map *map);
	__isl_give isl_set *isl_map_domain(
		__isl_take isl_map *bmap);
	__isl_give isl_set *isl_map_range(
		__isl_take isl_map *map);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_project_out(
		__isl_take isl_union_set *uset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_set *isl_union_set_params(
		__isl_take isl_union_set *uset);

The function C<isl_union_set_project_out> can only project out
parameters.

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_project_out(
		__isl_take isl_union_map *umap,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_union_map *
	isl_union_map_project_out_all_params(
		__isl_take isl_union_map *umap);
	__isl_give isl_set *isl_union_map_params(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_set *isl_union_map_domain(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_set *isl_union_map_range(
		__isl_take isl_union_map *umap);

The function C<isl_union_map_project_out> can only project out
parameters.

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_project_domain_on_params(
		__isl_take isl_aff *aff);
	__isl_give isl_multi_aff *
	isl_multi_aff_project_domain_on_params(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *
	isl_pw_aff_project_domain_on_params(
		__isl_take isl_pw_aff *pa);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_project_domain_on_params(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_project_domain_on_params(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_set *isl_pw_aff_domain(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_set *isl_pw_multi_aff_domain(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_set *isl_multi_pw_aff_domain(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_union_set *isl_union_pw_aff_domain(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_union_set *isl_union_pw_multi_aff_domain(
		__isl_take isl_union_pw_multi_aff *upma);
	__isl_give isl_union_set *
	isl_multi_union_pw_aff_domain(
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_set *isl_pw_aff_params(
		__isl_take isl_pw_aff *pwa);

If no explicit domain was set on a zero-dimensional input to
C<isl_multi_union_pw_aff_domain>, then this function will
return a parameter set.

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *
	isl_qpolynomial_project_domain_on_params(
		__isl_take isl_qpolynomial *qp);
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_project_domain_on_params(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_project_domain_on_params(
		__isl_take isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_set *isl_pw_qpolynomial_domain(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
		__isl_take isl_union_pw_qpolynomial_fold *upwf);
	__isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
		__isl_take isl_union_pw_qpolynomial *upwqp);

	#include <isl/space.h>
	__isl_give isl_space *isl_space_domain_map(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_range_map(
		__isl_take isl_space *space);

	#include <isl/map.h>
	__isl_give isl_map *isl_set_wrapped_domain_map(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_basic_map_domain_map(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_basic_map_range_map(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
	__isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_domain_map(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_pw_multi_aff *
	isl_union_map_domain_map_union_pw_multi_aff(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *isl_union_map_range_map(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *
	isl_union_set_wrapped_domain_map(
		__isl_take isl_union_set *uset);

The functions above construct a (basic, regular or union) relation
that maps (a wrapped version of) the input relation to its domain or range.
C<isl_set_wrapped_domain_map> maps the input set to the domain
of its wrapped relation.

=item * Elimination

	__isl_give isl_basic_set *isl_basic_set_eliminate(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_set *isl_set_eliminate(
		__isl_take isl_set *set, enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_basic_map *isl_basic_map_eliminate(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_map *isl_map_eliminate(
		__isl_take isl_map *map, enum isl_dim_type type,
		unsigned first, unsigned n);

Eliminate the coefficients for the given dimensions from the constraints,
without removing the dimensions.

=item * Constructing a set from a parameter domain

A zero-dimensional (local) space or (basic) set can be constructed
on a given parameter domain using the following functions.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_set_from_params(
		__isl_take isl_space *space);

	#include <isl/local_space.h>
	__isl_give isl_local_space *
	isl_local_space_set_from_params(
		__isl_take isl_local_space *ls);

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_from_params(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_from_params(
		__isl_take isl_set *set);

=item * Constructing a relation from one or two sets

Create a relation with the given set(s) as domain and/or range.
If only the domain or the range is specified, then
the range or domain of the created relation is a zero-dimensional
flat anonymous space.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_from_domain(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_from_range(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_map_from_set(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_map_from_domain_and_range(
		__isl_take isl_space *domain,
		__isl_take isl_space *range);

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_from_domain(
		__isl_take isl_local_space *ls);

	#include <isl/map.h>
	__isl_give isl_map *isl_map_from_domain(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_from_range(
		__isl_take isl_set *set);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_from_domain(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_from_range(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *
	isl_union_map_from_domain_and_range(
		__isl_take isl_union_set *domain,
		__isl_take isl_union_set *range);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_from_range(
		__isl_take isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_from_range(
		__isl_take isl_aff *aff);
	__isl_give isl_multi_aff *isl_multi_aff_from_range(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *isl_pw_aff_from_range(
		__isl_take isl_pw_aff *pwa);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_from_range(
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
		__isl_take isl_set *set);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_domain(
		__isl_take isl_union_set *uset);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_from_range(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_from_range(
		__isl_take isl_pw_qpolynomial_fold *pwf);

=item * Slicing

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_fix_si(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_basic_set *isl_basic_set_fix_val(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *v);
	__isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_set *isl_set_fix_val(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *v);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_fix_si(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_basic_map *isl_basic_map_fix_val(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *v);
	__isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_map *isl_map_fix_val(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *v);

	#include <isl/aff.h>
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si(
		__isl_take isl_pw_multi_aff *pma,
		enum isl_dim_type type, unsigned pos, int value);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val(
		__isl_take isl_pw_qpolynomial *pwqp,
		enum isl_dim_type type, unsigned n,
		__isl_take isl_val *v);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_fix_val(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		enum isl_dim_type type, unsigned n,
		__isl_take isl_val *v);

Intersect the set, relation or function domain
with the hyperplane where the given
dimension has the fixed given value.

	#include <isl/set.h>
	__isl_give isl_basic_set *
	isl_basic_set_lower_bound_val(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *value);
	__isl_give isl_basic_set *
	isl_basic_set_upper_bound_val(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *value);
	__isl_give isl_set *isl_set_lower_bound_si(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_set *isl_set_lower_bound_val(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *value);
	__isl_give isl_set *isl_set_upper_bound_si(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_set *isl_set_upper_bound_val(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos,
		__isl_take isl_val *value);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_lower_bound_si(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_basic_map *isl_basic_map_upper_bound_si(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_map *isl_map_lower_bound_si(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos, int value);
	__isl_give isl_map *isl_map_upper_bound_si(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos, int value);

Intersect the set or relation with the half-space where the given
dimension has a value bounded by the fixed given integer value.

	__isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_basic_map *isl_basic_map_equate(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);

Intersect the set or relation with the hyperplane where the given
dimensions are equal to each other.

	__isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);

Intersect the relation with the hyperplane where the given
dimensions have opposite values.

	__isl_give isl_map *isl_map_order_le(
		__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_basic_map *isl_basic_map_order_ge(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_map *isl_map_order_ge(
		__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_basic_map *isl_basic_map_order_gt(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);
	__isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
		enum isl_dim_type type1, int pos1,
		enum isl_dim_type type2, int pos2);

Intersect the relation with the half-space where the given
dimensions satisfy the given ordering.

	#include <isl/union_set.h>
	__isl_give isl_union_map *isl_union_map_remove_map_if(
		__isl_take isl_union_map *umap,
		isl_bool (*fn)(__isl_keep isl_map *map,
			void *user), void *user);

This function calls the callback function once for each
pair of spaces for which there are elements in the input.
If the callback returns C<isl_bool_true>, then all those elements
are removed from the result.  The only remaining elements in the output
are then those for which the callback returns C<isl_bool_false>.

=item * Locus

	#include <isl/aff.h>
	__isl_give isl_basic_set *isl_aff_zero_basic_set(
		__isl_take isl_aff *aff);
	__isl_give isl_basic_set *isl_aff_neg_basic_set(
		__isl_take isl_aff *aff);
	__isl_give isl_set *isl_pw_aff_pos_set(
		__isl_take isl_pw_aff *pa);
	__isl_give isl_set *isl_pw_aff_nonneg_set(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_set *isl_pw_aff_zero_set(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_set *isl_pw_aff_non_zero_set(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_union_set *
	isl_union_pw_aff_zero_union_set(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_union_set *
	isl_multi_union_pw_aff_zero_union_set(
		__isl_take isl_multi_union_pw_aff *mupa);

The function C<isl_aff_neg_basic_set> returns a basic set
containing those elements in the domain space
of C<aff> where C<aff> is negative.
The function C<isl_pw_aff_nonneg_set> returns a set
containing those elements in the domain
of C<pwaff> where C<pwaff> is non-negative.
The function C<isl_multi_union_pw_aff_zero_union_set>
returns a union set containing those elements
in the domains of its elements where they are all zero.

=item * Identity

	__isl_give isl_map *isl_set_identity(
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_set_identity(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_multi_aff *
	isl_union_set_identity_union_pw_multi_aff(
		__isl_take isl_union_set *uset);

Construct an identity relation on the given (union) set.

=item * Function Extraction

A piecewise quasi affine expression that is equal to 1 on a set
and 0 outside the set can be created using the following function.

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_set_indicator_function(
		__isl_take isl_set *set);

A piecewise multiple quasi affine expression can be extracted
from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
and the C<isl_map> is single-valued.
In case of a conversion from an C<isl_union_map>
to an C<isl_union_pw_multi_aff>, these properties need to hold
in each domain space.
A conversion to a C<isl_multi_union_pw_aff> additionally
requires that the input is non-empty and involves only a single
range space.

	#include <isl/aff.h>
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
		__isl_take isl_map *map);

	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_union_set(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_from_union_map(
		__isl_take isl_union_map *umap);

	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_from_union_map(
		__isl_take isl_union_map *umap);

=item * Deltas

	__isl_give isl_basic_set *isl_basic_map_deltas(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_map_deltas(
		__isl_take isl_union_map *umap);

These functions return a (basic) set containing the differences
between image elements and corresponding domain elements in the input.

	__isl_give isl_basic_map *isl_basic_map_deltas_map(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_deltas_map(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_deltas_map(
		__isl_take isl_union_map *umap);

The functions above construct a (basic, regular or union) relation
that maps (a wrapped version of) the input relation to its delta set.

=item * Coalescing

Simplify the representation of a set, relation or functions by trying
to combine pairs of basic sets or relations into a single
basic set or relation.

	#include <isl/set.h>
	__isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);

	#include <isl/map.h>
	__isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_coalesce(
		__isl_take isl_union_set *uset);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_coalesce(
		__isl_take isl_union_map *umap);

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_coalesce(
		__isl_take isl_pw_aff *pwqp);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_coalesce(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_coalesce(
		__isl_take isl_union_pw_multi_aff *upma);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_coalesce(
		__isl_take isl_multi_union_pw_aff *aff);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_coalesce(
		__isl_take isl_pw_qpolynomial_fold *pwf);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_coalesce(
		__isl_take isl_union_pw_qpolynomial *upwqp);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_coalesce(
		__isl_take isl_union_pw_qpolynomial_fold *upwf);

One of the methods for combining pairs of basic sets or relations
can result in coefficients that are much larger than those that appear
in the constraints of the input.  By default, the coefficients are
not allowed to grow larger, but this can be changed by unsetting
the following option.

	isl_stat isl_options_set_coalesce_bounded_wrapping(
		isl_ctx *ctx, int val);
	int isl_options_get_coalesce_bounded_wrapping(
		isl_ctx *ctx);

One of the other methods tries to combine pairs of basic sets
with different local variables, treating them as existentially
quantified variables even if they have known (but different)
integer division expressions.  The result may then also have
existentially quantified variables.  Turning on the following
option prevents this from happening.

	isl_stat isl_options_set_coalesce_preserve_locals(
		isl_ctx *ctx, int val);
	int isl_options_get_coalesce_preserve_locals(isl_ctx *ctx);

=item * Detecting equalities

	__isl_give isl_basic_set *isl_basic_set_detect_equalities(
                __isl_take isl_basic_set *bset);
	__isl_give isl_basic_map *isl_basic_map_detect_equalities(
                __isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_set_detect_equalities(
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_detect_equalities(
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_detect_equalities(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_detect_equalities(
		__isl_take isl_union_map *umap);

Simplify the representation of a set or relation by detecting implicit
equalities.

=item * Removing redundant constraints

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_remove_redundancies(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_remove_redundancies(
		__isl_take isl_set *set);

	#include <isl/union_set.h>
	__isl_give isl_union_set *
	isl_union_set_remove_redundancies(
		__isl_take isl_union_set *uset);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_remove_redundancies(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_remove_redundancies(
		__isl_take isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_union_map *
	isl_union_map_remove_redundancies(
		__isl_take isl_union_map *umap);

=item * Convex hull

	__isl_give isl_basic_set *isl_set_convex_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_map_convex_hull(
		__isl_take isl_map *map);

If the input set or relation has any existentially quantified
variables, then the result of these operations is currently undefined.

=item * Simple hull

	#include <isl/set.h>
	__isl_give isl_basic_set *
	isl_set_unshifted_simple_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_set *isl_set_simple_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_set *
	isl_set_plain_unshifted_simple_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_set *
	isl_set_unshifted_simple_hull_from_set_list(
		__isl_take isl_set *set,
		__isl_take isl_set_list *list);

	#include <isl/map.h>
	__isl_give isl_basic_map *
	isl_map_unshifted_simple_hull(
		__isl_take isl_map *map);
	__isl_give isl_basic_map *isl_map_simple_hull(
		__isl_take isl_map *map);
	__isl_give isl_basic_map *
	isl_map_plain_unshifted_simple_hull(
		__isl_take isl_map *map);
		__isl_give isl_basic_map *
	isl_map_unshifted_simple_hull_from_map_list(
		__isl_take isl_map *map,
		__isl_take isl_map_list *list);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_simple_hull(
		__isl_take isl_union_map *umap);

These functions compute a single basic set or relation
that contains the whole input set or relation.
In particular, the output is described by translates
of the constraints describing the basic sets or relations in the input.
In case of C<isl_set_unshifted_simple_hull>, only the original
constraints are used, without any translation.
In case of C<isl_set_plain_unshifted_simple_hull> and
C<isl_map_plain_unshifted_simple_hull>, the result is described
by original constraints that are obviously satisfied
by the entire input set or relation.
In case of C<isl_set_unshifted_simple_hull_from_set_list> and
C<isl_map_unshifted_simple_hull_from_map_list>, the
constraints are taken from the elements of the second argument.

=begin latex

(See \autoref{s:simple hull}.)

=end latex

=item * Affine hull

	__isl_give isl_basic_set *isl_basic_set_affine_hull(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set *isl_set_affine_hull(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_affine_hull(
		__isl_take isl_union_set *uset);
	__isl_give isl_basic_map *isl_basic_map_affine_hull(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_map_affine_hull(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_affine_hull(
		__isl_take isl_union_map *umap);

In case of union sets and relations, the affine hull is computed
per space.

=item * Polyhedral hull

	__isl_give isl_basic_set *isl_set_polyhedral_hull(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_map_polyhedral_hull(
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_polyhedral_hull(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_polyhedral_hull(
		__isl_take isl_union_map *umap);

These functions compute a single basic set or relation
not involving any existentially quantified variables
that contains the whole input set or relation.
In case of union sets and relations, the polyhedral hull is computed
per space.

=item * Box hull

	#include <isl/map.h>
	__isl_give isl_fixed_box *
	isl_map_get_range_simple_fixed_box_hull(
		__isl_keep isl_map *map);

This function tries to approximate the range of the map by a box of fixed size.
The box is described in terms of an offset living in the same space as
the input map and a size living in the range space.  For any element
in the input map, the range value is greater than or equal to
the offset applied to the domain value and the difference with
this offset is strictly smaller than the size.
If no fixed-size approximation of the range can be found,
an I<invalid> box is returned, i.e., one for which
C<isl_fixed_box_is_valid> below returns false.

The validity, the offset and the size of the box can be obtained using
the following functions.

	#include <isl/fixed_box.h>
	isl_bool isl_fixed_box_is_valid(
		__isl_keep isl_fixed_box *box);
	__isl_give isl_multi_aff *isl_fixed_box_get_offset(
		__isl_keep isl_fixed_box *box);
	__isl_give isl_multi_val *isl_fixed_box_get_size(
		__isl_keep isl_fixed_box *box);

The box can be copied and freed using the following functions.

	#include <isl/fixed_box.h>
	__isl_give isl_fixed_box *isl_fixed_box_copy(
		__isl_keep isl_fixed_box *box);
	__isl_null isl_fixed_box *isl_fixed_box_free(
		__isl_take isl_fixed_box *box);

=item * Other approximations

	#include <isl/set.h>
	__isl_give isl_basic_set *
	isl_basic_set_drop_constraints_involving_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_basic_set *
	isl_basic_set_drop_constraints_not_involving_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_set *
	isl_set_drop_constraints_involving_dims(
		__isl_take isl_set *set,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_set *
	isl_set_drop_constraints_not_involving_dims(
		__isl_take isl_set *set,
		enum isl_dim_type type,
		unsigned first, unsigned n);

	#include <isl/map.h>
	__isl_give isl_basic_map *
	isl_basic_map_drop_constraints_involving_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_basic_map *
	isl_basic_map_drop_constraints_not_involving_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_map *
	isl_map_drop_constraints_involving_dims(
		__isl_take isl_map *map,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_map *
	isl_map_drop_constraints_not_involving_dims(
		__isl_take isl_map *map,
		enum isl_dim_type type,
		unsigned first, unsigned n);

These functions drop any constraints (not) involving the specified dimensions.
Note that the result depends on the representation of the input.

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
		__isl_take isl_pw_qpolynomial *pwqp, int sign);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_to_polynomial(
		__isl_take isl_union_pw_qpolynomial *upwqp, int sign);

Approximate each quasipolynomial by a polynomial.  If C<sign> is positive,
the polynomial will be an overapproximation.  If C<sign> is negative,
it will be an underapproximation.  If C<sign> is zero, the approximation
will lie somewhere in between.

=item * Feasibility

	__isl_give isl_basic_set *isl_basic_set_sample(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set *isl_set_sample(
		__isl_take isl_set *set);
	__isl_give isl_basic_map *isl_basic_map_sample(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_map_sample(
		__isl_take isl_map *map);

If the input (basic) set or relation is non-empty, then return
a singleton subset of the input.  Otherwise, return an empty set.

=item * Optimization

	#include <isl/ilp.h>
	__isl_give isl_val *isl_basic_set_max_val(
		__isl_keep isl_basic_set *bset,
		__isl_keep isl_aff *obj);
	__isl_give isl_val *isl_set_min_val(
		__isl_keep isl_set *set,
		__isl_keep isl_aff *obj);
	__isl_give isl_val *isl_set_max_val(
		__isl_keep isl_set *set,
		__isl_keep isl_aff *obj);
	__isl_give isl_multi_val *
	isl_union_set_min_multi_union_pw_aff(
		__isl_keep isl_union_set *uset,
		__isl_keep isl_multi_union_pw_aff *obj);

Compute the minimum or maximum of the integer affine expression C<obj>
over the points in C<set>.
The result is C<NULL> in case of an error, the optimal value in case
there is one, negative infinity or infinity if the problem is unbounded and
NaN if the problem is empty.

	#include <isl/ilp.h>
	__isl_give isl_val *isl_union_pw_aff_min_val(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_val *isl_union_pw_aff_max_val(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_multi_val *
	isl_multi_union_pw_aff_min_multi_val(
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_multi_val *
	isl_multi_union_pw_aff_max_multi_val(
		__isl_take isl_multi_union_pw_aff *mupa);

Compute the minimum or maximum of the integer affine expression
over its definition domain.
The result is C<NULL> in case of an error, the optimal value in case
there is one, negative infinity or infinity if the problem is unbounded and
NaN if the problem is empty.

	#include <isl/ilp.h>
	__isl_give isl_val *isl_basic_set_dim_max_val(
		__isl_take isl_basic_set *bset, int pos);

Return the maximal value attained by the given set dimension,
independently of the parameter values and of any other dimensions.
The result is C<NULL> in case of an error, the optimal value in case
there is one, infinity if the problem is unbounded and
NaN if the input is empty.

=item * Parametric optimization

	__isl_give isl_pw_aff *isl_set_dim_min(
		__isl_take isl_set *set, int pos);
	__isl_give isl_pw_aff *isl_set_dim_max(
		__isl_take isl_set *set, int pos);
	__isl_give isl_pw_aff *isl_map_dim_min(
		__isl_take isl_map *map, int pos);
	__isl_give isl_pw_aff *isl_map_dim_max(
		__isl_take isl_map *map, int pos);

Compute the minimum or maximum of the given set or output dimension
as a function of the parameters (and input dimensions), but independently
of the other set or output dimensions.
For lexicographic optimization, see L<"Lexicographic Optimization">.

=item * Dual

The following functions compute either the set of (rational) coefficient
values of valid constraints for the given set or the set of (rational)
values satisfying the constraints with coefficients from the given set.
Internally, these two sets of functions perform essentially the
same operations, except that the set of coefficients is assumed to
be a cone, while the set of values may be any polyhedron.
The current implementation is based on the Farkas lemma and
Fourier-Motzkin elimination, but this may change or be made optional
in future.  In particular, future implementations may use different
dualization algorithms or skip the elimination step.

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_coefficients(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set_list *
	isl_basic_set_list_coefficients(
		__isl_take isl_basic_set_list *list);
	__isl_give isl_basic_set *isl_set_coefficients(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_coefficients(
		__isl_take isl_union_set *bset);
	__isl_give isl_basic_set *isl_basic_set_solutions(
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_set *isl_set_solutions(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_solutions(
		__isl_take isl_union_set *bset);

=item * Power

	__isl_give isl_map *isl_map_fixed_power_val(
		__isl_take isl_map *map,
		__isl_take isl_val *exp);
	__isl_give isl_union_map *
	isl_union_map_fixed_power_val(
		__isl_take isl_union_map *umap,
		__isl_take isl_val *exp);

Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
of C<map> is computed.

	__isl_give isl_map *isl_map_power(__isl_take isl_map *map,
		int *exact);
	__isl_give isl_union_map *isl_union_map_power(
		__isl_take isl_union_map *umap, int *exact);

Compute a parametric representation for all positive powers I<k> of C<map>.
The result maps I<k> to a nested relation corresponding to the
I<k>th power of C<map>.
The result may be an overapproximation.  If the result is known to be exact,
then C<*exact> is set to C<1>.

=item * Transitive closure

	__isl_give isl_map *isl_map_transitive_closure(
		__isl_take isl_map *map, int *exact);
	__isl_give isl_union_map *isl_union_map_transitive_closure(
		__isl_take isl_union_map *umap, int *exact);

Compute the transitive closure of C<map>.
The result may be an overapproximation.  If the result is known to be exact,
then C<*exact> is set to C<1>.

=item * Reaching path lengths

	__isl_give isl_map *isl_map_reaching_path_lengths(
		__isl_take isl_map *map, int *exact);

Compute a relation that maps each element in the range of C<map>
to the lengths of all paths composed of edges in C<map> that
end up in the given element.
The result may be an overapproximation.  If the result is known to be exact,
then C<*exact> is set to C<1>.
To compute the I<maximal> path length, the resulting relation
should be postprocessed by C<isl_map_lexmax>.
In particular, if the input relation is a dependence relation
(mapping sources to sinks), then the maximal path length corresponds
to the free schedule.
Note, however, that C<isl_map_lexmax> expects the maximum to be
finite, so if the path lengths are unbounded (possibly due to
the overapproximation), then you will get an error message.

=item * Wrapping

	#include <isl/space.h>
	__isl_give isl_space *isl_space_wrap(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_unwrap(
		__isl_take isl_space *space);

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_wrap(
		__isl_take isl_local_space *ls);

	#include <isl/set.h>
	__isl_give isl_basic_map *isl_basic_set_unwrap(
		__isl_take isl_basic_set *bset);
	__isl_give isl_map *isl_set_unwrap(
		__isl_take isl_set *set);

	#include <isl/map.h>
	__isl_give isl_basic_set *isl_basic_map_wrap(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_map_wrap(
		__isl_take isl_map *map);

	#include <isl/union_set.h>
	__isl_give isl_union_map *isl_union_set_unwrap(
		__isl_take isl_union_set *uset);

	#include <isl/union_map.h>
	__isl_give isl_union_set *isl_union_map_wrap(
		__isl_take isl_union_map *umap);

The input to C<isl_space_unwrap> should
be the space of a set, while that of
C<isl_space_wrap> should be the space of a relation.
Conversely, the output of C<isl_space_unwrap> is the space
of a relation, while that of C<isl_space_wrap> is the space of a set.

=item * Flattening

Remove any internal structure of domain (and range) of the given
set or relation.  If there is any such internal structure in the input,
then the name of the space is also removed.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_flatten_domain(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_flatten_range(
		__isl_take isl_space *space);

	#include <isl/local_space.h>
	__isl_give isl_local_space *
	isl_local_space_flatten_domain(
		__isl_take isl_local_space *ls);
	__isl_give isl_local_space *
	isl_local_space_flatten_range(
		__isl_take isl_local_space *ls);

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_flatten(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_flatten(
		__isl_take isl_set *set);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_flatten_domain(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_basic_map_flatten_range(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_flatten_range(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_flatten_domain(
		__isl_take isl_map *map);
	__isl_give isl_basic_map *isl_basic_map_flatten(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_flatten(
		__isl_take isl_map *map);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_flatten_range(
		__isl_take isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_flatten_domain(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_aff *isl_multi_aff_flatten_range(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_flatten_range(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_flatten_range(
		__isl_take isl_multi_union_pw_aff *mupa);

	#include <isl/map.h>
	__isl_give isl_map *isl_set_flatten_map(
		__isl_take isl_set *set);

The function above constructs a relation
that maps the input set to a flattened version of the set.

=item * Lifting

Lift the input set to a space with extra dimensions corresponding
to the existentially quantified variables in the input.
In particular, the result lives in a wrapped map where the domain
is the original space and the range corresponds to the original
existentially quantified variables.

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_lift(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_lift(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_lift(
		__isl_take isl_union_set *uset);

Given a local space that contains the existentially quantified
variables of a set, a basic relation that, when applied to
a basic set, has essentially the same effect as C<isl_basic_set_lift>,
can be constructed using the following function.

	#include <isl/local_space.h>
	__isl_give isl_basic_map *isl_local_space_lifting(
		__isl_take isl_local_space *ls);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_lift(
		__isl_take isl_multi_aff *maff,
		__isl_give isl_local_space **ls);

If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
then it is assigned the local space that lies at the basis of
the lifting applied.

=item * Internal Product

	#include <isl/space.h>
	__isl_give isl_space *isl_space_zip(
		__isl_take isl_space *space);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_zip(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_zip(
		__isl_take isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_zip(
		__isl_take isl_union_map *umap);

Given a relation with nested relations for domain and range,
interchange the range of the domain with the domain of the range.

=item * Currying

	#include <isl/space.h>
	__isl_give isl_space *isl_space_curry(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_uncurry(
		__isl_take isl_space *space);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_curry(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_basic_map *isl_basic_map_uncurry(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_curry(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_uncurry(
		__isl_take isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_curry(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *isl_union_map_uncurry(
		__isl_take isl_union_map *umap);

Given a relation with a nested relation for domain,
the C<curry> functions
move the range of the nested relation out of the domain
and use it as the domain of a nested relation in the range,
with the original range as range of this nested relation.
The C<uncurry> functions perform the inverse operation.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_range_curry(
		__isl_take isl_space *space);

	#include <isl/map.h>
	__isl_give isl_map *isl_map_range_curry(
		__isl_take isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_range_curry(
		__isl_take isl_union_map *umap);

These functions apply the currying to the relation that
is nested inside the range of the input.

=item * Aligning parameters

Change the order of the parameters of the given set, relation
or function
such that the first parameters match those of C<model>.
This may involve the introduction of extra parameters.
All parameters need to be named.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_align_params(
		__isl_take isl_space *space1,
		__isl_take isl_space *space2)

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_align_params(
		__isl_take isl_basic_set *bset,
		__isl_take isl_space *model);
	__isl_give isl_set *isl_set_align_params(
		__isl_take isl_set *set,
		__isl_take isl_space *model);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_align_params(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_space *model);
	__isl_give isl_map *isl_map_align_params(
		__isl_take isl_map *map,
		__isl_take isl_space *model);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_align_params(
		__isl_take isl_multi_val *mv,
		__isl_take isl_space *model);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_align_params(
		__isl_take isl_aff *aff,
		__isl_take isl_space *model);
	__isl_give isl_multi_aff *isl_multi_aff_align_params(
		__isl_take isl_multi_aff *multi,
		__isl_take isl_space *model);
	__isl_give isl_pw_aff *isl_pw_aff_align_params(
		__isl_take isl_pw_aff *pwaff,
		__isl_take isl_space *model);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_space *model);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_align_params(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_space *model);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_align_params(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_space *model);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_align_params(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_space *model);

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_align_params(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_space *model);

=item * Drop unused parameters

Drop parameters that are not referenced by the isl object.
All parameters need to be named.

	#include <isl/set.h>
	__isl_give isl_basic_set *
	isl_basic_set_drop_unused_params(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_drop_unused_params(
		__isl_take isl_set *set);

	#include <isl/map.h>
	__isl_give isl_basic_map *
	isl_basic_map_drop_unused_params(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_drop_unused_params(
		__isl_take isl_map *map);

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_drop_unused_params(
		__isl_take isl_pw_aff *pa);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_drop_unused_params(
		__isl_take isl_pw_multi_aff *pma);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_drop_unused_params(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_drop_unused_params(
		__isl_take isl_pw_qpolynomial_fold *pwf);

=item * Unary Arithmetic Operations

	#include <isl/set.h>
	__isl_give isl_set *isl_set_neg(
		__isl_take isl_set *set);
	#include <isl/map.h>
	__isl_give isl_map *isl_map_neg(
		__isl_take isl_map *map);

C<isl_set_neg> constructs a set containing the opposites of
the elements in its argument.
The domain of the result of C<isl_map_neg> is the same
as the domain of its argument.  The corresponding range
elements are the opposites of the corresponding range
elements in the argument.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_neg(
		__isl_take isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_neg(
		__isl_take isl_aff *aff);
	__isl_give isl_multi_aff *isl_multi_aff_neg(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *isl_pw_aff_neg(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_neg(
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_neg(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_neg(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_neg(
		__isl_take isl_union_pw_multi_aff *upma);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_neg(
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_aff *isl_aff_ceil(
		__isl_take isl_aff *aff);
	__isl_give isl_pw_aff *isl_pw_aff_ceil(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_aff *isl_aff_floor(
		__isl_take isl_aff *aff);
	__isl_give isl_multi_aff *isl_multi_aff_floor(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *isl_pw_aff_floor(
		__isl_take isl_pw_aff *pwaff);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_floor(
		__isl_take isl_union_pw_aff *upa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_floor(
		__isl_take isl_multi_union_pw_aff *mupa);

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_list_min(
		__isl_take isl_pw_aff_list *list);
	__isl_give isl_pw_aff *isl_pw_aff_list_max(
		__isl_take isl_pw_aff_list *list);

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_neg(
		__isl_take isl_qpolynomial *qp);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
		__isl_take isl_pw_qpolynomial *pwqp);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_neg(
		__isl_take isl_union_pw_qpolynomial *upwqp);
	__isl_give isl_qpolynomial *isl_qpolynomial_pow(
		__isl_take isl_qpolynomial *qp,
		unsigned exponent);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
		__isl_take isl_pw_qpolynomial *pwqp,
		unsigned exponent);

=item * Evaluation

The following functions evaluate a function in a point.

	#include <isl/aff.h>
	__isl_give isl_val *isl_aff_eval(
		__isl_take isl_aff *aff,
		__isl_take isl_point *pnt);
	__isl_give isl_val *isl_pw_aff_eval(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_point *pnt);

	#include <isl/polynomial.h>
	__isl_give isl_val *isl_pw_qpolynomial_eval(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_point *pnt);
	__isl_give isl_val *isl_pw_qpolynomial_fold_eval(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_point *pnt);
	__isl_give isl_val *isl_union_pw_qpolynomial_eval(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_point *pnt);
	__isl_give isl_val *isl_union_pw_qpolynomial_fold_eval(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_point *pnt);

These functions return NaN when evaluated at a void point.
Note that C<isl_pw_aff_eval> returns NaN when the function is evaluated outside
its definition domain, while C<isl_pw_qpolynomial_eval> returns zero
when the function is evaluated outside its explicit domain.

=item * Dimension manipulation

It is usually not advisable to directly change the (input or output)
space of a set or a relation as this removes the name and the internal
structure of the space.  However, the functions below can be useful
to add new parameters, assuming
C<isl_set_align_params> and C<isl_map_align_params>
are not sufficient.

	#include <isl/space.h>
	__isl_give isl_space *isl_space_add_dims(
		__isl_take isl_space *space,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_space *isl_space_insert_dims(
		__isl_take isl_space *space,
		enum isl_dim_type type, unsigned pos, unsigned n);
	__isl_give isl_space *isl_space_drop_dims(
		__isl_take isl_space *space,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_space *isl_space_move_dims(
		__isl_take isl_space *space,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_add_dims(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_local_space *isl_local_space_insert_dims(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_local_space *isl_local_space_drop_dims(
		__isl_take isl_local_space *ls,
		enum isl_dim_type type, unsigned first, unsigned n);

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_add_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_set *isl_set_add_dims(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_basic_set *isl_basic_set_insert_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type type, unsigned pos,
		unsigned n);
	__isl_give isl_set *isl_set_insert_dims(
		__isl_take isl_set *set,
		enum isl_dim_type type, unsigned pos, unsigned n);
	__isl_give isl_basic_set *isl_basic_set_move_dims(
		__isl_take isl_basic_set *bset,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_set *isl_set_move_dims(
		__isl_take isl_set *set,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_add_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_map *isl_map_add_dims(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_basic_map *isl_basic_map_insert_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type type, unsigned pos,
		unsigned n);
	__isl_give isl_map *isl_map_insert_dims(
		__isl_take isl_map *map,
		enum isl_dim_type type, unsigned pos, unsigned n);
	__isl_give isl_basic_map *isl_basic_map_move_dims(
		__isl_take isl_basic_map *bmap,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_map *isl_map_move_dims(
		__isl_take isl_map *map,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_insert_dims(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_multi_val *isl_multi_val_add_dims(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_multi_val *isl_multi_val_drop_dims(
		__isl_take isl_multi_val *mv,
		enum isl_dim_type type, unsigned first, unsigned n);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_insert_dims(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_multi_aff *isl_multi_aff_insert_dims(
		__isl_take isl_multi_aff *ma,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_pw_aff *isl_pw_aff_insert_dims(
		__isl_take isl_pw_aff *pwaff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_aff *isl_aff_add_dims(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_multi_aff *isl_multi_aff_add_dims(
		__isl_take isl_multi_aff *ma,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_pw_aff *isl_pw_aff_add_dims(
		__isl_take isl_pw_aff *pwaff,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
		__isl_take isl_multi_pw_aff *mpa,
		enum isl_dim_type type, unsigned n);
	__isl_give isl_aff *isl_aff_drop_dims(
		__isl_take isl_aff *aff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_multi_aff *isl_multi_aff_drop_dims(
		__isl_take isl_multi_aff *maff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_pw_aff *isl_pw_aff_drop_dims(
		__isl_take isl_pw_aff *pwaff,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
		__isl_take isl_pw_multi_aff *pma,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_drop_dims(
		__isl_take isl_union_pw_aff *upa,
		enum isl_dim_type type, unsigned first, unsigned n);
	__isl_give isl_union_pw_multi_aff *
		isl_union_pw_multi_aff_drop_dims(
		__isl_take isl_union_pw_multi_aff *upma,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_drop_dims(
		__isl_take isl_multi_union_pw_aff *mupa,
		enum isl_dim_type type, unsigned first,
		unsigned n);
	__isl_give isl_aff *isl_aff_move_dims(
		__isl_take isl_aff *aff,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_multi_aff *isl_multi_aff_move_dims(
		__isl_take isl_multi_aff *ma,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_pw_aff *isl_pw_aff_move_dims(
		__isl_take isl_pw_aff *pa,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims(
		__isl_take isl_multi_pw_aff *pma,
		enum isl_dim_type dst_type, unsigned dst_pos,
		enum isl_dim_type src_type, unsigned src_pos,
		unsigned n);

	#include <isl/polynomial.h>
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_drop_dims(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		enum isl_dim_type type,
		unsigned first, unsigned n);
	__isl_give isl_union_pw_qpolynomial_fold *
		isl_union_pw_qpolynomial_fold_drop_dims(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		enum isl_dim_type type,
		unsigned first, unsigned n);

The operations on union expressions can only manipulate parameters.

=back

=head2 Binary Operations

The two arguments of a binary operation not only need to live
in the same C<isl_ctx>, they currently also need to have
the same (number of) parameters.

=head3 Basic Operations

=over

=item * Intersection

	#include <isl/local_space.h>
	__isl_give isl_local_space *isl_local_space_intersect(
		__isl_take isl_local_space *ls1,
		__isl_take isl_local_space *ls2);

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_intersect_params(
		__isl_take isl_basic_set *bset1,
		__isl_take isl_basic_set *bset2);
	__isl_give isl_basic_set *isl_basic_set_intersect(
		__isl_take isl_basic_set *bset1,
		__isl_take isl_basic_set *bset2);
	__isl_give isl_basic_set *isl_basic_set_list_intersect(
		__isl_take struct isl_basic_set_list *list);
	__isl_give isl_set *isl_set_intersect_params(
		__isl_take isl_set *set,
		__isl_take isl_set *params);
	__isl_give isl_set *isl_set_intersect(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_intersect_domain(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_map *isl_basic_map_intersect_range(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *bset);
	__isl_give isl_basic_map *isl_basic_map_intersect(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_basic_map *isl_basic_map_list_intersect(
		__isl_take isl_basic_map_list *list);
	__isl_give isl_map *isl_map_intersect_params(
		__isl_take isl_map *map,
		__isl_take isl_set *params);
	__isl_give isl_map *isl_map_intersect_domain(
		__isl_take isl_map *map,
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_intersect_range(
		__isl_take isl_map *map,
		__isl_take isl_set *set);
	__isl_give isl_map *isl_map_intersect(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *
	isl_map_intersect_domain_factor_range(
		__isl_take isl_map *map,
		__isl_take isl_map *factor);
	__isl_give isl_map *
	isl_map_intersect_range_factor_range(
		__isl_take isl_map *map,
		__isl_take isl_map *factor);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_intersect_params(
		__isl_take isl_union_set *uset,
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_intersect(
		__isl_take isl_union_set *uset1,
		__isl_take isl_union_set *uset2);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_intersect_params(
		__isl_take isl_union_map *umap,
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_map_intersect_domain(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_intersect_range(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_intersect(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_union_map *
	isl_union_map_intersect_range_factor_range(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_map *factor);

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_set *set);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_intersect_domain(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_set *domain);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_domain(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_intersect_domain(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_union_set *uset);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_intersect_domain(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_union_set *uset);
	__isl_give isl_pw_aff *isl_pw_aff_intersect_params(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_set *set);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_intersect_params(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_intersect_params(
		__isl_take isl_union_pw_aff *upa,
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_intersect_params(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_set *set);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_intersect_params(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_set *params);
	isl_multi_union_pw_aff_intersect_range(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_set *set);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_intersect_domain(
		__isl_take isl_pw_qpolynomial *pwpq,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_intersect_domain(
		__isl_take isl_union_pw_qpolynomial *upwpq,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_intersect_domain(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_union_set *uset);
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_intersect_params(
		__isl_take isl_pw_qpolynomial *pwpq,
		__isl_take isl_set *set);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_intersect_params(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_intersect_params(
		__isl_take isl_union_pw_qpolynomial *upwpq,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_intersect_params(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_set *set);

The second argument to the C<_params> functions needs to be
a parametric (basic) set.  For the other functions, a parametric set
for either argument is only allowed if the other argument is
a parametric set as well.
The list passed to C<isl_basic_set_list_intersect> needs to have
at least one element and all elements need to live in the same space.
The function C<isl_multi_union_pw_aff_intersect_range>
restricts the input function to those shared domain elements
that map to the specified range.

=item * Union

	#include <isl/set.h>
	__isl_give isl_set *isl_basic_set_union(
		__isl_take isl_basic_set *bset1,
		__isl_take isl_basic_set *bset2);
	__isl_give isl_set *isl_set_union(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);
	__isl_give isl_set *isl_set_list_union(
		__isl_take isl_set_list *list);

	#include <isl/map.h>
	__isl_give isl_map *isl_basic_map_union(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_union(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_union(
		__isl_take isl_union_set *uset1,
		__isl_take isl_union_set *uset2);
	__isl_give isl_union_set *isl_union_set_list_union(
		__isl_take isl_union_set_list *list);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_union(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);

The list passed to C<isl_set_list_union> needs to have
at least one element and all elements need to live in the same space.

=item * Set difference

	#include <isl/set.h>
	__isl_give isl_set *isl_set_subtract(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);

	#include <isl/map.h>
	__isl_give isl_map *isl_map_subtract(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *isl_map_subtract_domain(
		__isl_take isl_map *map,
		__isl_take isl_set *dom);
	__isl_give isl_map *isl_map_subtract_range(
		__isl_take isl_map *map,
		__isl_take isl_set *dom);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_subtract(
		__isl_take isl_union_set *uset1,
		__isl_take isl_union_set *uset2);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_subtract(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_union_map *isl_union_map_subtract_domain(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *dom);
	__isl_give isl_union_map *isl_union_map_subtract_range(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *dom);

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_subtract_domain(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_subtract_domain(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_subtract_domain(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_subtract_domain(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_set *set);

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_subtract_domain(
		__isl_take isl_pw_qpolynomial *pwpq,
		__isl_take isl_set *set);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_subtract_domain(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_subtract_domain(
		__isl_take isl_union_pw_qpolynomial *upwpq,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_subtract_domain(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_union_set *uset);

=item * Application

	#include <isl/space.h>
	__isl_give isl_space *isl_space_join(
		__isl_take isl_space *left,
		__isl_take isl_space *right);

	#include <isl/map.h>
	__isl_give isl_basic_set *isl_basic_set_apply(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_map *bmap);
	__isl_give isl_set *isl_set_apply(
		__isl_take isl_set *set,
		__isl_take isl_map *map);
	__isl_give isl_union_set *isl_union_set_apply(
		__isl_take isl_union_set *uset,
		__isl_take isl_union_map *umap);
	__isl_give isl_basic_map *isl_basic_map_apply_domain(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_basic_map *isl_basic_map_apply_range(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_apply_domain(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *isl_map_apply_range(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_apply_domain(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_union_map *isl_union_map_apply_range(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);

	#include <isl/aff.h>
	__isl_give isl_union_pw_aff *
	isl_multi_union_pw_aff_apply_aff(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_aff *aff);
	__isl_give isl_union_pw_aff *
	isl_multi_union_pw_aff_apply_pw_aff(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_pw_aff *pa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_apply_multi_aff(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_apply_pw_multi_aff(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_pw_multi_aff *pma);

The result of C<isl_multi_union_pw_aff_apply_aff> is defined
over the shared domain of the elements of the input.  The dimension is
required to be greater than zero.
The C<isl_multi_union_pw_aff> argument of
C<isl_multi_union_pw_aff_apply_multi_aff> is allowed to be zero-dimensional,
but only if the range of the C<isl_multi_aff> argument
is also zero-dimensional.
Similarly for C<isl_multi_union_pw_aff_apply_pw_multi_aff>.

	#include <isl/polynomial.h>
	__isl_give isl_pw_qpolynomial_fold *
	isl_set_apply_pw_qpolynomial_fold(
		__isl_take isl_set *set,
		__isl_take isl_pw_qpolynomial_fold *pwf,
		int *tight);
	__isl_give isl_pw_qpolynomial_fold *
	isl_map_apply_pw_qpolynomial_fold(
		__isl_take isl_map *map,
		__isl_take isl_pw_qpolynomial_fold *pwf,
		int *tight);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_set_apply_union_pw_qpolynomial_fold(
		__isl_take isl_union_set *uset,
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		int *tight);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_map_apply_union_pw_qpolynomial_fold(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		int *tight);

The functions taking a map
compose the given map with the given piecewise quasipolynomial reduction.
That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
over all elements in the intersection of the range of the map
and the domain of the piecewise quasipolynomial reduction
as a function of an element in the domain of the map.
The functions taking a set compute a bound over all elements in the
intersection of the set and the domain of the
piecewise quasipolynomial reduction.

=item * Preimage

	#include <isl/set.h>
	__isl_give isl_basic_set *
	isl_basic_set_preimage_multi_aff(
		__isl_take isl_basic_set *bset,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_set *isl_set_preimage_multi_aff(
		__isl_take isl_set *set,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_set *isl_set_preimage_pw_multi_aff(
		__isl_take isl_set *set,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_set *isl_set_preimage_multi_pw_aff(
		__isl_take isl_set *set,
		__isl_take isl_multi_pw_aff *mpa);

	#include <isl/union_set.h>
	__isl_give isl_union_set *
	isl_union_set_preimage_multi_aff(
		__isl_take isl_union_set *uset,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_union_set *
	isl_union_set_preimage_pw_multi_aff(
		__isl_take isl_union_set *uset,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_union_set *
	isl_union_set_preimage_union_pw_multi_aff(
		__isl_take isl_union_set *uset,
		__isl_take isl_union_pw_multi_aff *upma);

	#include <isl/map.h>
	__isl_give isl_basic_map *
	isl_basic_map_preimage_domain_multi_aff(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_map *isl_map_preimage_domain_multi_aff(
		__isl_take isl_map *map,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_map *isl_map_preimage_range_multi_aff(
		__isl_take isl_map *map,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_map *
	isl_map_preimage_domain_pw_multi_aff(
		__isl_take isl_map *map,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_map *
	isl_map_preimage_range_pw_multi_aff(
		__isl_take isl_map *map,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_map *
	isl_map_preimage_domain_multi_pw_aff(
		__isl_take isl_map *map,
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_basic_map *
	isl_basic_map_preimage_range_multi_aff(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_multi_aff *ma);

	#include <isl/union_map.h>
	__isl_give isl_union_map *
	isl_union_map_preimage_domain_multi_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_union_map *
	isl_union_map_preimage_range_multi_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_union_map *
	isl_union_map_preimage_domain_pw_multi_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_union_map *
	isl_union_map_preimage_range_pw_multi_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_union_map *
	isl_union_map_preimage_domain_union_pw_multi_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_pw_multi_aff *upma);
	__isl_give isl_union_map *
	isl_union_map_preimage_range_union_pw_multi_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_pw_multi_aff *upma);

These functions compute the preimage of the given set or map domain/range under
the given function.  In other words, the expression is plugged
into the set description or into the domain/range of the map.

=item * Pullback

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_pullback_aff(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_aff *isl_aff_pullback_multi_aff(
		__isl_take isl_aff *aff,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_pullback_multi_aff(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_pullback_multi_aff(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_multi_aff *ma);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_pullback_pw_multi_aff(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_pullback_pw_multi_aff(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_pullback_multi_pw_aff(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_union_pw_aff *
	isl_union_pw_aff_pullback_union_pw_multi_aff(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_union_pw_multi_aff *upma);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
		__isl_take isl_union_pw_multi_aff *upma1,
		__isl_take isl_union_pw_multi_aff *upma2);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_pullback_union_pw_multi_aff(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_union_pw_multi_aff *upma);

These functions precompose the first expression by the second function.
In other words, the second function is plugged
into the first expression.

=item * Locus

	#include <isl/aff.h>
	__isl_give isl_basic_set *isl_aff_eq_basic_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_set *isl_aff_eq_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_set *isl_aff_ne_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_basic_set *isl_aff_le_basic_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_set *isl_aff_le_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_basic_set *isl_aff_lt_basic_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_set *isl_aff_lt_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_basic_set *isl_aff_ge_basic_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_set *isl_aff_ge_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_basic_set *isl_aff_gt_basic_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_set *isl_aff_gt_set(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_set *isl_pw_aff_eq_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_ne_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_le_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_lt_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_ge_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_set *isl_pw_aff_gt_set(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);

	__isl_give isl_set *isl_multi_aff_lex_le_set(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_set *isl_multi_aff_lex_lt_set(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_set *isl_multi_aff_lex_ge_set(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_set *isl_multi_aff_lex_gt_set(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);

	__isl_give isl_set *isl_pw_aff_list_eq_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_ne_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_le_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_lt_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_ge_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);
	__isl_give isl_set *isl_pw_aff_list_gt_set(
		__isl_take isl_pw_aff_list *list1,
		__isl_take isl_pw_aff_list *list2);

The function C<isl_aff_ge_basic_set> returns a basic set
containing those elements in the shared space
of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
The function C<isl_pw_aff_ge_set> returns a set
containing those elements in the shared domain
of C<pwaff1> and C<pwaff2> where C<pwaff1> is
greater than or equal to C<pwaff2>.
The function C<isl_multi_aff_lex_le_set> returns a set
containing those elements in the shared domain space
where C<ma1> is lexicographically smaller than or
equal to C<ma2>.
The functions operating on C<isl_pw_aff_list> apply the corresponding
C<isl_pw_aff> function to each pair of elements in the two lists.

	#include <isl/aff.h>
	__isl_give isl_map *isl_pw_aff_eq_map(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);
	__isl_give isl_map *isl_pw_aff_lt_map(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);
	__isl_give isl_map *isl_pw_aff_gt_map(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);

	__isl_give isl_map *isl_multi_pw_aff_eq_map(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_map *isl_multi_pw_aff_lex_lt_map(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_map *isl_multi_pw_aff_lex_gt_map(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);

These functions return a map between domain elements of the arguments
where the function values satisfy the given relation.

	#include <isl/union_map.h>
	__isl_give isl_union_map *
	isl_union_map_eq_at_multi_union_pw_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_union_map *
	isl_union_map_lex_lt_at_multi_union_pw_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_union_map *
	isl_union_map_lex_gt_at_multi_union_pw_aff(
		__isl_take isl_union_map *umap,
		__isl_take isl_multi_union_pw_aff *mupa);

These functions select the subset of elements in the union map
that have an equal or lexicographically smaller function value.

=item * Cartesian Product

	#include <isl/space.h>
	__isl_give isl_space *isl_space_product(
		__isl_take isl_space *space1,
		__isl_take isl_space *space2);
	__isl_give isl_space *isl_space_domain_product(
		__isl_take isl_space *space1,
		__isl_take isl_space *space2);
	__isl_give isl_space *isl_space_range_product(
		__isl_take isl_space *space1,
		__isl_take isl_space *space2);

The functions
C<isl_space_product>, C<isl_space_domain_product>
and C<isl_space_range_product> take pairs or relation spaces and
produce a single relations space, where either the domain, the range
or both domain and range are wrapped spaces of relations between
the domains and/or ranges of the input spaces.
If the product is only constructed over the domain or the range
then the ranges or the domains of the inputs should be the same.
The function C<isl_space_product> also accepts a pair of set spaces,
in which case it returns a wrapped space of a relation between the
two input spaces.

	#include <isl/set.h>
	__isl_give isl_set *isl_set_product(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_domain_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_basic_map *isl_basic_map_range_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_basic_map *isl_basic_map_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_domain_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *isl_map_range_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *isl_map_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_product(
		__isl_take isl_union_set *uset1,
		__isl_take isl_union_set *uset2);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_domain_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_union_map *isl_union_map_range_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_union_map *isl_union_map_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_range_product(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);
	__isl_give isl_multi_val *isl_multi_val_product(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_range_product(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_multi_aff *isl_multi_aff_product(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_range_product(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_product(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_range_product(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_range_product(
		__isl_take isl_multi_union_pw_aff *mupa1,
		__isl_take isl_multi_union_pw_aff *mupa2);

The above functions compute the cross product of the given
sets, relations or functions.  The domains and ranges of the results
are wrapped maps between domains and ranges of the inputs.
To obtain a ``flat'' product, use the following functions
instead.

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_flat_product(
		__isl_take isl_basic_set *bset1,
		__isl_take isl_basic_set *bset2);
	__isl_give isl_set *isl_set_flat_product(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_flat_range_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_flat_domain_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_map *isl_map_flat_range_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);
	__isl_give isl_basic_map *isl_basic_map_flat_product(
		__isl_take isl_basic_map *bmap1,
		__isl_take isl_basic_map *bmap2);
	__isl_give isl_map *isl_map_flat_product(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);

	#include <isl/union_map.h>
	__isl_give isl_union_map *
	isl_union_map_flat_domain_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);
	__isl_give isl_union_map *
	isl_union_map_flat_range_product(
		__isl_take isl_union_map *umap1,
		__isl_take isl_union_map *umap2);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_flat_range_product(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_flat_range_product(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_flat_range_product(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_flat_range_product(
		__isl_take isl_union_pw_multi_aff *upma1,
		__isl_take isl_union_pw_multi_aff *upma2);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_flat_range_product(
		__isl_take isl_multi_union_pw_aff *mupa1,
		__isl_take isl_multi_union_pw_aff *mupa2);

	#include <isl/space.h>
	__isl_give isl_space *isl_space_factor_domain(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_factor_range(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_domain_factor_domain(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_domain_factor_range(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_range_factor_domain(
		__isl_take isl_space *space);
	__isl_give isl_space *isl_space_range_factor_range(
		__isl_take isl_space *space);

The functions C<isl_space_range_factor_domain> and
C<isl_space_range_factor_range> extract the two arguments from
the result of a call to C<isl_space_range_product>.

The arguments of a call to a product can be extracted
from the result using the following functions.

	#include <isl/map.h>
	__isl_give isl_map *isl_map_factor_domain(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_factor_range(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_domain_factor_domain(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_domain_factor_range(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_range_factor_domain(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_range_factor_range(
		__isl_take isl_map *map);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_factor_domain(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *isl_union_map_factor_range(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *
	isl_union_map_domain_factor_domain(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *
	isl_union_map_domain_factor_range(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *
	isl_union_map_range_factor_domain(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *
	isl_union_map_range_factor_range(
		__isl_take isl_union_map *umap);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_factor_range(
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_val *
	isl_multi_val_range_factor_domain(
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_val *
	isl_multi_val_range_factor_range(
		__isl_take isl_multi_val *mv);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_factor_range(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_aff *
	isl_multi_aff_range_factor_domain(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_aff *
	isl_multi_aff_range_factor_range(
		__isl_take isl_multi_aff *ma);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_factor_range(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_range_factor_domain(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_range_factor_range(
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_factor_range(
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_range_factor_domain(
		__isl_take isl_multi_union_pw_aff *mupa);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_range_factor_range(
		__isl_take isl_multi_union_pw_aff *mupa);

The splice functions are a generalization of the flat product functions,
where the second argument may be inserted at any position inside
the first argument rather than being placed at the end.
The functions C<isl_multi_val_factor_range>,
C<isl_multi_aff_factor_range>,
C<isl_multi_pw_aff_factor_range> and
C<isl_multi_union_pw_aff_factor_range>
take functions that live in a set space.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_range_splice(
		__isl_take isl_multi_val *mv1, unsigned pos,
		__isl_take isl_multi_val *mv2);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_range_splice(
		__isl_take isl_multi_aff *ma1, unsigned pos,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_multi_aff *isl_multi_aff_splice(
		__isl_take isl_multi_aff *ma1,
		unsigned in_pos, unsigned out_pos,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_range_splice(
		__isl_take isl_multi_pw_aff *mpa1, unsigned pos,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
		__isl_take isl_multi_pw_aff *mpa1,
		unsigned in_pos, unsigned out_pos,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_range_splice(
		__isl_take isl_multi_union_pw_aff *mupa1,
		unsigned pos,
		__isl_take isl_multi_union_pw_aff *mupa2);

=item * Simplification

When applied to a set or relation,
the gist operation returns a set or relation that has the
same intersection with the context as the input set or relation.
Any implicit equality in the intersection is made explicit in the result,
while all inequalities that are redundant with respect to the intersection
are removed.
In case of union sets and relations, the gist operation is performed
per space.

When applied to a function,
the gist operation applies the set gist operation to each of
the cells in the domain of the input piecewise expression.
The context is also exploited
to simplify the expression associated to each cell.

	#include <isl/set.h>
	__isl_give isl_basic_set *isl_basic_set_gist(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *context);
	__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
		__isl_take isl_set *context);
	__isl_give isl_set *isl_set_gist_params(
		__isl_take isl_set *set,
		__isl_take isl_set *context);

	#include <isl/map.h>
	__isl_give isl_basic_map *isl_basic_map_gist(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_map *context);
	__isl_give isl_basic_map *isl_basic_map_gist_domain(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *context);
	__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
		__isl_take isl_map *context);
	__isl_give isl_map *isl_map_gist_params(
		__isl_take isl_map *map,
		__isl_take isl_set *context);
	__isl_give isl_map *isl_map_gist_domain(
		__isl_take isl_map *map,
		__isl_take isl_set *context);
	__isl_give isl_map *isl_map_gist_range(
		__isl_take isl_map *map,
		__isl_take isl_set *context);

	#include <isl/union_set.h>
	__isl_give isl_union_set *isl_union_set_gist(
		__isl_take isl_union_set *uset,
		__isl_take isl_union_set *context);
	__isl_give isl_union_set *isl_union_set_gist_params(
		__isl_take isl_union_set *uset,
		__isl_take isl_set *set);

	#include <isl/union_map.h>
	__isl_give isl_union_map *isl_union_map_gist(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_map *context);
	__isl_give isl_union_map *isl_union_map_gist_params(
		__isl_take isl_union_map *umap,
		__isl_take isl_set *set);
	__isl_give isl_union_map *isl_union_map_gist_domain(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *uset);
	__isl_give isl_union_map *isl_union_map_gist_range(
		__isl_take isl_union_map *umap,
		__isl_take isl_union_set *uset);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_gist_params(
		__isl_take isl_aff *aff,
		__isl_take isl_set *context);
	__isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
		__isl_take isl_set *context);
	__isl_give isl_multi_aff *isl_multi_aff_gist_params(
		__isl_take isl_multi_aff *maff,
		__isl_take isl_set *context);
	__isl_give isl_multi_aff *isl_multi_aff_gist(
		__isl_take isl_multi_aff *maff,
		__isl_take isl_set *context);
	__isl_give isl_pw_aff *isl_pw_aff_gist_params(
		__isl_take isl_pw_aff *pwaff,
		__isl_take isl_set *context);
	__isl_give isl_pw_aff *isl_pw_aff_gist(
		__isl_take isl_pw_aff *pwaff,
		__isl_take isl_set *context);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_set *set);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_set *set);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_set *set);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_gist(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_union_set *context);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_gist_params(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_set *context);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_gist_params(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_set *context);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_gist(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_union_set *context);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_gist_params(
		__isl_take isl_multi_union_pw_aff *aff,
		__isl_take isl_set *context);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_gist(
		__isl_take isl_multi_union_pw_aff *aff,
		__isl_take isl_union_set *context);

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_set *context);
	__isl_give isl_qpolynomial *isl_qpolynomial_gist(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_set *context);
	__isl_give isl_qpolynomial_fold *
	isl_qpolynomial_fold_gist_params(
		__isl_take isl_qpolynomial_fold *fold,
		__isl_take isl_set *context);
	__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
		__isl_take isl_qpolynomial_fold *fold,
		__isl_take isl_set *context);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_set *context);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_set *context);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_gist(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_set *context);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_gist_params(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_set *context);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_gist_params(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_set *context);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_union_set *context);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_gist(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_union_set *context);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_gist_params(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_set *context);

=item * Binary Arithmetic Operations

	#include <isl/set.h>
	__isl_give isl_set *isl_set_sum(
		__isl_take isl_set *set1,
		__isl_take isl_set *set2);
	#include <isl/map.h>
	__isl_give isl_map *isl_map_sum(
		__isl_take isl_map *map1,
		__isl_take isl_map *map2);

C<isl_set_sum> computes the Minkowski sum of its two arguments,
i.e., the set containing the sums of pairs of elements from
C<set1> and C<set2>.
The domain of the result of C<isl_map_sum> is the intersection
of the domains of its two arguments.  The corresponding range
elements are the sums of the corresponding range elements
in the two arguments.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_add(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);
	__isl_give isl_multi_val *isl_multi_val_sub(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_add(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_multi_aff *isl_multi_aff_add(
		__isl_take isl_multi_aff *maff1,
		__isl_take isl_multi_aff *maff2);
	__isl_give isl_pw_aff *isl_pw_aff_add(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_add(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_add(
		__isl_take isl_union_pw_aff *upa1,
		__isl_take isl_union_pw_aff *upa2);
	__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
		__isl_take isl_union_pw_multi_aff *upma1,
		__isl_take isl_union_pw_multi_aff *upma2);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_add(
		__isl_take isl_multi_union_pw_aff *mupa1,
		__isl_take isl_multi_union_pw_aff *mupa2);
	__isl_give isl_pw_aff *isl_pw_aff_min(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_aff *isl_pw_aff_max(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_aff *isl_aff_sub(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_multi_aff *isl_multi_aff_sub(
		__isl_take isl_multi_aff *ma1,
		__isl_take isl_multi_aff *ma2);
	__isl_give isl_pw_aff *isl_pw_aff_sub(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_sub(
		__isl_take isl_multi_pw_aff *mpa1,
		__isl_take isl_multi_pw_aff *mpa2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_sub(
		__isl_take isl_union_pw_aff *upa1,
		__isl_take isl_union_pw_aff *upa2);
	__isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub(
		__isl_take isl_union_pw_multi_aff *upma1,
		__isl_take isl_union_pw_multi_aff *upma2);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_sub(
		__isl_take isl_multi_union_pw_aff *mupa1,
		__isl_take isl_multi_union_pw_aff *mupa2);

C<isl_aff_sub> subtracts the second argument from the first.

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_add(
		__isl_take isl_qpolynomial *qp1,
		__isl_take isl_qpolynomial *qp2);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
		__isl_take isl_pw_qpolynomial *pwqp1,
		__isl_take isl_pw_qpolynomial *pwqp2);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
		__isl_take isl_pw_qpolynomial *pwqp1,
		__isl_take isl_pw_qpolynomial *pwqp2);
	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
		__isl_take isl_pw_qpolynomial_fold *pwf1,
		__isl_take isl_pw_qpolynomial_fold *pwf2);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
		__isl_take isl_union_pw_qpolynomial *upwqp1,
		__isl_take isl_union_pw_qpolynomial *upwqp2);
	__isl_give isl_qpolynomial *isl_qpolynomial_sub(
		__isl_take isl_qpolynomial *qp1,
		__isl_take isl_qpolynomial *qp2);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
		__isl_take isl_pw_qpolynomial *pwqp1,
		__isl_take isl_pw_qpolynomial *pwqp2);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
		__isl_take isl_union_pw_qpolynomial *upwqp1,
		__isl_take isl_union_pw_qpolynomial *upwqp2);
	__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
		__isl_take isl_pw_qpolynomial_fold *pwf1,
		__isl_take isl_pw_qpolynomial_fold *pwf2);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_fold(
		__isl_take isl_union_pw_qpolynomial_fold *upwf1,
		__isl_take isl_union_pw_qpolynomial_fold *upwf2);

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_union_add(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_union_add(
		__isl_take isl_union_pw_aff *upa1,
		__isl_take isl_union_pw_aff *upa2);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_union_add(
		__isl_take isl_union_pw_multi_aff *upma1,
		__isl_take isl_union_pw_multi_aff *upma2);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_union_add(
		__isl_take isl_multi_union_pw_aff *mupa1,
		__isl_take isl_multi_union_pw_aff *mupa2);
	__isl_give isl_pw_aff *isl_pw_aff_union_min(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_aff *isl_pw_aff_union_max(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);

The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
expression with a domain that is the union of those of C<pwaff1> and
C<pwaff2> and such that on each cell, the quasi-affine expression is
the maximum of those of C<pwaff1> and C<pwaff2>.  If only one of
C<pwaff1> or C<pwaff2> is defined on a given cell, then the
associated expression is the defined one.
This in contrast to the C<isl_pw_aff_max> function, which is
only defined on the shared definition domain of the arguments.

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_add_val(
		__isl_take isl_multi_val *mv,
		__isl_take isl_val *v);
	__isl_give isl_multi_val *isl_multi_val_mod_val(
		__isl_take isl_multi_val *mv,
		__isl_take isl_val *v);
	__isl_give isl_multi_val *isl_multi_val_scale_val(
		__isl_take isl_multi_val *mv,
		__isl_take isl_val *v);
	__isl_give isl_multi_val *isl_multi_val_scale_down_val(
		__isl_take isl_multi_val *mv,
		__isl_take isl_val *v);

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff,
		__isl_take isl_val *mod);
	__isl_give isl_pw_aff *isl_pw_aff_mod_val(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_val *mod);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_val *f);
	__isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff,
		__isl_take isl_val *v);
	__isl_give isl_multi_aff *isl_multi_aff_scale_val(
		__isl_take isl_multi_aff *ma,
		__isl_take isl_val *v);
	__isl_give isl_pw_aff *isl_pw_aff_scale_val(
		__isl_take isl_pw_aff *pa, __isl_take isl_val *v);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_val *v);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_multi_aff *
	__isl_give isl_union_pw_aff *isl_union_pw_aff_scale_val(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_val *f);
	isl_union_pw_multi_aff_scale_val(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_val *val);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_scale_val(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_val *v);
	__isl_give isl_aff *isl_aff_scale_down_ui(
		__isl_take isl_aff *aff, unsigned f);
	__isl_give isl_aff *isl_aff_scale_down_val(
		__isl_take isl_aff *aff, __isl_take isl_val *v);
	__isl_give isl_multi_aff *isl_multi_aff_scale_down_val(
		__isl_take isl_multi_aff *ma,
		__isl_take isl_val *v);
	__isl_give isl_pw_aff *isl_pw_aff_scale_down_val(
		__isl_take isl_pw_aff *pa,
		__isl_take isl_val *f);
	__isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_down_val(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_val *v);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_aff *isl_union_pw_aff_scale_down_val(
		__isl_take isl_union_pw_aff *upa,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_scale_down_val(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_val *val);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_scale_down_val(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_val *v);

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_val *v);
	__isl_give isl_qpolynomial_fold *
	isl_qpolynomial_fold_scale_val(
		__isl_take isl_qpolynomial_fold *fold,
		__isl_take isl_val *v);
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_scale_val(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_val *v);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_scale_val(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_scale_val(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_scale_val(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_val *v);
	__isl_give isl_qpolynomial *
	isl_qpolynomial_scale_down_val(
		__isl_take isl_qpolynomial *qp,
		__isl_take isl_val *v);
	__isl_give isl_qpolynomial_fold *
	isl_qpolynomial_fold_scale_down_val(
		__isl_take isl_qpolynomial_fold *fold,
		__isl_take isl_val *v);
	__isl_give isl_pw_qpolynomial *
	isl_pw_qpolynomial_scale_down_val(
		__isl_take isl_pw_qpolynomial *pwqp,
		__isl_take isl_val *v);
	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_fold_scale_down_val(
		__isl_take isl_pw_qpolynomial_fold *pwf,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_qpolynomial *
	isl_union_pw_qpolynomial_scale_down_val(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		__isl_take isl_val *v);
	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_fold_scale_down_val(
		__isl_take isl_union_pw_qpolynomial_fold *upwf,
		__isl_take isl_val *v);

	#include <isl/val.h>
	__isl_give isl_multi_val *isl_multi_val_mod_multi_val(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);
	__isl_give isl_multi_val *isl_multi_val_scale_multi_val(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);
	__isl_give isl_multi_val *
	isl_multi_val_scale_down_multi_val(
		__isl_take isl_multi_val *mv1,
		__isl_take isl_multi_val *mv2);

	#include <isl/aff.h>
	__isl_give isl_multi_aff *isl_multi_aff_mod_multi_val(
		__isl_take isl_multi_aff *ma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_mod_multi_val(
		__isl_take isl_multi_union_pw_aff *upma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_mod_multi_val(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_aff *isl_multi_aff_scale_multi_val(
		__isl_take isl_multi_aff *ma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_pw_multi_aff *
	isl_pw_multi_aff_scale_multi_val(
		__isl_take isl_pw_multi_aff *pma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_scale_multi_val(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_scale_multi_val(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_multi_val *mv);
	__isl_give isl_union_pw_multi_aff *
	isl_union_pw_multi_aff_scale_multi_val(
		__isl_take isl_union_pw_multi_aff *upma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_aff *
	isl_multi_aff_scale_down_multi_val(
		__isl_take isl_multi_aff *ma,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_pw_aff *
	isl_multi_pw_aff_scale_down_multi_val(
		__isl_take isl_multi_pw_aff *mpa,
		__isl_take isl_multi_val *mv);
	__isl_give isl_multi_union_pw_aff *
	isl_multi_union_pw_aff_scale_down_multi_val(
		__isl_take isl_multi_union_pw_aff *mupa,
		__isl_take isl_multi_val *mv);

C<isl_multi_aff_scale_multi_val> scales the elements of C<ma>
by the corresponding elements of C<mv>.

	#include <isl/aff.h>
	__isl_give isl_aff *isl_aff_mul(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_aff *isl_aff_div(
		__isl_take isl_aff *aff1,
		__isl_take isl_aff *aff2);
	__isl_give isl_pw_aff *isl_pw_aff_mul(
		__isl_take isl_pw_aff *pwaff1,
		__isl_take isl_pw_aff *pwaff2);
	__isl_give isl_pw_aff *isl_pw_aff_div(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);
	__isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);
	__isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
		__isl_take isl_pw_aff *pa1,
		__isl_take isl_pw_aff *pa2);

When multiplying two affine expressions, at least one of the two needs
to be a constant.  Similarly, when dividing an affine expression by another,
the second expression needs to be a constant.
C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
rounding towards zero.  C<isl_pw_aff_tdiv_r> computes the corresponding
remainder.

	#include <isl/polynomial.h>
	__isl_give isl_qpolynomial *isl_qpolynomial_mul(
		__isl_take isl_qpolynomial *qp1,
		__isl_take isl_qpolynomial *qp2);
	__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
		__isl_take isl_pw_qpolynomial *pwqp1,
		__isl_take isl_pw_qpolynomial *pwqp2);
	__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
		__isl_take isl_union_pw_qpolynomial *upwqp1,
		__isl_take isl_union_pw_qpolynomial *upwqp2);

=back

=head3 Lexicographic Optimization

Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
the following functions
compute a set that contains the lexicographic minimum or maximum
of the elements in C<set> (or C<bset>) for those values of the parameters
that satisfy C<dom>.
If C<empty> is not C<NULL>, then C<*empty> is assigned a set
that contains the parameter values in C<dom> for which C<set> (or C<bset>)
has no elements.
In other words, the union of the parameter values
for which the result is non-empty and of C<*empty>
is equal to C<dom>.

	#include <isl/set.h>
	__isl_give isl_set *isl_basic_set_partial_lexmin(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_set *isl_basic_set_partial_lexmax(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_set *isl_set_partial_lexmin(
		__isl_take isl_set *set, __isl_take isl_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_set *isl_set_partial_lexmax(
		__isl_take isl_set *set, __isl_take isl_set *dom,
		__isl_give isl_set **empty);

Given a (basic) set C<set> (or C<bset>), the following functions simply
return a set containing the lexicographic minimum or maximum
of the elements in C<set> (or C<bset>).
In case of union sets, the optimum is computed per space.

	#include <isl/set.h>
	__isl_give isl_set *isl_basic_set_lexmin(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_basic_set_lexmax(
		__isl_take isl_basic_set *bset);
	__isl_give isl_set *isl_set_lexmin(
		__isl_take isl_set *set);
	__isl_give isl_set *isl_set_lexmax(
		__isl_take isl_set *set);
	__isl_give isl_union_set *isl_union_set_lexmin(
		__isl_take isl_union_set *uset);
	__isl_give isl_union_set *isl_union_set_lexmax(
		__isl_take isl_union_set *uset);

Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
the following functions
compute a relation that maps each element of C<dom>
to the single lexicographic minimum or maximum
of the elements that are associated to that same
element in C<map> (or C<bmap>).
If C<empty> is not C<NULL>, then C<*empty> is assigned a set
that contains the elements in C<dom> that do not map
to any elements in C<map> (or C<bmap>).
In other words, the union of the domain of the result and of C<*empty>
is equal to C<dom>.

	#include <isl/map.h>
	__isl_give isl_map *isl_basic_map_partial_lexmax(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_map *isl_basic_map_partial_lexmin(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_map *isl_map_partial_lexmax(
		__isl_take isl_map *map, __isl_take isl_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_map *isl_map_partial_lexmin(
		__isl_take isl_map *map, __isl_take isl_set *dom,
		__isl_give isl_set **empty);

Given a (basic) map C<map> (or C<bmap>), the following functions simply
return a map mapping each element in the domain of
C<map> (or C<bmap>) to the lexicographic minimum or maximum
of all elements associated to that element.
In case of union relations, the optimum is computed per space.

	#include <isl/map.h>
	__isl_give isl_map *isl_basic_map_lexmin(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_basic_map_lexmax(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_map *isl_map_lexmin(
		__isl_take isl_map *map);
	__isl_give isl_map *isl_map_lexmax(
		__isl_take isl_map *map);
	__isl_give isl_union_map *isl_union_map_lexmin(
		__isl_take isl_union_map *umap);
	__isl_give isl_union_map *isl_union_map_lexmax(
		__isl_take isl_union_map *umap);

The following functions return their result in the form of
a piecewise multi-affine expression,
but are otherwise equivalent to the corresponding functions
returning a basic set or relation.

	#include <isl/set.h>
	__isl_give isl_pw_multi_aff *
	isl_basic_set_partial_lexmin_pw_multi_aff(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_pw_multi_aff *
	isl_basic_set_partial_lexmax_pw_multi_aff(
		__isl_take isl_basic_set *bset,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff(
		__isl_take isl_set *set);
	__isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff(
		__isl_take isl_set *set);

	#include <isl/map.h>
	__isl_give isl_pw_multi_aff *
	isl_basic_map_lexmin_pw_multi_aff(
		__isl_take isl_basic_map *bmap);
	__isl_give isl_pw_multi_aff *
	isl_basic_map_partial_lexmin_pw_multi_aff(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_pw_multi_aff *
	isl_basic_map_partial_lexmax_pw_multi_aff(
		__isl_take isl_basic_map *bmap,
		__isl_take isl_basic_set *dom,
		__isl_give isl_set **empty);
	__isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
		__isl_take isl_map *map);
	__isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
		__isl_take isl_map *map);

The following functions return the lexicographic minimum or maximum
on the shared domain of the inputs and the single defined function
on those parts of the domain where only a single function is defined.

	#include <isl/aff.h>
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);
	__isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
		__isl_take isl_pw_multi_aff *pma1,
		__isl_take isl_pw_multi_aff *pma2);

If the input to a lexicographic optimization problem has
multiple constraints with the same coefficients for the optimized
variables, then, by default, this symmetry is exploited by
replacing those constraints by a single constraint with
an abstract bound, which is in turn bounded by the corresponding terms
in the original constraints.
Without this optimization, the solver would typically consider
all possible orderings of those original bounds, resulting in a needless
decomposition of the domain.
However, the optimization can also result in slowdowns since
an extra parameter is introduced that may get used in additional
integer divisions.
The following option determines whether symmetry detection is applied
during lexicographic optimization.

	#include <isl/options.h>
	isl_stat isl_options_set_pip_symmetry(isl_ctx *ctx,
		int val);
	int isl_options_get_pip_symmetry(isl_ctx *ctx);

=begin latex

See also \autoref{s:offline}.

=end latex

=head2 Ternary Operations

	#include <isl/aff.h>
	__isl_give isl_pw_aff *isl_pw_aff_cond(
		__isl_take isl_pw_aff *cond,
		__isl_take isl_pw_aff *pwaff_true,
		__isl_take isl_pw_aff *pwaff_false);

The function C<isl_pw_aff_cond> performs a conditional operator
and returns an expression that is equal to C<pwaff_true>
for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
where C<cond> is zero.

=head2 Lists

Lists are defined over several element types, including
C<isl_val>, C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_pw_multi_aff>,
C<isl_union_pw_aff>,
C<isl_union_pw_multi_aff>,
C<isl_pw_qpolynomial>, C<isl_pw_qpolynomial_fold>,
C<isl_constraint>,
C<isl_basic_set>, C<isl_set>, C<isl_basic_map>, C<isl_map>, C<isl_union_set>,
C<isl_union_map>, C<isl_ast_expr> and C<isl_ast_node>.
Here we take lists of C<isl_set>s as an example.
Lists can be created, copied, modified and freed using the following functions.

	#include <isl/set.h>
	__isl_give isl_set_list *isl_set_list_from_set(
		__isl_take isl_set *el);
	__isl_give isl_set_list *isl_set_list_alloc(
		isl_ctx *ctx, int n);
	__isl_give isl_set_list *isl_set_list_copy(
		__isl_keep isl_set_list *list);
	__isl_give isl_set_list *isl_set_list_insert(
		__isl_take isl_set_list *list, unsigned pos,
		__isl_take isl_set *el);
	__isl_give isl_set_list *isl_set_list_add(
		__isl_take isl_set_list *list,
		__isl_take isl_set *el);
	__isl_give isl_set_list *isl_set_list_drop(
		__isl_take isl_set_list *list,
		unsigned first, unsigned n);
	__isl_give isl_set_list *isl_set_list_swap(
		__isl_take isl_set_list *list,
		unsigned pos1, unsigned pos2);
	__isl_give isl_set_list *isl_set_list_reverse(
		__isl_take isl_set_list *list);
	__isl_give isl_set_list *isl_set_list_set_set(
		__isl_take isl_set_list *list, int index,
		__isl_take isl_set *set);
	__isl_give isl_set_list *isl_set_list_concat(
		__isl_take isl_set_list *list1,
		__isl_take isl_set_list *list2);
	__isl_give isl_set_list *isl_set_list_map(
		__isl_take isl_set_list *list,
		__isl_give isl_set *(*fn)(__isl_take isl_set *el,
			void *user),
		void *user);
	__isl_give isl_set_list *isl_set_list_sort(
		__isl_take isl_set_list *list,
		int (*cmp)(__isl_keep isl_set *a,
			__isl_keep isl_set *b, void *user),
		void *user);
	__isl_null isl_set_list *isl_set_list_free(
		__isl_take isl_set_list *list);

C<isl_set_list_alloc> creates an empty list with an initial capacity
for C<n> elements.  C<isl_set_list_insert> and C<isl_set_list_add>
add elements to a list, increasing its capacity as needed.
C<isl_set_list_from_set> creates a list with a single element.
C<isl_set_list_swap> swaps the elements at the specified locations.
C<isl_set_list_reverse> reverses the elements in the list.

Lists can be inspected using the following functions.

	#include <isl/set.h>
	int isl_set_list_size(__isl_keep isl_set_list *list);
	int isl_set_list_n_set(__isl_keep isl_set_list *list);
	__isl_give isl_set *isl_set_list_get_at(
		__isl_keep isl_set_list *list, int index);
	__isl_give isl_set *isl_set_list_get_set(
		__isl_keep isl_set_list *list, int index);
	isl_stat isl_set_list_foreach(__isl_keep isl_set_list *list,
		isl_stat (*fn)(__isl_take isl_set *el, void *user),
		void *user);
	isl_stat isl_set_list_foreach_scc(
		__isl_keep isl_set_list *list,
		isl_bool (*follows)(__isl_keep isl_set *a,
			__isl_keep isl_set *b, void *user),
		void *follows_user,
		isl_stat (*fn)(__isl_take isl_set *el, void *user),
		void *fn_user);

C<isl_set_list_n_set> is an alternative name for C<isl_set_list_size>.
Similarly,
C<isl_set_list_get_set> is an alternative name for C<isl_set_list_get_at>.
The function C<isl_set_list_foreach_scc> calls C<fn> on each of the
strongly connected components of the graph with as vertices the elements
of C<list> and a directed edge from vertex C<b> to vertex C<a>
iff C<follows(a, b)> returns C<isl_bool_true>.  The callbacks C<follows> and
C<fn> should return C<isl_bool_error> or C<isl_stat_error> on error.

Lists can be printed using

	#include <isl/set.h>
	__isl_give isl_printer *isl_printer_print_set_list(
		__isl_take isl_printer *p,
		__isl_keep isl_set_list *list);

=head2 Associative arrays

Associative arrays map isl objects of a specific type to isl objects
of some (other) specific type.  They are defined for several pairs
of types, including (C<isl_map>, C<isl_basic_set>),
(C<isl_id>, C<isl_ast_expr>),
(C<isl_id>, C<isl_id>) and
(C<isl_id>, C<isl_pw_aff>).
Here, we take associative arrays that map C<isl_id>s to C<isl_ast_expr>s
as an example.

Associative arrays can be created, copied and freed using
the following functions.

	#include <isl/id_to_ast_expr.h>
	__isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_alloc(
		isl_ctx *ctx, int min_size);
	__isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_copy(
		__isl_keep isl_id_to_ast_expr *id2expr);
	__isl_null isl_id_to_ast_expr *isl_id_to_ast_expr_free(
		__isl_take isl_id_to_ast_expr *id2expr);

The C<min_size> argument to C<isl_id_to_ast_expr_alloc> can be used
to specify the expected size of the associative array.
The associative array will be grown automatically as needed.

Associative arrays can be inspected using the following functions.

	#include <isl/id_to_ast_expr.h>
	__isl_give isl_maybe_isl_ast_expr
	isl_id_to_ast_expr_try_get(
		__isl_keep isl_id_to_ast_expr *id2expr,
		__isl_keep isl_id *key);
	isl_bool isl_id_to_ast_expr_has(
		__isl_keep isl_id_to_ast_expr *id2expr,
		__isl_keep isl_id *key);
	__isl_give isl_ast_expr *isl_id_to_ast_expr_get(
		__isl_keep isl_id_to_ast_expr *id2expr,
		__isl_take isl_id *key);
	isl_stat isl_id_to_ast_expr_foreach(
		__isl_keep isl_id_to_ast_expr *id2expr,
		isl_stat (*fn)(__isl_take isl_id *key,
			__isl_take isl_ast_expr *val, void *user),
		void *user);

The function C<isl_id_to_ast_expr_try_get> returns a structure
containing two elements, C<valid> and C<value>.
If there is a value associated to the key, then C<valid>
is set to C<isl_bool_true> and C<value> contains a copy of
the associated value.  Otherwise C<value> is C<NULL> and
C<valid> may be C<isl_bool_error> or C<isl_bool_false> depending
on whether some error has occurred or there simply is no associated value.
The function C<isl_id_to_ast_expr_has> returns the C<valid> field
in the structure and
the function C<isl_id_to_ast_expr_get> returns the C<value> field.

Associative arrays can be modified using the following functions.

	#include <isl/id_to_ast_expr.h>
	__isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_set(
		__isl_take isl_id_to_ast_expr *id2expr,
		__isl_take isl_id *key,
		__isl_take isl_ast_expr *val);
	__isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_drop(
		__isl_take isl_id_to_ast_expr *id2expr,
		__isl_take isl_id *key);

Associative arrays can be printed using the following function.

	#include <isl/id_to_ast_expr.h>
	__isl_give isl_printer *isl_printer_print_id_to_ast_expr(
		__isl_take isl_printer *p,
		__isl_keep isl_id_to_ast_expr *id2expr);

=head2 Vectors

Vectors can be created, copied and freed using the following functions.

	#include <isl/vec.h>
	__isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
		unsigned size);
	__isl_give isl_vec *isl_vec_zero(isl_ctx *ctx,
		unsigned size);
	__isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
	__isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec);

Note that the elements of a vector created by C<isl_vec_alloc>
may have arbitrary values.
A vector created by C<isl_vec_zero> has elements with value zero.
The elements can be changed and inspected using the following functions.

	int isl_vec_size(__isl_keep isl_vec *vec);
	__isl_give isl_val *isl_vec_get_element_val(
		__isl_keep isl_vec *vec, int pos);
	__isl_give isl_vec *isl_vec_set_element_si(
		__isl_take isl_vec *vec, int pos, int v);
	__isl_give isl_vec *isl_vec_set_element_val(
		__isl_take isl_vec *vec, int pos,
		__isl_take isl_val *v);
	__isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
		int v);
	__isl_give isl_vec *isl_vec_set_val(
		__isl_take isl_vec *vec, __isl_take isl_val *v);
	int isl_vec_cmp_element(__isl_keep isl_vec *vec1,
		__isl_keep isl_vec *vec2, int pos);

C<isl_vec_get_element> will return a negative value if anything went wrong.
In that case, the value of C<*v> is undefined.

The following function can be used to concatenate two vectors.

	__isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
		__isl_take isl_vec *vec2);

=head2 Matrices

Matrices can be created, copied and freed using the following functions.

	#include <isl/mat.h>
	__isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
		unsigned n_row, unsigned n_col);
	__isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
	__isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat);

Note that the elements of a newly created matrix may have arbitrary values.
The elements can be changed and inspected using the following functions.

	int isl_mat_rows(__isl_keep isl_mat *mat);
	int isl_mat_cols(__isl_keep isl_mat *mat);
	__isl_give isl_val *isl_mat_get_element_val(
		__isl_keep isl_mat *mat, int row, int col);
	__isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
		int row, int col, int v);
	__isl_give isl_mat *isl_mat_set_element_val(
		__isl_take isl_mat *mat, int row, int col,
		__isl_take isl_val *v);

The following function computes the rank of a matrix.
The return value may be -1 if some error occurred.

	#include <isl/mat.h>
	int isl_mat_rank(__isl_keep isl_mat *mat);

The following function can be used to compute the (right) inverse
of a matrix, i.e., a matrix such that the product of the original
and the inverse (in that order) is a multiple of the identity matrix.
The input matrix is assumed to be of full row-rank.

	__isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);

The following function can be used to compute the (right) kernel
(or null space) of a matrix, i.e., a matrix such that the product of
the original and the kernel (in that order) is the zero matrix.

	__isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);

The following function computes a basis for the space spanned
by the rows of a matrix.

	__isl_give isl_mat *isl_mat_row_basis(
		__isl_take isl_mat *mat);

The following function computes rows that extend a basis of C<mat1>
to a basis that also covers C<mat2>.

	__isl_give isl_mat *isl_mat_row_basis_extension(
		__isl_take isl_mat *mat1,
		__isl_take isl_mat *mat2);

The following function checks whether there is no linear dependence
among the combined rows of "mat1" and "mat2" that is not already present
in "mat1" or "mat2" individually.
If "mat1" and "mat2" have linearly independent rows by themselves,
then this means that there is no linear dependence among all rows together.

	isl_bool isl_mat_has_linearly_independent_rows(
		__isl_keep isl_mat *mat1,
		__isl_keep isl_mat *mat2);

=head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions

The following functions determine
an upper or lower bound on a quasipolynomial over its domain.

	__isl_give isl_pw_qpolynomial_fold *
	isl_pw_qpolynomial_bound(
		__isl_take isl_pw_qpolynomial *pwqp,
		enum isl_fold type, int *tight);

	__isl_give isl_union_pw_qpolynomial_fold *
	isl_union_pw_qpolynomial_bound(
		__isl_take isl_union_pw_qpolynomial *upwqp,
		enum isl_fold type, int *tight);

The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
is the returned bound is known be tight, i.e., for each value
of the parameters there is at least
one element in the domain that reaches the bound.
If the domain of C<pwqp> is not wrapping, then the bound is computed
over all elements in that domain and the result has a purely parametric
domain.  If the domain of C<pwqp> is wrapping, then the bound is
computed over the range of the wrapped relation.  The domain of the
wrapped relation becomes the domain of the result.

=head2 Parametric Vertex Enumeration

The parametric vertex enumeration described in this section
is mainly intended to be used internally and by the C<barvinok>
library.

	#include <isl/vertices.h>
	__isl_give isl_vertices *isl_basic_set_compute_vertices(
		__isl_keep isl_basic_set *bset);

The function C<isl_basic_set_compute_vertices> performs the
actual computation of the parametric vertices and the chamber
decomposition and stores the result in an C<isl_vertices> object.
This information can be queried by either iterating over all
the vertices or iterating over all the chambers or cells
and then iterating over all vertices that are active on the chamber.

	isl_stat isl_vertices_foreach_vertex(
		__isl_keep isl_vertices *vertices,
		isl_stat (*fn)(__isl_take isl_vertex *vertex,
			void *user), void *user);

	isl_stat isl_vertices_foreach_cell(
		__isl_keep isl_vertices *vertices,
		isl_stat (*fn)(__isl_take isl_cell *cell,
			void *user), void *user);
	isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
		isl_stat (*fn)(__isl_take isl_vertex *vertex,
			void *user), void *user);

Other operations that can be performed on an C<isl_vertices> object are
the following.

	int isl_vertices_get_n_vertices(
		__isl_keep isl_vertices *vertices);
	__isl_null isl_vertices *isl_vertices_free(
		__isl_take isl_vertices *vertices);

Vertices can be inspected and destroyed using the following functions.

	int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
	__isl_give isl_basic_set *isl_vertex_get_domain(
		__isl_keep isl_vertex *vertex);
	__isl_give isl_multi_aff *isl_vertex_get_expr(
		__isl_keep isl_vertex *vertex);
	void isl_vertex_free(__isl_take isl_vertex *vertex);

C<isl_vertex_get_expr> returns a multiple quasi-affine expression
describing the vertex in terms of the parameters,
while C<isl_vertex_get_domain> returns the activity domain
of the vertex.

Chambers can be inspected and destroyed using the following functions.

	__isl_give isl_basic_set *isl_cell_get_domain(
		__isl_keep isl_cell *cell);
	void isl_cell_free(__isl_take isl_cell *cell);

=head1 Polyhedral Compilation Library

This section collects functionality in C<isl> that has been specifically
designed for use during polyhedral compilation.

=head2 Schedule Trees

A schedule tree is a structured representation of a schedule,
assigning a relative order to a set of domain elements.
The relative order expressed by the schedule tree is
defined recursively.  In particular, the order between
two domain elements is determined by the node that is closest
to the root that refers to both elements and that orders them apart.
Each node in the tree is of one of several types.
The root node is always of type C<isl_schedule_node_domain>
(or C<isl_schedule_node_extension>)
and it describes the (extra) domain elements to which the schedule applies.
The other types of nodes are as follows.

=over

=item C<isl_schedule_node_band>

A band of schedule dimensions.  Each schedule dimension is represented
by a union piecewise quasi-affine expression.  If this expression
assigns a different value to two domain elements, while all previous
schedule dimensions in the same band assign them the same value,
then the two domain elements are ordered according to these two
different values.
Each expression is required to be total in the domain elements
that reach the band node.

=item C<isl_schedule_node_expansion>

An expansion node maps each of the domain elements that reach the node
to one or more domain elements.  The image of this mapping forms
the set of domain elements that reach the child of the expansion node.
The function that maps each of the expanded domain elements
to the original domain element from which it was expanded
is called the contraction.

=item C<isl_schedule_node_filter>

A filter node does not impose any ordering, but rather intersects
the set of domain elements that the current subtree refers to
with a given union set.  The subtree of the filter node only
refers to domain elements in the intersection.
A filter node is typically only used as a child of a sequence or
set node.

=item C<isl_schedule_node_leaf>

A leaf of the schedule tree.  Leaf nodes do not impose any ordering.

=item C<isl_schedule_node_mark>

A mark node can be used to attach any kind of information to a subtree
of the schedule tree.

=item C<isl_schedule_node_sequence>

A sequence node has one or more children, each of which is a filter node.
The filters on these filter nodes form a partition of
the domain elements that the current subtree refers to.
If two domain elements appear in distinct filters then the sequence
node orders them according to the child positions of the corresponding
filter nodes.

=item C<isl_schedule_node_set>

A set node is similar to a sequence node, except that
it expresses that domain elements appearing in distinct filters
may have any order.  The order of the children of a set node
is therefore also immaterial.

=back

The following node types are only supported by the AST generator.

=over

=item C<isl_schedule_node_context>

The context describes constraints on the parameters and
the schedule dimensions of outer
bands that the AST generator may assume to hold.  It is also the only
kind of node that may introduce additional parameters.
The space of the context is that of the flat product of the outer
band nodes.  In particular, if there are no outer band nodes, then
this space is the unnamed zero-dimensional space.
Since a context node references the outer band nodes, any tree
containing a context node is considered to be anchored.

=item C<isl_schedule_node_extension>

An extension node instructs the AST generator to add additional
domain elements that need to be scheduled.
The additional domain elements are described by the range of
the extension map in terms of the outer schedule dimensions,
i.e., the flat product of the outer band nodes.
Note that domain elements are added whenever the AST generator
reaches the extension node, meaning that there are still some
active domain elements for which an AST needs to be generated.
The conditions under which some domain elements are still active
may however not be completely described by the outer AST nodes
generated at that point.
Since an extension node references the outer band nodes, any tree
containing an extension node is considered to be anchored.

An extension node may also appear as the root of a schedule tree,
when it is intended to be inserted into another tree
using C<isl_schedule_node_graft_before> or C<isl_schedule_node_graft_after>.
In this case, the domain of the extension node should
correspond to the flat product of the outer band nodes
in this other schedule tree at the point where the extension tree
will be inserted.

=item C<isl_schedule_node_guard>

The guard describes constraints on the parameters and
the schedule dimensions of outer
bands that need to be enforced by the outer nodes
in the generated AST.
That is, the part of the AST that is generated from descendants
of the guard node can assume that these constraints are satisfied.
The space of the guard is that of the flat product of the outer
band nodes.  In particular, if there are no outer band nodes, then
this space is the unnamed zero-dimensional space.
Since a guard node references the outer band nodes, any tree
containing a guard node is considered to be anchored.

=back

Except for the C<isl_schedule_node_context> nodes,
none of the nodes may introduce any parameters that were not
already present in the root domain node.

A schedule tree is encapsulated in an C<isl_schedule> object.
The simplest such objects, those with a tree consisting of single domain node,
can be created using the following functions with either an empty
domain or a given domain.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_empty(
		__isl_take isl_space *space);
	__isl_give isl_schedule *isl_schedule_from_domain(
		__isl_take isl_union_set *domain);

The function C<isl_schedule_constraints_compute_schedule> described
in L</"Scheduling"> can also be used to construct schedules.

C<isl_schedule> objects may be copied and freed using the following functions.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_copy(
		__isl_keep isl_schedule *sched);
	__isl_null isl_schedule *isl_schedule_free(
		__isl_take isl_schedule *sched);

The following functions checks whether two C<isl_schedule> objects
are obviously the same.

	#include <isl/schedule.h>
	isl_bool isl_schedule_plain_is_equal(
		__isl_keep isl_schedule *schedule1,
		__isl_keep isl_schedule *schedule2);

The domain of the schedule, i.e., the domain described by the root node,
can be obtained using the following function.

	#include <isl/schedule.h>
	__isl_give isl_union_set *isl_schedule_get_domain(
		__isl_keep isl_schedule *schedule);

An extra top-level band node (right underneath the domain node) can
be introduced into the schedule using the following function.
The schedule tree is assumed not to have any anchored nodes.

	#include <isl/schedule.h>
	__isl_give isl_schedule *
	isl_schedule_insert_partial_schedule(
		__isl_take isl_schedule *schedule,
		__isl_take isl_multi_union_pw_aff *partial);

A top-level context node (right underneath the domain node) can
be introduced into the schedule using the following function.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_insert_context(
		__isl_take isl_schedule *schedule,
		__isl_take isl_set *context)

A top-level guard node (right underneath the domain node) can
be introduced into the schedule using the following function.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_insert_guard(
		__isl_take isl_schedule *schedule,
		__isl_take isl_set *guard)

A schedule that combines two schedules either in the given
order or in an arbitrary order, i.e., with an C<isl_schedule_node_sequence>
or an C<isl_schedule_node_set> node,
can be created using the following functions.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_sequence(
		__isl_take isl_schedule *schedule1,
		__isl_take isl_schedule *schedule2);
	__isl_give isl_schedule *isl_schedule_set(
		__isl_take isl_schedule *schedule1,
		__isl_take isl_schedule *schedule2);

The domains of the two input schedules need to be disjoint.

The following function can be used to restrict the domain
of a schedule with a domain node as root to be a subset of the given union set.
This operation may remove nodes in the tree that have become
redundant.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_intersect_domain(
		__isl_take isl_schedule *schedule,
		__isl_take isl_union_set *domain);

The following function can be used to simplify the domain
of a schedule with a domain node as root with respect to the given
parameter domain.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_gist_domain_params(
		__isl_take isl_schedule *schedule,
		__isl_take isl_set *context);

The following function resets the user pointers on all parameter
and tuple identifiers referenced by the nodes of the given schedule.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_reset_user(
		__isl_take isl_schedule *schedule);

The following function aligns the parameters of all nodes
in the given schedule to the given space.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_align_params(
		__isl_take isl_schedule *schedule,
		__isl_take isl_space *space);

The following function allows the user to plug in a given function
in the iteration domains.  The input schedule is not allowed to contain
any expansion nodes.

	#include <isl/schedule.h>
	__isl_give isl_schedule *
	isl_schedule_pullback_union_pw_multi_aff(
		__isl_take isl_schedule *schedule,
		__isl_take isl_union_pw_multi_aff *upma);

The following function can be used to plug in the schedule C<expansion>
in the leaves of C<schedule>, where C<contraction> describes how
the domain elements of C<expansion> map to the domain elements
at the original leaves of C<schedule>.
The resulting schedule will contain expansion nodes, unless
C<contraction> is an identity function.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_expand(
		__isl_take isl_schedule *schedule,
		__isl_take isl_union_pw_multi_aff *contraction,
		__isl_take isl_schedule *expansion);

An C<isl_union_map> representation of the schedule can be obtained
from an C<isl_schedule> using the following function.

	#include <isl/schedule.h>
	__isl_give isl_union_map *isl_schedule_get_map(
		__isl_keep isl_schedule *sched);

The resulting relation encodes the same relative ordering as
the schedule by mapping the domain elements to a common schedule space.
If the schedule_separate_components option is set, then the order
of the children of a set node is explicitly encoded in the result.
If the tree contains any expansion nodes, then the relation
is formulated in terms of the expanded domain elements.

Schedules can be read from input using the following functions.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_schedule_read_from_file(
		isl_ctx *ctx, FILE *input);
	__isl_give isl_schedule *isl_schedule_read_from_str(
		isl_ctx *ctx, const char *str);

A representation of the schedule can be printed using

	#include <isl/schedule.h>
	__isl_give isl_printer *isl_printer_print_schedule(
		__isl_take isl_printer *p,
		__isl_keep isl_schedule *schedule);
	__isl_give char *isl_schedule_to_str(
		__isl_keep isl_schedule *schedule);

C<isl_schedule_to_str> prints the schedule in flow format.

The schedule tree can be traversed through the use of
C<isl_schedule_node> objects that point to a particular
position in the schedule tree.  Whenever a C<isl_schedule_node>
is used to modify a node in the schedule tree, the original schedule
tree is left untouched and the modifications are performed to a copy
of the tree.  The returned C<isl_schedule_node> then points to
this modified copy of the tree.

The root of the schedule tree can be obtained using the following function.

	#include <isl/schedule.h>
	__isl_give isl_schedule_node *isl_schedule_get_root(
		__isl_keep isl_schedule *schedule);

A pointer to a newly created schedule tree with a single domain
node can be created using the following functions.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_from_domain(
		__isl_take isl_union_set *domain);
	__isl_give isl_schedule_node *
	isl_schedule_node_from_extension(
		__isl_take isl_union_map *extension);

C<isl_schedule_node_from_extension> creates a tree with an extension
node as root.

Schedule nodes can be copied and freed using the following functions.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *isl_schedule_node_copy(
		__isl_keep isl_schedule_node *node);
	__isl_null isl_schedule_node *isl_schedule_node_free(
		__isl_take isl_schedule_node *node);

The following functions can be used to check if two schedule
nodes point to the same position in the same schedule.

	#include <isl/schedule_node.h>
	isl_bool isl_schedule_node_is_equal(
		__isl_keep isl_schedule_node *node1,
		__isl_keep isl_schedule_node *node2);

The following properties can be obtained from a schedule node.

	#include <isl/schedule_node.h>
	enum isl_schedule_node_type isl_schedule_node_get_type(
		__isl_keep isl_schedule_node *node);
	enum isl_schedule_node_type
	isl_schedule_node_get_parent_type(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_schedule *isl_schedule_node_get_schedule(
		__isl_keep isl_schedule_node *node);

The function C<isl_schedule_node_get_type> returns the type of
the node, while C<isl_schedule_node_get_parent_type> returns
type of the parent of the node, which is required to exist.
The function C<isl_schedule_node_get_schedule> returns a copy
to the schedule to which the node belongs.

The following functions can be used to move the schedule node
to a different position in the tree or to check if such a position
exists.

	#include <isl/schedule_node.h>
	isl_bool isl_schedule_node_has_parent(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_schedule_node *isl_schedule_node_parent(
		__isl_take isl_schedule_node *node);
	__isl_give isl_schedule_node *isl_schedule_node_root(
		__isl_take isl_schedule_node *node);
	__isl_give isl_schedule_node *isl_schedule_node_ancestor(
		__isl_take isl_schedule_node *node,
		int generation);
	int isl_schedule_node_n_children(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_schedule_node *isl_schedule_node_child(
		__isl_take isl_schedule_node *node, int pos);
	isl_bool isl_schedule_node_has_children(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_schedule_node *isl_schedule_node_first_child(
		__isl_take isl_schedule_node *node);
	isl_bool isl_schedule_node_has_previous_sibling(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_schedule_node *
	isl_schedule_node_previous_sibling(
		__isl_take isl_schedule_node *node);
	isl_bool isl_schedule_node_has_next_sibling(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_schedule_node *
	isl_schedule_node_next_sibling(
		__isl_take isl_schedule_node *node);

For C<isl_schedule_node_ancestor>, the ancestor of generation 0
is the node itself, the ancestor of generation 1 is its parent and so on.

It is also possible to query the number of ancestors of a node,
the position of the current node
within the children of its parent, the position of the subtree
containing a node within the children of an ancestor
or to obtain a copy of a given
child without destroying the current node.
Given two nodes that point to the same schedule, their closest
shared ancestor can be obtained using
C<isl_schedule_node_get_shared_ancestor>.

	#include <isl/schedule_node.h>
	int isl_schedule_node_get_tree_depth(
		__isl_keep isl_schedule_node *node);
	int isl_schedule_node_get_child_position(
		__isl_keep isl_schedule_node *node);
	int isl_schedule_node_get_ancestor_child_position(
		__isl_keep isl_schedule_node *node,
		__isl_keep isl_schedule_node *ancestor);
	__isl_give isl_schedule_node *isl_schedule_node_get_child(
		__isl_keep isl_schedule_node *node, int pos);
	__isl_give isl_schedule_node *
	isl_schedule_node_get_shared_ancestor(
		__isl_keep isl_schedule_node *node1,
		__isl_keep isl_schedule_node *node2);

All nodes in a schedule tree or
all descendants of a specific node (including the node) can be visited
in depth-first pre-order using the following functions.

	#include <isl/schedule.h>
	isl_stat isl_schedule_foreach_schedule_node_top_down(
		__isl_keep isl_schedule *sched,
		isl_bool (*fn)(__isl_keep isl_schedule_node *node,
			void *user), void *user);

	#include <isl/schedule_node.h>
	isl_stat isl_schedule_node_foreach_descendant_top_down(
		__isl_keep isl_schedule_node *node,
		isl_bool (*fn)(__isl_keep isl_schedule_node *node,
			void *user), void *user);

The callback function is slightly different from the usual
callbacks in that it not only indicates success (non-negative result)
or failure (negative result), but also indicates whether the children
of the given node should be visited.  In particular, if the callback
returns a positive value, then the children are visited, but if
the callback returns zero, then the children are not visited.

The following functions checks whether
all descendants of a specific node (including the node itself)
satisfy a user-specified test.

	#include <isl/schedule_node.h>
	isl_bool isl_schedule_node_every_descendant(
		__isl_keep isl_schedule_node *node,
		isl_bool (*test)(__isl_keep isl_schedule_node *node,
			void *user), void *user)

The ancestors of a node in a schedule tree can be visited from
the root down to and including the parent of the node using
the following function.

	#include <isl/schedule_node.h>
	isl_stat isl_schedule_node_foreach_ancestor_top_down(
		__isl_keep isl_schedule_node *node,
		isl_stat (*fn)(__isl_keep isl_schedule_node *node,
			void *user), void *user);

The following functions allows for a depth-first post-order
traversal of the nodes in a schedule tree or
of the descendants of a specific node (including the node
itself), where the user callback is allowed to modify the
visited node.

	#include <isl/schedule.h>
	__isl_give isl_schedule *
	isl_schedule_map_schedule_node_bottom_up(
		__isl_take isl_schedule *schedule,
		__isl_give isl_schedule_node *(*fn)(
			__isl_take isl_schedule_node *node,
			void *user), void *user);

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_map_descendant_bottom_up(
		__isl_take isl_schedule_node *node,
		__isl_give isl_schedule_node *(*fn)(
			__isl_take isl_schedule_node *node,
			void *user), void *user);

The traversal continues from the node returned by the callback function.
It is the responsibility of the user to ensure that this does not
lead to an infinite loop.  It is safest to always return a pointer
to the same position (same ancestors and child positions) as the input node.

The following function removes a node (along with its descendants)
from a schedule tree and returns a pointer to the leaf at the
same position in the updated tree.
It is not allowed to remove the root of a schedule tree or
a child of a set or sequence node.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *isl_schedule_node_cut(
		__isl_take isl_schedule_node *node);

The following function removes a single node
from a schedule tree and returns a pointer to the child
of the node, now located at the position of the original node
or to a leaf node at that position if there was no child.
It is not allowed to remove the root of a schedule tree,
a set or sequence node, a child of a set or sequence node or
a band node with an anchored subtree.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *isl_schedule_node_delete(
		__isl_take isl_schedule_node *node);

Most nodes in a schedule tree only contain local information.
In some cases, however, a node may also refer to the schedule dimensions
of its outer band nodes.
This means that the position of the node within the tree should
not be changed, or at least that no changes are performed to the
outer band nodes.  The following function can be used to test
whether the subtree rooted at a given node contains any such nodes.

	#include <isl/schedule_node.h>
	isl_bool isl_schedule_node_is_subtree_anchored(
		__isl_keep isl_schedule_node *node);

The following function resets the user pointers on all parameter
and tuple identifiers referenced by the given schedule node.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *isl_schedule_node_reset_user(
		__isl_take isl_schedule_node *node);

The following function aligns the parameters of the given schedule
node to the given space.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_align_params(
		__isl_take isl_schedule_node *node,
		__isl_take isl_space *space);

Several node types have their own functions for querying
(and in some cases setting) some node type specific properties.

	#include <isl/schedule_node.h>
	__isl_give isl_space *isl_schedule_node_band_get_space(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_multi_union_pw_aff *
	isl_schedule_node_band_get_partial_schedule(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_union_map *
	isl_schedule_node_band_get_partial_schedule_union_map(
		__isl_keep isl_schedule_node *node);
	unsigned isl_schedule_node_band_n_member(
		__isl_keep isl_schedule_node *node);
	isl_bool isl_schedule_node_band_member_get_coincident(
		__isl_keep isl_schedule_node *node, int pos);
	__isl_give isl_schedule_node *
	isl_schedule_node_band_member_set_coincident(
		__isl_take isl_schedule_node *node, int pos,
		int coincident);
	isl_bool isl_schedule_node_band_get_permutable(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_schedule_node *
	isl_schedule_node_band_set_permutable(
		__isl_take isl_schedule_node *node, int permutable);
	enum isl_ast_loop_type
	isl_schedule_node_band_member_get_ast_loop_type(
		__isl_keep isl_schedule_node *node, int pos);
	__isl_give isl_schedule_node *
	isl_schedule_node_band_member_set_ast_loop_type(
		__isl_take isl_schedule_node *node, int pos,
		enum isl_ast_loop_type type);
	__isl_give isl_union_set *
	enum isl_ast_loop_type
	isl_schedule_node_band_member_get_isolate_ast_loop_type(
		__isl_keep isl_schedule_node *node, int pos);
	__isl_give isl_schedule_node *
	isl_schedule_node_band_member_set_isolate_ast_loop_type(
		__isl_take isl_schedule_node *node, int pos,
		enum isl_ast_loop_type type);
	isl_schedule_node_band_get_ast_build_options(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_schedule_node *
	isl_schedule_node_band_set_ast_build_options(
		__isl_take isl_schedule_node *node,
		__isl_take isl_union_set *options);
	__isl_give isl_set *
	isl_schedule_node_band_get_ast_isolate_option(
		__isl_keep isl_schedule_node *node);

The function C<isl_schedule_node_band_get_space> returns the space
of the partial schedule of the band.
The function C<isl_schedule_node_band_get_partial_schedule_union_map>
returns a representation of the partial schedule of the band node
in the form of an C<isl_union_map>.
The coincident and permutable properties are set by
C<isl_schedule_constraints_compute_schedule> on the schedule tree
it produces.
A scheduling dimension is considered to be ``coincident''
if it satisfies the coincidence constraints within its band.
That is, if the dependence distances of the coincidence
constraints are all zero in that direction (for fixed
iterations of outer bands).
A band is marked permutable if it was produced using the Pluto-like scheduler.
Note that the scheduler may have to resort to a Feautrier style scheduling
step even if the default scheduler is used.
An C<isl_ast_loop_type> is one of C<isl_ast_loop_default>,
C<isl_ast_loop_atomic>, C<isl_ast_loop_unroll> or C<isl_ast_loop_separate>.
For the meaning of these loop AST generation types and the difference
between the regular loop AST generation type and the isolate
loop AST generation type, see L</"AST Generation Options (Schedule Tree)">.
The functions C<isl_schedule_node_band_member_get_ast_loop_type>
and C<isl_schedule_node_band_member_get_isolate_ast_loop_type>
may return C<isl_ast_loop_error> if an error occurs.
The AST build options govern how an AST is generated for
the individual schedule dimensions during AST generation.
See L</"AST Generation Options (Schedule Tree)">.
The isolate option for the given node can be extracted from these
AST build options using the function
C<isl_schedule_node_band_get_ast_isolate_option>.

	#include <isl/schedule_node.h>
	__isl_give isl_set *
	isl_schedule_node_context_get_context(
		__isl_keep isl_schedule_node *node);

	#include <isl/schedule_node.h>
	__isl_give isl_union_set *
	isl_schedule_node_domain_get_domain(
		__isl_keep isl_schedule_node *node);

	#include <isl/schedule_node.h>
	__isl_give isl_union_map *
	isl_schedule_node_expansion_get_expansion(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_union_pw_multi_aff *
	isl_schedule_node_expansion_get_contraction(
		__isl_keep isl_schedule_node *node);

	#include <isl/schedule_node.h>
	__isl_give isl_union_map *
	isl_schedule_node_extension_get_extension(
		__isl_keep isl_schedule_node *node);

	#include <isl/schedule_node.h>
	__isl_give isl_union_set *
	isl_schedule_node_filter_get_filter(
		__isl_keep isl_schedule_node *node);

	#include <isl/schedule_node.h>
	__isl_give isl_set *isl_schedule_node_guard_get_guard(
		__isl_keep isl_schedule_node *node);

	#include <isl/schedule_node.h>
	__isl_give isl_id *isl_schedule_node_mark_get_id(
		__isl_keep isl_schedule_node *node);

The following functions can be used to obtain an C<isl_multi_union_pw_aff>,
an C<isl_union_pw_multi_aff> or C<isl_union_map> representation of
partial schedules related to the node.

	#include <isl/schedule_node.h>
	__isl_give isl_multi_union_pw_aff *
	isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_union_pw_multi_aff *
	isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_union_map *
	isl_schedule_node_get_prefix_schedule_union_map(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_union_map *
	isl_schedule_node_get_prefix_schedule_relation(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_union_map *
	isl_schedule_node_get_subtree_schedule_union_map(
		__isl_keep isl_schedule_node *node);

In particular, the functions
C<isl_schedule_node_get_prefix_schedule_multi_union_pw_aff>,
C<isl_schedule_node_get_prefix_schedule_union_pw_multi_aff>
and C<isl_schedule_node_get_prefix_schedule_union_map>
return a relative ordering on the domain elements that reach the given
node determined by its ancestors.
The function C<isl_schedule_node_get_prefix_schedule_relation>
additionally includes the domain constraints in the result.
The function C<isl_schedule_node_get_subtree_schedule_union_map>
returns a representation of the partial schedule defined by the
subtree rooted at the given node.
If the tree contains any expansion nodes, then the subtree schedule
is formulated in terms of the expanded domain elements.
The tree passed to functions returning a prefix schedule
may only contain extension nodes if these would not affect
the result of these functions.  That is, if one of the ancestors
is an extension node, then all of the domain elements that were
added by the extension node need to have been filtered out
by filter nodes between the extension node and the input node.
The tree passed to C<isl_schedule_node_get_subtree_schedule_union_map>
may not contain in extension nodes in the selected subtree.

The expansion/contraction defined by an entire subtree, combining
the expansions/contractions
on the expansion nodes in the subtree, can be obtained using
the following functions.

	#include <isl/schedule_node.h>
	__isl_give isl_union_map *
	isl_schedule_node_get_subtree_expansion(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_union_pw_multi_aff *
	isl_schedule_node_get_subtree_contraction(
		__isl_keep isl_schedule_node *node);

The total number of outer band members of given node, i.e.,
the shared output dimension of the maps in the result
of C<isl_schedule_node_get_prefix_schedule_union_map> can be obtained
using the following function.

	#include <isl/schedule_node.h>
	int isl_schedule_node_get_schedule_depth(
		__isl_keep isl_schedule_node *node);

The following functions return the elements that reach the given node
or the union of universes in the spaces that contain these elements.

	#include <isl/schedule_node.h>
	__isl_give isl_union_set *
	isl_schedule_node_get_domain(
		__isl_keep isl_schedule_node *node);
	__isl_give isl_union_set *
	isl_schedule_node_get_universe_domain(
		__isl_keep isl_schedule_node *node);

The input tree of C<isl_schedule_node_get_domain>
may only contain extension nodes if these would not affect
the result of this function.  That is, if one of the ancestors
is an extension node, then all of the domain elements that were
added by the extension node need to have been filtered out
by filter nodes between the extension node and the input node.

The following functions can be used to introduce additional nodes
in the schedule tree.  The new node is introduced at the point
in the tree where the C<isl_schedule_node> points to and
the results points to the new node.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_insert_partial_schedule(
		__isl_take isl_schedule_node *node,
		__isl_take isl_multi_union_pw_aff *schedule);

This function inserts a new band node with (the greatest integer
part of) the given partial schedule.
The subtree rooted at the given node is assumed not to have
any anchored nodes.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_insert_context(
		__isl_take isl_schedule_node *node,
		__isl_take isl_set *context);

This function inserts a new context node with the given context constraints.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_insert_filter(
		__isl_take isl_schedule_node *node,
		__isl_take isl_union_set *filter);

This function inserts a new filter node with the given filter.
If the original node already pointed to a filter node, then the
two filter nodes are merged into one.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_insert_guard(
		__isl_take isl_schedule_node *node,
		__isl_take isl_set *guard);

This function inserts a new guard node with the given guard constraints.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_insert_mark(
		__isl_take isl_schedule_node *node,
		__isl_take isl_id *mark);

This function inserts a new mark node with the give mark identifier.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_insert_sequence(
		__isl_take isl_schedule_node *node,
		__isl_take isl_union_set_list *filters);
	__isl_give isl_schedule_node *
	isl_schedule_node_insert_set(
		__isl_take isl_schedule_node *node,
		__isl_take isl_union_set_list *filters);

These functions insert a new sequence or set node with the given
filters as children.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *isl_schedule_node_group(
		__isl_take isl_schedule_node *node,
		__isl_take isl_id *group_id);

This function introduces an expansion node in between the current
node and its parent that expands instances of a space with tuple
identifier C<group_id> to the original domain elements that reach
the node.  The group instances are identified by the prefix schedule
of those domain elements.  The ancestors of the node are adjusted
to refer to the group instances instead of the original domain
elements.  The return value points to the same node in the updated
schedule tree as the input node, i.e., to the child of the newly
introduced expansion node.  Grouping instances of different statements
ensures that they will be treated as a single statement by the
AST generator up to the point of the expansion node.

The following function can be used to flatten a nested
sequence.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_sequence_splice_child(
		__isl_take isl_schedule_node *node, int pos);

That is, given a sequence node C<node> that has another sequence node
in its child at position C<pos> (in particular, the child of that filter
node is a sequence node), attach the children of that other sequence
node as children of C<node>, replacing the original child at position
C<pos>.

The partial schedule of a band node can be scaled (down) or reduced using
the following functions.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_band_scale(
		__isl_take isl_schedule_node *node,
		__isl_take isl_multi_val *mv);
	__isl_give isl_schedule_node *
	isl_schedule_node_band_scale_down(
		__isl_take isl_schedule_node *node,
		__isl_take isl_multi_val *mv);
	__isl_give isl_schedule_node *
	isl_schedule_node_band_mod(
		__isl_take isl_schedule_node *node,
		__isl_take isl_multi_val *mv);

The spaces of the two arguments need to match.
After scaling, the partial schedule is replaced by its greatest
integer part to ensure that the schedule remains integral.

The partial schedule of a band node can be shifted by an
C<isl_multi_union_pw_aff> with a domain that is a superset
of the domain of the partial schedule using
the following function.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_band_shift(
		__isl_take isl_schedule_node *node,
		__isl_take isl_multi_union_pw_aff *shift);

A band node can be tiled using the following function.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *isl_schedule_node_band_tile(
		__isl_take isl_schedule_node *node,
		__isl_take isl_multi_val *sizes);

	isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
		int val);
	int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
	isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx,
		int val);
	int isl_options_get_tile_shift_point_loops(isl_ctx *ctx);

The C<isl_schedule_node_band_tile> function tiles
the band using the given tile sizes inside its schedule.
A new child band node is created to represent the point loops and it is
inserted between the modified band and its children.
The subtree rooted at the given node is assumed not to have
any anchored nodes.
The C<tile_scale_tile_loops> option specifies whether the tile
loops iterators should be scaled by the tile sizes.
If the C<tile_shift_point_loops> option is set, then the point loops
are shifted to start at zero.

A band node can be split into two nested band nodes
using the following function.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *isl_schedule_node_band_split(
		__isl_take isl_schedule_node *node, int pos);

The resulting outer band node contains the first C<pos> dimensions of
the schedule of C<node> while the inner band contains the remaining dimensions.
The schedules of the two band nodes live in anonymous spaces.
The loop AST generation type options and the isolate option
are split over the two band nodes.

A band node can be moved down to the leaves of the subtree rooted
at the band node using the following function.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *isl_schedule_node_band_sink(
		__isl_take isl_schedule_node *node);

The subtree rooted at the given node is assumed not to have
any anchored nodes.
The result points to the node in the resulting tree that is in the same
position as the node pointed to by C<node> in the original tree.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_order_before(
		__isl_take isl_schedule_node *node,
		__isl_take isl_union_set *filter);
	__isl_give isl_schedule_node *
	isl_schedule_node_order_after(
		__isl_take isl_schedule_node *node,
		__isl_take isl_union_set *filter);

These functions split the domain elements that reach C<node>
into those that satisfy C<filter> and those that do not and
arranges for the elements that do satisfy the filter to be
executed before (in case of C<isl_schedule_node_order_before>)
or after (in case of C<isl_schedule_node_order_after>)
those that do not.  The order is imposed by
a sequence node, possibly reusing the grandparent of C<node>
on two copies of the subtree attached to the original C<node>.
Both copies are simplified with respect to their filter.

Return a pointer to the copy of the subtree that does not
satisfy C<filter>.  If there is no such copy (because all
reaching domain elements satisfy the filter), then return
the original pointer.

	#include <isl/schedule_node.h>
	__isl_give isl_schedule_node *
	isl_schedule_node_graft_before(
		__isl_take isl_schedule_node *node,
		__isl_take isl_schedule_node *graft);
	__isl_give isl_schedule_node *
	isl_schedule_node_graft_after(
		__isl_take isl_schedule_node *node,
		__isl_take isl_schedule_node *graft);

This function inserts the C<graft> tree into the tree containing C<node>
such that it is executed before (in case of C<isl_schedule_node_graft_before>)
or after (in case of C<isl_schedule_node_graft_after>) C<node>.
The root node of C<graft>
should be an extension node where the domain of the extension
is the flat product of all outer band nodes of C<node>.
The root node may also be a domain node.
The elements of the domain or the range of the extension may not
intersect with the domain elements that reach "node".
The schedule tree of C<graft> may not be anchored.

The schedule tree of C<node> is modified to include an extension node
corresponding to the root node of C<graft> as a child of the original
parent of C<node>.  The original node that C<node> points to and the
child of the root node of C<graft> are attached to this extension node
through a sequence, with appropriate filters and with the child
of C<graft> appearing before or after the original C<node>.

If C<node> already appears inside a sequence that is the child of
an extension node and if the spaces of the new domain elements
do not overlap with those of the original domain elements,
then that extension node is extended with the new extension
rather than introducing a new segment of extension and sequence nodes.

Return a pointer to the same node in the modified tree that
C<node> pointed to in the original tree.

A representation of the schedule node can be printed using

	#include <isl/schedule_node.h>
	__isl_give isl_printer *isl_printer_print_schedule_node(
		__isl_take isl_printer *p,
		__isl_keep isl_schedule_node *node);
	__isl_give char *isl_schedule_node_to_str(
		__isl_keep isl_schedule_node *node);

C<isl_schedule_node_to_str> prints the schedule node in block format.

=head2 Dependence Analysis

C<isl> contains specialized functionality for performing
array dataflow analysis.  That is, given a I<sink> access relation,
a collection of possible I<source> accesses and
a collection of I<kill> accesses,
C<isl> can compute relations that describe
for each iteration of the sink access, which iterations
of which of the source access relations may have
accessed the same data element before the given iteration
of the sink access without any intermediate kill of that data element.
The resulting dependence relations map source iterations
to either the corresponding sink iterations or
pairs of corresponding sink iterations and accessed data elements.
To compute standard flow dependences, the sink should be
a read, while the sources should be writes.
If no kills are specified,
then memory based dependence analysis is performed.
If, on the other hand, all sources are also kills,
then value based dependence analysis is performed.
If any of the source accesses are marked as being I<must>
accesses, then they are also treated as kills.
Furthermore, the specification of must-sources results
in the computation of must-dependences.
Only dependences originating in a must access not coscheduled
with any other access to the same element and without
any may accesses between the must access and the sink access
are considered to be must dependences.

=head3 High-level Interface

A high-level interface to dependence analysis is provided
by the following function.

	#include <isl/flow.h>
	__isl_give isl_union_flow *
	isl_union_access_info_compute_flow(
		__isl_take isl_union_access_info *access);

The input C<isl_union_access_info> object describes the sink
access relations, the source access relations and a schedule,
while the output C<isl_union_flow> object describes
the resulting dependence relations and the subsets of the
sink relations for which no source was found.

An C<isl_union_access_info> is created, modified, copied and freed using
the following functions.

	#include <isl/flow.h>
	__isl_give isl_union_access_info *
	isl_union_access_info_from_sink(
		__isl_take isl_union_map *sink);
	__isl_give isl_union_access_info *
	isl_union_access_info_set_kill(
		__isl_take isl_union_access_info *access,
		__isl_take isl_union_map *kill);
	__isl_give isl_union_access_info *
	isl_union_access_info_set_may_source(
		__isl_take isl_union_access_info *access,
		__isl_take isl_union_map *may_source);
	__isl_give isl_union_access_info *
	isl_union_access_info_set_must_source(
		__isl_take isl_union_access_info *access,
		__isl_take isl_union_map *must_source);
	__isl_give isl_union_access_info *
	isl_union_access_info_set_schedule(
		__isl_take isl_union_access_info *access,
		__isl_take isl_schedule *schedule);
	__isl_give isl_union_access_info *
	isl_union_access_info_set_schedule_map(
		__isl_take isl_union_access_info *access,
		__isl_take isl_union_map *schedule_map);
	__isl_give isl_union_access_info *
	isl_union_access_info_copy(
		__isl_keep isl_union_access_info *access);
	__isl_null isl_union_access_info *
	isl_union_access_info_free(
		__isl_take isl_union_access_info *access);

The may sources set by C<isl_union_access_info_set_may_source>
do not need to include the must sources set by
C<isl_union_access_info_set_must_source> as a subset.
The kills set by C<isl_union_access_info_set_kill> may overlap
with the may-sources and/or must-sources.
The user is free not to call one (or more) of these functions,
in which case the corresponding set is kept to its empty default.
Similarly, the default schedule initialized by
C<isl_union_access_info_from_sink> is empty.
The current schedule is determined by the last call to either
C<isl_union_access_info_set_schedule> or
C<isl_union_access_info_set_schedule_map>.
The domain of the schedule corresponds to the domains of
the access relations.  In particular, the domains of the access
relations are effectively intersected with the domain of the schedule
and only the resulting accesses are considered by the dependence analysis.

An C<isl_union_access_info> object can be read from input
using the following function.

	#include <isl/flow.h>
	__isl_give isl_union_access_info *
	isl_union_access_info_read_from_file(isl_ctx *ctx,
		FILE *input);

A representation of the information contained in an object
of type C<isl_union_access_info> can be obtained using

	#include <isl/flow.h>
	__isl_give isl_printer *
	isl_printer_print_union_access_info(
		__isl_take isl_printer *p,
		__isl_keep isl_union_access_info *access);
	__isl_give char *isl_union_access_info_to_str(
		__isl_keep isl_union_access_info *access);

C<isl_union_access_info_to_str> prints the information in flow format.

The output of C<isl_union_access_info_compute_flow> can be examined,
copied, and freed using the following functions.

	#include <isl/flow.h>
	__isl_give isl_union_map *isl_union_flow_get_must_dependence(
		__isl_keep isl_union_flow *flow);
	__isl_give isl_union_map *isl_union_flow_get_may_dependence(
		__isl_keep isl_union_flow *flow);
	__isl_give isl_union_map *
	isl_union_flow_get_full_must_dependence(
		__isl_keep isl_union_flow *flow);
	__isl_give isl_union_map *
	isl_union_flow_get_full_may_dependence(
		__isl_keep isl_union_flow *flow);
	__isl_give isl_union_map *isl_union_flow_get_must_no_source(
		__isl_keep isl_union_flow *flow);
	__isl_give isl_union_map *isl_union_flow_get_may_no_source(
		__isl_keep isl_union_flow *flow);
	__isl_give isl_union_flow *isl_union_flow_copy(
		__isl_keep isl_union_flow *flow);
	__isl_null isl_union_flow *isl_union_flow_free(
		__isl_take isl_union_flow *flow);

The relation returned by C<isl_union_flow_get_must_dependence>
relates domain elements of must sources to domain elements of the sink.
The relation returned by C<isl_union_flow_get_may_dependence>
relates domain elements of must or may sources to domain elements of the sink
and includes the previous relation as a subset.
The relation returned by C<isl_union_flow_get_full_must_dependence>
relates domain elements of must sources to pairs of domain elements of the sink
and accessed data elements.
The relation returned by C<isl_union_flow_get_full_may_dependence>
relates domain elements of must or may sources to pairs of
domain elements of the sink and accessed data elements.
This relation includes the previous relation as a subset.
The relation returned by C<isl_union_flow_get_must_no_source> is the subset
of the sink relation for which no dependences have been found.
The relation returned by C<isl_union_flow_get_may_no_source> is the subset
of the sink relation for which no definite dependences have been found.
That is, it contains those sink access that do not contribute to any
of the elements in the relation returned
by C<isl_union_flow_get_must_dependence>.

A representation of the information contained in an object
of type C<isl_union_flow> can be obtained using

	#include <isl/flow.h>
	__isl_give isl_printer *isl_printer_print_union_flow(
		__isl_take isl_printer *p,
		__isl_keep isl_union_flow *flow);
	__isl_give char *isl_union_flow_to_str(
		__isl_keep isl_union_flow *flow);

C<isl_union_flow_to_str> prints the information in flow format.

=head3 Low-level Interface

A lower-level interface is provided by the following functions.

	#include <isl/flow.h>

	typedef int (*isl_access_level_before)(void *first, void *second);

	__isl_give isl_access_info *isl_access_info_alloc(
		__isl_take isl_map *sink,
		void *sink_user, isl_access_level_before fn,
		int max_source);
	__isl_give isl_access_info *isl_access_info_add_source(
		__isl_take isl_access_info *acc,
		__isl_take isl_map *source, int must,
		void *source_user);
	__isl_null isl_access_info *isl_access_info_free(
		__isl_take isl_access_info *acc);

	__isl_give isl_flow *isl_access_info_compute_flow(
		__isl_take isl_access_info *acc);

	isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
		isl_stat (*fn)(__isl_take isl_map *dep, int must,
			  void *dep_user, void *user),
		void *user);
	__isl_give isl_map *isl_flow_get_no_source(
		__isl_keep isl_flow *deps, int must);
	void isl_flow_free(__isl_take isl_flow *deps);

The function C<isl_access_info_compute_flow> performs the actual
dependence analysis.  The other functions are used to construct
the input for this function or to read off the output.

The input is collected in an C<isl_access_info>, which can
be created through a call to C<isl_access_info_alloc>.
The arguments to this functions are the sink access relation
C<sink>, a token C<sink_user> used to identify the sink
access to the user, a callback function for specifying the
relative order of source and sink accesses, and the number
of source access relations that will be added.

The callback function has type C<int (*)(void *first, void *second)>.
The function is called with two user supplied tokens identifying
either a source or the sink and it should return the shared nesting
level and the relative order of the two accesses.
In particular, let I<n> be the number of loops shared by
the two accesses.  If C<first> precedes C<second> textually,
then the function should return I<2 * n + 1>; otherwise,
it should return I<2 * n>.
The low-level interface assumes that no sources are coscheduled.
If the information returned by the callback does not allow
the relative order to be determined, then one of the sources
is arbitrarily taken to be executed after the other(s).

The sources can be added to the C<isl_access_info> object by performing
(at most) C<max_source> calls to C<isl_access_info_add_source>.
C<must> indicates whether the source is a I<must> access
or a I<may> access.  Note that a multi-valued access relation
should only be marked I<must> if every iteration in the domain
of the relation accesses I<all> elements in its image.
The C<source_user> token is again used to identify
the source access.  The range of the source access relation
C<source> should have the same dimension as the range
of the sink access relation.
The C<isl_access_info_free> function should usually not be
called explicitly, because it is already called implicitly by
C<isl_access_info_compute_flow>.

The result of the dependence analysis is collected in an
C<isl_flow>.  There may be elements of
the sink access for which no preceding source access could be
found or for which all preceding sources are I<may> accesses.
The relations containing these elements can be obtained through
calls to C<isl_flow_get_no_source>, the first with C<must> set
and the second with C<must> unset.
In the case of standard flow dependence analysis,
with the sink a read and the sources I<must> writes,
the first relation corresponds to the reads from uninitialized
array elements and the second relation is empty.
The actual flow dependences can be extracted using
C<isl_flow_foreach>.  This function will call the user-specified
callback function C<fn> for each B<non-empty> dependence between
a source and the sink.  The callback function is called
with four arguments, the actual flow dependence relation
mapping source iterations to sink iterations, a boolean that
indicates whether it is a I<must> or I<may> dependence, a token
identifying the source and an additional C<void *> with value
equal to the third argument of the C<isl_flow_foreach> call.
A dependence is marked I<must> if it originates from a I<must>
source and if it is not followed by any I<may> sources.

After finishing with an C<isl_flow>, the user should call
C<isl_flow_free> to free all associated memory.

=head3 Interaction with the Low-level Interface

During the dependence analysis, we frequently need to perform
the following operation.  Given a relation between sink iterations
and potential source iterations from a particular source domain,
what is the last potential source iteration corresponding to each
sink iteration.  It can sometimes be convenient to adjust
the set of potential source iterations before or after each such operation.
The prototypical example is fuzzy array dataflow analysis,
where we need to analyze if, based on data-dependent constraints,
the sink iteration can ever be executed without one or more of
the corresponding potential source iterations being executed.
If so, we can introduce extra parameters and select an unknown
but fixed source iteration from the potential source iterations.
To be able to perform such manipulations, C<isl> provides the following
function.

	#include <isl/flow.h>

	typedef __isl_give isl_restriction *(*isl_access_restrict)(
		__isl_keep isl_map *source_map,
		__isl_keep isl_set *sink, void *source_user,
		void *user);
	__isl_give isl_access_info *isl_access_info_set_restrict(
		__isl_take isl_access_info *acc,
		isl_access_restrict fn, void *user);

The function C<isl_access_info_set_restrict> should be called
before calling C<isl_access_info_compute_flow> and registers a callback function
that will be called any time C<isl> is about to compute the last
potential source.  The first argument is the (reverse) proto-dependence,
mapping sink iterations to potential source iterations.
The second argument represents the sink iterations for which
we want to compute the last source iteration.
The third argument is the token corresponding to the source
and the final argument is the token passed to C<isl_access_info_set_restrict>.
The callback is expected to return a restriction on either the input or
the output of the operation computing the last potential source.
If the input needs to be restricted then restrictions are needed
for both the source and the sink iterations.  The sink iterations
and the potential source iterations will be intersected with these sets.
If the output needs to be restricted then only a restriction on the source
iterations is required.
If any error occurs, the callback should return C<NULL>.
An C<isl_restriction> object can be created, freed and inspected
using the following functions.

	#include <isl/flow.h>

	__isl_give isl_restriction *isl_restriction_input(
		__isl_take isl_set *source_restr,
		__isl_take isl_set *sink_restr);
	__isl_give isl_restriction *isl_restriction_output(
		__isl_take isl_set *source_restr);
	__isl_give isl_restriction *isl_restriction_none(
		__isl_take isl_map *source_map);
	__isl_give isl_restriction *isl_restriction_empty(
		__isl_take isl_map *source_map);
	__isl_null isl_restriction *isl_restriction_free(
		__isl_take isl_restriction *restr);

C<isl_restriction_none> and C<isl_restriction_empty> are special
cases of C<isl_restriction_input>.  C<isl_restriction_none>
is essentially equivalent to

	isl_restriction_input(isl_set_universe(
	    isl_space_range(isl_map_get_space(source_map))),
			    isl_set_universe(
	    isl_space_domain(isl_map_get_space(source_map))));

whereas C<isl_restriction_empty> is essentially equivalent to

	isl_restriction_input(isl_set_empty(
	    isl_space_range(isl_map_get_space(source_map))),
			    isl_set_universe(
	    isl_space_domain(isl_map_get_space(source_map))));

=head2 Scheduling

	#include <isl/schedule.h>
	__isl_give isl_schedule *
	isl_schedule_constraints_compute_schedule(
		__isl_take isl_schedule_constraints *sc);

The function C<isl_schedule_constraints_compute_schedule> can be
used to compute a schedule that satisfies the given schedule constraints.
These schedule constraints include the iteration domain for which
a schedule should be computed and dependences between pairs of
iterations.  In particular, these dependences include
I<validity> dependences and I<proximity> dependences.
By default, the algorithm used to construct the schedule is similar
to that of C<Pluto>.
Alternatively, Feautrier's multi-dimensional scheduling algorithm can
be selected.
The generated schedule respects all validity dependences.
That is, all dependence distances over these dependences in the
scheduled space are lexicographically positive.

The default algorithm tries to ensure that the dependence distances
over coincidence constraints are zero and to minimize the
dependence distances over proximity dependences.
Moreover, it tries to obtain sequences (bands) of schedule dimensions
for groups of domains where the dependence distances over validity
dependences have only non-negative values.
Note that when minimizing the maximal dependence distance
over proximity dependences, a single affine expression in the parameters
is constructed that bounds all dependence distances.  If no such expression
exists, then the algorithm will fail and resort to an alternative
scheduling algorithm.  In particular, this means that adding proximity
dependences may eliminate valid solutions.  A typical example where this
phenomenon may occur is when some subset of the proximity dependences
has no restriction on some parameter, forcing the coefficient of that
parameter to be zero, while some other subset forces the dependence
distance to depend on that parameter, requiring the same coefficient
to be non-zero.
When using Feautrier's algorithm, the coincidence and proximity constraints
are only taken into account during the extension to a
full-dimensional schedule.

An C<isl_schedule_constraints> object can be constructed
and manipulated using the following functions.

	#include <isl/schedule.h>
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_copy(
		__isl_keep isl_schedule_constraints *sc);
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_on_domain(
		__isl_take isl_union_set *domain);
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_set_context(
		__isl_take isl_schedule_constraints *sc,
		__isl_take isl_set *context);
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_set_validity(
		__isl_take isl_schedule_constraints *sc,
		__isl_take isl_union_map *validity);
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_set_coincidence(
		__isl_take isl_schedule_constraints *sc,
		__isl_take isl_union_map *coincidence);
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_set_proximity(
		__isl_take isl_schedule_constraints *sc,
		__isl_take isl_union_map *proximity);
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_set_conditional_validity(
		__isl_take isl_schedule_constraints *sc,
		__isl_take isl_union_map *condition,
		__isl_take isl_union_map *validity);
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_apply(
		__isl_take isl_schedule_constraints *sc,
		__isl_take isl_union_map *umap);
	__isl_null isl_schedule_constraints *
	isl_schedule_constraints_free(
		__isl_take isl_schedule_constraints *sc);

The initial C<isl_schedule_constraints> object created by
C<isl_schedule_constraints_on_domain> does not impose any constraints.
That is, it has an empty set of dependences.
The function C<isl_schedule_constraints_set_context> allows the user
to specify additional constraints on the parameters that may
be assumed to hold during the construction of the schedule.
The function C<isl_schedule_constraints_set_validity> replaces the
validity dependences, mapping domain elements I<i> to domain
elements that should be scheduled after I<i>.
The function C<isl_schedule_constraints_set_coincidence> replaces the
coincidence dependences, mapping domain elements I<i> to domain
elements that should be scheduled together with I<I>, if possible.
The function C<isl_schedule_constraints_set_proximity> replaces the
proximity dependences, mapping domain elements I<i> to domain
elements that should be scheduled either before I<I>
or as early as possible after I<i>.

The function C<isl_schedule_constraints_set_conditional_validity>
replaces the conditional validity constraints.
A conditional validity constraint is only imposed when any of the corresponding
conditions is satisfied, i.e., when any of them is non-zero.
That is, the scheduler ensures that within each band if the dependence
distances over the condition constraints are not all zero
then all corresponding conditional validity constraints are respected.
A conditional validity constraint corresponds to a condition
if the two are adjacent, i.e., if the domain of one relation intersect
the range of the other relation.
The typical use case of conditional validity constraints is
to allow order constraints between live ranges to be violated
as long as the live ranges themselves are local to the band.
To allow more fine-grained control over which conditions correspond
to which conditional validity constraints, the domains and ranges
of these relations may include I<tags>.  That is, the domains and
ranges of those relation may themselves be wrapped relations
where the iteration domain appears in the domain of those wrapped relations
and the range of the wrapped relations can be arbitrarily chosen
by the user.  Conditions and conditional validity constraints are only
considered adjacent to each other if the entire wrapped relation matches.
In particular, a relation with a tag will never be considered adjacent
to a relation without a tag.

The function C<isl_schedule_constraints_apply> takes
schedule constraints that are defined on some set of domain elements
and transforms them to schedule constraints on the elements
to which these domain elements are mapped by the given transformation.

An C<isl_schedule_constraints> object can be inspected
using the following functions.

	#include <isl/schedule.h>
	__isl_give isl_union_set *
	isl_schedule_constraints_get_domain(
		__isl_keep isl_schedule_constraints *sc);
	__isl_give isl_set *isl_schedule_constraints_get_context(
		__isl_keep isl_schedule_constraints *sc);
	__isl_give isl_union_map *
	isl_schedule_constraints_get_validity(
		__isl_keep isl_schedule_constraints *sc);
	__isl_give isl_union_map *
	isl_schedule_constraints_get_coincidence(
		__isl_keep isl_schedule_constraints *sc);
	__isl_give isl_union_map *
	isl_schedule_constraints_get_proximity(
		__isl_keep isl_schedule_constraints *sc);
	__isl_give isl_union_map *
	isl_schedule_constraints_get_conditional_validity(
		__isl_keep isl_schedule_constraints *sc);
	__isl_give isl_union_map *
	isl_schedule_constraints_get_conditional_validity_condition(
		__isl_keep isl_schedule_constraints *sc);

An C<isl_schedule_constraints> object can be read from input
using the following functions.

	#include <isl/schedule.h>
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_read_from_str(isl_ctx *ctx,
		const char *str);
	__isl_give isl_schedule_constraints *
	isl_schedule_constraints_read_from_file(isl_ctx *ctx,
		FILE *input);

The contents of an C<isl_schedule_constraints> object can be printed
using the following functions.

	#include <isl/schedule.h>
	__isl_give isl_printer *
	isl_printer_print_schedule_constraints(
		__isl_take isl_printer *p,
		__isl_keep isl_schedule_constraints *sc);
	__isl_give char *isl_schedule_constraints_to_str(
		__isl_keep isl_schedule_constraints *sc);

The following function computes a schedule directly from
an iteration domain and validity and proximity dependences
and is implemented in terms of the functions described above.
The use of C<isl_union_set_compute_schedule> is discouraged.

	#include <isl/schedule.h>
	__isl_give isl_schedule *isl_union_set_compute_schedule(
		__isl_take isl_union_set *domain,
		__isl_take isl_union_map *validity,
		__isl_take isl_union_map *proximity);

The generated schedule represents a schedule tree.
For more information on schedule trees, see
L</"Schedule Trees">.

=head3 Options

	#include <isl/schedule.h>
	isl_stat isl_options_set_schedule_max_coefficient(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_max_coefficient(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_max_constant_term(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_max_constant_term(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_serialize_sccs(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_serialize_sccs(isl_ctx *ctx);
	isl_stat isl_options_set_schedule_whole_component(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_whole_component(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_maximize_band_depth(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_maximize_band_depth(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_maximize_coincidence(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_maximize_coincidence(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_outer_coincidence(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_outer_coincidence(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_split_scaled(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_split_scaled(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_treat_coalescing(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_treat_coalescing(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_algorithm(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_algorithm(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_carry_self_first(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_carry_self_first(
		isl_ctx *ctx);
	isl_stat isl_options_set_schedule_separate_components(
		isl_ctx *ctx, int val);
	int isl_options_get_schedule_separate_components(
		isl_ctx *ctx);

=over

=item * schedule_max_coefficient

This option enforces that the coefficients for variable and parameter
dimensions in the calculated schedule are not larger than the specified value.
This option can significantly increase the speed of the scheduling calculation
and may also prevent fusing of unrelated dimensions. A value of -1 means that
this option does not introduce bounds on the variable or parameter
coefficients.
This option has no effect on the Feautrier style scheduler.

=item * schedule_max_constant_term

This option enforces that the constant coefficients in the calculated schedule
are not larger than the maximal constant term. This option can significantly
increase the speed of the scheduling calculation and may also prevent fusing of
unrelated dimensions. A value of -1 means that this option does not introduce
bounds on the constant coefficients.

=item * schedule_serialize_sccs

If this option is set, then all strongly connected components
in the dependence graph are serialized as soon as they are detected.
This means in particular that instances of statements will only
appear in the same band node if these statements belong
to the same strongly connected component at the point where
the band node is constructed.

=item * schedule_whole_component

If this option is set, then entire (weakly) connected
components in the dependence graph are scheduled together
as a whole.
Otherwise, each strongly connected component within
such a weakly connected component is first scheduled separately
and then combined with other strongly connected components.
This option has no effect if C<schedule_serialize_sccs> is set.

=item * schedule_maximize_band_depth

If this option is set, then the scheduler tries to maximize
the width of the bands.  Wider bands give more possibilities for tiling.
In particular, if the C<schedule_whole_component> option is set,
then bands are split if this might result in wider bands.
Otherwise, the effect of this option is to only allow
strongly connected components to be combined if this does
not reduce the width of the bands.
Note that if the C<schedule_serialize_sccs> options is set, then
the C<schedule_maximize_band_depth> option therefore has no effect.

=item * schedule_maximize_coincidence

This option is only effective if the C<schedule_whole_component>
option is turned off.
If the C<schedule_maximize_coincidence> option is set, then (clusters of)
strongly connected components are only combined with each other
if this does not reduce the number of coincident band members.

=item * schedule_outer_coincidence

If this option is set, then we try to construct schedules
where the outermost scheduling dimension in each band
satisfies the coincidence constraints.

=item * schedule_algorithm

Selects the scheduling algorithm to be used.
Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.

=item * schedule_split_scaled

If this option is set, then we try to construct schedules in which the
constant term is split off from the linear part if the linear parts of
the scheduling rows for all nodes in the graph have a common non-trivial
divisor.
The constant term is then dropped and the linear
part is reduced.
This option is only effective when the Feautrier style scheduler is
being used, either as the main scheduler or as a fallback for the
Pluto-like scheduler.

=item * schedule_treat_coalescing

If this option is set, then the scheduler will try and avoid
producing schedules that perform loop coalescing.
In particular, for the Pluto-like scheduler, this option places
bounds on the schedule coefficients based on the sizes of the instance sets.
For the Feautrier style scheduler, this option detects potentially
coalescing schedules and then tries to adjust the schedule to avoid
the coalescing.

=item * schedule_carry_self_first

If this option is set, then the Feautrier style scheduler
(when used as a fallback for the Pluto-like scheduler) will
first try to only carry self-dependences.

=item * schedule_separate_components

If this option is set then the function C<isl_schedule_get_map>
will treat set nodes in the same way as sequence nodes.

=back

=head2 AST Generation

This section describes the C<isl> functionality for generating
ASTs that visit all the elements
in a domain in an order specified by a schedule tree or
a schedule map.
In case the schedule given as a C<isl_union_map>, an AST is generated
that visits all the elements in the domain of the C<isl_union_map>
according to the lexicographic order of the corresponding image
element(s).  If the range of the C<isl_union_map> consists of
elements in more than one space, then each of these spaces is handled
separately in an arbitrary order.
It should be noted that the schedule tree or the image elements
in a schedule map only specify the I<order>
in which the corresponding domain elements should be visited.
No direct relation between the partial schedule values
or the image elements on the one hand and the loop iterators
in the generated AST on the other hand should be assumed.

Each AST is generated within a build.  The initial build
simply specifies the constraints on the parameters (if any)
and can be created, inspected, copied and freed using the following functions.

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *isl_ast_build_alloc(
		isl_ctx *ctx);
	__isl_give isl_ast_build *isl_ast_build_from_context(
		__isl_take isl_set *set);
	__isl_give isl_ast_build *isl_ast_build_copy(
		__isl_keep isl_ast_build *build);
	__isl_null isl_ast_build *isl_ast_build_free(
		__isl_take isl_ast_build *build);

The C<set> argument is usually a parameter set with zero or more parameters.
In fact, when creating an AST using C<isl_ast_build_node_from_schedule>,
this set is required to be a parameter set.
An C<isl_ast_build> created using C<isl_ast_build_alloc> does not
specify any parameter constraints.
More C<isl_ast_build> functions are described in L</"Nested AST Generation">
and L</"Fine-grained Control over AST Generation">.
Finally, the AST itself can be constructed using one of the following
functions.

	#include <isl/ast_build.h>
	__isl_give isl_ast_node *isl_ast_build_node_from_schedule(
		__isl_keep isl_ast_build *build,
		__isl_take isl_schedule *schedule);
	__isl_give isl_ast_node *
	isl_ast_build_node_from_schedule_map(
		__isl_keep isl_ast_build *build,
		__isl_take isl_union_map *schedule);

=head3 Inspecting the AST

The basic properties of an AST node can be obtained as follows.

	#include <isl/ast.h>
	enum isl_ast_node_type isl_ast_node_get_type(
		__isl_keep isl_ast_node *node);

The type of an AST node is one of
C<isl_ast_node_for>,
C<isl_ast_node_if>,
C<isl_ast_node_block>,
C<isl_ast_node_mark> or
C<isl_ast_node_user>.
An C<isl_ast_node_for> represents a for node.
An C<isl_ast_node_if> represents an if node.
An C<isl_ast_node_block> represents a compound node.
An C<isl_ast_node_mark> introduces a mark in the AST.
An C<isl_ast_node_user> represents an expression statement.
An expression statement typically corresponds to a domain element, i.e.,
one of the elements that is visited by the AST.

Each type of node has its own additional properties.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_expr *isl_ast_node_for_get_init(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_expr *isl_ast_node_for_get_cond(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_expr *isl_ast_node_for_get_inc(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_node *isl_ast_node_for_get_body(
		__isl_keep isl_ast_node *node);
	isl_bool isl_ast_node_for_is_degenerate(
		__isl_keep isl_ast_node *node);

An C<isl_ast_for> is considered degenerate if it is known to execute
exactly once.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_node_if_get_cond(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_node *isl_ast_node_if_get_then(
		__isl_keep isl_ast_node *node);
	isl_bool isl_ast_node_if_has_else(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_node *isl_ast_node_if_get_else(
		__isl_keep isl_ast_node *node);

	__isl_give isl_ast_node_list *
	isl_ast_node_block_get_children(
		__isl_keep isl_ast_node *node);

	__isl_give isl_id *isl_ast_node_mark_get_id(
		__isl_keep isl_ast_node *node);
	__isl_give isl_ast_node *isl_ast_node_mark_get_node(
		__isl_keep isl_ast_node *node);

C<isl_ast_node_mark_get_id> returns the identifier of the mark.
C<isl_ast_node_mark_get_node> returns the child node that is being marked.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_node_user_get_expr(
		__isl_keep isl_ast_node *node);

All descendants of a specific node in the AST (including the node itself)
can be visited
in depth-first pre-order using the following function.

	#include <isl/ast.h>
	isl_stat isl_ast_node_foreach_descendant_top_down(
		__isl_keep isl_ast_node *node,
		isl_bool (*fn)(__isl_keep isl_ast_node *node,
			void *user), void *user);

The callback function should return C<isl_bool_true> if the children
of the given node should be visited and C<isl_bool_false> if they should not.
It should return C<isl_bool_error> in case of failure, in which case
the entire traversal is aborted.

Each of the returned C<isl_ast_expr>s can in turn be inspected using
the following functions.

	#include <isl/ast.h>
	enum isl_ast_expr_type isl_ast_expr_get_type(
		__isl_keep isl_ast_expr *expr);

The type of an AST expression is one of
C<isl_ast_expr_op>,
C<isl_ast_expr_id> or
C<isl_ast_expr_int>.
An C<isl_ast_expr_op> represents the result of an operation.
An C<isl_ast_expr_id> represents an identifier.
An C<isl_ast_expr_int> represents an integer value.

Each type of expression has its own additional properties.

	#include <isl/ast.h>
	enum isl_ast_op_type isl_ast_expr_get_op_type(
		__isl_keep isl_ast_expr *expr);
	int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
	__isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
		__isl_keep isl_ast_expr *expr, int pos);
	isl_stat isl_ast_expr_foreach_ast_op_type(
		__isl_keep isl_ast_expr *expr,
		isl_stat (*fn)(enum isl_ast_op_type type,
			void *user), void *user);
	isl_stat isl_ast_node_foreach_ast_op_type(
		__isl_keep isl_ast_node *node,
		isl_stat (*fn)(enum isl_ast_op_type type,
			void *user), void *user);

C<isl_ast_expr_get_op_type> returns the type of the operation
performed.  C<isl_ast_expr_get_op_n_arg> returns the number of
arguments.  C<isl_ast_expr_get_op_arg> returns the specified
argument.
C<isl_ast_expr_foreach_ast_op_type> calls C<fn> for each distinct
C<isl_ast_op_type> that appears in C<expr>.
C<isl_ast_node_foreach_ast_op_type> does the same for each distinct
C<isl_ast_op_type> that appears in C<node>.
The operation type is one of the following.

=over

=item C<isl_ast_op_and>

Logical I<and> of two arguments.
Both arguments can be evaluated.

=item C<isl_ast_op_and_then>

Logical I<and> of two arguments.
The second argument can only be evaluated if the first evaluates to true.

=item C<isl_ast_op_or>

Logical I<or> of two arguments.
Both arguments can be evaluated.

=item C<isl_ast_op_or_else>

Logical I<or> of two arguments.
The second argument can only be evaluated if the first evaluates to false.

=item C<isl_ast_op_max>

Maximum of two or more arguments.

=item C<isl_ast_op_min>

Minimum of two or more arguments.

=item C<isl_ast_op_minus>

Change sign.

=item C<isl_ast_op_add>

Sum of two arguments.

=item C<isl_ast_op_sub>

Difference of two arguments.

=item C<isl_ast_op_mul>

Product of two arguments.

=item C<isl_ast_op_div>

Exact division.  That is, the result is known to be an integer.

=item C<isl_ast_op_fdiv_q>

Result of integer division, rounded towards negative
infinity.
The divisor is known to be positive.

=item C<isl_ast_op_pdiv_q>

Result of integer division, where dividend is known to be non-negative.
The divisor is known to be positive.

=item C<isl_ast_op_pdiv_r>

Remainder of integer division, where dividend is known to be non-negative.
The divisor is known to be positive.

=item C<isl_ast_op_zdiv_r>

Equal to zero iff the remainder on integer division is zero.
The divisor is known to be positive.

=item C<isl_ast_op_cond>

Conditional operator defined on three arguments.
If the first argument evaluates to true, then the result
is equal to the second argument.  Otherwise, the result
is equal to the third argument.
The second and third argument may only be evaluated if
the first argument evaluates to true and false, respectively.
Corresponds to C<a ? b : c> in C.

=item C<isl_ast_op_select>

Conditional operator defined on three arguments.
If the first argument evaluates to true, then the result
is equal to the second argument.  Otherwise, the result
is equal to the third argument.
The second and third argument may be evaluated independently
of the value of the first argument.
Corresponds to C<a * b + (1 - a) * c> in C.

=item C<isl_ast_op_eq>

Equality relation.

=item C<isl_ast_op_le>

Less than or equal relation.

=item C<isl_ast_op_lt>

Less than relation.

=item C<isl_ast_op_ge>

Greater than or equal relation.

=item C<isl_ast_op_gt>

Greater than relation.

=item C<isl_ast_op_call>

A function call.
The number of arguments of the C<isl_ast_expr> is one more than
the number of arguments in the function call, the first argument
representing the function being called.

=item C<isl_ast_op_access>

An array access.
The number of arguments of the C<isl_ast_expr> is one more than
the number of index expressions in the array access, the first argument
representing the array being accessed.

=item C<isl_ast_op_member>

A member access.
This operation has two arguments, a structure and the name of
the member of the structure being accessed.

=back

	#include <isl/ast.h>
	__isl_give isl_id *isl_ast_expr_get_id(
		__isl_keep isl_ast_expr *expr);

Return the identifier represented by the AST expression.

	#include <isl/ast.h>
	__isl_give isl_val *isl_ast_expr_get_val(
		__isl_keep isl_ast_expr *expr);

Return the integer represented by the AST expression.

=head3 Properties of ASTs

	#include <isl/ast.h>
	isl_bool isl_ast_expr_is_equal(
		__isl_keep isl_ast_expr *expr1,
		__isl_keep isl_ast_expr *expr2);

Check if two C<isl_ast_expr>s are equal to each other.

=head3 Manipulating and printing the AST

AST nodes can be copied and freed using the following functions.

	#include <isl/ast.h>
	__isl_give isl_ast_node *isl_ast_node_copy(
		__isl_keep isl_ast_node *node);
	__isl_null isl_ast_node *isl_ast_node_free(
		__isl_take isl_ast_node *node);

AST expressions can be copied and freed using the following functions.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_expr_copy(
		__isl_keep isl_ast_expr *expr);
	__isl_null isl_ast_expr *isl_ast_expr_free(
		__isl_take isl_ast_expr *expr);

New AST expressions can be created either directly or within
the context of an C<isl_ast_build>.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_expr_from_val(
		__isl_take isl_val *v);
	__isl_give isl_ast_expr *isl_ast_expr_from_id(
		__isl_take isl_id *id);
	__isl_give isl_ast_expr *isl_ast_expr_neg(
		__isl_take isl_ast_expr *expr);
	__isl_give isl_ast_expr *isl_ast_expr_address_of(
		__isl_take isl_ast_expr *expr);
	__isl_give isl_ast_expr *isl_ast_expr_add(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_sub(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_mul(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_div(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_pdiv_q(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_pdiv_r(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_and(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2)
	__isl_give isl_ast_expr *isl_ast_expr_and_then(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2)
	__isl_give isl_ast_expr *isl_ast_expr_or(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2)
	__isl_give isl_ast_expr *isl_ast_expr_or_else(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2)
	__isl_give isl_ast_expr *isl_ast_expr_eq(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_le(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_lt(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_ge(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_gt(
		__isl_take isl_ast_expr *expr1,
		__isl_take isl_ast_expr *expr2);
	__isl_give isl_ast_expr *isl_ast_expr_access(
		__isl_take isl_ast_expr *array,
		__isl_take isl_ast_expr_list *indices);
	__isl_give isl_ast_expr *isl_ast_expr_call(
		__isl_take isl_ast_expr *function,
		__isl_take isl_ast_expr_list *arguments);

The function C<isl_ast_expr_address_of> can be applied to an
C<isl_ast_expr> of type C<isl_ast_op_access> only. It is meant
to represent the address of the C<isl_ast_expr_access>.
The second argument of the functions C<isl_ast_expr_pdiv_q> and
C<isl_ast_expr_pdiv_r> should always evaluate to a positive number.
The function
C<isl_ast_expr_and_then> as well as C<isl_ast_expr_or_else> are short-circuit
versions of C<isl_ast_expr_and> and C<isl_ast_expr_or>, respectively.

	#include <isl/ast_build.h>
	__isl_give isl_ast_expr *isl_ast_build_expr_from_set(
		__isl_keep isl_ast_build *build,
		__isl_take isl_set *set);
	__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
		__isl_keep isl_ast_build *build,
		__isl_take isl_pw_aff *pa);
	__isl_give isl_ast_expr *
	isl_ast_build_access_from_pw_multi_aff(
		__isl_keep isl_ast_build *build,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_ast_expr *
	isl_ast_build_access_from_multi_pw_aff(
		__isl_keep isl_ast_build *build,
		__isl_take isl_multi_pw_aff *mpa);
	__isl_give isl_ast_expr *
	isl_ast_build_call_from_pw_multi_aff(
		__isl_keep isl_ast_build *build,
		__isl_take isl_pw_multi_aff *pma);
	__isl_give isl_ast_expr *
	isl_ast_build_call_from_multi_pw_aff(
		__isl_keep isl_ast_build *build,
		__isl_take isl_multi_pw_aff *mpa);

The set C<set> and
the domains of C<pa>, C<mpa> and C<pma> should correspond
to the schedule space of C<build>.
The tuple id of C<mpa> or C<pma> is used as the array being accessed or
the function being called.
If the accessed space is a nested relation, then it is taken
to represent an access of the member specified by the range
of this nested relation of the structure specified by the domain
of the nested relation.

The following functions can be used to modify an C<isl_ast_expr>.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_expr_set_op_arg(
		__isl_take isl_ast_expr *expr, int pos,
		__isl_take isl_ast_expr *arg);

Replace the argument of C<expr> at position C<pos> by C<arg>.

	#include <isl/ast.h>
	__isl_give isl_ast_expr *isl_ast_expr_substitute_ids(
		__isl_take isl_ast_expr *expr,
		__isl_take isl_id_to_ast_expr *id2expr);

The function C<isl_ast_expr_substitute_ids> replaces the
subexpressions of C<expr> of type C<isl_ast_expr_id>
by the corresponding expression in C<id2expr>, if there is any.


User specified data can be attached to an C<isl_ast_node> and obtained
from the same C<isl_ast_node> using the following functions.

	#include <isl/ast.h>
	__isl_give isl_ast_node *isl_ast_node_set_annotation(
		__isl_take isl_ast_node *node,
		__isl_take isl_id *annotation);
	__isl_give isl_id *isl_ast_node_get_annotation(
		__isl_keep isl_ast_node *node);

Basic printing can be performed using the following functions.

	#include <isl/ast.h>
	__isl_give isl_printer *isl_printer_print_ast_expr(
		__isl_take isl_printer *p,
		__isl_keep isl_ast_expr *expr);
	__isl_give isl_printer *isl_printer_print_ast_node(
		__isl_take isl_printer *p,
		__isl_keep isl_ast_node *node);
	__isl_give char *isl_ast_expr_to_str(
		__isl_keep isl_ast_expr *expr);
	__isl_give char *isl_ast_node_to_str(
		__isl_keep isl_ast_node *node);
	__isl_give char *isl_ast_expr_to_C_str(
		__isl_keep isl_ast_expr *expr);
	__isl_give char *isl_ast_node_to_C_str(
		__isl_keep isl_ast_node *node);

The functions C<isl_ast_expr_to_C_str> and
C<isl_ast_node_to_C_str> are convenience functions
that return a string representation of the input in C format.

More advanced printing can be performed using the following functions.

	#include <isl/ast.h>
	__isl_give isl_printer *isl_ast_op_type_set_print_name(
		__isl_take isl_printer *p,
		enum isl_ast_op_type type,
		__isl_keep const char *name);
	isl_stat isl_options_set_ast_print_macro_once(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_print_macro_once(isl_ctx *ctx);
	__isl_give isl_printer *isl_ast_op_type_print_macro(
		enum isl_ast_op_type type,
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_ast_expr_print_macros(
		__isl_keep isl_ast_expr *expr,
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_ast_node_print_macros(
		__isl_keep isl_ast_node *node,
		__isl_take isl_printer *p);
	__isl_give isl_printer *isl_ast_node_print(
		__isl_keep isl_ast_node *node,
		__isl_take isl_printer *p,
		__isl_take isl_ast_print_options *options);
	__isl_give isl_printer *isl_ast_node_for_print(
		__isl_keep isl_ast_node *node,
		__isl_take isl_printer *p,
		__isl_take isl_ast_print_options *options);
	__isl_give isl_printer *isl_ast_node_if_print(
		__isl_keep isl_ast_node *node,
		__isl_take isl_printer *p,
		__isl_take isl_ast_print_options *options);

While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
C<isl> may print out an AST that makes use of macros such
as C<floord>, C<min> and C<max>.
The names of these macros may be modified by a call
to C<isl_ast_op_type_set_print_name>.  The user-specified
names are associated to the printer object.
C<isl_ast_op_type_print_macro> prints out the macro
corresponding to a specific C<isl_ast_op_type>.
If the print-macro-once option is set, then a given macro definition
is only printed once to any given printer object.
C<isl_ast_expr_print_macros> scans the C<isl_ast_expr>
for subexpressions where these macros would be used and prints
out the required macro definitions.
Essentially, C<isl_ast_expr_print_macros> calls
C<isl_ast_expr_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
as function argument.
C<isl_ast_node_print_macros> does the same
for expressions in its C<isl_ast_node> argument.
C<isl_ast_node_print>, C<isl_ast_node_for_print> and
C<isl_ast_node_if_print> print an C<isl_ast_node>
in C<ISL_FORMAT_C>, but allow for some extra control
through an C<isl_ast_print_options> object.
This object can be created using the following functions.

	#include <isl/ast.h>
	__isl_give isl_ast_print_options *
	isl_ast_print_options_alloc(isl_ctx *ctx);
	__isl_give isl_ast_print_options *
	isl_ast_print_options_copy(
		__isl_keep isl_ast_print_options *options);
	__isl_null isl_ast_print_options *
	isl_ast_print_options_free(
		__isl_take isl_ast_print_options *options);

	__isl_give isl_ast_print_options *
	isl_ast_print_options_set_print_user(
		__isl_take isl_ast_print_options *options,
		__isl_give isl_printer *(*print_user)(
			__isl_take isl_printer *p,
			__isl_take isl_ast_print_options *options,
			__isl_keep isl_ast_node *node, void *user),
		void *user);
	__isl_give isl_ast_print_options *
	isl_ast_print_options_set_print_for(
		__isl_take isl_ast_print_options *options,
		__isl_give isl_printer *(*print_for)(
			__isl_take isl_printer *p,
			__isl_take isl_ast_print_options *options,
			__isl_keep isl_ast_node *node, void *user),
		void *user);

The callback set by C<isl_ast_print_options_set_print_user>
is called whenever a node of type C<isl_ast_node_user> needs to
be printed.
The callback set by C<isl_ast_print_options_set_print_for>
is called whenever a node of type C<isl_ast_node_for> needs to
be printed.
Note that C<isl_ast_node_for_print> will I<not> call the
callback set by C<isl_ast_print_options_set_print_for> on the node
on which C<isl_ast_node_for_print> is called, but only on nested
nodes of type C<isl_ast_node_for>.  It is therefore safe to
call C<isl_ast_node_for_print> from within the callback set by
C<isl_ast_print_options_set_print_for>.

The following option determines the type to be used for iterators
while printing the AST.

	isl_stat isl_options_set_ast_iterator_type(
		isl_ctx *ctx, const char *val);
	const char *isl_options_get_ast_iterator_type(
		isl_ctx *ctx);

The AST printer only prints body nodes as blocks if these
blocks cannot be safely omitted.
For example, a C<for> node with one body node will not be
surrounded with braces in C<ISL_FORMAT_C>.
A block will always be printed by setting the following option.

	isl_stat isl_options_set_ast_always_print_block(isl_ctx *ctx,
		int val);
	int isl_options_get_ast_always_print_block(isl_ctx *ctx);

=head3 Options

	#include <isl/ast_build.h>
	isl_stat isl_options_set_ast_build_atomic_upper_bound(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_atomic_upper_bound(
		isl_ctx *ctx);
	isl_stat isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
		int val);
	int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
	isl_stat isl_options_set_ast_build_detect_min_max(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_detect_min_max(
		isl_ctx *ctx);
	isl_stat isl_options_set_ast_build_exploit_nested_bounds(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_exploit_nested_bounds(
		isl_ctx *ctx);
	isl_stat isl_options_set_ast_build_group_coscheduled(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_group_coscheduled(
		isl_ctx *ctx);
	isl_stat isl_options_set_ast_build_separation_bounds(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_separation_bounds(
		isl_ctx *ctx);
	isl_stat isl_options_set_ast_build_scale_strides(
		isl_ctx *ctx, int val);
	int isl_options_get_ast_build_scale_strides(
		isl_ctx *ctx);
	isl_stat isl_options_set_ast_build_allow_else(isl_ctx *ctx,
		int val);
	int isl_options_get_ast_build_allow_else(isl_ctx *ctx);
	isl_stat isl_options_set_ast_build_allow_or(isl_ctx *ctx,
		int val);
	int isl_options_get_ast_build_allow_or(isl_ctx *ctx);

=over

=item * ast_build_atomic_upper_bound

Generate loop upper bounds that consist of the current loop iterator,
an operator and an expression not involving the iterator.
If this option is not set, then the current loop iterator may appear
several times in the upper bound.
For example, when this option is turned off, AST generation
for the schedule

	[n] -> { A[i] -> [i] : 0 <= i <= 100, n }

produces

	for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
	  A(c0);

When the option is turned on, the following AST is generated

	for (int c0 = 0; c0 <= min(100, n); c0 += 1)
	  A(c0);

=item * ast_build_prefer_pdiv

If this option is turned off, then the AST generation will
produce ASTs that may only contain C<isl_ast_op_fdiv_q>
operators, but no C<isl_ast_op_pdiv_q> or
C<isl_ast_op_pdiv_r> operators.
If this option is turned on, then C<isl> will try to convert
some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.

=item * ast_build_detect_min_max

If this option is turned on, then C<isl> will try and detect
min or max-expressions when building AST expressions from
piecewise affine expressions.

=item * ast_build_exploit_nested_bounds

Simplify conditions based on bounds of nested for loops.
In particular, remove conditions that are implied by the fact
that one or more nested loops have at least one iteration,
meaning that the upper bound is at least as large as the lower bound.
For example, when this option is turned off, AST generation
for the schedule

	[N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
					0 <= j <= M }

produces

	if (M >= 0)
	  for (int c0 = 0; c0 <= N; c0 += 1)
	    for (int c1 = 0; c1 <= M; c1 += 1)
	      A(c0, c1);

When the option is turned on, the following AST is generated

	for (int c0 = 0; c0 <= N; c0 += 1)
	  for (int c1 = 0; c1 <= M; c1 += 1)
	    A(c0, c1);

=item * ast_build_group_coscheduled

If two domain elements are assigned the same schedule point, then
they may be executed in any order and they may even appear in different
loops.  If this options is set, then the AST generator will make
sure that coscheduled domain elements do not appear in separate parts
of the AST.  This is useful in case of nested AST generation
if the outer AST generation is given only part of a schedule
and the inner AST generation should handle the domains that are
coscheduled by this initial part of the schedule together.
For example if an AST is generated for a schedule

	{ A[i] -> [0]; B[i] -> [0] }

then the C<isl_ast_build_set_create_leaf> callback described
below may get called twice, once for each domain.
Setting this option ensures that the callback is only called once
on both domains together.

=item * ast_build_separation_bounds

This option specifies which bounds to use during separation.
If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
then all (possibly implicit) bounds on the current dimension will
be used during separation.
If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
then only those bounds that are explicitly available will
be used during separation.

=item * ast_build_scale_strides

This option specifies whether the AST generator is allowed
to scale down iterators of strided loops.

=item * ast_build_allow_else

This option specifies whether the AST generator is allowed
to construct if statements with else branches.

=item * ast_build_allow_or

This option specifies whether the AST generator is allowed
to construct if conditions with disjunctions.

=back

=head3 AST Generation Options (Schedule Tree)

In case of AST construction from a schedule tree, the options
that control how an AST is created from the individual schedule
dimensions are stored in the band nodes of the tree
(see L</"Schedule Trees">).

In particular, a schedule dimension can be handled in four
different ways, atomic, separate, unroll or the default.
This loop AST generation type can be set using
C<isl_schedule_node_band_member_set_ast_loop_type>.
Alternatively,
the first three can be selected by including a one-dimensional
element with as value the position of the schedule dimension
within the band and as name one of C<atomic>, C<separate>
or C<unroll> in the options
set by C<isl_schedule_node_band_set_ast_build_options>.
Only one of these three may be specified for
any given schedule dimension within a band node.
If none of these is specified, then the default
is used.  The meaning of the options is as follows.

=over

=item C<atomic>

When this option is specified, the AST generator will make
sure that a given domains space only appears in a single
loop at the specified level.

For example, for the schedule tree

	domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
	child:
	  schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
	  options: "{ atomic[x] }"

the following AST will be generated

	for (int c0 = 0; c0 <= 10; c0 += 1) {
	  if (c0 >= 1)
	    b(c0 - 1);
	  if (c0 <= 9)
	    a(c0);
	}

On the other hand, for the schedule tree

	domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }"
	child:
	  schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]"
	  options: "{ separate[x] }"

the following AST will be generated

	{
	  a(0);
	  for (int c0 = 1; c0 <= 9; c0 += 1) {
	    b(c0 - 1);
	    a(c0);
	  }
	  b(9);
	}

If neither C<atomic> nor C<separate> is specified, then the AST generator
may produce either of these two results or some intermediate form.

=item C<separate>

When this option is specified, the AST generator will
split the domain of the specified schedule dimension
into pieces with a fixed set of statements for which
instances need to be executed by the iterations in
the schedule domain part.  This option tends to avoid
the generation of guards inside the corresponding loops.
See also the C<atomic> option.

=item C<unroll>

When this option is specified, the AST generator will
I<completely> unroll the corresponding schedule dimension.
It is the responsibility of the user to ensure that such
unrolling is possible.
To obtain a partial unrolling, the user should apply an additional
strip-mining to the schedule and fully unroll the inner schedule
dimension.

=back

The C<isolate> option is a bit more involved.  It allows the user
to isolate a range of schedule dimension values from smaller and
greater values.  Additionally, the user may specify a different
atomic/separate/unroll choice for the isolated part and the remaining
parts.  The typical use case of the C<isolate> option is to isolate
full tiles from partial tiles.
The part that needs to be isolated may depend on outer schedule dimensions.
The option therefore needs to be able to reference those outer schedule
dimensions.  In particular, the space of the C<isolate> option is that
of a wrapped map with as domain the flat product of all outer band nodes
and as range the space of the current band node.
The atomic/separate/unroll choice for the isolated part is determined
by an option that lives in an unnamed wrapped space with as domain
a zero-dimensional C<isolate> space and as range the regular
C<atomic>, C<separate> or C<unroll> space.
This option may also be set directly using
C<isl_schedule_node_band_member_set_isolate_ast_loop_type>.
The atomic/separate/unroll choice for the remaining part is determined
by the regular C<atomic>, C<separate> or C<unroll> option.
Since the C<isolate> option references outer schedule dimensions,
its use in a band node causes any tree containing the node
to be considered anchored.

As an example, consider the isolation of full tiles from partial tiles
in a tiling of a triangular domain.  The original schedule is as follows.

	domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
	child:
	  schedule: "[{ A[i,j] -> [floor(i/10)] }, \
		{ A[i,j] -> [floor(j/10)] }, \
		{ A[i,j] -> [i] }, { A[i,j] -> [j] }]"

The output is

	for (int c0 = 0; c0 <= 10; c0 += 1)
	  for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
	    for (int c2 = 10 * c0;
                 c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
	      for (int c3 = 10 * c1;
                   c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
		A(c2, c3);

Isolating the full tiles, we have the following input

	domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
	child:
	  schedule: "[{ A[i,j] -> [floor(i/10)] }, \
		{ A[i,j] -> [floor(j/10)] }, \
		{ A[i,j] -> [i] }, { A[i,j] -> [j] }]"
	  options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
		10a+9+10b+9 <= 100 }"

and output

	{
	  for (int c0 = 0; c0 <= 8; c0 += 1) {
	    for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
	      for (int c2 = 10 * c0;
		   c2 <= 10 * c0 + 9; c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= 10 * c1 + 9; c3 += 1)
		  A(c2, c3);
	    for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
	      for (int c2 = 10 * c0;
                   c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
		for (int c3 = 10 * c1;
                     c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
		  A(c2, c3);
	  }
	  for (int c0 = 9; c0 <= 10; c0 += 1)
	    for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
	      for (int c2 = 10 * c0;
                   c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
		for (int c3 = 10 * c1;
                     c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
		  A(c2, c3);
	}

We may then additionally unroll the innermost loop of the isolated part

	domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }"
	child:
	  schedule: "[{ A[i,j] -> [floor(i/10)] }, \
		{ A[i,j] -> [floor(j/10)] }, \
		{ A[i,j] -> [i] }, { A[i,j] -> [j] }]"
	  options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \
		10a+9+10b+9 <= 100; [isolate[] -> unroll[3]] }"

to obtain

	{
	  for (int c0 = 0; c0 <= 8; c0 += 1) {
	    for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
	      for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) {
		A(c2, 10 * c1);
		A(c2, 10 * c1 + 1);
		A(c2, 10 * c1 + 2);
		A(c2, 10 * c1 + 3);
		A(c2, 10 * c1 + 4);
		A(c2, 10 * c1 + 5);
		A(c2, 10 * c1 + 6);
		A(c2, 10 * c1 + 7);
		A(c2, 10 * c1 + 8);
		A(c2, 10 * c1 + 9);
	      }
	    for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
	      for (int c2 = 10 * c0;
                   c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
		  A(c2, c3);
	  }
	  for (int c0 = 9; c0 <= 10; c0 += 1)
	    for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
	      for (int c2 = 10 * c0;
		   c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1)
		  A(c2, c3);
	}


=head3 AST Generation Options (Schedule Map)

In case of AST construction using
C<isl_ast_build_node_from_schedule_map>, the options
that control how an AST is created from the individual schedule
dimensions are stored in the C<isl_ast_build>.
They can be set using the following function.

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *
	isl_ast_build_set_options(
		__isl_take isl_ast_build *build,
		__isl_take isl_union_map *options);

The options are encoded in an C<isl_union_map>.
The domain of this union relation refers to the schedule domain,
i.e., the range of the schedule passed
to C<isl_ast_build_node_from_schedule_map>.
In the case of nested AST generation (see L</"Nested AST Generation">),
the domain of C<options> should refer to the extra piece of the schedule.
That is, it should be equal to the range of the wrapped relation in the
range of the schedule.
The range of the options can consist of elements in one or more spaces,
the names of which determine the effect of the option.
The values of the range typically also refer to the schedule dimension
to which the option applies, with value C<0> representing
the outermost schedule dimension.  In case of nested AST generation
(see L</"Nested AST Generation">), these values refer to the position
of the schedule dimension within the innermost AST generation.
The constraints on the domain elements of
the option should only refer to this dimension and earlier dimensions.
We consider the following spaces.

=over

=item C<separation_class>

B<This option has been deprecated.  Use the isolate option on
schedule trees instead.>

This space is a wrapped relation between two one dimensional spaces.
The input space represents the schedule dimension to which the option
applies and the output space represents the separation class.
While constructing a loop corresponding to the specified schedule
dimension(s), the AST generator will try to generate separate loops
for domain elements that are assigned different classes.
If only some of the elements are assigned a class, then those elements
that are not assigned any class will be treated as belonging to a class
that is separate from the explicitly assigned classes.
The typical use case for this option is to separate full tiles from
partial tiles.
The other options, described below, are applied after the separation
into classes.

As an example, consider the separation into full and partial tiles
of a tiling of a triangular domain.
Take, for example, the domain

	{ A[i,j] : 0 <= i,j and i + j <= 100 }

and a tiling into tiles of 10 by 10.  The input to the AST generator
is then the schedule

	{ A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
						i + j <= 100 }

Without any options, the following AST is generated

	for (int c0 = 0; c0 <= 10; c0 += 1)
	  for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
	    for (int c2 = 10 * c0;
		 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
		 c2 += 1)
	      for (int c3 = 10 * c1;
		   c3 <= min(10 * c1 + 9, -c2 + 100);
		   c3 += 1)
		A(c2, c3);

Separation into full and partial tiles can be obtained by assigning
a class, say C<0>, to the full tiles.  The full tiles are represented by those
values of the first and second schedule dimensions for which there are
values of the third and fourth dimensions to cover an entire tile.
That is, we need to specify the following option

	{ [a,b,c,d] -> separation_class[[0]->[0]] :
		exists b': 0 <= 10a,10b' and
			   10a+9+10b'+9 <= 100;
	  [a,b,c,d] -> separation_class[[1]->[0]] :
		0 <= 10a,10b and 10a+9+10b+9 <= 100 }

which simplifies to

	{ [a, b, c, d] -> separation_class[[1] -> [0]] :
		a >= 0 and b >= 0 and b <= 8 - a;
	  [a, b, c, d] -> separation_class[[0] -> [0]] :
		a >= 0 and a <= 8 }

With this option, the generated AST is as follows

	{
	  for (int c0 = 0; c0 <= 8; c0 += 1) {
	    for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
	      for (int c2 = 10 * c0;
		   c2 <= 10 * c0 + 9; c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= 10 * c1 + 9; c3 += 1)
		  A(c2, c3);
	    for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
	      for (int c2 = 10 * c0;
		   c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
		   c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= min(-c2 + 100, 10 * c1 + 9);
		     c3 += 1)
		  A(c2, c3);
	  }
	  for (int c0 = 9; c0 <= 10; c0 += 1)
	    for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
	      for (int c2 = 10 * c0;
		   c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
		   c2 += 1)
		for (int c3 = 10 * c1;
		     c3 <= min(10 * c1 + 9, -c2 + 100);
		     c3 += 1)
		  A(c2, c3);
	}

=item C<separate>

This is a single-dimensional space representing the schedule dimension(s)
to which ``separation'' should be applied.  Separation tries to split
a loop into several pieces if this can avoid the generation of guards
inside the loop.
See also the C<atomic> option.

=item C<atomic>

This is a single-dimensional space representing the schedule dimension(s)
for which the domains should be considered ``atomic''.  That is, the
AST generator will make sure that any given domain space will only appear
in a single loop at the specified level.

Consider the following schedule

	{ a[i] -> [i] : 0 <= i < 10;
	  b[i] -> [i+1] : 0 <= i < 10 }

If the following option is specified

	{ [i] -> separate[x] }

then the following AST will be generated

	{
	  a(0);
	  for (int c0 = 1; c0 <= 9; c0 += 1) {
	    a(c0);
	    b(c0 - 1);
	  }
	  b(9);
	}

If, on the other hand, the following option is specified

	{ [i] -> atomic[x] }

then the following AST will be generated

	for (int c0 = 0; c0 <= 10; c0 += 1) {
	  if (c0 <= 9)
	    a(c0);
	  if (c0 >= 1)
	    b(c0 - 1);
	}

If neither C<atomic> nor C<separate> is specified, then the AST generator
may produce either of these two results or some intermediate form.

=item C<unroll>

This is a single-dimensional space representing the schedule dimension(s)
that should be I<completely> unrolled.
To obtain a partial unrolling, the user should apply an additional
strip-mining to the schedule and fully unroll the inner loop.

=back

=head3 Fine-grained Control over AST Generation

Besides specifying the constraints on the parameters,
an C<isl_ast_build> object can be used to control
various aspects of the AST generation process.
In case of AST construction using
C<isl_ast_build_node_from_schedule_map>,
the most prominent way of control is through ``options'',
as explained above.

Additional control is available through the following functions.

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *
	isl_ast_build_set_iterators(
		__isl_take isl_ast_build *build,
		__isl_take isl_id_list *iterators);

The function C<isl_ast_build_set_iterators> allows the user to
specify a list of iterator C<isl_id>s to be used as iterators.
If the input schedule is injective, then
the number of elements in this list should be as large as the dimension
of the schedule space, but no direct correspondence should be assumed
between dimensions and elements.
If the input schedule is not injective, then an additional number
of C<isl_id>s equal to the largest dimension of the input domains
may be required.
If the number of provided C<isl_id>s is insufficient, then additional
names are automatically generated.

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *
	isl_ast_build_set_create_leaf(
		__isl_take isl_ast_build *build,
		__isl_give isl_ast_node *(*fn)(
			__isl_take isl_ast_build *build,
			void *user), void *user);

The
C<isl_ast_build_set_create_leaf> function allows for the
specification of a callback that should be called whenever the AST
generator arrives at an element of the schedule domain.
The callback should return an AST node that should be inserted
at the corresponding position of the AST.  The default action (when
the callback is not set) is to continue generating parts of the AST to scan
all the domain elements associated to the schedule domain element
and to insert user nodes, ``calling'' the domain element, for each of them.
The C<build> argument contains the current state of the C<isl_ast_build>.
To ease nested AST generation (see L</"Nested AST Generation">),
all control information that is
specific to the current AST generation such as the options and
the callbacks has been removed from this C<isl_ast_build>.
The callback would typically return the result of a nested
AST generation or a
user defined node created using the following function.

	#include <isl/ast.h>
	__isl_give isl_ast_node *isl_ast_node_alloc_user(
		__isl_take isl_ast_expr *expr);

	#include <isl/ast_build.h>
	__isl_give isl_ast_build *
	isl_ast_build_set_at_each_domain(
		__isl_take isl_ast_build *build,
		__isl_give isl_ast_node *(*fn)(
			__isl_take isl_ast_node *node,
			__isl_keep isl_ast_build *build,
			void *user), void *user);
	__isl_give isl_ast_build *
	isl_ast_build_set_before_each_for(
		__isl_take isl_ast_build *build,
		__isl_give isl_id *(*fn)(
			__isl_keep isl_ast_build *build,
			void *user), void *user);
	__isl_give isl_ast_build *
	isl_ast_build_set_after_each_for(
		__isl_take isl_ast_build *build,
		__isl_give isl_ast_node *(*fn)(
			__isl_take isl_ast_node *node,
			__isl_keep isl_ast_build *build,
			void *user), void *user);
	__isl_give isl_ast_build *
	isl_ast_build_set_before_each_mark(
		__isl_take isl_ast_build *build,
		isl_stat (*fn)(__isl_keep isl_id *mark,
			__isl_keep isl_ast_build *build,
			void *user), void *user);
	__isl_give isl_ast_build *
	isl_ast_build_set_after_each_mark(
		__isl_take isl_ast_build *build,
		__isl_give isl_ast_node *(*fn)(
			__isl_take isl_ast_node *node,
			__isl_keep isl_ast_build *build,
			void *user), void *user);

The callback set by C<isl_ast_build_set_at_each_domain> will
be called for each domain AST node.
The callbacks set by C<isl_ast_build_set_before_each_for>
and C<isl_ast_build_set_after_each_for> will be called
for each for AST node.  The first will be called in depth-first
pre-order, while the second will be called in depth-first post-order.
Since C<isl_ast_build_set_before_each_for> is called before the for
node is actually constructed, it is only passed an C<isl_ast_build>.
The returned C<isl_id> will be added as an annotation (using
C<isl_ast_node_set_annotation>) to the constructed for node.
In particular, if the user has also specified an C<after_each_for>
callback, then the annotation can be retrieved from the node passed to
that callback using C<isl_ast_node_get_annotation>.
The callbacks set by C<isl_ast_build_set_before_each_mark>
and C<isl_ast_build_set_after_each_mark> will be called for each
mark AST node that is created, i.e., for each mark schedule node
in the input schedule tree.  The first will be called in depth-first
pre-order, while the second will be called in depth-first post-order.
Since the callback set by C<isl_ast_build_set_before_each_mark>
is called before the mark AST node is actually constructed, it is passed
the identifier of the mark node.
All callbacks should C<NULL> (or C<isl_stat_error>) on failure.
The given C<isl_ast_build> can be used to create new
C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
or C<isl_ast_build_call_from_pw_multi_aff>.

=head3 Nested AST Generation

C<isl> allows the user to create an AST within the context
of another AST.  These nested ASTs are created using the
same C<isl_ast_build_node_from_schedule_map> function that is used to create
the outer AST.  The C<build> argument should be an C<isl_ast_build>
passed to a callback set by
C<isl_ast_build_set_create_leaf>.
The space of the range of the C<schedule> argument should refer
to this build.  In particular, the space should be a wrapped
relation and the domain of this wrapped relation should be the
same as that of the range of the schedule returned by
C<isl_ast_build_get_schedule> below.
In practice, the new schedule is typically
created by calling C<isl_union_map_range_product> on the old schedule
and some extra piece of the schedule.
The space of the schedule domain is also available from
the C<isl_ast_build>.

	#include <isl/ast_build.h>
	__isl_give isl_union_map *isl_ast_build_get_schedule(
		__isl_keep isl_ast_build *build);
	__isl_give isl_space *isl_ast_build_get_schedule_space(
		__isl_keep isl_ast_build *build);
	__isl_give isl_ast_build *isl_ast_build_restrict(
		__isl_take isl_ast_build *build,
		__isl_take isl_set *set);

The C<isl_ast_build_get_schedule> function returns a (partial)
schedule for the domains elements for which part of the AST still needs to
be generated in the current build.
In particular, the domain elements are mapped to those iterations of the loops
enclosing the current point of the AST generation inside which
the domain elements are executed.
No direct correspondence between
the input schedule and this schedule should be assumed.
The space obtained from C<isl_ast_build_get_schedule_space> can be used
to create a set for C<isl_ast_build_restrict> to intersect
with the current build.  In particular, the set passed to
C<isl_ast_build_restrict> can have additional parameters.
The ids of the set dimensions in the space returned by
C<isl_ast_build_get_schedule_space> correspond to the
iterators of the already generated loops.
The user should not rely on the ids of the output dimensions
of the relations in the union relation returned by
C<isl_ast_build_get_schedule> having any particular value.

=head1 Applications

Although C<isl> is mainly meant to be used as a library,
it also contains some basic applications that use some
of the functionality of C<isl>.
For applications that take one or more polytopes or polyhedra
as input, this input may be specified in either the L<isl format>
or the L<PolyLib format>.

=head2 C<isl_polyhedron_sample>

C<isl_polyhedron_sample> takes a polyhedron as input and prints
an integer element of the polyhedron, if there is any.
The first column in the output is the denominator and is always
equal to 1.  If the polyhedron contains no integer points,
then a vector of length zero is printed.

=head2 C<isl_pip>

C<isl_pip> takes the same input as the C<example> program
from the C<piplib> distribution, i.e., a set of constraints
on the parameters, a line containing only -1 and finally a set
of constraints on a parametric polyhedron.
The coefficients of the parameters appear in the last columns
(but before the final constant column).
The output is the lexicographic minimum of the parametric polyhedron.
As C<isl> currently does not have its own output format, the output
is just a dump of the internal state.

=head2 C<isl_polyhedron_minimize>

C<isl_polyhedron_minimize> computes the minimum of some linear
or affine objective function over the integer points in a polyhedron.
If an affine objective function
is given, then the constant should appear in the last column.

=head2 C<isl_polytope_scan>

Given a polytope, C<isl_polytope_scan> prints
all integer points in the polytope.

=head2 C<isl_flow>

Given an C<isl_union_access_info> object as input,
C<isl_flow> prints out the corresponding dependences,
as computed by C<isl_union_access_info_compute_flow>.

=head2 C<isl_codegen>

Given either a schedule tree or a sequence consisting of
a schedule map, a context set and an options relation,
C<isl_codegen> prints out an AST that scans the domain elements
of the schedule in the order of their image(s) taking into account
the constraints in the context set.

=head2 C<isl_schedule>

Given an C<isl_schedule_constraints> object as input,
C<isl_schedule> prints out a schedule that satisfies the given
constraints.