LoopOps.cpp
15.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
//===- Ops.cpp - Loop MLIR Operations -------------------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Value.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "mlir/Transforms/SideEffectsInterface.h"
using namespace mlir;
using namespace mlir::loop;
//===----------------------------------------------------------------------===//
// LoopOpsDialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
struct LoopSideEffectsInterface : public SideEffectsDialectInterface {
using SideEffectsDialectInterface::SideEffectsDialectInterface;
SideEffecting isSideEffecting(Operation *op) const override {
if (isa<IfOp>(op) || isa<ForOp>(op)) {
return Recursive;
}
return SideEffectsDialectInterface::isSideEffecting(op);
};
};
} // namespace
//===----------------------------------------------------------------------===//
// LoopOpsDialect
//===----------------------------------------------------------------------===//
LoopOpsDialect::LoopOpsDialect(MLIRContext *context)
: Dialect(getDialectNamespace(), context) {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/LoopOps/LoopOps.cpp.inc"
>();
addInterfaces<LoopSideEffectsInterface>();
}
//===----------------------------------------------------------------------===//
// ForOp
//===----------------------------------------------------------------------===//
void ForOp::build(Builder *builder, OperationState &result, Value lb, Value ub,
Value step) {
result.addOperands({lb, ub, step});
Region *bodyRegion = result.addRegion();
ForOp::ensureTerminator(*bodyRegion, *builder, result.location);
bodyRegion->front().addArgument(builder->getIndexType());
}
static LogicalResult verify(ForOp op) {
if (auto cst = dyn_cast_or_null<ConstantIndexOp>(op.step().getDefiningOp()))
if (cst.getValue() <= 0)
return op.emitOpError("constant step operand must be positive");
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (body->getNumArguments() != 1 || !body->getArgument(0).getType().isIndex())
return op.emitOpError("expected body to have a single index argument for "
"the induction variable");
return success();
}
static void print(OpAsmPrinter &p, ForOp op) {
p << op.getOperationName() << " " << op.getInductionVar() << " = "
<< op.lowerBound() << " to " << op.upperBound() << " step " << op.step();
p.printRegion(op.region(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
p.printOptionalAttrDict(op.getAttrs());
}
static ParseResult parseForOp(OpAsmParser &parser, OperationState &result) {
auto &builder = parser.getBuilder();
OpAsmParser::OperandType inductionVariable, lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
return failure();
// Parse loop bounds.
Type indexType = builder.getIndexType();
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.resolveOperand(step, indexType, result.operands))
return failure();
// Parse the body region.
Region *body = result.addRegion();
if (parser.parseRegion(*body, inductionVariable, indexType))
return failure();
ForOp::ensureTerminator(*body, builder, result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
Region &ForOp::getLoopBody() { return region(); }
bool ForOp::isDefinedOutsideOfLoop(Value value) {
return !region().isAncestor(value.getParentRegion());
}
LogicalResult ForOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto op : ops)
op->moveBefore(this->getOperation());
return success();
}
ForOp mlir::loop::getForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ForOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingInst = ivArg.getOwner()->getParentOp();
return dyn_cast_or_null<ForOp>(containingInst);
}
//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//
void IfOp::build(Builder *builder, OperationState &result, Value cond,
bool withElseRegion) {
result.addOperands(cond);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
IfOp::ensureTerminator(*thenRegion, *builder, result.location);
if (withElseRegion)
IfOp::ensureTerminator(*elseRegion, *builder, result.location);
}
static LogicalResult verify(IfOp op) {
// Verify that the entry of each child region does not have arguments.
for (auto ®ion : op.getOperation()->getRegions()) {
if (region.empty())
continue;
for (auto &b : region)
if (b.getNumArguments() != 0)
return op.emitOpError(
"requires that child entry blocks have no arguments");
}
return success();
}
static ParseResult parseIfOp(OpAsmParser &parser, OperationState &result) {
// Create the regions for 'then'.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::OperandType cond;
Type i1Type = builder.getIntegerType(1);
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
// If we find an 'else' keyword then parse the 'else' region.
if (!parser.parseOptionalKeyword("else")) {
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, IfOp op) {
p << IfOp::getOperationName() << " " << op.condition();
p.printRegion(op.thenRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
// Print the 'else' regions if it exists and has a block.
auto &elseRegion = op.elseRegion();
if (!elseRegion.empty()) {
p << " else";
p.printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
p.printOptionalAttrDict(op.getAttrs());
}
//===----------------------------------------------------------------------===//
// ParallelOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ParallelOp op) {
// Check that there is at least one value in lowerBound, upperBound and step.
// It is sufficient to test only step, because it is ensured already that the
// number of elements in lowerBound, upperBound and step are the same.
Operation::operand_range stepValues = op.step();
if (stepValues.empty())
return op.emitOpError(
"needs at least one tuple element for lowerBound, upperBound and step");
// Check whether all constant step values are positive.
for (Value stepValue : stepValues)
if (auto cst = dyn_cast_or_null<ConstantIndexOp>(stepValue.getDefiningOp()))
if (cst.getValue() <= 0)
return op.emitOpError("constant step operand must be positive");
// Check that the body defines the same number of block arguments as the
// number of tuple elements in step.
Block *body = &op.body().front();
if (body->getNumArguments() != stepValues.size())
return op.emitOpError(
"expects the same number of induction variables as bound and step "
"values");
for (auto arg : body->getArguments())
if (!arg.getType().isIndex())
return op.emitOpError(
"expects arguments for the induction variable to be of index type");
// Check that the number of results is the same as the number of ReduceOps.
SmallVector<ReduceOp, 4> reductions(body->getOps<ReduceOp>());
if (op.results().size() != reductions.size())
return op.emitOpError(
"expects number of results to be the same as number of reductions");
// Check that the types of the results and reductions are the same.
for (auto resultAndReduce : llvm::zip(op.results(), reductions)) {
auto resultType = std::get<0>(resultAndReduce).getType();
auto reduceOp = std::get<1>(resultAndReduce);
auto reduceType = reduceOp.operand().getType();
if (resultType != reduceType)
return reduceOp.emitOpError()
<< "expects type of reduce to be the same as result type: "
<< resultType;
}
return success();
}
static ParseResult parseParallelOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
// Parse an opening `(` followed by induction variables followed by `)`
SmallVector<OpAsmParser::OperandType, 4> ivs;
if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren))
return failure();
// Parse loop bounds.
SmallVector<OpAsmParser::OperandType, 4> lower;
if (parser.parseEqual() ||
parser.parseOperandList(lower, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(lower, builder.getIndexType(), result.operands))
return failure();
SmallVector<OpAsmParser::OperandType, 4> upper;
if (parser.parseKeyword("to") ||
parser.parseOperandList(upper, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(upper, builder.getIndexType(), result.operands))
return failure();
// Parse step value.
SmallVector<OpAsmParser::OperandType, 4> steps;
if (parser.parseKeyword("step") ||
parser.parseOperandList(steps, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(steps, builder.getIndexType(), result.operands))
return failure();
// Now parse the body.
Region *body = result.addRegion();
SmallVector<Type, 4> types(ivs.size(), builder.getIndexType());
if (parser.parseRegion(*body, ivs, types))
return failure();
// Parse attributes and optional results (in case there is a reduce).
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseOptionalColonTypeList(result.types))
return failure();
// Add a terminator if none was parsed.
ForOp::ensureTerminator(*body, builder, result.location);
return success();
}
static void print(OpAsmPrinter &p, ParallelOp op) {
p << op.getOperationName() << " (";
p.printOperands(op.body().front().getArguments());
p << ") = (" << op.lowerBound() << ") to (" << op.upperBound() << ") step ("
<< op.step() << ")";
p.printRegion(op.body(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(op.getAttrs());
if (!op.results().empty())
p << " : " << op.getResultTypes();
}
//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReduceOp op) {
// The region of a ReduceOp has two arguments of the same type as its operand.
auto type = op.operand().getType();
Block &block = op.reductionOperator().front();
if (block.empty())
return op.emitOpError("the block inside reduce should not be empty");
if (block.getNumArguments() != 2 ||
llvm::any_of(block.getArguments(), [&](const BlockArgument &arg) {
return arg.getType() != type;
}))
return op.emitOpError()
<< "expects two arguments to reduce block of type " << type;
// Check that the block is terminated by a ReduceReturnOp.
if (!isa<ReduceReturnOp>(block.getTerminator()))
return op.emitOpError("the block inside reduce should be terminated with a "
"'loop.reduce.return' op");
return success();
}
static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) {
// Parse an opening `(` followed by the reduced value followed by `)`
OpAsmParser::OperandType operand;
if (parser.parseLParen() || parser.parseOperand(operand) ||
parser.parseRParen())
return failure();
// Now parse the body.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
// And the type of the operand (and also what reduce computes on).
Type resultType;
if (parser.parseColonType(resultType) ||
parser.resolveOperand(operand, resultType, result.operands))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ReduceOp op) {
p << op.getOperationName() << "(" << op.operand() << ") ";
p.printRegion(op.reductionOperator());
p << " : " << op.operand().getType();
}
//===----------------------------------------------------------------------===//
// ReduceReturnOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReduceReturnOp op) {
// The type of the return value should be the same type as the type of the
// operand of the enclosing ReduceOp.
auto reduceOp = cast<ReduceOp>(op.getParentOp());
Type reduceType = reduceOp.operand().getType();
if (reduceType != op.result().getType())
return op.emitOpError() << "needs to have type " << reduceType
<< " (the type of the enclosing ReduceOp)";
return success();
}
static ParseResult parseReduceReturnOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType operand;
Type resultType;
if (parser.parseOperand(operand) || parser.parseColonType(resultType) ||
parser.resolveOperand(operand, resultType, result.operands))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ReduceReturnOp op) {
p << op.getOperationName() << " " << op.result() << " : "
<< op.result().getType();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/LoopOps/LoopOps.cpp.inc"