LoopUtils.cpp 72.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//

#include "mlir/Transforms/LoopUtils.h"

#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Function.h"
#include "mlir/Transforms/RegionUtils.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "LoopUtils"

using namespace mlir;
using llvm::SetVector;
using llvm::SmallMapVector;

/// Computes the cleanup loop lower bound of the loop being unrolled with
/// the specified unroll factor; this bound will also be upper bound of the main
/// part of the unrolled loop. Computes the bound as an AffineMap with its
/// operands or a null map when the trip count can't be expressed as an affine
/// expression.
void mlir::getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor,
                                    AffineMap *map,
                                    SmallVectorImpl<Value> *operands,
                                    OpBuilder &b) {
  auto lbMap = forOp.getLowerBoundMap();

  // Single result lower bound map only.
  if (lbMap.getNumResults() != 1) {
    *map = AffineMap();
    return;
  }

  AffineMap tripCountMap;
  SmallVector<Value, 4> tripCountOperands;
  buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);

  // Sometimes the trip count cannot be expressed as an affine expression.
  if (!tripCountMap) {
    *map = AffineMap();
    return;
  }

  unsigned step = forOp.getStep();
  auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap,
                                    forOp.getLowerBoundOperands());

  // For each upper bound expr, get the range.
  // Eg: affine.for %i = lb to min (ub1, ub2),
  // where tripCountExprs yield (tr1, tr2), we create affine.apply's:
  // lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
  // these affine.apply's make up the cleanup loop lower bound.
  SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
  SmallVector<Value, 4> bumpValues(tripCountMap.getNumResults());
  for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
    auto tripCountExpr = tripCountMap.getResult(i);
    bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
    auto bumpMap = AffineMap::get(tripCountMap.getNumDims(),
                                  tripCountMap.getNumSymbols(), bumpExprs[i]);
    bumpValues[i] =
        b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands);
  }

  SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
  for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
    newUbExprs[i] = b.getAffineDimExpr(0) + b.getAffineDimExpr(i + 1);

  operands->clear();
  operands->push_back(lb);
  operands->append(bumpValues.begin(), bumpValues.end());
  *map = AffineMap::get(1 + tripCountMap.getNumResults(), 0, newUbExprs);
  // Simplify the map + operands.
  fullyComposeAffineMapAndOperands(map, operands);
  *map = simplifyAffineMap(*map);
  canonicalizeMapAndOperands(map, operands);
  // Remove any affine.apply's that became dead from the simplification above.
  for (auto v : bumpValues) {
    if (v.use_empty())
      v.getDefiningOp()->erase();
  }
  if (lb.use_empty())
    lb.erase();
}

/// Promotes the loop body of a forOp to its containing block if the forOp
/// was known to have a single iteration.
// TODO(bondhugula): extend this for arbitrary affine bounds.
LogicalResult mlir::promoteIfSingleIteration(AffineForOp forOp) {
  Optional<uint64_t> tripCount = getConstantTripCount(forOp);
  if (!tripCount.hasValue() || tripCount.getValue() != 1)
    return failure();

  // TODO(mlir-team): there is no builder for a max.
  if (forOp.getLowerBoundMap().getNumResults() != 1)
    return failure();

  // Replaces all IV uses to its single iteration value.
  auto iv = forOp.getInductionVar();
  Operation *op = forOp.getOperation();
  if (!iv.use_empty()) {
    if (forOp.hasConstantLowerBound()) {
      OpBuilder topBuilder(op->getParentOfType<FuncOp>().getBody());
      auto constOp = topBuilder.create<ConstantIndexOp>(
          forOp.getLoc(), forOp.getConstantLowerBound());
      iv.replaceAllUsesWith(constOp);
    } else {
      AffineBound lb = forOp.getLowerBound();
      SmallVector<Value, 4> lbOperands(lb.operand_begin(), lb.operand_end());
      OpBuilder builder(op->getBlock(), Block::iterator(op));
      if (lb.getMap() == builder.getDimIdentityMap()) {
        // No need of generating an affine.apply.
        iv.replaceAllUsesWith(lbOperands[0]);
      } else {
        auto affineApplyOp = builder.create<AffineApplyOp>(
            op->getLoc(), lb.getMap(), lbOperands);
        iv.replaceAllUsesWith(affineApplyOp);
      }
    }
  }
  // Move the loop body operations, except for terminator, to the loop's
  // containing block.
  auto *block = op->getBlock();
  forOp.getBody()->getOperations().back().erase();
  block->getOperations().splice(Block::iterator(op),
                                forOp.getBody()->getOperations());
  forOp.erase();
  return success();
}

/// Promotes all single iteration for op's in the FuncOp, i.e., moves
/// their body into the containing Block.
void mlir::promoteSingleIterationLoops(FuncOp f) {
  // Gathers all innermost loops through a post order pruned walk.
  f.walk([](AffineForOp forOp) { promoteIfSingleIteration(forOp); });
}

/// Generates a 'affine.for' op with the specified lower and upper bounds
/// while generating the right IV remappings for the shifted operations. The
/// operation blocks that go into the loop are specified in instGroupQueue
/// starting from the specified offset, and in that order; the first element of
/// the pair specifies the shift applied to that group of operations; note
/// that the shift is multiplied by the loop step before being applied. Returns
/// nullptr if the generated loop simplifies to a single iteration one.
static AffineForOp
generateLoop(AffineMap lbMap, AffineMap ubMap,
             const std::vector<std::pair<uint64_t, ArrayRef<Operation *>>>
                 &instGroupQueue,
             unsigned offset, AffineForOp srcForInst, OpBuilder b) {
  SmallVector<Value, 4> lbOperands(srcForInst.getLowerBoundOperands());
  SmallVector<Value, 4> ubOperands(srcForInst.getUpperBoundOperands());

  assert(lbMap.getNumInputs() == lbOperands.size());
  assert(ubMap.getNumInputs() == ubOperands.size());

  auto loopChunk =
      b.create<AffineForOp>(srcForInst.getLoc(), lbOperands, lbMap, ubOperands,
                            ubMap, srcForInst.getStep());
  auto loopChunkIV = loopChunk.getInductionVar();
  auto srcIV = srcForInst.getInductionVar();

  BlockAndValueMapping operandMap;

  OpBuilder bodyBuilder = loopChunk.getBodyBuilder();
  for (auto it = instGroupQueue.begin() + offset, e = instGroupQueue.end();
       it != e; ++it) {
    uint64_t shift = it->first;
    auto insts = it->second;
    // All 'same shift' operations get added with their operands being
    // remapped to results of cloned operations, and their IV used remapped.
    // Generate the remapping if the shift is not zero: remappedIV = newIV -
    // shift.
    if (!srcIV.use_empty() && shift != 0) {
      auto ivRemap = bodyBuilder.create<AffineApplyOp>(
          srcForInst.getLoc(),
          bodyBuilder.getSingleDimShiftAffineMap(
              -static_cast<int64_t>(srcForInst.getStep() * shift)),
          loopChunkIV);
      operandMap.map(srcIV, ivRemap);
    } else {
      operandMap.map(srcIV, loopChunkIV);
    }
    for (auto *op : insts) {
      if (!isa<AffineTerminatorOp>(op))
        bodyBuilder.clone(*op, operandMap);
    }
  };
  if (succeeded(promoteIfSingleIteration(loopChunk)))
    return AffineForOp();
  return loopChunk;
}

/// Skew the operations in the body of a 'affine.for' operation with the
/// specified operation-wise shifts. The shifts are with respect to the
/// original execution order, and are multiplied by the loop 'step' before being
/// applied. A shift of zero for each operation will lead to no change.
// The skewing of operations with respect to one another can be used for
// example to allow overlap of asynchronous operations (such as DMA
// communication) with computation, or just relative shifting of operations
// for better register reuse, locality or parallelism. As such, the shifts are
// typically expected to be at most of the order of the number of operations.
// This method should not be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of operations
// in the body of the for loop - (using the 'sweep line' paradigm). This method
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based dependence preservation check rests with the users of this
// method.
LogicalResult mlir::instBodySkew(AffineForOp forOp, ArrayRef<uint64_t> shifts,
                                 bool unrollPrologueEpilogue) {
  if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
    return success();

  // If the trip counts aren't constant, we would need versioning and
  // conditional guards (or context information to prevent such versioning). The
  // better way to pipeline for such loops is to first tile them and extract
  // constant trip count "full tiles" before applying this.
  auto mayBeConstTripCount = getConstantTripCount(forOp);
  if (!mayBeConstTripCount.hasValue()) {
    LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled"));
    return success();
  }
  uint64_t tripCount = mayBeConstTripCount.getValue();

  assert(isInstwiseShiftValid(forOp, shifts) &&
         "shifts will lead to an invalid transformation\n");

  int64_t step = forOp.getStep();

  unsigned numChildInsts = forOp.getBody()->getOperations().size();

  // Do a linear time (counting) sort for the shifts.
  uint64_t maxShift = 0;
  for (unsigned i = 0; i < numChildInsts; i++) {
    maxShift = std::max(maxShift, shifts[i]);
  }
  // Such large shifts are not the typical use case.
  if (maxShift >= numChildInsts) {
    forOp.emitWarning("not shifting because shifts are unrealistically large");
    return success();
  }

  // An array of operation groups sorted by shift amount; each group has all
  // operations with the same shift in the order in which they appear in the
  // body of the 'affine.for' op.
  std::vector<std::vector<Operation *>> sortedInstGroups(maxShift + 1);
  unsigned pos = 0;
  for (auto &op : *forOp.getBody()) {
    auto shift = shifts[pos++];
    sortedInstGroups[shift].push_back(&op);
  }

  // Unless the shifts have a specific pattern (which actually would be the
  // common use case), prologue and epilogue are not meaningfully defined.
  // Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
  // loop generated as the prologue and the last as epilogue and unroll these
  // fully.
  AffineForOp prologue;
  AffineForOp epilogue;

  // Do a sweep over the sorted shifts while storing open groups in a
  // vector, and generating loop portions as necessary during the sweep. A block
  // of operations is paired with its shift.
  std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> instGroupQueue;

  auto origLbMap = forOp.getLowerBoundMap();
  uint64_t lbShift = 0;
  OpBuilder b(forOp.getOperation());
  for (uint64_t d = 0, e = sortedInstGroups.size(); d < e; ++d) {
    // If nothing is shifted by d, continue.
    if (sortedInstGroups[d].empty())
      continue;
    if (!instGroupQueue.empty()) {
      assert(d >= 1 &&
             "Queue expected to be empty when the first block is found");
      // The interval for which the loop needs to be generated here is:
      // [lbShift, min(lbShift + tripCount, d)) and the body of the
      // loop needs to have all operations in instQueue in that order.
      AffineForOp res;
      if (lbShift + tripCount * step < d * step) {
        res = generateLoop(
            b.getShiftedAffineMap(origLbMap, lbShift),
            b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
            instGroupQueue, 0, forOp, b);
        // Entire loop for the queued op groups generated, empty it.
        instGroupQueue.clear();
        lbShift += tripCount * step;
      } else {
        res = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
                           b.getShiftedAffineMap(origLbMap, d), instGroupQueue,
                           0, forOp, b);
        lbShift = d * step;
      }
      if (!prologue && res)
        prologue = res;
      epilogue = res;
    } else {
      // Start of first interval.
      lbShift = d * step;
    }
    // Augment the list of operations that get into the current open interval.
    instGroupQueue.push_back({d, sortedInstGroups[d]});
  }

  // Those operations groups left in the queue now need to be processed (FIFO)
  // and their loops completed.
  for (unsigned i = 0, e = instGroupQueue.size(); i < e; ++i) {
    uint64_t ubShift = (instGroupQueue[i].first + tripCount) * step;
    epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
                            b.getShiftedAffineMap(origLbMap, ubShift),
                            instGroupQueue, i, forOp, b);
    lbShift = ubShift;
    if (!prologue)
      prologue = epilogue;
  }

  // Erase the original for op.
  forOp.erase();

  if (unrollPrologueEpilogue && prologue)
    loopUnrollFull(prologue);
  if (unrollPrologueEpilogue && !epilogue &&
      epilogue.getOperation() != prologue.getOperation())
    loopUnrollFull(epilogue);

  return success();
}

// Collect perfectly nested loops starting from `rootForOps`.  Loops are
// perfectly nested if each loop is the first and only non-terminator operation
// in the parent loop.  Collect at most `maxLoops` loops and append them to
// `forOps`.
template <typename T>
static void getPerfectlyNestedLoopsImpl(
    SmallVectorImpl<T> &forOps, T rootForOp,
    unsigned maxLoops = std::numeric_limits<unsigned>::max()) {
  for (unsigned i = 0; i < maxLoops; ++i) {
    forOps.push_back(rootForOp);
    Block &body = rootForOp.region().front();
    if (body.begin() != std::prev(body.end(), 2))
      return;

    rootForOp = dyn_cast<T>(&body.front());
    if (!rootForOp)
      return;
  }
}

/// Get perfectly nested sequence of loops starting at root of loop nest
/// (the first op being another AffineFor, and the second op - a terminator).
/// A loop is perfectly nested iff: the first op in the loop's body is another
/// AffineForOp, and the second op is a terminator).
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<AffineForOp> &nestedLoops,
                                   AffineForOp root) {
  getPerfectlyNestedLoopsImpl(nestedLoops, root);
}

void mlir::getPerfectlyNestedLoops(SmallVectorImpl<loop::ForOp> &nestedLoops,
                                   loop::ForOp root) {
  getPerfectlyNestedLoopsImpl(nestedLoops, root);
}

/// Unrolls this loop completely.
LogicalResult mlir::loopUnrollFull(AffineForOp forOp) {
  Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
  if (mayBeConstantTripCount.hasValue()) {
    uint64_t tripCount = mayBeConstantTripCount.getValue();
    if (tripCount == 1) {
      return promoteIfSingleIteration(forOp);
    }
    return loopUnrollByFactor(forOp, tripCount);
  }
  return failure();
}

/// Unrolls and jams this loop by the specified factor or by the trip count (if
/// constant) whichever is lower.
LogicalResult mlir::loopUnrollUpToFactor(AffineForOp forOp,
                                         uint64_t unrollFactor) {
  Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);

  if (mayBeConstantTripCount.hasValue() &&
      mayBeConstantTripCount.getValue() < unrollFactor)
    return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue());
  return loopUnrollByFactor(forOp, unrollFactor);
}

/// Unrolls this loop by the specified factor. Returns success if the loop
/// is successfully unrolled.
LogicalResult mlir::loopUnrollByFactor(AffineForOp forOp,
                                       uint64_t unrollFactor) {
  assert(unrollFactor >= 1 && "unroll factor should be >= 1");

  if (unrollFactor == 1)
    return promoteIfSingleIteration(forOp);

  if (forOp.getBody()->empty() ||
      forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
    return failure();

  // Loops where the lower bound is a max expression isn't supported for
  // unrolling since the trip count can be expressed as an affine function when
  // both the lower bound and the upper bound are multi-result maps. However,
  // one meaningful way to do such unrolling would be to specialize the loop for
  // the 'hotspot' case and unroll that hotspot.
  if (forOp.getLowerBoundMap().getNumResults() != 1)
    return failure();

  // If the trip count is lower than the unroll factor, no unrolled body.
  // TODO(bondhugula): option to specify cleanup loop unrolling.
  Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
  if (mayBeConstantTripCount.hasValue() &&
      mayBeConstantTripCount.getValue() < unrollFactor)
    return failure();

  // Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
  Operation *op = forOp.getOperation();
  if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
    OpBuilder builder(op->getBlock(), ++Block::iterator(op));
    auto cleanupForInst = cast<AffineForOp>(builder.clone(*op));
    AffineMap cleanupMap;
    SmallVector<Value, 4> cleanupOperands;
    getCleanupLoopLowerBound(forOp, unrollFactor, &cleanupMap, &cleanupOperands,
                             builder);
    assert(cleanupMap &&
           "cleanup loop lower bound map for single result lower bound maps "
           "can always be determined");
    cleanupForInst.setLowerBound(cleanupOperands, cleanupMap);
    // Promote the loop body up if this has turned into a single iteration loop.
    promoteIfSingleIteration(cleanupForInst);

    // Adjust upper bound of the original loop; this is the same as the lower
    // bound of the cleanup loop.
    forOp.setUpperBound(cleanupOperands, cleanupMap);
  }

  // Scale the step of loop being unrolled by unroll factor.
  int64_t step = forOp.getStep();
  forOp.setStep(step * unrollFactor);

  // Builder to insert unrolled bodies just before the terminator of the body of
  // 'forOp'.
  OpBuilder builder = forOp.getBodyBuilder();

  // Keep a pointer to the last non-terminator operation in the original block
  // so that we know what to clone (since we are doing this in-place).
  Block::iterator srcBlockEnd = std::prev(forOp.getBody()->end(), 2);

  // Unroll the contents of 'forOp' (append unrollFactor-1 additional copies).
  auto forOpIV = forOp.getInductionVar();
  for (unsigned i = 1; i < unrollFactor; i++) {
    BlockAndValueMapping operandMap;

    // If the induction variable is used, create a remapping to the value for
    // this unrolled instance.
    if (!forOpIV.use_empty()) {
      // iv' = iv + 1/2/3...unrollFactor-1;
      auto d0 = builder.getAffineDimExpr(0);
      auto bumpMap = AffineMap::get(1, 0, {d0 + i * step});
      auto ivUnroll =
          builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV);
      operandMap.map(forOpIV, ivUnroll);
    }

    // Clone the original body of 'forOp'.
    for (auto it = forOp.getBody()->begin(); it != std::next(srcBlockEnd);
         it++) {
      builder.clone(*it, operandMap);
    }
  }

  // Promote the loop body up if this has turned into a single iteration loop.
  promoteIfSingleIteration(forOp);
  return success();
}

/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
/// nested within 'forOpA' as the only non-terminator operation in its block.
void mlir::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) {
  auto *forOpAInst = forOpA.getOperation();

  assert(&*forOpA.getBody()->begin() == forOpB.getOperation());
  auto &forOpABody = forOpA.getBody()->getOperations();
  auto &forOpBBody = forOpB.getBody()->getOperations();

  // 1) Splice forOpA's non-terminator operations (which is just forOpB) just
  // before forOpA (in ForOpA's parent's block) this should leave 'forOpA's
  // body containing only the terminator.
  forOpAInst->getBlock()->getOperations().splice(Block::iterator(forOpAInst),
                                                 forOpABody, forOpABody.begin(),
                                                 std::prev(forOpABody.end()));
  // 2) Splice forOpB's non-terminator operations into the beginning of forOpA's
  // body (this leaves forOpB's body containing only the terminator).
  forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(),
                    std::prev(forOpBBody.end()));
  // 3) Splice forOpA into the beginning of forOpB's body.
  forOpBBody.splice(forOpBBody.begin(), forOpAInst->getBlock()->getOperations(),
                    Block::iterator(forOpAInst));
}

// Checks each dependence component against the permutation to see if the
// desired loop interchange would violate dependences by making the
// dependence component lexicographically negative.
static bool checkLoopInterchangeDependences(
    const std::vector<SmallVector<DependenceComponent, 2>> &depCompsVec,
    ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) {
  // Invert permutation map.
  unsigned maxLoopDepth = loops.size();
  SmallVector<unsigned, 4> loopPermMapInv;
  loopPermMapInv.resize(maxLoopDepth);
  for (unsigned i = 0; i < maxLoopDepth; ++i)
    loopPermMapInv[loopPermMap[i]] = i;

  // Check each dependence component against the permutation to see if the
  // desired loop interchange permutation would make the dependence vectors
  // lexicographically negative.
  // Example 1: [-1, 1][0, 0]
  // Example 2: [0, 0][-1, 1]
  for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
    const SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
    assert(depComps.size() >= maxLoopDepth);
    // Check if the first non-zero dependence component is positive.
    // This iterates through loops in the desired order.
    for (unsigned j = 0; j < maxLoopDepth; ++j) {
      unsigned permIndex = loopPermMapInv[j];
      assert(depComps[permIndex].lb.hasValue());
      int64_t depCompLb = depComps[permIndex].lb.getValue();
      if (depCompLb > 0)
        break;
      if (depCompLb < 0)
        return false;
    }
  }
  return true;
}

/// Checks if the loop interchange permutation 'loopPermMap' of the perfectly
/// nested sequence of loops in 'loops' would violate dependences.
bool mlir::isValidLoopInterchangePermutation(ArrayRef<AffineForOp> loops,
                                             ArrayRef<unsigned> loopPermMap) {
  // Gather dependence components for dependences between all ops in loop nest
  // rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
  assert(loopPermMap.size() == loops.size());
  unsigned maxLoopDepth = loops.size();
  std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
  getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
  return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap);
}

/// Performs a sequence of loop interchanges of loops in perfectly nested
/// sequence of loops in 'loops', as specified by permutation in 'loopPermMap'.
unsigned mlir::interchangeLoops(ArrayRef<AffineForOp> loops,
                                ArrayRef<unsigned> loopPermMap) {
  Optional<unsigned> loopNestRootIndex;
  for (int i = loops.size() - 1; i >= 0; --i) {
    int permIndex = static_cast<int>(loopPermMap[i]);
    // Store the index of the for loop which will be the new loop nest root.
    if (permIndex == 0)
      loopNestRootIndex = i;
    if (permIndex > i) {
      // Sink loop 'i' by 'permIndex - i' levels deeper into the loop nest.
      sinkLoop(loops[i], permIndex - i);
    }
  }
  assert(loopNestRootIndex.hasValue());
  return loopNestRootIndex.getValue();
}

// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
AffineForOp mlir::sinkSequentialLoops(AffineForOp forOp) {
  SmallVector<AffineForOp, 4> loops;
  getPerfectlyNestedLoops(loops, forOp);
  if (loops.size() < 2)
    return forOp;

  // Gather dependence components for dependences between all ops in loop nest
  // rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
  unsigned maxLoopDepth = loops.size();
  std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
  getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);

  // Mark loops as either parallel or sequential.
  SmallVector<bool, 8> isParallelLoop(maxLoopDepth, true);
  for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
    SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
    assert(depComps.size() >= maxLoopDepth);
    for (unsigned j = 0; j < maxLoopDepth; ++j) {
      DependenceComponent &depComp = depComps[j];
      assert(depComp.lb.hasValue() && depComp.ub.hasValue());
      if (depComp.lb.getValue() != 0 || depComp.ub.getValue() != 0)
        isParallelLoop[j] = false;
    }
  }

  // Count the number of parallel loops.
  unsigned numParallelLoops = 0;
  for (unsigned i = 0, e = isParallelLoop.size(); i < e; ++i)
    if (isParallelLoop[i])
      ++numParallelLoops;

  // Compute permutation of loops that sinks sequential loops (and thus raises
  // parallel loops) while preserving relative order.
  SmallVector<unsigned, 4> loopPermMap(maxLoopDepth);
  unsigned nextSequentialLoop = numParallelLoops;
  unsigned nextParallelLoop = 0;
  for (unsigned i = 0; i < maxLoopDepth; ++i) {
    if (isParallelLoop[i]) {
      loopPermMap[i] = nextParallelLoop++;
    } else {
      loopPermMap[i] = nextSequentialLoop++;
    }
  }

  // Check if permutation 'loopPermMap' would violate dependences.
  if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap))
    return forOp;
  // Perform loop interchange according to permutation 'loopPermMap'.
  unsigned loopNestRootIndex = interchangeLoops(loops, loopPermMap);
  return loops[loopNestRootIndex];
}

/// Performs a series of loop interchanges to sink 'forOp' 'loopDepth' levels
/// deeper in the loop nest.
void mlir::sinkLoop(AffineForOp forOp, unsigned loopDepth) {
  for (unsigned i = 0; i < loopDepth; ++i) {
    AffineForOp nextForOp = cast<AffineForOp>(forOp.getBody()->front());
    interchangeLoops(forOp, nextForOp);
  }
}

// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
// lower (resp. upper) loop bound. When called for both the lower and upper
// bounds, the resulting IR resembles:
//
// ```mlir
//    affine.for %i = max (`iv, ...) to min (`iv` + `offset`) {
//      ...
//    }
// ```
static void augmentMapAndBounds(OpBuilder &b, Value iv, AffineMap *map,
                                SmallVector<Value, 4> *operands,
                                int64_t offset = 0) {
  auto bounds = llvm::to_vector<4>(map->getResults());
  bounds.push_back(b.getAffineDimExpr(map->getNumDims()) + offset);
  operands->insert(operands->begin() + map->getNumDims(), iv);
  *map = AffineMap::get(map->getNumDims() + 1, map->getNumSymbols(), bounds);
  canonicalizeMapAndOperands(map, operands);
}

// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
// Stripmine-sink is a primitive building block for generalized tiling of
// imperfectly nested loops.
// This transformation is purely mechanical and does not check legality,
// profitability or even structural correctness. It is the user's
// responsibility to specify `targets` that are dominated by `forOp`.
// Returns the new AffineForOps, one per `targets`, nested immediately under
// each of the `targets`.
static SmallVector<AffineForOp, 8>
stripmineSink(AffineForOp forOp, uint64_t factor,
              ArrayRef<AffineForOp> targets) {
  auto originalStep = forOp.getStep();
  auto scaledStep = originalStep * factor;
  forOp.setStep(scaledStep);

  auto *op = forOp.getOperation();
  OpBuilder b(op->getBlock(), ++Block::iterator(op));

  // Lower-bound map creation.
  auto lbMap = forOp.getLowerBoundMap();
  SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands());
  augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands);

  // Upper-bound map creation.
  auto ubMap = forOp.getUpperBoundMap();
  SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands());
  augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands,
                      /*offset=*/scaledStep);

  auto iv = forOp.getInductionVar();
  SmallVector<AffineForOp, 8> innerLoops;
  for (auto t : targets) {
    // Insert newForOp before the terminator of `t`.
    OpBuilder b = t.getBodyBuilder();
    auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap,
                                          ubOperands, ubMap, originalStep);
    auto begin = t.getBody()->begin();
    // Skip terminator and `newForOp` which is just before the terminator.
    auto nOps = t.getBody()->getOperations().size() - 2;
    newForOp.getBody()->getOperations().splice(
        newForOp.getBody()->getOperations().begin(),
        t.getBody()->getOperations(), begin, std::next(begin, nOps));
    replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
                               newForOp.region());
    innerLoops.push_back(newForOp);
  }

  return innerLoops;
}

static Loops stripmineSink(loop::ForOp forOp, Value factor,
                           ArrayRef<loop::ForOp> targets) {
  auto originalStep = forOp.step();
  auto iv = forOp.getInductionVar();

  OpBuilder b(forOp);
  forOp.setStep(b.create<MulIOp>(forOp.getLoc(), originalStep, factor));

  Loops innerLoops;
  for (auto t : targets) {
    // Save information for splicing ops out of t when done
    auto begin = t.getBody()->begin();
    auto nOps = t.getBody()->getOperations().size();

    // Insert newForOp before the terminator of `t`.
    OpBuilder b(t.getBodyBuilder());
    Value stepped = b.create<AddIOp>(t.getLoc(), iv, forOp.step());
    Value less = b.create<CmpIOp>(t.getLoc(), CmpIPredicate::slt,
                                  forOp.upperBound(), stepped);
    Value ub =
        b.create<SelectOp>(t.getLoc(), less, forOp.upperBound(), stepped);

    // Splice [begin, begin + nOps - 1) into `newForOp` and replace uses.
    auto newForOp = b.create<loop::ForOp>(t.getLoc(), iv, ub, originalStep);
    newForOp.getBody()->getOperations().splice(
        newForOp.getBody()->getOperations().begin(),
        t.getBody()->getOperations(), begin, std::next(begin, nOps - 1));
    replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
                               newForOp.region());

    innerLoops.push_back(newForOp);
  }

  return innerLoops;
}

// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
// Returns the new AffineForOps, nested immediately under `target`.
template <typename ForType, typename SizeType>
static ForType stripmineSink(ForType forOp, SizeType factor, ForType target) {
  // TODO(ntv): Use cheap structural assertions that targets are nested under
  // forOp and that targets are not nested under each other when DominanceInfo
  // exposes the capability. It seems overkill to construct a whole function
  // dominance tree at this point.
  auto res = stripmineSink(forOp, factor, ArrayRef<ForType>{target});
  assert(res.size() == 1 && "Expected 1 inner forOp");
  return res[0];
}

template <typename ForType, typename SizeType>
static SmallVector<SmallVector<ForType, 8>, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes,
         ArrayRef<ForType> targets) {
  SmallVector<SmallVector<ForType, 8>, 8> res;
  SmallVector<ForType, 8> currentTargets(targets.begin(), targets.end());
  for (auto it : llvm::zip(forOps, sizes)) {
    auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
    res.push_back(step);
    currentTargets = step;
  }
  return res;
}

SmallVector<SmallVector<AffineForOp, 8>, 8>
mlir::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes,
           ArrayRef<AffineForOp> targets) {
  return tileImpl(forOps, sizes, targets);
}

SmallVector<Loops, 8> mlir::tile(ArrayRef<loop::ForOp> forOps,
                                 ArrayRef<Value> sizes,
                                 ArrayRef<loop::ForOp> targets) {
  return tileImpl(forOps, sizes, targets);
}

template <typename ForType, typename SizeType>
static SmallVector<ForType, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes, ForType target) {
  SmallVector<ForType, 8> res;
  for (auto loops : tile(forOps, sizes, ArrayRef<ForType>{target})) {
    assert(loops.size() == 1);
    res.push_back(loops[0]);
  }
  return res;
}

SmallVector<AffineForOp, 8> mlir::tile(ArrayRef<AffineForOp> forOps,
                                       ArrayRef<uint64_t> sizes,
                                       AffineForOp target) {
  return tileImpl(forOps, sizes, target);
}

Loops mlir::tile(ArrayRef<loop::ForOp> forOps, ArrayRef<Value> sizes,
                 loop::ForOp target) {
  return tileImpl(forOps, sizes, target);
}

Loops mlir::tilePerfectlyNested(loop::ForOp rootForOp, ArrayRef<Value> sizes) {
  // Collect perfectly nested loops.  If more size values provided than nested
  // loops available, truncate `sizes`.
  SmallVector<loop::ForOp, 4> forOps;
  forOps.reserve(sizes.size());
  getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
  if (forOps.size() < sizes.size())
    sizes = sizes.take_front(forOps.size());

  return ::tile(forOps, sizes, forOps.back());
}

// Build the IR that performs ceil division of a positive value by a constant:
//    ceildiv(a, B) = divis(a + (B-1), B)
// where divis is rounding-to-zero division.
static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend,
                             int64_t divisor) {
  assert(divisor > 0 && "expected positive divisor");
  assert(dividend.getType().isIndex() && "expected index-typed value");

  Value divisorMinusOneCst = builder.create<ConstantIndexOp>(loc, divisor - 1);
  Value divisorCst = builder.create<ConstantIndexOp>(loc, divisor);
  Value sum = builder.create<AddIOp>(loc, dividend, divisorMinusOneCst);
  return builder.create<SignedDivIOp>(loc, sum, divisorCst);
}

// Build the IR that performs ceil division of a positive value by another
// positive value:
//    ceildiv(a, b) = divis(a + (b - 1), b)
// where divis is rounding-to-zero division.
static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend,
                             Value divisor) {
  assert(dividend.getType().isIndex() && "expected index-typed value");

  Value cstOne = builder.create<ConstantIndexOp>(loc, 1);
  Value divisorMinusOne = builder.create<SubIOp>(loc, divisor, cstOne);
  Value sum = builder.create<AddIOp>(loc, dividend, divisorMinusOne);
  return builder.create<SignedDivIOp>(loc, sum, divisor);
}

// Hoist the ops within `outer` that appear before `inner`.
// Such ops include the ops that have been introduced by parametric tiling.
// Ops that come from triangular loops (i.e. that belong to the program slice
// rooted at `outer`) and ops that have side effects cannot be hoisted.
// Return failure when any op fails to hoist.
static LogicalResult hoistOpsBetween(loop::ForOp outer, loop::ForOp inner) {
  SetVector<Operation *> forwardSlice;
  getForwardSlice(outer.getOperation(), &forwardSlice, [&inner](Operation *op) {
    return op != inner.getOperation();
  });
  LogicalResult status = success();
  SmallVector<Operation *, 8> toHoist;
  for (auto &op : outer.getBody()->getOperations()) {
    // Stop when encountering the inner loop.
    if (&op == inner.getOperation())
      break;
    // Skip over non-hoistable ops.
    if (forwardSlice.count(&op) > 0) {
      status = failure();
      continue;
    }
    // Skip loop::ForOp, these are not considered a failure.
    if (op.getNumRegions() > 0)
      continue;
    // Skip other ops with regions.
    if (op.getNumRegions() > 0) {
      status = failure();
      continue;
    }
    // Skip if op has side effects.
    // TODO(ntv): loads to immutable memory regions are ok.
    if (!op.hasNoSideEffect()) {
      status = failure();
      continue;
    }
    toHoist.push_back(&op);
  }
  auto *outerForOp = outer.getOperation();
  for (auto *op : toHoist)
    op->moveBefore(outerForOp);
  return status;
}

// Traverse the interTile and intraTile loops and try to hoist ops such that
// bands of perfectly nested loops are isolated.
// Return failure if either perfect interTile or perfect intraTile bands cannot
// be formed.
static LogicalResult tryIsolateBands(const TileLoops &tileLoops) {
  LogicalResult status = success();
  auto &interTile = tileLoops.first;
  auto &intraTile = tileLoops.second;
  auto size = interTile.size();
  assert(size == intraTile.size());
  if (size <= 1)
    return success();
  for (unsigned s = 1; s < size; ++s)
    status = succeeded(status) ? hoistOpsBetween(intraTile[0], intraTile[s])
                               : failure();
  for (unsigned s = 1; s < size; ++s)
    status = succeeded(status) ? hoistOpsBetween(interTile[0], interTile[s])
                               : failure();
  return status;
}

TileLoops mlir::extractFixedOuterLoops(loop::ForOp rootForOp,
                                       ArrayRef<int64_t> sizes) {
  // Collect perfectly nested loops.  If more size values provided than nested
  // loops available, truncate `sizes`.
  SmallVector<loop::ForOp, 4> forOps;
  forOps.reserve(sizes.size());
  getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
  if (forOps.size() < sizes.size())
    sizes = sizes.take_front(forOps.size());

  // Compute the tile sizes such that i-th outer loop executes size[i]
  // iterations.  Given that the loop current executes
  //   numIterations = ceildiv((upperBound - lowerBound), step)
  // iterations, we need to tile with size ceildiv(numIterations, size[i]).
  SmallVector<Value, 4> tileSizes;
  tileSizes.reserve(sizes.size());
  for (unsigned i = 0, e = sizes.size(); i < e; ++i) {
    assert(sizes[i] > 0 && "expected strictly positive size for strip-mining");

    auto forOp = forOps[i];
    OpBuilder builder(forOp);
    auto loc = forOp.getLoc();
    Value diff =
        builder.create<SubIOp>(loc, forOp.upperBound(), forOp.lowerBound());
    Value numIterations = ceilDivPositive(builder, loc, diff, forOp.step());
    Value iterationsPerBlock =
        ceilDivPositive(builder, loc, numIterations, sizes[i]);
    tileSizes.push_back(iterationsPerBlock);
  }

  // Call parametric tiling with the given sizes.
  auto intraTile = tile(forOps, tileSizes, forOps.back());
  TileLoops tileLoops = std::make_pair(forOps, intraTile);

  // TODO(ntv, zinenko) for now we just ignore the result of band isolation.
  // In the future, mapping decisions may be impacted by the ability to
  // isolate perfectly nested bands.
  tryIsolateBands(tileLoops);

  return tileLoops;
}

// Replaces all uses of `orig` with `replacement` except if the user is listed
// in `exceptions`.
static void
replaceAllUsesExcept(Value orig, Value replacement,
                     const SmallPtrSetImpl<Operation *> &exceptions) {
  for (auto &use : llvm::make_early_inc_range(orig.getUses())) {
    if (exceptions.count(use.getOwner()) == 0)
      use.set(replacement);
  }
}

// Transform a loop with a strictly positive step
//   for %i = %lb to %ub step %s
// into a 0-based loop with step 1
//   for %ii = 0 to ceildiv(%ub - %lb, %s) step 1 {
//     %i = %ii * %s + %lb
// Insert the induction variable remapping in the body of `inner`, which is
// expected to be either `loop` or another loop perfectly nested under `loop`.
// Insert the definition of new bounds immediate before `outer`, which is
// expected to be either `loop` or its parent in the loop nest.
static void normalizeLoop(loop::ForOp loop, loop::ForOp outer,
                          loop::ForOp inner) {
  OpBuilder builder(outer);
  Location loc = loop.getLoc();

  // Check if the loop is already known to have a constant zero lower bound or
  // a constant one step.
  bool isZeroBased = false;
  if (auto ubCst =
          dyn_cast_or_null<ConstantIndexOp>(loop.lowerBound().getDefiningOp()))
    isZeroBased = ubCst.getValue() == 0;

  bool isStepOne = false;
  if (auto stepCst =
          dyn_cast_or_null<ConstantIndexOp>(loop.step().getDefiningOp()))
    isStepOne = stepCst.getValue() == 1;

  if (isZeroBased && isStepOne)
    return;

  // Compute the number of iterations the loop executes: ceildiv(ub - lb, step)
  // assuming the step is strictly positive.  Update the bounds and the step
  // of the loop to go from 0 to the number of iterations, if necessary.
  // TODO(zinenko): introduce support for negative steps or emit dynamic asserts
  // on step positivity, whatever gets implemented first.
  Value diff =
      builder.create<SubIOp>(loc, loop.upperBound(), loop.lowerBound());
  Value numIterations = ceilDivPositive(builder, loc, diff, loop.step());
  loop.setUpperBound(numIterations);

  Value lb = loop.lowerBound();
  if (!isZeroBased) {
    Value cst0 = builder.create<ConstantIndexOp>(loc, 0);
    loop.setLowerBound(cst0);
  }

  Value step = loop.step();
  if (!isStepOne) {
    Value cst1 = builder.create<ConstantIndexOp>(loc, 1);
    loop.setStep(cst1);
  }

  // Insert code computing the value of the original loop induction variable
  // from the "normalized" one.
  builder.setInsertionPointToStart(inner.getBody());
  Value scaled =
      isStepOne ? loop.getInductionVar()
                : builder.create<MulIOp>(loc, loop.getInductionVar(), step);
  Value shifted =
      isZeroBased ? scaled : builder.create<AddIOp>(loc, scaled, lb);

  SmallPtrSet<Operation *, 2> preserve{scaled.getDefiningOp(),
                                       shifted.getDefiningOp()};
  replaceAllUsesExcept(loop.getInductionVar(), shifted, preserve);
}

void mlir::coalesceLoops(MutableArrayRef<loop::ForOp> loops) {
  if (loops.size() < 2)
    return;

  loop::ForOp innermost = loops.back();
  loop::ForOp outermost = loops.front();

  // 1. Make sure all loops iterate from 0 to upperBound with step 1.  This
  // allows the following code to assume upperBound is the number of iterations.
  for (auto loop : loops)
    normalizeLoop(loop, outermost, innermost);

  // 2. Emit code computing the upper bound of the coalesced loop as product
  // of the number of iterations of all loops.
  OpBuilder builder(outermost);
  Location loc = outermost.getLoc();
  Value upperBound = outermost.upperBound();
  for (auto loop : loops.drop_front())
    upperBound = builder.create<MulIOp>(loc, upperBound, loop.upperBound());
  outermost.setUpperBound(upperBound);

  builder.setInsertionPointToStart(outermost.getBody());

  // 3. Remap induction variables.  For each original loop, the value of the
  // induction variable can be obtained by dividing the induction variable of
  // the linearized loop by the total number of iterations of the loops nested
  // in it modulo the number of iterations in this loop (remove the values
  // related to the outer loops):
  //   iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i.
  // Compute these iteratively from the innermost loop by creating a "running
  // quotient" of division by the range.
  Value previous = outermost.getInductionVar();
  for (unsigned i = 0, e = loops.size(); i < e; ++i) {
    unsigned idx = loops.size() - i - 1;
    if (i != 0)
      previous = builder.create<SignedDivIOp>(loc, previous,
                                              loops[idx + 1].upperBound());

    Value iv = (i == e - 1) ? previous
                            : builder.create<SignedRemIOp>(
                                  loc, previous, loops[idx].upperBound());
    replaceAllUsesInRegionWith(loops[idx].getInductionVar(), iv,
                               loops.back().region());
  }

  // 4. Move the operations from the innermost just above the second-outermost
  // loop, delete the extra terminator and the second-outermost loop.
  loop::ForOp second = loops[1];
  innermost.getBody()->back().erase();
  outermost.getBody()->getOperations().splice(
      Block::iterator(second.getOperation()),
      innermost.getBody()->getOperations());
  second.erase();
}

void mlir::mapLoopToProcessorIds(loop::ForOp forOp, ArrayRef<Value> processorId,
                                 ArrayRef<Value> numProcessors) {
  assert(processorId.size() == numProcessors.size());
  if (processorId.empty())
    return;

  OpBuilder b(forOp);
  Location loc(forOp.getLoc());
  Value mul = processorId.front();
  for (unsigned i = 1, e = processorId.size(); i < e; ++i)
    mul = b.create<AddIOp>(loc, b.create<MulIOp>(loc, mul, numProcessors[i]),
                           processorId[i]);
  Value lb = b.create<AddIOp>(loc, forOp.lowerBound(),
                              b.create<MulIOp>(loc, forOp.step(), mul));
  forOp.setLowerBound(lb);

  Value step = forOp.step();
  for (auto numProcs : numProcessors)
    step = b.create<MulIOp>(loc, step, numProcs);
  forOp.setStep(step);
}

/// Given a memref region, determine the lowest depth at which transfers can be
/// placed for it, and return the corresponding block, start and end positions
/// in the block for placing incoming (read) and outgoing (write) copies
/// respectively. The lowest depth depends on whether the region being accessed
/// is hoistable with respect to one or more immediately surrounding loops.
static void
findHighestBlockForPlacement(const MemRefRegion &region, Block &block,
                             Block::iterator &begin, Block::iterator &end,
                             Block **copyPlacementBlock,
                             Block::iterator *copyInPlacementStart,
                             Block::iterator *copyOutPlacementStart) {
  const auto *cst = region.getConstraints();
  SmallVector<Value, 4> symbols;
  cst->getIdValues(cst->getNumDimIds(), cst->getNumDimAndSymbolIds(), &symbols);

  SmallVector<AffineForOp, 4> enclosingFors;
  getLoopIVs(*block.begin(), &enclosingFors);
  // Walk up loop parents till we find an IV on which this region is
  // symbolic/variant.
  auto it = enclosingFors.rbegin();
  for (auto e = enclosingFors.rend(); it != e; ++it) {
    // TODO(bondhugula): also need to be checking this for regions symbols that
    // aren't loop IVs, whether we are within their resp. defs' dominance scope.
    if (llvm::is_contained(symbols, it->getInductionVar()))
      break;
  }

  if (it != enclosingFors.rbegin()) {
    auto lastInvariantIV = *std::prev(it);
    *copyInPlacementStart = Block::iterator(lastInvariantIV.getOperation());
    *copyOutPlacementStart = std::next(*copyInPlacementStart);
    *copyPlacementBlock = lastInvariantIV.getOperation()->getBlock();
  } else {
    *copyInPlacementStart = begin;
    *copyOutPlacementStart = end;
    *copyPlacementBlock = &block;
  }
}

// Info comprising stride and number of elements transferred every stride.
struct StrideInfo {
  int64_t stride;
  int64_t numEltPerStride;
};

/// Returns striding information for a copy/transfer of this region with
/// potentially multiple striding levels from outermost to innermost. For an
/// n-dimensional region, there can be at most n-1 levels of striding
/// successively nested.
//  TODO(bondhugula): make this work with non-identity layout maps.
static void getMultiLevelStrides(const MemRefRegion &region,
                                 ArrayRef<int64_t> bufferShape,
                                 SmallVectorImpl<StrideInfo> *strideInfos) {
  if (bufferShape.size() <= 1)
    return;

  int64_t numEltPerStride = 1;
  int64_t stride = 1;
  for (int d = bufferShape.size() - 1; d >= 1; d--) {
    int64_t dimSize = region.memref.getType().cast<MemRefType>().getDimSize(d);
    stride *= dimSize;
    numEltPerStride *= bufferShape[d];
    // A stride is needed only if the region has a shorter extent than the
    // memref along the dimension *and* has an extent greater than one along the
    // next major dimension.
    if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) {
      strideInfos->push_back({stride, numEltPerStride});
    }
  }
}

/// Generates a point-wise copy from/to `memref' to/from `fastMemRef' and
/// returns the outermost AffineForOp of the copy loop nest. `memIndicesStart'
/// holds the lower coordinates of the region in the original memref to copy
/// in/out. If `copyOut' is true, generates a copy-out; otherwise a copy-in.
static AffineForOp generatePointWiseCopy(Location loc, Value memref,
                                         Value fastMemRef,
                                         AffineMap memAffineMap,
                                         ArrayRef<Value> memIndicesStart,
                                         ArrayRef<int64_t> fastBufferShape,
                                         bool isCopyOut, OpBuilder b) {
  assert(!memIndicesStart.empty() && "only 1-d or more memrefs");

  // The copy-in nest is generated as follows as an example for a 2-d region:
  // for x = ...
  //   for y = ...
  //     fast_buf[x][y] = buf[mem_x + x][mem_y + y]

  SmallVector<Value, 4> fastBufIndices, memIndices;
  AffineForOp copyNestRoot;
  for (unsigned d = 0, e = fastBufferShape.size(); d < e; ++d) {
    auto forOp = b.create<AffineForOp>(loc, 0, fastBufferShape[d]);
    if (d == 0)
      copyNestRoot = forOp;
    b = forOp.getBodyBuilder();
    fastBufIndices.push_back(forOp.getInductionVar());

    Value memBase =
        (memAffineMap == b.getMultiDimIdentityMap(memAffineMap.getNumDims()))
            ? memIndicesStart[d]
            : b.create<AffineApplyOp>(
                  loc,
                  AffineMap::get(memAffineMap.getNumDims(),
                                 memAffineMap.getNumSymbols(),
                                 memAffineMap.getResult(d)),
                  memIndicesStart);

    // Construct the subscript for the slow memref being copied.
    auto memIndex = b.create<AffineApplyOp>(
        loc,
        AffineMap::get(2, 0, b.getAffineDimExpr(0) + b.getAffineDimExpr(1)),
        ValueRange({memBase, forOp.getInductionVar()}));
    memIndices.push_back(memIndex);
  }

  if (!isCopyOut) {
    // Copy in.
    auto load = b.create<AffineLoadOp>(loc, memref, memIndices);
    b.create<AffineStoreOp>(loc, load, fastMemRef, fastBufIndices);
    return copyNestRoot;
  }

  // Copy out.
  auto load = b.create<AffineLoadOp>(loc, fastMemRef, fastBufIndices);
  b.create<AffineStoreOp>(loc, load, memref, memIndices);
  return copyNestRoot;
}

static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED
emitRemarkForBlock(Block &block) {
  return block.getParentOp()->emitRemark();
}

/// Creates a buffer in the faster memory space for the specified memref region;
/// generates a copy from the lower memory space to this one, and replaces all
/// loads/stores in the block range [`begin', `end') of `block' to load/store
/// from that buffer. Returns failure if copies could not be generated due to
/// yet unimplemented cases. `copyInPlacementStart` and `copyOutPlacementStart`
/// in copyPlacementBlock specify the insertion points where the incoming copies
/// and outgoing copies, respectively, should be inserted (the insertion happens
/// right before the insertion point). Since `begin` can itself be invalidated
/// due to the memref rewriting done from this method, the output argument
/// `nBegin` is set to its replacement (set to `begin` if no invalidation
/// happens). Since outgoing copies could have  been inserted at `end`, the
/// output argument `nEnd` is set to the new end. `sizeInBytes` is set to the
/// size of the fast buffer allocated.
static LogicalResult generateCopy(
    const MemRefRegion &region, Block *block, Block::iterator begin,
    Block::iterator end, Block *copyPlacementBlock,
    Block::iterator copyInPlacementStart, Block::iterator copyOutPlacementStart,
    AffineCopyOptions copyOptions, DenseMap<Value, Value> &fastBufferMap,
    DenseSet<Operation *> &copyNests, uint64_t *sizeInBytes,
    Block::iterator *nBegin, Block::iterator *nEnd) {
  *nBegin = begin;
  *nEnd = end;

  FuncOp f = begin->getParentOfType<FuncOp>();
  OpBuilder topBuilder(f.getBody());
  Value zeroIndex = topBuilder.create<ConstantIndexOp>(f.getLoc(), 0);

  if (begin == end)
    return success();

  // Is the copy out point at the end of the block where we are doing
  // explicit copying.
  bool isCopyOutAtEndOfBlock = (end == copyOutPlacementStart);

  // Copies for read regions are going to be inserted at 'begin'.
  OpBuilder prologue(copyPlacementBlock, copyInPlacementStart);
  // Copies for write regions are going to be inserted at 'end'.
  OpBuilder epilogue(copyPlacementBlock, copyOutPlacementStart);
  OpBuilder &b = region.isWrite() ? epilogue : prologue;

  // Builder to create constants at the top level.
  auto func = copyPlacementBlock->getParent()->getParentOfType<FuncOp>();
  OpBuilder top(func.getBody());

  auto loc = region.loc;
  auto memref = region.memref;
  auto memRefType = memref.getType().cast<MemRefType>();

  auto layoutMaps = memRefType.getAffineMaps();
  if (layoutMaps.size() > 1 ||
      (layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
    LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
    return failure();
  }

  // Indices to use for the copying.
  // Indices for the original memref being copied from/to.
  SmallVector<Value, 4> memIndices;
  // Indices for the faster buffer being copied into/from.
  SmallVector<Value, 4> bufIndices;

  unsigned rank = memRefType.getRank();
  SmallVector<int64_t, 4> fastBufferShape;

  // Compute the extents of the buffer.
  std::vector<SmallVector<int64_t, 4>> lbs;
  SmallVector<int64_t, 8> lbDivisors;
  lbs.reserve(rank);
  Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(
      &fastBufferShape, &lbs, &lbDivisors);
  if (!numElements.hasValue()) {
    LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n");
    return failure();
  }

  if (numElements.getValue() == 0) {
    LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n");
    *sizeInBytes = 0;
    return success();
  }

  const FlatAffineConstraints *cst = region.getConstraints();
  // 'regionSymbols' hold values that this memory region is symbolic/parametric
  // on; these typically include loop IVs surrounding the level at which the
  // copy generation is being done or other valid symbols in MLIR.
  SmallVector<Value, 8> regionSymbols;
  cst->getIdValues(rank, cst->getNumIds(), &regionSymbols);

  // Construct the index expressions for the fast memory buffer. The index
  // expression for a particular dimension of the fast buffer is obtained by
  // subtracting out the lower bound on the original memref's data region
  // along the corresponding dimension.

  // Index start offsets for faster memory buffer relative to the original.
  SmallVector<AffineExpr, 4> offsets;
  offsets.reserve(rank);
  for (unsigned d = 0; d < rank; d++) {
    assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");

    AffineExpr offset = top.getAffineConstantExpr(0);
    for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
      offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
    }
    assert(lbDivisors[d] > 0);
    offset =
        (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);

    // Set copy start location for this dimension in the lower memory space
    // memref.
    if (auto caf = offset.dyn_cast<AffineConstantExpr>()) {
      auto indexVal = caf.getValue();
      if (indexVal == 0) {
        memIndices.push_back(zeroIndex);
      } else {
        memIndices.push_back(
            top.create<ConstantIndexOp>(loc, indexVal).getResult());
      }
    } else {
      // The coordinate for the start location is just the lower bound along the
      // corresponding dimension on the memory region (stored in 'offset').
      auto map = AffineMap::get(
          cst->getNumDimIds() + cst->getNumSymbolIds() - rank, 0, offset);
      memIndices.push_back(b.create<AffineApplyOp>(loc, map, regionSymbols));
    }
    // The fast buffer is copied into at location zero; addressing is relative.
    bufIndices.push_back(zeroIndex);

    // Record the offsets since they are needed to remap the memory accesses of
    // the original memref further below.
    offsets.push_back(offset);
  }

  // The faster memory space buffer.
  Value fastMemRef;

  // Check if a buffer was already created.
  bool existingBuf = fastBufferMap.count(memref) > 0;
  if (!existingBuf) {
    AffineMap fastBufferLayout = b.getMultiDimIdentityMap(rank);
    auto fastMemRefType =
        MemRefType::get(fastBufferShape, memRefType.getElementType(),
                        fastBufferLayout, copyOptions.fastMemorySpace);

    // Create the fast memory space buffer just before the 'affine.for'
    // operation.
    fastMemRef = prologue.create<AllocOp>(loc, fastMemRefType).getResult();
    // Record it.
    fastBufferMap[memref] = fastMemRef;
    // fastMemRefType is a constant shaped memref.
    *sizeInBytes = getMemRefSizeInBytes(fastMemRefType).getValue();
    LLVM_DEBUG(emitRemarkForBlock(*block)
               << "Creating fast buffer of type " << fastMemRefType
               << " and size " << llvm::divideCeil(*sizeInBytes, 1024)
               << " KiB\n");
  } else {
    // Reuse the one already created.
    fastMemRef = fastBufferMap[memref];
    *sizeInBytes = 0;
  }

  auto numElementsSSA =
      top.create<ConstantIndexOp>(loc, numElements.getValue());

  SmallVector<StrideInfo, 4> strideInfos;
  getMultiLevelStrides(region, fastBufferShape, &strideInfos);

  // TODO(bondhugula): use all stride levels once DmaStartOp is extended for
  // multi-level strides.
  if (strideInfos.size() > 1) {
    LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n");
    return failure();
  }

  Value stride = nullptr;
  Value numEltPerStride = nullptr;
  if (!strideInfos.empty()) {
    stride = top.create<ConstantIndexOp>(loc, strideInfos[0].stride);
    numEltPerStride =
        top.create<ConstantIndexOp>(loc, strideInfos[0].numEltPerStride);
  }

  // Record the last operation where we want the memref replacement to end. We
  // later do the memref replacement only in [begin, postDomFilter] so
  // that the original memref's used in the data movement code themselves don't
  // get replaced.
  auto postDomFilter = std::prev(end);

  // Create fully composed affine maps for each memref.
  auto memAffineMap = b.getMultiDimIdentityMap(memIndices.size());
  fullyComposeAffineMapAndOperands(&memAffineMap, &memIndices);
  auto bufAffineMap = b.getMultiDimIdentityMap(bufIndices.size());
  fullyComposeAffineMapAndOperands(&bufAffineMap, &bufIndices);

  if (!copyOptions.generateDma) {
    // Point-wise copy generation.
    auto copyNest = generatePointWiseCopy(loc, memref, fastMemRef, memAffineMap,
                                          memIndices, fastBufferShape,
                                          /*isCopyOut=*/region.isWrite(), b);

    // Record this so that we can skip it from yet another copy.
    copyNests.insert(copyNest);

    // Since new ops are being appended (for copy out's), adjust the end to
    // mark end of block range being processed if necessary.
    if (region.isWrite() && isCopyOutAtEndOfBlock)
      *nEnd = Block::iterator(copyNest.getOperation());
  } else {
    // DMA generation.
    // Create a tag (single element 1-d memref) for the DMA.
    auto tagMemRefType = MemRefType::get({1}, top.getIntegerType(32), {},
                                         copyOptions.tagMemorySpace);
    auto tagMemRef = prologue.create<AllocOp>(loc, tagMemRefType);

    SmallVector<Value, 4> tagIndices({zeroIndex});
    auto tagAffineMap = b.getMultiDimIdentityMap(tagIndices.size());
    fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices);
    if (!region.isWrite()) {
      // DMA non-blocking read from original buffer to fast buffer.
      b.create<AffineDmaStartOp>(loc, memref, memAffineMap, memIndices,
                                 fastMemRef, bufAffineMap, bufIndices,
                                 tagMemRef, tagAffineMap, tagIndices,
                                 numElementsSSA, stride, numEltPerStride);
    } else {
      // DMA non-blocking write from fast buffer to the original memref.
      auto op = b.create<AffineDmaStartOp>(
          loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap,
          memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA,
          stride, numEltPerStride);
      // Since new ops may be appended at 'end' (for outgoing DMAs), adjust the
      // end to mark end of block range being processed.
      if (isCopyOutAtEndOfBlock)
        *nEnd = Block::iterator(op.getOperation());
    }

    // Matching DMA wait to block on completion; tag always has a 0 index.
    b.create<AffineDmaWaitOp>(loc, tagMemRef, tagAffineMap, zeroIndex,
                              numElementsSSA);

    // Generate dealloc for the tag.
    auto tagDeallocOp = epilogue.create<DeallocOp>(loc, tagMemRef);
    if (*nEnd == end && isCopyOutAtEndOfBlock)
      // Since new ops are being appended (for outgoing DMAs), adjust the end to
      // mark end of range of the original.
      *nEnd = Block::iterator(tagDeallocOp.getOperation());
  }

  // Generate dealloc for the buffer.
  if (!existingBuf) {
    auto bufDeallocOp = epilogue.create<DeallocOp>(loc, fastMemRef);
    // When generating pointwise copies, `nEnd' has to be set to deallocOp on
    // the fast buffer (since it marks the new end insertion point).
    if (!copyOptions.generateDma && *nEnd == end && isCopyOutAtEndOfBlock)
      *nEnd = Block::iterator(bufDeallocOp.getOperation());
  }

  // Replace all uses of the old memref with the faster one while remapping
  // access indices (subtracting out lower bound offsets for each dimension).
  // Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT],
  // index remap will be (%i, %j) -> (%i - %iT, %j - %jT),
  // i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j),
  // and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'.
  // d2, d3 correspond to the original indices (%i, %j).
  SmallVector<AffineExpr, 4> remapExprs;
  remapExprs.reserve(rank);
  for (unsigned i = 0; i < rank; i++) {
    // The starting operands of indexRemap will be regionSymbols (the symbols on
    // which the memref region is parametric); then those corresponding to
    // the memref's original indices follow.
    auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i);
    remapExprs.push_back(dimExpr - offsets[i]);
  }
  auto indexRemap = AffineMap::get(regionSymbols.size() + rank, 0, remapExprs);

  // Record the begin since it may be invalidated by memref replacement.
  Block::iterator prevOfBegin;
  bool isBeginAtStartOfBlock = (begin == block->begin());
  if (!isBeginAtStartOfBlock)
    prevOfBegin = std::prev(begin);

  // *Only* those uses within the range [begin, end) of 'block' are replaced.
  replaceAllMemRefUsesWith(memref, fastMemRef,
                           /*extraIndices=*/{}, indexRemap,
                           /*extraOperands=*/regionSymbols,
                           /*symbolOperands=*/{},
                           /*domInstFilter=*/&*begin,
                           /*postDomInstFilter=*/&*postDomFilter);

  *nBegin = isBeginAtStartOfBlock ? block->begin() : std::next(prevOfBegin);

  return success();
}

/// Construct the memref region to just include the entire memref. Returns false
/// dynamic shaped memref's for now. `numParamLoopIVs` is the number of
/// enclosing loop IVs of opInst (starting from the outermost) that the region
/// is parametric on.
static bool getFullMemRefAsRegion(Operation *opInst, unsigned numParamLoopIVs,
                                  MemRefRegion *region) {
  unsigned rank;
  if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
    rank = loadOp.getMemRefType().getRank();
    region->memref = loadOp.getMemRef();
    region->setWrite(false);
  } else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
    rank = storeOp.getMemRefType().getRank();
    region->memref = storeOp.getMemRef();
    region->setWrite(true);
  } else {
    assert(false && "expected load or store op");
    return false;
  }
  auto memRefType = region->memref.getType().cast<MemRefType>();
  if (!memRefType.hasStaticShape())
    return false;

  auto *regionCst = region->getConstraints();

  // Just get the first numSymbols IVs, which the memref region is parametric
  // on.
  SmallVector<AffineForOp, 4> ivs;
  getLoopIVs(*opInst, &ivs);
  ivs.resize(numParamLoopIVs);
  SmallVector<Value, 4> symbols;
  extractForInductionVars(ivs, &symbols);
  regionCst->reset(rank, numParamLoopIVs, 0);
  regionCst->setIdValues(rank, rank + numParamLoopIVs, symbols);

  // Memref dim sizes provide the bounds.
  for (unsigned d = 0; d < rank; d++) {
    auto dimSize = memRefType.getDimSize(d);
    assert(dimSize > 0 && "filtered dynamic shapes above");
    regionCst->addConstantLowerBound(d, 0);
    regionCst->addConstantUpperBound(d, dimSize - 1);
  }
  return true;
}

/// Generates copies for a contiguous sequence of operations in `block` in the
/// iterator range [`begin', `end'), where `end' can't be past the terminator of
/// the block (since additional operations are potentially inserted right before
/// `end'. Returns the total size of the fast buffers used.
//  Since we generate alloc's and dealloc's for all fast buffers (before and
//  after the range of operations resp.), all of the fast memory capacity is
//  assumed to be available for processing this block range.
uint64_t mlir::affineDataCopyGenerate(Block::iterator begin,
                                      Block::iterator end,
                                      const AffineCopyOptions &copyOptions,
                                      DenseSet<Operation *> &copyNests) {
  if (begin == end)
    return 0;

  assert(begin->getBlock() == std::prev(end)->getBlock() &&
         "Inconsistent block begin/end args");
  assert(end != end->getBlock()->end() && "end can't be the block terminator");

  Block *block = begin->getBlock();

  // Copies will be generated for this depth, i.e., symbolic in all loops
  // surrounding the this block range.
  unsigned copyDepth = getNestingDepth(*begin);

  LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth
                          << "\n");
  LLVM_DEBUG(llvm::dbgs() << "from begin: " << *begin << "\n");
  LLVM_DEBUG(llvm::dbgs() << "to inclusive end: " << *std::prev(end) << "\n");

  // List of memory regions to copy for. We need a map vector to have a
  // guaranteed iteration order to write test cases. CHECK-DAG doesn't help here
  // since the alloc's for example are identical except for the SSA id.
  SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> readRegions;
  SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> writeRegions;

  // Map from original memref's to the fast buffers that their accesses are
  // replaced with.
  DenseMap<Value, Value> fastBufferMap;

  // To check for errors when walking the block.
  bool error = false;

  // Walk this range of operations  to gather all memory regions.
  block->walk(begin, end, [&](Operation *opInst) {
    // Gather regions to allocate to buffers in faster memory space.
    if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
      if ((loadOp.getMemRefType().getMemorySpace() !=
           copyOptions.slowMemorySpace))
        return;
    } else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
      if (storeOp.getMemRefType().getMemorySpace() !=
          copyOptions.slowMemorySpace)
        return;
    } else {
      // Neither load nor a store op.
      return;
    }

    // Compute the MemRefRegion accessed.
    auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
    if (failed(region->compute(opInst, copyDepth))) {
      LLVM_DEBUG(llvm::dbgs()
                 << "Error obtaining memory region: semi-affine maps?\n");
      LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n");
      if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
        LLVM_DEBUG(
            opInst->emitError("non-constant memref sizes not yet supported"));
        error = true;
        return;
      }
    }

    // Each memref has a single buffer associated with it irrespective of how
    // many load's and store's happen on it.
    // TODO(bondhugula): in the future, when regions don't intersect and satisfy
    // other properties (based on load/store regions), we could consider
    // multiple buffers per memref.

    // Add to the appropriate region if it's not already in it, or take a
    // bounding box union with the existing one if it's already in there.
    // Note that a memref may have both read and write regions - so update the
    // region in the other list if one exists (write in case of read and vice
    // versa) since there is a single bounding box for a memref across all reads
    // and writes that happen on it.

    // Attempts to update; returns true if 'region' exists in targetRegions.
    auto updateRegion =
        [&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
                &targetRegions) {
          auto it = targetRegions.find(region->memref);
          if (it == targetRegions.end())
            return false;

          // Perform a union with the existing region.
          if (failed(it->second->unionBoundingBox(*region))) {
            LLVM_DEBUG(llvm::dbgs()
                       << "Memory region bounding box failed; "
                          "over-approximating to the entire memref\n");
            // If the union fails, we will overapproximate.
            if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
              LLVM_DEBUG(opInst->emitError(
                  "non-constant memref sizes not yet supported"));
              error = true;
              return true;
            }
            it->second->getConstraints()->clearAndCopyFrom(
                *region->getConstraints());
          } else {
            // Union was computed and stored in 'it->second': copy to 'region'.
            region->getConstraints()->clearAndCopyFrom(
                *it->second->getConstraints());
          }
          return true;
        };

    bool existsInRead = updateRegion(readRegions);
    if (error)
      return;
    bool existsInWrite = updateRegion(writeRegions);
    if (error)
      return;

    // Finally add it to the region list.
    if (region->isWrite() && !existsInWrite) {
      writeRegions[region->memref] = std::move(region);
    } else if (!region->isWrite() && !existsInRead) {
      readRegions[region->memref] = std::move(region);
    }
  });

  if (error) {
    begin->emitError(
        "copy generation failed for one or more memref's in this block\n");
    return 0;
  }

  uint64_t totalCopyBuffersSizeInBytes = 0;
  bool ret = true;
  auto processRegions =
      [&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
              &regions) {
        for (const auto &regionEntry : regions) {
          // For each region, hoist copy in/out past all hoistable
          // 'affine.for's.
          Block::iterator copyInPlacementStart, copyOutPlacementStart;
          Block *copyPlacementBlock;
          findHighestBlockForPlacement(
              *regionEntry.second, *block, begin, end, &copyPlacementBlock,
              &copyInPlacementStart, &copyOutPlacementStart);

          uint64_t sizeInBytes;
          Block::iterator nBegin, nEnd;
          LogicalResult iRet = generateCopy(
              *regionEntry.second, block, begin, end, copyPlacementBlock,
              copyInPlacementStart, copyOutPlacementStart, copyOptions,
              fastBufferMap, copyNests, &sizeInBytes, &nBegin, &nEnd);
          if (succeeded(iRet)) {
            // begin/end could have been invalidated, and need update.
            begin = nBegin;
            end = nEnd;
            totalCopyBuffersSizeInBytes += sizeInBytes;
          }
          ret = ret & succeeded(iRet);
        }
      };
  processRegions(readRegions);
  processRegions(writeRegions);

  if (!ret) {
    begin->emitError(
        "copy generation failed for one or more memref's in this block\n");
    return totalCopyBuffersSizeInBytes;
  }

  // For a range of operations, a note will be emitted at the caller.
  AffineForOp forOp;
  uint64_t sizeInKib = llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024);
  if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) {
    forOp.emitRemark()
        << sizeInKib
        << " KiB of copy buffers in fast memory space for this block\n";
  }

  if (totalCopyBuffersSizeInBytes > copyOptions.fastMemCapacityBytes) {
    StringRef str = "Total size of all copy buffers' for this block "
                    "exceeds fast memory capacity\n";
    block->getParentOp()->emitError(str);
  }

  return totalCopyBuffersSizeInBytes;
}