Serializer.cpp 67.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
//===- Serializer.cpp - MLIR SPIR-V Serialization -------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the MLIR SPIR-V module to SPIR-V binary serialization.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SPIRV/Serialization.h"

#include "mlir/ADT/TypeSwitch.h"
#include "mlir/Dialect/SPIRV/SPIRVBinaryUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/SPIRVTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/StringExtras.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "spirv-serialization"

using namespace mlir;

/// Encodes an SPIR-V instruction with the given `opcode` and `operands` into
/// the given `binary` vector.
static LogicalResult encodeInstructionInto(SmallVectorImpl<uint32_t> &binary,
                                           spirv::Opcode op,
                                           ArrayRef<uint32_t> operands) {
  uint32_t wordCount = 1 + operands.size();
  binary.push_back(spirv::getPrefixedOpcode(wordCount, op));
    binary.append(operands.begin(), operands.end());
  return success();
}

/// A pre-order depth-first visitor function for processing basic blocks.
///
/// Visits the basic blocks starting from the given `headerBlock` in pre-order
/// depth-first manner and calls `blockHandler` on each block. Skips handling
/// blocks in the `skipBlocks` list. If `skipHeader` is true, `blockHandler`
/// will not be invoked in `headerBlock` but still handles all `headerBlock`'s
/// successors.
///
/// SPIR-V spec "2.16.1. Universal Validation Rules" requires that "the order
/// of blocks in a function must satisfy the rule that blocks appear before
/// all blocks they dominate." This can be achieved by a pre-order CFG
/// traversal algorithm. To make the serialization output more logical and
/// readable to human, we perform depth-first CFG traversal and delay the
/// serialization of the merge block and the continue block, if exists, until
/// after all other blocks have been processed.
static LogicalResult visitInPrettyBlockOrder(
    Block *headerBlock, function_ref<LogicalResult(Block *)> blockHandler,
    bool skipHeader = false, ArrayRef<Block *> skipBlocks = {}) {
  llvm::df_iterator_default_set<Block *, 4> doneBlocks;
  doneBlocks.insert(skipBlocks.begin(), skipBlocks.end());

  for (Block *block : llvm::depth_first_ext(headerBlock, doneBlocks)) {
    if (skipHeader && block == headerBlock)
      continue;
    if (failed(blockHandler(block)))
      return failure();
  }
  return success();
}

/// Returns the last structured control flow op's merge block if the given
/// `block` contains any structured control flow op. Otherwise returns nullptr.
static Block *getLastStructuredControlFlowOpMergeBlock(Block *block) {
  for (Operation &op : llvm::reverse(block->getOperations())) {
    if (auto selectionOp = dyn_cast<spirv::SelectionOp>(op))
      return selectionOp.getMergeBlock();
    if (auto loopOp = dyn_cast<spirv::LoopOp>(op))
      return loopOp.getMergeBlock();
  }
  return nullptr;
}

namespace {

/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words with the layout:
///
///   | <word-count>|<opcode> |  <operand>   |  <operand>   | ... |
///   | <------ word -------> | <-- word --> | <-- word --> | ... |
///
/// For the first word, the 16 high-order bits are the word count of the
/// instruction, the 16 low-order bits are the opcode enumerant. The
/// instructions then belong to different sections, which must be laid out in
/// the particular order as specified in "2.4 Logical Layout of a Module" of
/// the SPIR-V spec.
class Serializer {
public:
  /// Creates a serializer for the given SPIR-V `module`.
  explicit Serializer(spirv::ModuleOp module);

  /// Serializes the remembered SPIR-V module.
  LogicalResult serialize();

  /// Collects the final SPIR-V `binary`.
  void collect(SmallVectorImpl<uint32_t> &binary);

  /// (For debugging) prints each value and its corresponding result <id>.
  void printValueIDMap(raw_ostream &os);

private:
  // Note that there are two main categories of methods in this class:
  // * process*() methods are meant to fully serialize a SPIR-V module entity
  //   (header, type, op, etc.). They update internal vectors containing
  //   different binary sections. They are not meant to be called except the
  //   top-level serialization loop.
  // * prepare*() methods are meant to be helpers that prepare for serializing
  //   certain entity. They may or may not update internal vectors containing
  //   different binary sections. They are meant to be called among themselves
  //   or by other process*() methods for subtasks.

  //===--------------------------------------------------------------------===//
  // <id>
  //===--------------------------------------------------------------------===//

  // Note that it is illegal to use id <0> in SPIR-V binary module. Various
  // methods in this class, if using SPIR-V word (uint32_t) as interface,
  // check or return id <0> to indicate error in processing.

  /// Consumes the next unused <id>. This method will never return 0.
  uint32_t getNextID() { return nextID++; }

  //===--------------------------------------------------------------------===//
  // Module structure
  //===--------------------------------------------------------------------===//

  uint32_t getSpecConstID(StringRef constName) const {
    return specConstIDMap.lookup(constName);
  }

  uint32_t getVariableID(StringRef varName) const {
    return globalVarIDMap.lookup(varName);
  }

  uint32_t getFunctionID(StringRef fnName) const {
    return funcIDMap.lookup(fnName);
  }

  /// Gets the <id> for the function with the given name. Assigns the next
  /// available <id> if the function haven't been deserialized.
  uint32_t getOrCreateFunctionID(StringRef fnName);

  void processCapability();

  void processExtension();

  void processMemoryModel();

  LogicalResult processConstantOp(spirv::ConstantOp op);

  LogicalResult processSpecConstantOp(spirv::SpecConstantOp op);

  /// SPIR-V dialect supports OpUndef using spv.UndefOp that produces a SSA
  /// value to use with other operations. The SPIR-V spec recommends that
  /// OpUndef be generated at module level. The serialization generates an
  /// OpUndef for each type needed at module level.
  LogicalResult processUndefOp(spirv::UndefOp op);

  /// Emit OpName for the given `resultID`.
  LogicalResult processName(uint32_t resultID, StringRef name);

  /// Processes a SPIR-V function op.
  LogicalResult processFuncOp(FuncOp op);

  LogicalResult processVariableOp(spirv::VariableOp op);

  /// Process a SPIR-V GlobalVariableOp
  LogicalResult processGlobalVariableOp(spirv::GlobalVariableOp varOp);

  /// Process attributes that translate to decorations on the result <id>
  LogicalResult processDecoration(Location loc, uint32_t resultID,
                                  NamedAttribute attr);

  template <typename DType>
  LogicalResult processTypeDecoration(Location loc, DType type,
                                      uint32_t resultId) {
    return emitError(loc, "unhandled decoration for type:") << type;
  }

  /// Process member decoration
  LogicalResult processMemberDecoration(uint32_t structID, uint32_t memberIndex,
                                        spirv::Decoration decorationType,
                                        ArrayRef<uint32_t> values = {});

  //===--------------------------------------------------------------------===//
  // Types
  //===--------------------------------------------------------------------===//

  uint32_t getTypeID(Type type) const { return typeIDMap.lookup(type); }

  Type getVoidType() { return mlirBuilder.getNoneType(); }

  bool isVoidType(Type type) const { return type.isa<NoneType>(); }

  /// Returns true if the given type is a pointer type to a struct in Uniform or
  /// StorageBuffer storage class.
  bool isInterfaceStructPtrType(Type type) const;

  /// Main dispatch method for serializing a type. The result <id> of the
  /// serialized type will be returned as `typeID`.
  LogicalResult processType(Location loc, Type type, uint32_t &typeID);

  /// Method for preparing basic SPIR-V type serialization. Returns the type's
  /// opcode and operands for the instruction via `typeEnum` and `operands`.
  LogicalResult prepareBasicType(Location loc, Type type, uint32_t resultID,
                                 spirv::Opcode &typeEnum,
                                 SmallVectorImpl<uint32_t> &operands);

  LogicalResult prepareFunctionType(Location loc, FunctionType type,
                                    spirv::Opcode &typeEnum,
                                    SmallVectorImpl<uint32_t> &operands);

  //===--------------------------------------------------------------------===//
  // Constant
  //===--------------------------------------------------------------------===//

  uint32_t getConstantID(Attribute value) const {
    return constIDMap.lookup(value);
  }

  /// Main dispatch method for processing a constant with the given `constType`
  /// and `valueAttr`. `constType` is needed here because we can interpret the
  /// `valueAttr` as a different type than the type of `valueAttr` itself; for
  /// example, ArrayAttr, whose type is NoneType, is used for spirv::ArrayType
  /// constants.
  uint32_t prepareConstant(Location loc, Type constType, Attribute valueAttr);

  /// Prepares array attribute serialization. This method emits corresponding
  /// OpConstant* and returns the result <id> associated with it. Returns 0 if
  /// failed.
  uint32_t prepareArrayConstant(Location loc, Type constType, ArrayAttr attr);

  /// Prepares bool/int/float DenseElementsAttr serialization. This method
  /// iterates the DenseElementsAttr to construct the constant array, and
  /// returns the result <id>  associated with it. Returns 0 if failed. Note
  /// that the size of `index` must match the rank.
  /// TODO(hanchung): Consider to enhance splat elements cases. For splat cases,
  /// we don't need to loop over all elements, especially when the splat value
  /// is zero. We can use OpConstantNull when the value is zero.
  uint32_t prepareDenseElementsConstant(Location loc, Type constType,
                                        DenseElementsAttr valueAttr, int dim,
                                        MutableArrayRef<uint64_t> index);

  /// Prepares scalar attribute serialization. This method emits corresponding
  /// OpConstant* and returns the result <id> associated with it. Returns 0 if
  /// the attribute is not for a scalar bool/integer/float value. If `isSpec` is
  /// true, then the constant will be serialized as a specialization constant.
  uint32_t prepareConstantScalar(Location loc, Attribute valueAttr,
                                 bool isSpec = false);

  uint32_t prepareConstantBool(Location loc, BoolAttr boolAttr,
                               bool isSpec = false);

  uint32_t prepareConstantInt(Location loc, IntegerAttr intAttr,
                              bool isSpec = false);

  uint32_t prepareConstantFp(Location loc, FloatAttr floatAttr,
                             bool isSpec = false);

  //===--------------------------------------------------------------------===//
  // Control flow
  //===--------------------------------------------------------------------===//

  /// Returns the result <id> for the given block.
  uint32_t getBlockID(Block *block) const { return blockIDMap.lookup(block); }

  /// Returns the result <id> for the given block. If no <id> has been assigned,
  /// assigns the next available <id>
  uint32_t getOrCreateBlockID(Block *block);

  /// Processes the given `block` and emits SPIR-V instructions for all ops
  /// inside. Does not emit OpLabel for this block if `omitLabel` is true.
  /// `actionBeforeTerminator` is a callback that will be invoked before
  /// handling the terminator op. It can be used to inject the Op*Merge
  /// instruction if this is a SPIR-V selection/loop header block.
  LogicalResult
  processBlock(Block *block, bool omitLabel = false,
               function_ref<void()> actionBeforeTerminator = nullptr);

  /// Emits OpPhi instructions for the given block if it has block arguments.
  LogicalResult emitPhiForBlockArguments(Block *block);

  LogicalResult processSelectionOp(spirv::SelectionOp selectionOp);

  LogicalResult processLoopOp(spirv::LoopOp loopOp);

  LogicalResult processBranchConditionalOp(spirv::BranchConditionalOp);

  LogicalResult processBranchOp(spirv::BranchOp branchOp);

  //===--------------------------------------------------------------------===//
  // Operations
  //===--------------------------------------------------------------------===//

  LogicalResult encodeExtensionInstruction(Operation *op,
                                           StringRef extensionSetName,
                                           uint32_t opcode,
                                           ArrayRef<uint32_t> operands);

  uint32_t getValueID(Value val) const { return valueIDMap.lookup(val); }

  LogicalResult processAddressOfOp(spirv::AddressOfOp addressOfOp);

  LogicalResult processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp);

  /// Main dispatch method for serializing an operation.
  LogicalResult processOperation(Operation *op);

  /// Method to dispatch to the serialization function for an operation in
  /// SPIR-V dialect that is a mirror of an instruction in the SPIR-V spec.
  /// This is auto-generated from ODS. Dispatch is handled for all operations
  /// in SPIR-V dialect that have hasOpcode == 1.
  LogicalResult dispatchToAutogenSerialization(Operation *op);

  /// Method to serialize an operation in the SPIR-V dialect that is a mirror of
  /// an instruction in the SPIR-V spec. This is auto generated if hasOpcode ==
  /// 1 and autogenSerialization == 1 in ODS.
  template <typename OpTy> LogicalResult processOp(OpTy op) {
    return op.emitError("unsupported op serialization");
  }

  //===--------------------------------------------------------------------===//
  // Utilities
  //===--------------------------------------------------------------------===//

  /// Emits an OpDecorate instruction to decorate the given `target` with the
  /// given `decoration`.
  LogicalResult emitDecoration(uint32_t target, spirv::Decoration decoration,
                               ArrayRef<uint32_t> params = {});

private:
  /// The SPIR-V module to be serialized.
  spirv::ModuleOp module;

  /// An MLIR builder for getting MLIR constructs.
  mlir::Builder mlirBuilder;

  /// The next available result <id>.
  uint32_t nextID = 1;

  // The following are for different SPIR-V instruction sections. They follow
  // the logical layout of a SPIR-V module.

  SmallVector<uint32_t, 4> capabilities;
  SmallVector<uint32_t, 0> extensions;
  SmallVector<uint32_t, 0> extendedSets;
  SmallVector<uint32_t, 3> memoryModel;
  SmallVector<uint32_t, 0> entryPoints;
  SmallVector<uint32_t, 4> executionModes;
  // TODO(antiagainst): debug instructions
  SmallVector<uint32_t, 0> names;
  SmallVector<uint32_t, 0> decorations;
  SmallVector<uint32_t, 0> typesGlobalValues;
  SmallVector<uint32_t, 0> functions;

  /// `functionHeader` contains all the instructions that must be in the first
  /// block in the function, and `functionBody` contains the rest. After
  /// processing FuncOp, the encoded instructions of a function are appended to
  /// `functions`. An example of instructions in `functionHeader` in order:
  /// OpFunction ...
  /// OpFunctionParameter ...
  /// OpFunctionParameter ...
  /// OpLabel ...
  /// OpVariable ...
  /// OpVariable ...
  SmallVector<uint32_t, 0> functionHeader;
  SmallVector<uint32_t, 0> functionBody;

  /// Map from type used in SPIR-V module to their <id>s.
  DenseMap<Type, uint32_t> typeIDMap;

  /// Map from constant values to their <id>s.
  DenseMap<Attribute, uint32_t> constIDMap;

  /// Map from specialization constant names to their <id>s.
  llvm::StringMap<uint32_t> specConstIDMap;

  /// Map from GlobalVariableOps name to <id>s.
  llvm::StringMap<uint32_t> globalVarIDMap;

  /// Map from FuncOps name to <id>s.
  llvm::StringMap<uint32_t> funcIDMap;

  /// Map from blocks to their <id>s.
  DenseMap<Block *, uint32_t> blockIDMap;

  /// Map from the Type to the <id> that represents undef value of that type.
  DenseMap<Type, uint32_t> undefValIDMap;

  /// Map from results of normal operations to their <id>s.
  DenseMap<Value, uint32_t> valueIDMap;

  /// Map from extended instruction set name to <id>s.
  llvm::StringMap<uint32_t> extendedInstSetIDMap;

  /// Map from values used in OpPhi instructions to their offset in the
  /// `functions` section.
  ///
  /// When processing a block with arguments, we need to emit OpPhi
  /// instructions to record the predecessor block <id>s and the values they
  /// send to the block in question. But it's not guaranteed all values are
  /// visited and thus assigned result <id>s. So we need this list to capture
  /// the offsets into `functions` where a value is used so that we can fix it
  /// up later after processing all the blocks in a function.
  ///
  /// More concretely, say if we are visiting the following blocks:
  ///
  /// ```mlir
  /// ^phi(%arg0: i32):
  ///   ...
  /// ^parent1:
  ///   ...
  ///   spv.Branch ^phi(%val0: i32)
  /// ^parent2:
  ///   ...
  ///   spv.Branch ^phi(%val1: i32)
  /// ```
  ///
  /// When we are serializing the `^phi` block, we need to emit at the beginning
  /// of the block OpPhi instructions which has the following parameters:
  ///
  /// OpPhi id-for-i32 id-for-%arg0 id-for-%val0 id-for-^parent1
  ///                               id-for-%val1 id-for-^parent2
  ///
  /// But we don't know the <id> for %val0 and %val1 yet. One way is to visit
  /// all the blocks twice and use the first visit to assign an <id> to each
  /// value. But it's paying the overheads just for OpPhi emission. Instead,
  /// we still visit the blocks once for emission. When we emit the OpPhi
  /// instructions, we use 0 as a placeholder for the <id>s for %val0 and %val1.
  /// At the same time, we record their offsets in the emitted binary (which is
  /// placed inside `functions`) here. And then after emitting all blocks, we
  /// replace the dummy <id> 0 with the real result <id> by overwriting
  /// `functions[offset]`.
  DenseMap<Value, SmallVector<size_t, 1>> deferredPhiValues;
};
} // namespace

Serializer::Serializer(spirv::ModuleOp module)
    : module(module), mlirBuilder(module.getContext()) {}

LogicalResult Serializer::serialize() {
  LLVM_DEBUG(llvm::dbgs() << "+++ starting serialization +++\n");

  if (failed(module.verify()))
    return failure();

  // TODO(antiagainst): handle the other sections
  processCapability();
  processExtension();
  processMemoryModel();

  // Iterate over the module body to serialize it. Assumptions are that there is
  // only one basic block in the moduleOp
  for (auto &op : module.getBlock()) {
    if (failed(processOperation(&op))) {
      return failure();
    }
  }

  LLVM_DEBUG(llvm::dbgs() << "+++ completed serialization +++\n");
  return success();
}

void Serializer::collect(SmallVectorImpl<uint32_t> &binary) {
  auto moduleSize = spirv::kHeaderWordCount + capabilities.size() +
                    extensions.size() + extendedSets.size() +
                    memoryModel.size() + entryPoints.size() +
                    executionModes.size() + decorations.size() +
                    typesGlobalValues.size() + functions.size();

  binary.clear();
  binary.reserve(moduleSize);

  spirv::appendModuleHeader(binary, nextID);
  binary.append(capabilities.begin(), capabilities.end());
  binary.append(extensions.begin(), extensions.end());
  binary.append(extendedSets.begin(), extendedSets.end());
  binary.append(memoryModel.begin(), memoryModel.end());
  binary.append(entryPoints.begin(), entryPoints.end());
  binary.append(executionModes.begin(), executionModes.end());
  binary.append(names.begin(), names.end());
  binary.append(decorations.begin(), decorations.end());
  binary.append(typesGlobalValues.begin(), typesGlobalValues.end());
  binary.append(functions.begin(), functions.end());
}

void Serializer::printValueIDMap(raw_ostream &os) {
  os << "\n= Value <id> Map =\n\n";
  for (auto valueIDPair : valueIDMap) {
    Value val = valueIDPair.first;
    os << "  " << val << " "
       << "id = " << valueIDPair.second << ' ';
    if (auto *op = val.getDefiningOp()) {
      os << "from op '" << op->getName() << "'";
    } else if (auto arg = val.dyn_cast<BlockArgument>()) {
      Block *block = arg.getOwner();
      os << "from argument of block " << block << ' ';
      os << " in op '" << block->getParentOp()->getName() << "'";
    }
    os << '\n';
  }
}

//===----------------------------------------------------------------------===//
// Module structure
//===----------------------------------------------------------------------===//

uint32_t Serializer::getOrCreateFunctionID(StringRef fnName) {
  auto funcID = funcIDMap.lookup(fnName);
  if (!funcID) {
    funcID = getNextID();
    funcIDMap[fnName] = funcID;
  }
  return funcID;
}

void Serializer::processCapability() {
  auto caps = module.getAttrOfType<ArrayAttr>("capabilities");
  if (!caps)
    return;

  for (auto cap : caps.getValue()) {
    auto capStr = cap.cast<StringAttr>().getValue();
    auto capVal = spirv::symbolizeCapability(capStr);
    encodeInstructionInto(capabilities, spirv::Opcode::OpCapability,
                          {static_cast<uint32_t>(*capVal)});
  }
}

void Serializer::processExtension() {
  auto exts = module.getAttrOfType<ArrayAttr>("extensions");
  if (!exts)
    return;

  SmallVector<uint32_t, 16> extName;
  for (auto ext : exts.getValue()) {
    auto extStr = ext.cast<StringAttr>().getValue();
    extName.clear();
    spirv::encodeStringLiteralInto(extName, extStr);
    encodeInstructionInto(extensions, spirv::Opcode::OpExtension, extName);
  }
}

void Serializer::processMemoryModel() {
  uint32_t mm = module.getAttrOfType<IntegerAttr>("memory_model").getInt();
  uint32_t am = module.getAttrOfType<IntegerAttr>("addressing_model").getInt();

  encodeInstructionInto(memoryModel, spirv::Opcode::OpMemoryModel, {am, mm});
}

LogicalResult Serializer::processConstantOp(spirv::ConstantOp op) {
  if (auto resultID = prepareConstant(op.getLoc(), op.getType(), op.value())) {
    valueIDMap[op.getResult()] = resultID;
    return success();
  }
  return failure();
}

LogicalResult Serializer::processSpecConstantOp(spirv::SpecConstantOp op) {
  if (auto resultID = prepareConstantScalar(op.getLoc(), op.default_value(),
                                            /*isSpec=*/true)) {
    // Emit the OpDecorate instruction for SpecId.
    if (auto specID = op.getAttrOfType<IntegerAttr>("spec_id")) {
      auto val = static_cast<uint32_t>(specID.getInt());
      emitDecoration(resultID, spirv::Decoration::SpecId, {val});
    }

    specConstIDMap[op.sym_name()] = resultID;
    return processName(resultID, op.sym_name());
  }
  return failure();
}

LogicalResult Serializer::processUndefOp(spirv::UndefOp op) {
  auto undefType = op.getType();
  auto &id = undefValIDMap[undefType];
  if (!id) {
    id = getNextID();
    uint32_t typeID = 0;
    if (failed(processType(op.getLoc(), undefType, typeID)) ||
        failed(encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpUndef,
                                     {typeID, id}))) {
      return failure();
    }
  }
  valueIDMap[op.getResult()] = id;
  return success();
}

LogicalResult Serializer::processDecoration(Location loc, uint32_t resultID,
                                            NamedAttribute attr) {
  auto attrName = attr.first.strref();
  auto decorationName = mlir::convertToCamelCase(attrName, true);
  auto decoration = spirv::symbolizeDecoration(decorationName);
  if (!decoration) {
    return emitError(
               loc, "non-argument attributes expected to have snake-case-ified "
                    "decoration name, unhandled attribute with name : ")
           << attrName;
  }
  SmallVector<uint32_t, 1> args;
  switch (decoration.getValue()) {
  case spirv::Decoration::DescriptorSet:
  case spirv::Decoration::Binding:
    if (auto intAttr = attr.second.dyn_cast<IntegerAttr>()) {
      args.push_back(intAttr.getValue().getZExtValue());
      break;
    }
    return emitError(loc, "expected integer attribute for ") << attrName;
  case spirv::Decoration::BuiltIn:
    if (auto strAttr = attr.second.dyn_cast<StringAttr>()) {
      auto enumVal = spirv::symbolizeBuiltIn(strAttr.getValue());
      if (enumVal) {
        args.push_back(static_cast<uint32_t>(enumVal.getValue()));
        break;
      }
      return emitError(loc, "invalid ")
             << attrName << " attribute " << strAttr.getValue();
    }
    return emitError(loc, "expected string attribute for ") << attrName;
  default:
    return emitError(loc, "unhandled decoration ") << decorationName;
  }
  return emitDecoration(resultID, decoration.getValue(), args);
}

LogicalResult Serializer::processName(uint32_t resultID, StringRef name) {
  assert(!name.empty() && "unexpected empty string for OpName");

  SmallVector<uint32_t, 4> nameOperands;
  nameOperands.push_back(resultID);
  if (failed(spirv::encodeStringLiteralInto(nameOperands, name))) {
    return failure();
  }
  return encodeInstructionInto(names, spirv::Opcode::OpName, nameOperands);
}

namespace {
template <>
LogicalResult Serializer::processTypeDecoration<spirv::ArrayType>(
    Location loc, spirv::ArrayType type, uint32_t resultID) {
  if (type.hasLayout()) {
    // OpDecorate %arrayTypeSSA ArrayStride strideLiteral
    return emitDecoration(resultID, spirv::Decoration::ArrayStride,
                          {static_cast<uint32_t>(type.getArrayStride())});
  }
  return success();
}

LogicalResult
Serializer::processMemberDecoration(uint32_t structID, uint32_t memberIndex,
                                    spirv::Decoration decorationType,
                                    ArrayRef<uint32_t> values) {
  SmallVector<uint32_t, 4> args(
      {structID, memberIndex, static_cast<uint32_t>(decorationType)});
  if (!values.empty()) {
    args.append(values.begin(), values.end());
  }
  return encodeInstructionInto(decorations, spirv::Opcode::OpMemberDecorate,
                               args);
}
} // namespace

LogicalResult Serializer::processFuncOp(FuncOp op) {
  LLVM_DEBUG(llvm::dbgs() << "-- start function '" << op.getName() << "' --\n");
  assert(functionHeader.empty() && functionBody.empty());

  uint32_t fnTypeID = 0;
  // Generate type of the function.
  processType(op.getLoc(), op.getType(), fnTypeID);

  // Add the function definition.
  SmallVector<uint32_t, 4> operands;
  uint32_t resTypeID = 0;
  auto resultTypes = op.getType().getResults();
  if (resultTypes.size() > 1) {
    return op.emitError("cannot serialize function with multiple return types");
  }
  if (failed(processType(op.getLoc(),
                         (resultTypes.empty() ? getVoidType() : resultTypes[0]),
                         resTypeID))) {
    return failure();
  }
  operands.push_back(resTypeID);
  auto funcID = getOrCreateFunctionID(op.getName());
  operands.push_back(funcID);
  // TODO : Support other function control options.
  operands.push_back(static_cast<uint32_t>(spirv::FunctionControl::None));
  operands.push_back(fnTypeID);
  encodeInstructionInto(functionHeader, spirv::Opcode::OpFunction, operands);

  // Add function name.
  if (failed(processName(funcID, op.getName()))) {
    return failure();
  }

  // Declare the parameters.
  for (auto arg : op.getArguments()) {
    uint32_t argTypeID = 0;
    if (failed(processType(op.getLoc(), arg.getType(), argTypeID))) {
      return failure();
    }
    auto argValueID = getNextID();
    valueIDMap[arg] = argValueID;
    encodeInstructionInto(functionHeader, spirv::Opcode::OpFunctionParameter,
                          {argTypeID, argValueID});
  }

  // Process the body.
  if (op.isExternal()) {
    return op.emitError("external function is unhandled");
  }

  // Some instructions (e.g., OpVariable) in a function must be in the first
  // block in the function. These instructions will be put in functionHeader.
  // Thus, we put the label in functionHeader first, and omit it from the first
  // block.
  encodeInstructionInto(functionHeader, spirv::Opcode::OpLabel,
                        {getOrCreateBlockID(&op.front())});
  processBlock(&op.front(), /*omitLabel=*/true);
  if (failed(visitInPrettyBlockOrder(
          &op.front(), [&](Block *block) { return processBlock(block); },
          /*skipHeader=*/true))) {
    return failure();
  }

  // There might be OpPhi instructions who have value references needing to fix.
  for (auto deferredValue : deferredPhiValues) {
    Value value = deferredValue.first;
    uint32_t id = getValueID(value);
    LLVM_DEBUG(llvm::dbgs() << "[phi] fix reference of value " << value
                            << " to id = " << id << '\n');
    assert(id && "OpPhi references undefined value!");
    for (size_t offset : deferredValue.second)
      functionBody[offset] = id;
  }
  deferredPhiValues.clear();

  LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << op.getName()
                          << "' --\n");
  // Insert OpFunctionEnd.
  if (failed(encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionEnd,
                                   {}))) {
    return failure();
  }

  functions.append(functionHeader.begin(), functionHeader.end());
  functions.append(functionBody.begin(), functionBody.end());
  functionHeader.clear();
  functionBody.clear();

  return success();
}

LogicalResult Serializer::processVariableOp(spirv::VariableOp op) {
  SmallVector<uint32_t, 4> operands;
  SmallVector<StringRef, 2> elidedAttrs;
  uint32_t resultID = 0;
  uint32_t resultTypeID = 0;
  if (failed(processType(op.getLoc(), op.getType(), resultTypeID))) {
    return failure();
  }
  operands.push_back(resultTypeID);
  resultID = getNextID();
  valueIDMap[op.getResult()] = resultID;
  operands.push_back(resultID);
  auto attr = op.getAttr(spirv::attributeName<spirv::StorageClass>());
  if (attr) {
    operands.push_back(static_cast<uint32_t>(
        attr.cast<IntegerAttr>().getValue().getZExtValue()));
  }
  elidedAttrs.push_back(spirv::attributeName<spirv::StorageClass>());
  for (auto arg : op.getODSOperands(0)) {
    auto argID = getValueID(arg);
    if (!argID) {
      return emitError(op.getLoc(), "operand 0 has a use before def");
    }
    operands.push_back(argID);
  }
  encodeInstructionInto(functionHeader, spirv::getOpcode<spirv::VariableOp>(),
                        operands);
  for (auto attr : op.getAttrs()) {
    if (llvm::any_of(elidedAttrs,
                     [&](StringRef elided) { return attr.first.is(elided); })) {
      continue;
    }
    if (failed(processDecoration(op.getLoc(), resultID, attr))) {
      return failure();
    }
  }
  return success();
}

LogicalResult
Serializer::processGlobalVariableOp(spirv::GlobalVariableOp varOp) {
  // Get TypeID.
  uint32_t resultTypeID = 0;
  SmallVector<StringRef, 4> elidedAttrs;
  if (failed(processType(varOp.getLoc(), varOp.type(), resultTypeID))) {
    return failure();
  }

  if (isInterfaceStructPtrType(varOp.type())) {
    auto structType = varOp.type()
                          .cast<spirv::PointerType>()
                          .getPointeeType()
                          .cast<spirv::StructType>();
    if (failed(
            emitDecoration(getTypeID(structType), spirv::Decoration::Block))) {
      return varOp.emitError("cannot decorate ")
             << structType << " with Block decoration";
    }
  }

  elidedAttrs.push_back("type");
  SmallVector<uint32_t, 4> operands;
  operands.push_back(resultTypeID);
  auto resultID = getNextID();

  // Encode the name.
  auto varName = varOp.sym_name();
  elidedAttrs.push_back(SymbolTable::getSymbolAttrName());
  if (failed(processName(resultID, varName))) {
    return failure();
  }
  globalVarIDMap[varName] = resultID;
  operands.push_back(resultID);

  // Encode StorageClass.
  operands.push_back(static_cast<uint32_t>(varOp.storageClass()));

  // Encode initialization.
  if (auto initializer = varOp.initializer()) {
    auto initializerID = getVariableID(initializer.getValue());
    if (!initializerID) {
      return emitError(varOp.getLoc(),
                       "invalid usage of undefined variable as initializer");
    }
    operands.push_back(initializerID);
    elidedAttrs.push_back("initializer");
  }

  if (failed(encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpVariable,
                                   operands))) {
    elidedAttrs.push_back("initializer");
    return failure();
  }

  // Encode decorations.
  for (auto attr : varOp.getAttrs()) {
    if (llvm::any_of(elidedAttrs,
                     [&](StringRef elided) { return attr.first.is(elided); })) {
      continue;
    }
    if (failed(processDecoration(varOp.getLoc(), resultID, attr))) {
      return failure();
    }
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//

bool Serializer::isInterfaceStructPtrType(Type type) const {
  if (auto ptrType = type.dyn_cast<spirv::PointerType>()) {
    auto storageClass = ptrType.getStorageClass();
    if (storageClass == spirv::StorageClass::Uniform ||
        storageClass == spirv::StorageClass::StorageBuffer) {
      return ptrType.getPointeeType().isa<spirv::StructType>();
    }
  }
  return false;
}

LogicalResult Serializer::processType(Location loc, Type type,
                                      uint32_t &typeID) {
  typeID = getTypeID(type);
  if (typeID) {
    return success();
  }
  typeID = getNextID();
  SmallVector<uint32_t, 4> operands;
  operands.push_back(typeID);
  auto typeEnum = spirv::Opcode::OpTypeVoid;
  if ((type.isa<FunctionType>() &&
       succeeded(prepareFunctionType(loc, type.cast<FunctionType>(), typeEnum,
                                     operands))) ||
      succeeded(prepareBasicType(loc, type, typeID, typeEnum, operands))) {
    typeIDMap[type] = typeID;
    return encodeInstructionInto(typesGlobalValues, typeEnum, operands);
  }
  return failure();
}

LogicalResult
Serializer::prepareBasicType(Location loc, Type type, uint32_t resultID,
                             spirv::Opcode &typeEnum,
                             SmallVectorImpl<uint32_t> &operands) {
  if (isVoidType(type)) {
    typeEnum = spirv::Opcode::OpTypeVoid;
    return success();
  }

  if (auto intType = type.dyn_cast<IntegerType>()) {
    if (intType.getWidth() == 1) {
      typeEnum = spirv::Opcode::OpTypeBool;
      return success();
    }

    typeEnum = spirv::Opcode::OpTypeInt;
    operands.push_back(intType.getWidth());
    // TODO(antiagainst): support unsigned integers
    operands.push_back(1);
    return success();
  }

  if (auto floatType = type.dyn_cast<FloatType>()) {
    typeEnum = spirv::Opcode::OpTypeFloat;
    operands.push_back(floatType.getWidth());
    return success();
  }

  if (auto vectorType = type.dyn_cast<VectorType>()) {
    uint32_t elementTypeID = 0;
    if (failed(processType(loc, vectorType.getElementType(), elementTypeID))) {
      return failure();
    }
    typeEnum = spirv::Opcode::OpTypeVector;
    operands.push_back(elementTypeID);
    operands.push_back(vectorType.getNumElements());
    return success();
  }

  if (auto arrayType = type.dyn_cast<spirv::ArrayType>()) {
    typeEnum = spirv::Opcode::OpTypeArray;
    uint32_t elementTypeID = 0;
    if (failed(processType(loc, arrayType.getElementType(), elementTypeID))) {
      return failure();
    }
    operands.push_back(elementTypeID);
    if (auto elementCountID = prepareConstantInt(
            loc, mlirBuilder.getI32IntegerAttr(arrayType.getNumElements()))) {
      operands.push_back(elementCountID);
    }
    return processTypeDecoration(loc, arrayType, resultID);
  }

  if (auto ptrType = type.dyn_cast<spirv::PointerType>()) {
    uint32_t pointeeTypeID = 0;
    if (failed(processType(loc, ptrType.getPointeeType(), pointeeTypeID))) {
      return failure();
    }
    typeEnum = spirv::Opcode::OpTypePointer;
    operands.push_back(static_cast<uint32_t>(ptrType.getStorageClass()));
    operands.push_back(pointeeTypeID);
    return success();
  }

  if (auto runtimeArrayType = type.dyn_cast<spirv::RuntimeArrayType>()) {
    uint32_t elementTypeID = 0;
    if (failed(processType(loc, runtimeArrayType.getElementType(),
                           elementTypeID))) {
      return failure();
    }
    operands.push_back(elementTypeID);
    typeEnum = spirv::Opcode::OpTypeRuntimeArray;
    return success();
  }

  if (auto structType = type.dyn_cast<spirv::StructType>()) {
    bool hasLayout = structType.hasLayout();
    for (auto elementIndex :
         llvm::seq<uint32_t>(0, structType.getNumElements())) {
      uint32_t elementTypeID = 0;
      if (failed(processType(loc, structType.getElementType(elementIndex),
                             elementTypeID))) {
        return failure();
      }
      operands.push_back(elementTypeID);
      if (hasLayout) {
        // Decorate each struct member with an offset
        if (failed(processMemberDecoration(
                resultID, elementIndex, spirv::Decoration::Offset,
                static_cast<uint32_t>(structType.getOffset(elementIndex))))) {
          return emitError(loc, "cannot decorate ")
                 << elementIndex << "-th member of " << structType
                 << " with its offset";
        }
      }
    }
    SmallVector<spirv::StructType::MemberDecorationInfo, 4> memberDecorations;
    structType.getMemberDecorations(memberDecorations);
    for (auto &memberDecoration : memberDecorations) {
      if (failed(processMemberDecoration(resultID, memberDecoration.first,
                                         memberDecoration.second))) {
        return emitError(loc, "cannot decorate ")
               << memberDecoration.first << "-th member of " << structType
               << " with " << stringifyDecoration(memberDecoration.second);
      }
    }
    typeEnum = spirv::Opcode::OpTypeStruct;
    return success();
  }

  // TODO(ravishankarm) : Handle other types.
  return emitError(loc, "unhandled type in serialization: ") << type;
}

LogicalResult
Serializer::prepareFunctionType(Location loc, FunctionType type,
                                spirv::Opcode &typeEnum,
                                SmallVectorImpl<uint32_t> &operands) {
  typeEnum = spirv::Opcode::OpTypeFunction;
  assert(type.getNumResults() <= 1 &&
         "serialization supports only a single return value");
  uint32_t resultID = 0;
  if (failed(processType(
          loc, type.getNumResults() == 1 ? type.getResult(0) : getVoidType(),
          resultID))) {
    return failure();
  }
  operands.push_back(resultID);
  for (auto &res : type.getInputs()) {
    uint32_t argTypeID = 0;
    if (failed(processType(loc, res, argTypeID))) {
      return failure();
    }
    operands.push_back(argTypeID);
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Constant
//===----------------------------------------------------------------------===//

uint32_t Serializer::prepareConstant(Location loc, Type constType,
                                     Attribute valueAttr) {
  if (auto id = prepareConstantScalar(loc, valueAttr)) {
    return id;
  }

  // This is a composite literal. We need to handle each component separately
  // and then emit an OpConstantComposite for the whole.

  if (auto id = getConstantID(valueAttr)) {
    return id;
  }

  uint32_t typeID = 0;
  if (failed(processType(loc, constType, typeID))) {
    return 0;
  }

  uint32_t resultID = 0;
  if (auto attr = valueAttr.dyn_cast<DenseElementsAttr>()) {
    int rank = attr.getType().dyn_cast<ShapedType>().getRank();
    SmallVector<uint64_t, 4> index(rank);
    resultID = prepareDenseElementsConstant(loc, constType, attr,
                                            /*dim=*/0, index);
  } else if (auto arrayAttr = valueAttr.dyn_cast<ArrayAttr>()) {
    resultID = prepareArrayConstant(loc, constType, arrayAttr);
  }

  if (resultID == 0) {
    emitError(loc, "cannot serialize attribute: ") << valueAttr;
    return 0;
  }

  constIDMap[valueAttr] = resultID;
  return resultID;
}

uint32_t Serializer::prepareArrayConstant(Location loc, Type constType,
                                          ArrayAttr attr) {
  uint32_t typeID = 0;
  if (failed(processType(loc, constType, typeID))) {
    return 0;
  }

  uint32_t resultID = getNextID();
  SmallVector<uint32_t, 4> operands = {typeID, resultID};
  operands.reserve(attr.size() + 2);
  auto elementType = constType.cast<spirv::ArrayType>().getElementType();
  for (Attribute elementAttr : attr) {
    if (auto elementID = prepareConstant(loc, elementType, elementAttr)) {
      operands.push_back(elementID);
    } else {
      return 0;
    }
  }
  spirv::Opcode opcode = spirv::Opcode::OpConstantComposite;
  encodeInstructionInto(typesGlobalValues, opcode, operands);

  return resultID;
}

// TODO(hanchung): Turn the below function into iterative function, instead of
// recursive function.
uint32_t
Serializer::prepareDenseElementsConstant(Location loc, Type constType,
                                         DenseElementsAttr valueAttr, int dim,
                                         MutableArrayRef<uint64_t> index) {
  auto shapedType = valueAttr.getType().dyn_cast<ShapedType>();
  assert(dim <= shapedType.getRank());
  if (shapedType.getRank() == dim) {
    if (auto attr = valueAttr.dyn_cast<DenseIntElementsAttr>()) {
      return attr.getType().getElementType().isInteger(1)
                 ? prepareConstantBool(loc, attr.getValue<BoolAttr>(index))
                 : prepareConstantInt(loc, attr.getValue<IntegerAttr>(index));
    }
    if (auto attr = valueAttr.dyn_cast<DenseFPElementsAttr>()) {
      return prepareConstantFp(loc, attr.getValue<FloatAttr>(index));
    }
    return 0;
  }

  uint32_t typeID = 0;
  if (failed(processType(loc, constType, typeID))) {
    return 0;
  }

  uint32_t resultID = getNextID();
  SmallVector<uint32_t, 4> operands = {typeID, resultID};
  operands.reserve(shapedType.getDimSize(dim) + 2);
  auto elementType = constType.cast<spirv::CompositeType>().getElementType(0);
  for (int i = 0; i < shapedType.getDimSize(dim); ++i) {
    index[dim] = i;
    if (auto elementID = prepareDenseElementsConstant(
            loc, elementType, valueAttr, dim + 1, index)) {
      operands.push_back(elementID);
    } else {
      return 0;
    }
  }
  spirv::Opcode opcode = spirv::Opcode::OpConstantComposite;
  encodeInstructionInto(typesGlobalValues, opcode, operands);

  return resultID;
}

uint32_t Serializer::prepareConstantScalar(Location loc, Attribute valueAttr,
                                           bool isSpec) {
  if (auto floatAttr = valueAttr.dyn_cast<FloatAttr>()) {
    return prepareConstantFp(loc, floatAttr, isSpec);
  }
  if (auto intAttr = valueAttr.dyn_cast<IntegerAttr>()) {
    return prepareConstantInt(loc, intAttr, isSpec);
  }
  if (auto boolAttr = valueAttr.dyn_cast<BoolAttr>()) {
    return prepareConstantBool(loc, boolAttr, isSpec);
  }

  return 0;
}

uint32_t Serializer::prepareConstantBool(Location loc, BoolAttr boolAttr,
                                         bool isSpec) {
  if (!isSpec) {
    // We can de-duplicate normal constants, but not specialization constants.
    if (auto id = getConstantID(boolAttr)) {
      return id;
    }
  }

  // Process the type for this bool literal
  uint32_t typeID = 0;
  if (failed(processType(loc, boolAttr.getType(), typeID))) {
    return 0;
  }

  auto resultID = getNextID();
  auto opcode = boolAttr.getValue()
                    ? (isSpec ? spirv::Opcode::OpSpecConstantTrue
                              : spirv::Opcode::OpConstantTrue)
                    : (isSpec ? spirv::Opcode::OpSpecConstantFalse
                              : spirv::Opcode::OpConstantFalse);
  encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID});

  if (!isSpec) {
    constIDMap[boolAttr] = resultID;
  }
  return resultID;
}

uint32_t Serializer::prepareConstantInt(Location loc, IntegerAttr intAttr,
                                        bool isSpec) {
  if (!isSpec) {
    // We can de-duplicate normal constants, but not specialization constants.
    if (auto id = getConstantID(intAttr)) {
      return id;
    }
  }

  // Process the type for this integer literal
  uint32_t typeID = 0;
  if (failed(processType(loc, intAttr.getType(), typeID))) {
    return 0;
  }

  auto resultID = getNextID();
  APInt value = intAttr.getValue();
  unsigned bitwidth = value.getBitWidth();
  bool isSigned = value.isSignedIntN(bitwidth);

  auto opcode =
      isSpec ? spirv::Opcode::OpSpecConstant : spirv::Opcode::OpConstant;

  // According to SPIR-V spec, "When the type's bit width is less than 32-bits,
  // the literal's value appears in the low-order bits of the word, and the
  // high-order bits must be 0 for a floating-point type, or 0 for an integer
  // type with Signedness of 0, or sign extended when Signedness is 1."
  if (bitwidth == 32 || bitwidth == 16) {
    uint32_t word = 0;
    if (isSigned) {
      word = static_cast<int32_t>(value.getSExtValue());
    } else {
      word = static_cast<uint32_t>(value.getZExtValue());
    }
    encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
  }
  // According to SPIR-V spec: "When the type's bit width is larger than one
  // word, the literal’s low-order words appear first."
  else if (bitwidth == 64) {
    struct DoubleWord {
      uint32_t word1;
      uint32_t word2;
    } words;
    if (isSigned) {
      words = llvm::bit_cast<DoubleWord>(value.getSExtValue());
    } else {
      words = llvm::bit_cast<DoubleWord>(value.getZExtValue());
    }
    encodeInstructionInto(typesGlobalValues, opcode,
                          {typeID, resultID, words.word1, words.word2});
  } else {
    std::string valueStr;
    llvm::raw_string_ostream rss(valueStr);
    value.print(rss, /*isSigned=*/false);

    emitError(loc, "cannot serialize ")
        << bitwidth << "-bit integer literal: " << rss.str();
    return 0;
  }

  if (!isSpec) {
    constIDMap[intAttr] = resultID;
  }
  return resultID;
}

uint32_t Serializer::prepareConstantFp(Location loc, FloatAttr floatAttr,
                                       bool isSpec) {
  if (!isSpec) {
    // We can de-duplicate normal constants, but not specialization constants.
    if (auto id = getConstantID(floatAttr)) {
      return id;
    }
  }

  // Process the type for this float literal
  uint32_t typeID = 0;
  if (failed(processType(loc, floatAttr.getType(), typeID))) {
    return 0;
  }

  auto resultID = getNextID();
  APFloat value = floatAttr.getValue();
  APInt intValue = value.bitcastToAPInt();

  auto opcode =
      isSpec ? spirv::Opcode::OpSpecConstant : spirv::Opcode::OpConstant;

  if (&value.getSemantics() == &APFloat::IEEEsingle()) {
    uint32_t word = llvm::bit_cast<uint32_t>(value.convertToFloat());
    encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
  } else if (&value.getSemantics() == &APFloat::IEEEdouble()) {
    struct DoubleWord {
      uint32_t word1;
      uint32_t word2;
    } words = llvm::bit_cast<DoubleWord>(value.convertToDouble());
    encodeInstructionInto(typesGlobalValues, opcode,
                          {typeID, resultID, words.word1, words.word2});
  } else if (&value.getSemantics() == &APFloat::IEEEhalf()) {
    uint32_t word =
        static_cast<uint32_t>(value.bitcastToAPInt().getZExtValue());
    encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
  } else {
    std::string valueStr;
    llvm::raw_string_ostream rss(valueStr);
    value.print(rss);

    emitError(loc, "cannot serialize ")
        << floatAttr.getType() << "-typed float literal: " << rss.str();
    return 0;
  }

  if (!isSpec) {
    constIDMap[floatAttr] = resultID;
  }
  return resultID;
}

//===----------------------------------------------------------------------===//
// Control flow
//===----------------------------------------------------------------------===//

uint32_t Serializer::getOrCreateBlockID(Block *block) {
  if (uint32_t id = getBlockID(block))
    return id;
  return blockIDMap[block] = getNextID();
}

LogicalResult
Serializer::processBlock(Block *block, bool omitLabel,
                         function_ref<void()> actionBeforeTerminator) {
  LLVM_DEBUG(llvm::dbgs() << "processing block " << block << ":\n");
  LLVM_DEBUG(block->print(llvm::dbgs()));
  LLVM_DEBUG(llvm::dbgs() << '\n');
  if (!omitLabel) {
    uint32_t blockID = getOrCreateBlockID(block);
    LLVM_DEBUG(llvm::dbgs()
               << "[block] " << block << " (id = " << blockID << ")\n");

    // Emit OpLabel for this block.
    encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {blockID});
  }

  // Emit OpPhi instructions for block arguments, if any.
  if (failed(emitPhiForBlockArguments(block)))
    return failure();

  // Process each op in this block except the terminator.
  for (auto &op : llvm::make_range(block->begin(), std::prev(block->end()))) {
    if (failed(processOperation(&op)))
      return failure();
  }

  // Process the terminator.
  if (actionBeforeTerminator)
    actionBeforeTerminator();
  if (failed(processOperation(&block->back())))
    return failure();

  return success();
}

LogicalResult Serializer::emitPhiForBlockArguments(Block *block) {
  // Nothing to do if this block has no arguments or it's the entry block, which
  // always has the same arguments as the function signature.
  if (block->args_empty() || block->isEntryBlock())
    return success();

  // If the block has arguments, we need to create SPIR-V OpPhi instructions.
  // A SPIR-V OpPhi instruction is of the syntax:
  //   OpPhi | result type | result <id> | (value <id>, parent block <id>) pair
  // So we need to collect all predecessor blocks and the arguments they send
  // to this block.
  SmallVector<std::pair<Block *, Operation::operand_iterator>, 4> predecessors;
  for (Block *predecessor : block->getPredecessors()) {
    auto *terminator = predecessor->getTerminator();
    // Check whether this predecessor block contains a structured control flow
    // op. If so, the structured control flow op will be serialized to multiple
    // SPIR-V blocks. The branch op jumping to the OpPhi's block then resides in
    // the last structured control flow op's merge block.
    if (auto *merge = getLastStructuredControlFlowOpMergeBlock(predecessor))
      predecessor = merge;
    if (auto branchOp = dyn_cast<spirv::BranchOp>(terminator)) {
      predecessors.emplace_back(predecessor, branchOp.operand_begin());
    } else {
      return terminator->emitError("unimplemented terminator for Phi creation");
    }
  }

  // Then create OpPhi instruction for each of the block argument.
  for (auto argIndex : llvm::seq<unsigned>(0, block->getNumArguments())) {
    BlockArgument arg = block->getArgument(argIndex);

    // Get the type <id> and result <id> for this OpPhi instruction.
    uint32_t phiTypeID = 0;
    if (failed(processType(arg.getLoc(), arg.getType(), phiTypeID)))
      return failure();
    uint32_t phiID = getNextID();

    LLVM_DEBUG(llvm::dbgs() << "[phi] for block argument #" << argIndex << ' '
                            << arg << " (id = " << phiID << ")\n");

    SmallVector<uint32_t, 8> phiArgs;
    phiArgs.push_back(phiTypeID);
    phiArgs.push_back(phiID);

    for (auto predIndex : llvm::seq<unsigned>(0, predecessors.size())) {
      Value value = *(predecessors[predIndex].second + argIndex);
      uint32_t predBlockId = getOrCreateBlockID(predecessors[predIndex].first);
      LLVM_DEBUG(llvm::dbgs() << "[phi] use predecessor (id = " << predBlockId
                              << ") value " << value << ' ');
      // Each pair is a value <id> ...
      uint32_t valueId = getValueID(value);
      if (valueId == 0) {
        // The op generating this value hasn't been visited yet so we don't have
        // an <id> assigned yet. Record this to fix up later.
        LLVM_DEBUG(llvm::dbgs() << "(need to fix)\n");
        deferredPhiValues[value].push_back(functionBody.size() + 1 +
                                           phiArgs.size());
      } else {
        LLVM_DEBUG(llvm::dbgs() << "(id = " << valueId << ")\n");
      }
      phiArgs.push_back(valueId);
      // ... and a parent block <id>.
      phiArgs.push_back(predBlockId);
    }

    encodeInstructionInto(functionBody, spirv::Opcode::OpPhi, phiArgs);
    valueIDMap[arg] = phiID;
  }

  return success();
}

LogicalResult Serializer::processSelectionOp(spirv::SelectionOp selectionOp) {
  // Assign <id>s to all blocks so that branches inside the SelectionOp can
  // resolve properly.
  auto &body = selectionOp.body();
  for (Block &block : body)
    getOrCreateBlockID(&block);

  auto *headerBlock = selectionOp.getHeaderBlock();
  auto *mergeBlock = selectionOp.getMergeBlock();
  auto mergeID = getBlockID(mergeBlock);

  // Emit the selection header block, which dominates all other blocks, first.
  // We need to emit an OpSelectionMerge instruction before the selection header
  // block's terminator.
  auto emitSelectionMerge = [&]() {
    // TODO(antiagainst): properly support selection control here
    encodeInstructionInto(
        functionBody, spirv::Opcode::OpSelectionMerge,
        {mergeID, static_cast<uint32_t>(spirv::SelectionControl::None)});
  };
  // For structured selection, we cannot have blocks in the selection construct
  // branching to the selection header block. Entering the selection (and
  // reaching the selection header) must be from the block containing the
  // spv.selection op. If there are ops ahead of the spv.selection op in the
  // block, we can "merge" them into the selection header. So here we don't need
  // to emit a separate block; just continue with the existing block.
  if (failed(processBlock(headerBlock, /*omitLabel=*/true, emitSelectionMerge)))
    return failure();

  // Process all blocks with a depth-first visitor starting from the header
  // block. The selection header block and merge block are skipped by this
  // visitor.
  if (failed(visitInPrettyBlockOrder(
          headerBlock, [&](Block *block) { return processBlock(block); },
          /*skipHeader=*/true, /*skipBlocks=*/{mergeBlock})))
    return failure();

  // There is nothing to do for the merge block in the selection, which just
  // contains a spv._merge op, itself. But we need to have an OpLabel
  // instruction to start a new SPIR-V block for ops following this SelectionOp.
  // The block should use the <id> for the merge block.
  return encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
}

LogicalResult Serializer::processLoopOp(spirv::LoopOp loopOp) {
  // Assign <id>s to all blocks so that branches inside the LoopOp can resolve
  // properly. We don't need to assign for the entry block, which is just for
  // satisfying MLIR region's structural requirement.
  auto &body = loopOp.body();
  for (Block &block :
       llvm::make_range(std::next(body.begin(), 1), body.end())) {
    getOrCreateBlockID(&block);
  }
  auto *headerBlock = loopOp.getHeaderBlock();
  auto *continueBlock = loopOp.getContinueBlock();
  auto *mergeBlock = loopOp.getMergeBlock();
  auto headerID = getBlockID(headerBlock);
  auto continueID = getBlockID(continueBlock);
  auto mergeID = getBlockID(mergeBlock);

  // This LoopOp is in some MLIR block with preceding and following ops. In the
  // binary format, it should reside in separate SPIR-V blocks from its
  // preceding and following ops. So we need to emit unconditional branches to
  // jump to this LoopOp's SPIR-V blocks and jumping back to the normal flow
  // afterwards.
  encodeInstructionInto(functionBody, spirv::Opcode::OpBranch, {headerID});

  // We omit the LoopOp's entry block and start serialization from the loop
  // header block. The entry block should not contain any additional ops other
  // than a single spv.Branch that jumps to the loop header block. However,
  // the spv.Branch can contain additional block arguments. Those block
  // arguments must come from out of the loop using implicit capture. We will
  // need to query the <id> for the value sent and the <id> for the incoming
  // parent block. For the latter, we need to make sure this block is
  // registered. The value sent should come from the block this loop resides in.
  blockIDMap[loopOp.getEntryBlock()] =
      getBlockID(loopOp.getOperation()->getBlock());

  // Emit the loop header block, which dominates all other blocks, first. We
  // need to emit an OpLoopMerge instruction before the loop header block's
  // terminator.
  auto emitLoopMerge = [&]() {
    // TODO(antiagainst): properly support loop control here
    encodeInstructionInto(
        functionBody, spirv::Opcode::OpLoopMerge,
        {mergeID, continueID, static_cast<uint32_t>(spirv::LoopControl::None)});
  };
  if (failed(processBlock(headerBlock, /*omitLabel=*/false, emitLoopMerge)))
    return failure();

  // Process all blocks with a depth-first visitor starting from the header
  // block. The loop header block, loop continue block, and loop merge block are
  // skipped by this visitor and handled later in this function.
  if (failed(visitInPrettyBlockOrder(
          headerBlock, [&](Block *block) { return processBlock(block); },
          /*skipHeader=*/true, /*skipBlocks=*/{continueBlock, mergeBlock})))
    return failure();

  // We have handled all other blocks. Now get to the loop continue block.
  if (failed(processBlock(continueBlock)))
    return failure();

  // There is nothing to do for the merge block in the loop, which just contains
  // a spv._merge op, itself. But we need to have an OpLabel instruction to
  // start a new SPIR-V block for ops following this LoopOp. The block should
  // use the <id> for the merge block.
  return encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
}

LogicalResult Serializer::processBranchConditionalOp(
    spirv::BranchConditionalOp condBranchOp) {
  auto conditionID = getValueID(condBranchOp.condition());
  auto trueLabelID = getOrCreateBlockID(condBranchOp.getTrueBlock());
  auto falseLabelID = getOrCreateBlockID(condBranchOp.getFalseBlock());
  SmallVector<uint32_t, 5> arguments{conditionID, trueLabelID, falseLabelID};

  if (auto weights = condBranchOp.branch_weights()) {
    for (auto val : weights->getValue())
      arguments.push_back(val.cast<IntegerAttr>().getInt());
  }

  return encodeInstructionInto(functionBody, spirv::Opcode::OpBranchConditional,
                               arguments);
}

LogicalResult Serializer::processBranchOp(spirv::BranchOp branchOp) {
  return encodeInstructionInto(functionBody, spirv::Opcode::OpBranch,
                               {getOrCreateBlockID(branchOp.getTarget())});
}

//===----------------------------------------------------------------------===//
// Operation
//===----------------------------------------------------------------------===//

LogicalResult Serializer::encodeExtensionInstruction(
    Operation *op, StringRef extensionSetName, uint32_t extensionOpcode,
    ArrayRef<uint32_t> operands) {
  // Check if the extension has been imported.
  auto &setID = extendedInstSetIDMap[extensionSetName];
  if (!setID) {
    setID = getNextID();
    SmallVector<uint32_t, 16> importOperands;
    importOperands.push_back(setID);
    if (failed(
            spirv::encodeStringLiteralInto(importOperands, extensionSetName)) ||
        failed(encodeInstructionInto(
            extendedSets, spirv::Opcode::OpExtInstImport, importOperands))) {
      return failure();
    }
  }

  // The first two operands are the result type <id> and result <id>. The set
  // <id> and the opcode need to be insert after this.
  if (operands.size() < 2) {
    return op->emitError("extended instructions must have a result encoding");
  }
  SmallVector<uint32_t, 8> extInstOperands;
  extInstOperands.reserve(operands.size() + 2);
  extInstOperands.append(operands.begin(), std::next(operands.begin(), 2));
  extInstOperands.push_back(setID);
  extInstOperands.push_back(extensionOpcode);
  extInstOperands.append(std::next(operands.begin(), 2), operands.end());
  return encodeInstructionInto(functionBody, spirv::Opcode::OpExtInst,
                               extInstOperands);
}

LogicalResult Serializer::processAddressOfOp(spirv::AddressOfOp addressOfOp) {
  auto varName = addressOfOp.variable();
  auto variableID = getVariableID(varName);
  if (!variableID) {
    return addressOfOp.emitError("unknown result <id> for variable ")
           << varName;
  }
  valueIDMap[addressOfOp.pointer()] = variableID;
  return success();
}

LogicalResult
Serializer::processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp) {
  auto constName = referenceOfOp.spec_const();
  auto constID = getSpecConstID(constName);
  if (!constID) {
    return referenceOfOp.emitError(
               "unknown result <id> for specialization constant ")
           << constName;
  }
  valueIDMap[referenceOfOp.reference()] = constID;
  return success();
}

LogicalResult Serializer::processOperation(Operation *opInst) {
  LLVM_DEBUG(llvm::dbgs() << "[op] '" << opInst->getName() << "'\n");

  // First dispatch the ops that do not directly mirror an instruction from
  // the SPIR-V spec.
  return TypeSwitch<Operation *, LogicalResult>(opInst)
      .Case([&](spirv::AddressOfOp op) { return processAddressOfOp(op); })
      .Case([&](spirv::BranchOp op) { return processBranchOp(op); })
      .Case([&](spirv::BranchConditionalOp op) {
        return processBranchConditionalOp(op);
      })
      .Case([&](spirv::ConstantOp op) { return processConstantOp(op); })
      .Case([&](FuncOp op) { return processFuncOp(op); })
      .Case([&](spirv::GlobalVariableOp op) {
        return processGlobalVariableOp(op);
      })
      .Case([&](spirv::LoopOp op) { return processLoopOp(op); })
      .Case([&](spirv::ModuleEndOp) { return success(); })
      .Case([&](spirv::ReferenceOfOp op) { return processReferenceOfOp(op); })
      .Case([&](spirv::SelectionOp op) { return processSelectionOp(op); })
      .Case([&](spirv::SpecConstantOp op) { return processSpecConstantOp(op); })
      .Case([&](spirv::UndefOp op) { return processUndefOp(op); })
      .Case([&](spirv::VariableOp op) { return processVariableOp(op); })

      // Then handle all the ops that directly mirror SPIR-V instructions with
      // auto-generated methods.
      .Default(
          [&](Operation *op) { return dispatchToAutogenSerialization(op); });
}

namespace {
template <>
LogicalResult
Serializer::processOp<spirv::EntryPointOp>(spirv::EntryPointOp op) {
  SmallVector<uint32_t, 4> operands;
  // Add the ExecutionModel.
  operands.push_back(static_cast<uint32_t>(op.execution_model()));
  // Add the function <id>.
  auto funcID = getFunctionID(op.fn());
  if (!funcID) {
    return op.emitError("missing <id> for function ")
           << op.fn()
           << "; function needs to be defined before spv.EntryPoint is "
              "serialized";
  }
  operands.push_back(funcID);
  // Add the name of the function.
  spirv::encodeStringLiteralInto(operands, op.fn());

  // Add the interface values.
  if (auto interface = op.interface()) {
    for (auto var : interface.getValue()) {
      auto id = getVariableID(var.cast<FlatSymbolRefAttr>().getValue());
      if (!id) {
        return op.emitError("referencing undefined global variable."
                            "spv.EntryPoint is at the end of spv.module. All "
                            "referenced variables should already be defined");
      }
      operands.push_back(id);
    }
  }
  return encodeInstructionInto(entryPoints, spirv::Opcode::OpEntryPoint,
                               operands);
}

template <>
LogicalResult
Serializer::processOp<spirv::ControlBarrierOp>(spirv::ControlBarrierOp op) {
  StringRef argNames[] = {"execution_scope", "memory_scope",
                          "memory_semantics"};
  SmallVector<uint32_t, 3> operands;

  for (auto argName : argNames) {
    auto argIntAttr = op.getAttrOfType<IntegerAttr>(argName);
    auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
    if (!operand) {
      return failure();
    }
    operands.push_back(operand);
  }

  return encodeInstructionInto(functionBody, spirv::Opcode::OpControlBarrier,
                               operands);
}

template <>
LogicalResult
Serializer::processOp<spirv::ExecutionModeOp>(spirv::ExecutionModeOp op) {
  SmallVector<uint32_t, 4> operands;
  // Add the function <id>.
  auto funcID = getFunctionID(op.fn());
  if (!funcID) {
    return op.emitError("missing <id> for function ")
           << op.fn()
           << "; function needs to be serialized before ExecutionModeOp is "
              "serialized";
  }
  operands.push_back(funcID);
  // Add the ExecutionMode.
  operands.push_back(static_cast<uint32_t>(op.execution_mode()));

  // Serialize values if any.
  auto values = op.values();
  if (values) {
    for (auto &intVal : values.getValue()) {
      operands.push_back(static_cast<uint32_t>(
          intVal.cast<IntegerAttr>().getValue().getZExtValue()));
    }
  }
  return encodeInstructionInto(executionModes, spirv::Opcode::OpExecutionMode,
                               operands);
}

template <>
LogicalResult
Serializer::processOp<spirv::MemoryBarrierOp>(spirv::MemoryBarrierOp op) {
  StringRef argNames[] = {"memory_scope", "memory_semantics"};
  SmallVector<uint32_t, 2> operands;

  for (auto argName : argNames) {
    auto argIntAttr = op.getAttrOfType<IntegerAttr>(argName);
    auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
    if (!operand) {
      return failure();
    }
    operands.push_back(operand);
  }

  return encodeInstructionInto(functionBody, spirv::Opcode::OpMemoryBarrier,
                               operands);
}

template <>
LogicalResult
Serializer::processOp<spirv::FunctionCallOp>(spirv::FunctionCallOp op) {
  auto funcName = op.callee();
  uint32_t resTypeID = 0;

  SmallVector<Type, 1> resultTypes(op.getResultTypes());
  if (failed(processType(op.getLoc(),
                         (resultTypes.empty() ? getVoidType() : resultTypes[0]),
                         resTypeID))) {
    return failure();
  }

  auto funcID = getOrCreateFunctionID(funcName);
  auto funcCallID = getNextID();
  SmallVector<uint32_t, 8> operands{resTypeID, funcCallID, funcID};

  for (auto value : op.arguments()) {
    auto valueID = getValueID(value);
    assert(valueID && "cannot find a value for spv.FunctionCall");
    operands.push_back(valueID);
  }

  if (!resultTypes.empty()) {
    valueIDMap[op.getResult(0)] = funcCallID;
  }

  return encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionCall,
                               operands);
}

// Pull in auto-generated Serializer::dispatchToAutogenSerialization() and
// various Serializer::processOp<...>() specializations.
#define GET_SERIALIZATION_FNS
#include "mlir/Dialect/SPIRV/SPIRVSerialization.inc"
} // namespace

LogicalResult Serializer::emitDecoration(uint32_t target,
                                         spirv::Decoration decoration,
                                         ArrayRef<uint32_t> params) {
  uint32_t wordCount = 3 + params.size();
  decorations.push_back(
      spirv::getPrefixedOpcode(wordCount, spirv::Opcode::OpDecorate));
  decorations.push_back(target);
  decorations.push_back(static_cast<uint32_t>(decoration));
  decorations.append(params.begin(), params.end());
  return success();
}

LogicalResult spirv::serialize(spirv::ModuleOp module,
                               SmallVectorImpl<uint32_t> &binary) {
  Serializer serializer(module);

  if (failed(serializer.serialize()))
    return failure();

  LLVM_DEBUG(serializer.printValueIDMap(llvm::dbgs()));

  serializer.collect(binary);
  return success();
}