Builders.cpp
18.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
//===- Builders.cpp - MLIR Declarative Builder Classes --------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/EDSC/Builders.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "llvm/ADT/Optional.h"
using namespace mlir;
using namespace mlir::edsc;
mlir::edsc::ScopedContext::ScopedContext(OpBuilder &builder, Location location)
: builder(builder), location(location),
enclosingScopedContext(ScopedContext::getCurrentScopedContext()),
nestedBuilder(nullptr) {
getCurrentScopedContext() = this;
}
/// Sets the insertion point of the builder to 'newInsertPt' for the duration
/// of the scope. The existing insertion point of the builder is restored on
/// destruction.
mlir::edsc::ScopedContext::ScopedContext(OpBuilder &builder,
OpBuilder::InsertPoint newInsertPt,
Location location)
: builder(builder), prevBuilderInsertPoint(builder.saveInsertionPoint()),
location(location),
enclosingScopedContext(ScopedContext::getCurrentScopedContext()),
nestedBuilder(nullptr) {
getCurrentScopedContext() = this;
builder.restoreInsertionPoint(newInsertPt);
}
mlir::edsc::ScopedContext::~ScopedContext() {
assert(!nestedBuilder &&
"Active NestedBuilder must have been exited at this point!");
if (prevBuilderInsertPoint)
builder.restoreInsertionPoint(*prevBuilderInsertPoint);
getCurrentScopedContext() = enclosingScopedContext;
}
ScopedContext *&mlir::edsc::ScopedContext::getCurrentScopedContext() {
thread_local ScopedContext *context = nullptr;
return context;
}
OpBuilder &mlir::edsc::ScopedContext::getBuilder() {
assert(ScopedContext::getCurrentScopedContext() &&
"Unexpected Null ScopedContext");
return ScopedContext::getCurrentScopedContext()->builder;
}
Location mlir::edsc::ScopedContext::getLocation() {
assert(ScopedContext::getCurrentScopedContext() &&
"Unexpected Null ScopedContext");
return ScopedContext::getCurrentScopedContext()->location;
}
MLIRContext *mlir::edsc::ScopedContext::getContext() {
return getBuilder().getContext();
}
mlir::edsc::ValueHandle::ValueHandle(index_type cst) {
auto &b = ScopedContext::getBuilder();
auto loc = ScopedContext::getLocation();
v = b.create<ConstantIndexOp>(loc, cst.v).getResult();
t = v.getType();
}
ValueHandle &mlir::edsc::ValueHandle::operator=(const ValueHandle &other) {
assert(t == other.t && "Wrong type capture");
assert(!v && "ValueHandle has already been captured, use a new name!");
v = other.v;
return *this;
}
ValueHandle
mlir::edsc::ValueHandle::createComposedAffineApply(AffineMap map,
ArrayRef<Value> operands) {
Operation *op =
makeComposedAffineApply(ScopedContext::getBuilder(),
ScopedContext::getLocation(), map, operands)
.getOperation();
assert(op->getNumResults() == 1 && "Not a single result AffineApply");
return ValueHandle(op->getResult(0));
}
ValueHandle ValueHandle::create(StringRef name, ArrayRef<ValueHandle> operands,
ArrayRef<Type> resultTypes,
ArrayRef<NamedAttribute> attributes) {
Operation *op =
OperationHandle::create(name, operands, resultTypes, attributes);
if (op->getNumResults() == 1) {
return ValueHandle(op->getResult(0));
}
if (auto f = dyn_cast<AffineForOp>(op)) {
return ValueHandle(f.getInductionVar());
}
llvm_unreachable("unsupported operation, use an OperationHandle instead");
}
OperationHandle OperationHandle::create(StringRef name,
ArrayRef<ValueHandle> operands,
ArrayRef<Type> resultTypes,
ArrayRef<NamedAttribute> attributes) {
OperationState state(ScopedContext::getLocation(), name);
SmallVector<Value, 4> ops(operands.begin(), operands.end());
state.addOperands(ops);
state.addTypes(resultTypes);
for (const auto &attr : attributes) {
state.addAttribute(attr.first, attr.second);
}
return OperationHandle(ScopedContext::getBuilder().createOperation(state));
}
BlockHandle mlir::edsc::BlockHandle::create(ArrayRef<Type> argTypes) {
auto ¤tB = ScopedContext::getBuilder();
auto *ib = currentB.getInsertionBlock();
auto ip = currentB.getInsertionPoint();
BlockHandle res;
res.block = ScopedContext::getBuilder().createBlock(ib->getParent());
// createBlock sets the insertion point inside the block.
// We do not want this behavior when using declarative builders with nesting.
currentB.setInsertionPoint(ib, ip);
for (auto t : argTypes) {
res.block->addArgument(t);
}
return res;
}
static Optional<ValueHandle> emitStaticFor(ArrayRef<ValueHandle> lbs,
ArrayRef<ValueHandle> ubs,
int64_t step) {
if (lbs.size() != 1 || ubs.size() != 1)
return Optional<ValueHandle>();
auto *lbDef = lbs.front().getValue().getDefiningOp();
auto *ubDef = ubs.front().getValue().getDefiningOp();
if (!lbDef || !ubDef)
return Optional<ValueHandle>();
auto lbConst = dyn_cast<ConstantIndexOp>(lbDef);
auto ubConst = dyn_cast<ConstantIndexOp>(ubDef);
if (!lbConst || !ubConst)
return Optional<ValueHandle>();
return ValueHandle::create<AffineForOp>(lbConst.getValue(),
ubConst.getValue(), step);
}
mlir::edsc::LoopBuilder mlir::edsc::LoopBuilder::makeAffine(
ValueHandle *iv, ArrayRef<ValueHandle> lbHandles,
ArrayRef<ValueHandle> ubHandles, int64_t step) {
mlir::edsc::LoopBuilder result;
if (auto staticFor = emitStaticFor(lbHandles, ubHandles, step)) {
*iv = staticFor.getValue();
} else {
SmallVector<Value, 4> lbs(lbHandles.begin(), lbHandles.end());
SmallVector<Value, 4> ubs(ubHandles.begin(), ubHandles.end());
*iv = ValueHandle::create<AffineForOp>(
lbs, ScopedContext::getBuilder().getMultiDimIdentityMap(lbs.size()),
ubs, ScopedContext::getBuilder().getMultiDimIdentityMap(ubs.size()),
step);
}
auto *body = getForInductionVarOwner(iv->getValue()).getBody();
result.enter(body, /*prev=*/1);
return result;
}
mlir::edsc::LoopBuilder
mlir::edsc::LoopBuilder::makeLoop(ValueHandle *iv, ValueHandle lbHandle,
ValueHandle ubHandle,
ValueHandle stepHandle) {
mlir::edsc::LoopBuilder result;
auto forOp =
OperationHandle::createOp<loop::ForOp>(lbHandle, ubHandle, stepHandle);
*iv = ValueHandle(forOp.getInductionVar());
auto *body = loop::getForInductionVarOwner(iv->getValue()).getBody();
result.enter(body, /*prev=*/1);
return result;
}
void mlir::edsc::LoopBuilder::operator()(function_ref<void(void)> fun) {
// Call to `exit` must be explicit and asymmetric (cannot happen in the
// destructor) because of ordering wrt comma operator.
/// The particular use case concerns nested blocks:
///
/// ```c++
/// For (&i, lb, ub, 1)({
/// /--- destructor for this `For` is not always called before ...
/// V
/// For (&j1, lb, ub, 1)({
/// some_op_1,
/// }),
/// /--- ... this scope is entered, resulting in improperly nested IR.
/// V
/// For (&j2, lb, ub, 1)({
/// some_op_2,
/// }),
/// });
/// ```
if (fun)
fun();
exit();
}
mlir::edsc::AffineLoopNestBuilder::AffineLoopNestBuilder(
ValueHandle *iv, ArrayRef<ValueHandle> lbs, ArrayRef<ValueHandle> ubs,
int64_t step) {
loops.emplace_back(LoopBuilder::makeAffine(iv, lbs, ubs, step));
}
mlir::edsc::AffineLoopNestBuilder::AffineLoopNestBuilder(
ArrayRef<ValueHandle *> ivs, ArrayRef<ValueHandle> lbs,
ArrayRef<ValueHandle> ubs, ArrayRef<int64_t> steps) {
assert(ivs.size() == lbs.size() && "Mismatch in number of arguments");
assert(ivs.size() == ubs.size() && "Mismatch in number of arguments");
assert(ivs.size() == steps.size() && "Mismatch in number of arguments");
for (auto it : llvm::zip(ivs, lbs, ubs, steps))
loops.emplace_back(LoopBuilder::makeAffine(
std::get<0>(it), std::get<1>(it), std::get<2>(it), std::get<3>(it)));
}
void mlir::edsc::AffineLoopNestBuilder::operator()(
function_ref<void(void)> fun) {
if (fun)
fun();
// Iterate on the calling operator() on all the loops in the nest.
// The iteration order is from innermost to outermost because enter/exit needs
// to be asymmetric (i.e. enter() occurs on LoopBuilder construction, exit()
// occurs on calling operator()). The asymmetry is required for properly
// nesting imperfectly nested regions (see LoopBuilder::operator()).
for (auto lit = loops.rbegin(), eit = loops.rend(); lit != eit; ++lit)
(*lit)();
}
mlir::edsc::LoopNestBuilder::LoopNestBuilder(ArrayRef<ValueHandle *> ivs,
ArrayRef<ValueHandle> lbs,
ArrayRef<ValueHandle> ubs,
ArrayRef<ValueHandle> steps) {
assert(ivs.size() == lbs.size() && "expected size of ivs and lbs to match");
assert(ivs.size() == ubs.size() && "expected size of ivs and ubs to match");
assert(ivs.size() == steps.size() &&
"expected size of ivs and steps to match");
loops.reserve(ivs.size());
for (auto it : llvm::zip(ivs, lbs, ubs, steps)) {
loops.emplace_back(LoopBuilder::makeLoop(std::get<0>(it), std::get<1>(it),
std::get<2>(it), std::get<3>(it)));
}
assert(loops.size() == ivs.size() && "Mismatch loops vs ivs size");
}
void LoopNestBuilder::LoopNestBuilder::operator()(
std::function<void(void)> fun) {
if (fun)
fun();
for (auto &lit : reverse(loops))
lit({});
}
mlir::edsc::BlockBuilder::BlockBuilder(BlockHandle bh, Append) {
assert(bh && "Expected already captured BlockHandle");
enter(bh.getBlock());
}
mlir::edsc::BlockBuilder::BlockBuilder(BlockHandle *bh,
ArrayRef<ValueHandle *> args) {
assert(!*bh && "BlockHandle already captures a block, use "
"the explicit BockBuilder(bh, Append())({}) syntax instead.");
SmallVector<Type, 8> types;
for (auto *a : args) {
assert(!a->hasValue() &&
"Expected delayed ValueHandle that has not yet captured.");
types.push_back(a->getType());
}
*bh = BlockHandle::create(types);
for (auto it : llvm::zip(args, bh->getBlock()->getArguments())) {
*(std::get<0>(it)) = ValueHandle(std::get<1>(it));
}
enter(bh->getBlock());
}
/// Only serves as an ordering point between entering nested block and creating
/// stmts.
void mlir::edsc::BlockBuilder::operator()(function_ref<void(void)> fun) {
// Call to `exit` must be explicit and asymmetric (cannot happen in the
// destructor) because of ordering wrt comma operator.
if (fun)
fun();
exit();
}
template <typename Op>
static ValueHandle createBinaryHandle(ValueHandle lhs, ValueHandle rhs) {
return ValueHandle::create<Op>(lhs.getValue(), rhs.getValue());
}
static std::pair<AffineExpr, Value>
categorizeValueByAffineType(MLIRContext *context, Value val, unsigned &numDims,
unsigned &numSymbols) {
AffineExpr d;
Value resultVal = nullptr;
if (auto constant = dyn_cast_or_null<ConstantIndexOp>(val.getDefiningOp())) {
d = getAffineConstantExpr(constant.getValue(), context);
} else if (isValidSymbol(val) && !isValidDim(val)) {
d = getAffineSymbolExpr(numSymbols++, context);
resultVal = val;
} else {
d = getAffineDimExpr(numDims++, context);
resultVal = val;
}
return std::make_pair(d, resultVal);
}
static ValueHandle createBinaryIndexHandle(
ValueHandle lhs, ValueHandle rhs,
function_ref<AffineExpr(AffineExpr, AffineExpr)> affCombiner) {
MLIRContext *context = ScopedContext::getContext();
unsigned numDims = 0, numSymbols = 0;
AffineExpr d0, d1;
Value v0, v1;
std::tie(d0, v0) =
categorizeValueByAffineType(context, lhs.getValue(), numDims, numSymbols);
std::tie(d1, v1) =
categorizeValueByAffineType(context, rhs.getValue(), numDims, numSymbols);
SmallVector<Value, 2> operands;
if (v0) {
operands.push_back(v0);
}
if (v1) {
operands.push_back(v1);
}
auto map = AffineMap::get(numDims, numSymbols, {affCombiner(d0, d1)});
// TODO: createOrFold when available.
return ValueHandle::createComposedAffineApply(map, operands);
}
template <typename IOp, typename FOp>
static ValueHandle createBinaryHandle(
ValueHandle lhs, ValueHandle rhs,
function_ref<AffineExpr(AffineExpr, AffineExpr)> affCombiner) {
auto thisType = lhs.getValue().getType();
auto thatType = rhs.getValue().getType();
assert(thisType == thatType && "cannot mix types in operators");
(void)thisType;
(void)thatType;
if (thisType.isIndex()) {
return createBinaryIndexHandle(lhs, rhs, affCombiner);
} else if (thisType.isa<IntegerType>()) {
return createBinaryHandle<IOp>(lhs, rhs);
} else if (thisType.isa<FloatType>()) {
return createBinaryHandle<FOp>(lhs, rhs);
} else if (thisType.isa<VectorType>() || thisType.isa<TensorType>()) {
auto aggregateType = thisType.cast<ShapedType>();
if (aggregateType.getElementType().isa<IntegerType>())
return createBinaryHandle<IOp>(lhs, rhs);
else if (aggregateType.getElementType().isa<FloatType>())
return createBinaryHandle<FOp>(lhs, rhs);
}
llvm_unreachable("failed to create a ValueHandle");
}
ValueHandle mlir::edsc::op::operator+(ValueHandle lhs, ValueHandle rhs) {
return createBinaryHandle<AddIOp, AddFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 + d1; });
}
ValueHandle mlir::edsc::op::operator-(ValueHandle lhs, ValueHandle rhs) {
return createBinaryHandle<SubIOp, SubFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 - d1; });
}
ValueHandle mlir::edsc::op::operator*(ValueHandle lhs, ValueHandle rhs) {
return createBinaryHandle<MulIOp, MulFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 * d1; });
}
ValueHandle mlir::edsc::op::operator/(ValueHandle lhs, ValueHandle rhs) {
return createBinaryHandle<SignedDivIOp, DivFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) -> AffineExpr {
llvm_unreachable("only exprs of non-index type support operator/");
});
}
ValueHandle mlir::edsc::op::operator%(ValueHandle lhs, ValueHandle rhs) {
return createBinaryHandle<SignedRemIOp, RemFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 % d1; });
}
ValueHandle mlir::edsc::op::floorDiv(ValueHandle lhs, ValueHandle rhs) {
return createBinaryIndexHandle(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0.floorDiv(d1); });
}
ValueHandle mlir::edsc::op::ceilDiv(ValueHandle lhs, ValueHandle rhs) {
return createBinaryIndexHandle(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0.ceilDiv(d1); });
}
ValueHandle mlir::edsc::op::operator!(ValueHandle value) {
assert(value.getType().isInteger(1) && "expected boolean expression");
return ValueHandle::create<ConstantIntOp>(1, 1) - value;
}
ValueHandle mlir::edsc::op::operator&&(ValueHandle lhs, ValueHandle rhs) {
assert(lhs.getType().isInteger(1) && "expected boolean expression on LHS");
assert(rhs.getType().isInteger(1) && "expected boolean expression on RHS");
return lhs * rhs;
}
ValueHandle mlir::edsc::op::operator||(ValueHandle lhs, ValueHandle rhs) {
return !(!lhs && !rhs);
}
static ValueHandle createIComparisonExpr(CmpIPredicate predicate,
ValueHandle lhs, ValueHandle rhs) {
auto lhsType = lhs.getType();
auto rhsType = rhs.getType();
(void)lhsType;
(void)rhsType;
assert(lhsType == rhsType && "cannot mix types in operators");
assert((lhsType.isa<IndexType>() || lhsType.isa<IntegerType>()) &&
"only integer comparisons are supported");
auto op = ScopedContext::getBuilder().create<CmpIOp>(
ScopedContext::getLocation(), predicate, lhs.getValue(), rhs.getValue());
return ValueHandle(op.getResult());
}
static ValueHandle createFComparisonExpr(CmpFPredicate predicate,
ValueHandle lhs, ValueHandle rhs) {
auto lhsType = lhs.getType();
auto rhsType = rhs.getType();
(void)lhsType;
(void)rhsType;
assert(lhsType == rhsType && "cannot mix types in operators");
assert(lhsType.isa<FloatType>() && "only float comparisons are supported");
auto op = ScopedContext::getBuilder().create<CmpFOp>(
ScopedContext::getLocation(), predicate, lhs.getValue(), rhs.getValue());
return ValueHandle(op.getResult());
}
// All floating point comparison are ordered through EDSL
ValueHandle mlir::edsc::op::operator==(ValueHandle lhs, ValueHandle rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OEQ, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::eq, lhs, rhs);
}
ValueHandle mlir::edsc::op::operator!=(ValueHandle lhs, ValueHandle rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::ONE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::ne, lhs, rhs);
}
ValueHandle mlir::edsc::op::operator<(ValueHandle lhs, ValueHandle rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OLT, lhs, rhs)
:
// TODO(ntv,zinenko): signed by default, how about unsigned?
createIComparisonExpr(CmpIPredicate::slt, lhs, rhs);
}
ValueHandle mlir::edsc::op::operator<=(ValueHandle lhs, ValueHandle rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OLE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sle, lhs, rhs);
}
ValueHandle mlir::edsc::op::operator>(ValueHandle lhs, ValueHandle rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OGT, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sgt, lhs, rhs);
}
ValueHandle mlir::edsc::op::operator>=(ValueHandle lhs, ValueHandle rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OGE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sge, lhs, rhs);
}