GPUDialect.cpp
32.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the GPU kernel-related dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/FunctionImplementation.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
using namespace mlir;
using namespace mlir::gpu;
//===----------------------------------------------------------------------===//
// GPUDialect
//===----------------------------------------------------------------------===//
StringRef GPUDialect::getDialectName() { return "gpu"; }
bool GPUDialect::isKernel(Operation *op) {
UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
return static_cast<bool>(isKernelAttr);
}
GPUDialect::GPUDialect(MLIRContext *context)
: Dialect(getDialectName(), context) {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/GPUOps.cpp.inc"
>();
}
LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
NamedAttribute attr) {
if (!attr.second.isa<UnitAttr>() ||
!attr.first.is(getContainerModuleAttrName()))
return success();
auto module = dyn_cast<ModuleOp>(op);
if (!module)
return op->emitError("expected '")
<< getContainerModuleAttrName() << "' attribute to be attached to '"
<< ModuleOp::getOperationName() << '\'';
auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
// Ignore launches that are nested more or less deep than functions in the
// module we are currently checking.
if (!launchOp.getParentOp() ||
launchOp.getParentOp()->getParentOp() != module)
return success();
// Ignore launch ops with missing attributes here. The errors will be
// reported by the verifiers of those ops.
if (!launchOp.getAttrOfType<StringAttr>(
LaunchFuncOp::getKernelAttrName()) ||
!launchOp.getAttrOfType<SymbolRefAttr>(
LaunchFuncOp::getKernelModuleAttrName()))
return success();
// Check that `launch_func` refers to a well-formed GPU kernel module.
StringRef kernelModuleName = launchOp.getKernelModuleName();
auto kernelModule = module.lookupSymbol<ModuleOp>(kernelModuleName);
if (!kernelModule)
return launchOp.emitOpError()
<< "kernel module '" << kernelModuleName << "' is undefined";
if (!kernelModule.getAttrOfType<UnitAttr>(
GPUDialect::getKernelModuleAttrName()))
return launchOp.emitOpError("module '")
<< kernelModuleName << "' is missing the '"
<< GPUDialect::getKernelModuleAttrName() << "' attribute";
// Check that `launch_func` refers to a well-formed kernel function.
StringRef kernelName = launchOp.kernel();
Operation *kernelFunc = kernelModule.lookupSymbol(kernelName);
auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc);
auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc);
if (!kernelGPUFunction && !kernelLLVMFunction)
return launchOp.emitOpError("kernel function '")
<< kernelName << "' is undefined";
if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
GPUDialect::getKernelFuncAttrName()))
return launchOp.emitOpError("kernel function is missing the '")
<< GPUDialect::getKernelFuncAttrName() << "' attribute";
unsigned actualNumArguments = launchOp.getNumKernelOperands();
unsigned expectedNumArguments = kernelLLVMFunction
? kernelLLVMFunction.getNumArguments()
: kernelGPUFunction.getNumArguments();
if (expectedNumArguments != actualNumArguments)
return launchOp.emitOpError("got ")
<< actualNumArguments << " kernel operands but expected "
<< expectedNumArguments;
// Due to the ordering of the current impl of lowering and LLVMLowering,
// type checks need to be temporarily disabled.
// TODO(ntv,zinenko,herhut): reactivate checks once "changing gpu.launchFunc
// to encode target module" has landed.
// auto functionType = kernelFunc.getType();
// for (unsigned i = 0; i < numKernelFuncArgs; ++i) {
// if (getKernelOperand(i).getType() != functionType.getInput(i)) {
// return emitOpError("type of function argument ")
// << i << " does not match";
// }
// }
return success();
});
return walkResult.wasInterrupted() ? failure() : success();
}
template <typename T> static LogicalResult verifyIndexOp(T op) {
auto dimension = op.dimension();
if (dimension != "x" && dimension != "y" && dimension != "z")
return op.emitError("dimension \"") << dimension << "\" is invalid";
return success();
}
static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) {
if (allReduce.body().empty() != allReduce.op().hasValue())
return allReduce.emitError(
"expected either an op attribute or a non-empty body");
if (!allReduce.body().empty()) {
if (allReduce.body().front().getNumArguments() != 2)
return allReduce.emitError("expected two region arguments");
for (auto argument : allReduce.body().front().getArguments()) {
if (argument.getType() != allReduce.getType())
return allReduce.emitError("incorrect region argument type");
}
unsigned yieldCount = 0;
for (Block &block : allReduce.body()) {
if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
if (yield.getNumOperands() != 1)
return allReduce.emitError("expected one gpu.yield operand");
if (yield.getOperand(0).getType() != allReduce.getType())
return allReduce.emitError("incorrect gpu.yield type");
++yieldCount;
}
}
if (yieldCount == 0)
return allReduce.emitError("expected gpu.yield op in region");
}
return success();
}
static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) {
auto type = shuffleOp.value().getType();
if (shuffleOp.result().getType() != type) {
return shuffleOp.emitOpError()
<< "requires the same type for value operand and result";
}
if (!type.isIntOrFloat() || type.getIntOrFloatBitWidth() != 32) {
return shuffleOp.emitOpError()
<< "requires value operand type to be f32 or i32";
}
return success();
}
static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) {
p << ShuffleOp::getOperationName() << ' ' << op.getOperands() << ' '
<< op.mode() << " : " << op.value().getType();
}
static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) {
SmallVector<OpAsmParser::OperandType, 3> operandInfo;
if (parser.parseOperandList(operandInfo, 3))
return failure();
StringRef mode;
if (parser.parseKeyword(&mode))
return failure();
state.addAttribute("mode", parser.getBuilder().getStringAttr(mode));
Type valueType;
Type int32Type = parser.getBuilder().getIntegerType(32);
Type int1Type = parser.getBuilder().getI1Type();
if (parser.parseColonType(valueType) ||
parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type},
parser.getCurrentLocation(), state.operands) ||
parser.addTypesToList({valueType, int1Type}, state.types))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// LaunchOp
//===----------------------------------------------------------------------===//
void LaunchOp::build(Builder *builder, OperationState &result, Value gridSizeX,
Value gridSizeY, Value gridSizeZ, Value blockSizeX,
Value blockSizeY, Value blockSizeZ, ValueRange operands) {
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands(
{gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ});
result.addOperands(operands);
// Create a kernel body region with kNumConfigRegionAttributes + N arguments,
// where the first kNumConfigRegionAttributes arguments have `index` type and
// the rest have the same types as the data operands.
Region *kernelRegion = result.addRegion();
Block *body = new Block();
body->addArguments(
std::vector<Type>(kNumConfigRegionAttributes, builder->getIndexType()));
body->addArguments(llvm::to_vector<4>(operands.getTypes()));
kernelRegion->push_back(body);
}
KernelDim3 LaunchOp::getBlockIds() {
assert(!body().getBlocks().empty() && "FuncOp body must not be empty.");
auto args = body().getBlocks().front().getArguments();
return KernelDim3{args[0], args[1], args[2]};
}
KernelDim3 LaunchOp::getThreadIds() {
assert(!body().getBlocks().empty() && "FuncOp body must not be empty.");
auto args = body().getBlocks().front().getArguments();
return KernelDim3{args[3], args[4], args[5]};
}
KernelDim3 LaunchOp::getGridSize() {
assert(!body().getBlocks().empty() && "FuncOp body must not be empty.");
auto args = body().getBlocks().front().getArguments();
return KernelDim3{args[6], args[7], args[8]};
}
KernelDim3 LaunchOp::getBlockSize() {
assert(!body().getBlocks().empty() && "FuncOp body must not be empty.");
auto args = body().getBlocks().front().getArguments();
return KernelDim3{args[9], args[10], args[11]};
}
LaunchOp::operand_range LaunchOp::getKernelOperandValues() {
return llvm::drop_begin(getOperands(), kNumConfigOperands);
}
LaunchOp::operand_type_range LaunchOp::getKernelOperandTypes() {
return llvm::drop_begin(getOperandTypes(), kNumConfigOperands);
}
KernelDim3 LaunchOp::getGridSizeOperandValues() {
return KernelDim3{getOperand(0), getOperand(1), getOperand(2)};
}
KernelDim3 LaunchOp::getBlockSizeOperandValues() {
return KernelDim3{getOperand(3), getOperand(4), getOperand(5)};
}
iterator_range<Block::args_iterator> LaunchOp::getKernelArguments() {
auto args = body().getBlocks().front().getArguments();
return llvm::drop_begin(args, LaunchOp::kNumConfigRegionAttributes);
}
static LogicalResult verify(LaunchOp op) {
// Kernel launch takes kNumConfigOperands leading operands for grid/block
// sizes and transforms them into kNumConfigRegionAttributes region arguments
// for block/thread identifiers and grid/block sizes.
if (!op.body().empty()) {
Block &entryBlock = op.body().front();
if (entryBlock.getNumArguments() !=
LaunchOp::kNumConfigOperands + op.getNumOperands())
return op.emitOpError("unexpected number of region arguments");
}
// Block terminators without successors are expected to exit the kernel region
// and must be `gpu.launch`.
for (Block &block : op.body()) {
if (block.empty())
continue;
if (block.back().getNumSuccessors() != 0)
continue;
if (!isa<gpu::ReturnOp>(&block.back())) {
return block.back()
.emitError("expected 'gpu.terminator' or a terminator with "
"successors")
.attachNote(op.getLoc())
<< "in '" << LaunchOp::getOperationName() << "' body region";
}
}
return success();
}
// Pretty-print the kernel grid/block size assignment as
// (%iter-x, %iter-y, %iter-z) in
// (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
// where %size-* and %iter-* will correspond to the body region arguments.
static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
ValueRange operands, KernelDim3 ids) {
p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
p << size.x << " = " << operands[0] << ", ";
p << size.y << " = " << operands[1] << ", ";
p << size.z << " = " << operands[2] << ')';
}
static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) {
ValueRange operands = op.getOperands();
// Print the launch configuration.
p << LaunchOp::getOperationName() << ' ' << op.getBlocksKeyword();
printSizeAssignment(p, op.getGridSize(), operands.take_front(3),
op.getBlockIds());
p << ' ' << op.getThreadsKeyword();
printSizeAssignment(p, op.getBlockSize(), operands.slice(3, 3),
op.getThreadIds());
// From now on, the first kNumConfigOperands operands corresponding to grid
// and block sizes are irrelevant, so we can drop them.
operands = operands.drop_front(LaunchOp::kNumConfigOperands);
// Print the data argument remapping.
if (!op.body().empty() && !operands.empty()) {
p << ' ' << op.getArgsKeyword() << '(';
Block *entryBlock = &op.body().front();
interleaveComma(llvm::seq<int>(0, operands.size()), p, [&](int i) {
p << entryBlock->getArgument(LaunchOp::kNumConfigRegionAttributes + i)
<< " = " << operands[i];
});
p << ") ";
}
// Print the types of data arguments.
if (!operands.empty())
p << ": " << operands.getTypes();
p.printRegion(op.body(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(op.getAttrs());
}
// Parse the size assignment blocks for blocks and threads. These have the form
// (%region_arg, %region_arg, %region_arg) in
// (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
// where %region_arg are percent-identifiers for the region arguments to be
// introduced further (SSA defs), and %operand are percent-identifiers for the
// SSA value uses.
static ParseResult
parseSizeAssignment(OpAsmParser &parser,
MutableArrayRef<OpAsmParser::OperandType> sizes,
MutableArrayRef<OpAsmParser::OperandType> regionSizes,
MutableArrayRef<OpAsmParser::OperandType> indices) {
assert(indices.size() == 3 && "space for three indices expected");
SmallVector<OpAsmParser::OperandType, 3> args;
if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3,
OpAsmParser::Delimiter::Paren) ||
parser.parseKeyword("in") || parser.parseLParen())
return failure();
std::move(args.begin(), args.end(), indices.begin());
for (int i = 0; i < 3; ++i) {
if (i != 0 && parser.parseComma())
return failure();
if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() ||
parser.parseOperand(sizes[i]))
return failure();
}
return parser.parseRParen();
}
// Parses a Launch operation.
// operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
// `threads` `(` ssa-id-list `)` `in` ssa-reassignment
// (`args` ssa-reassignment `:` type-list)?
// region attr-dict?
// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) {
// Sizes of the grid and block.
SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes(
LaunchOp::kNumConfigOperands);
MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes);
// Actual (data) operands passed to the kernel.
SmallVector<OpAsmParser::OperandType, 4> dataOperands;
// Region arguments to be created.
SmallVector<OpAsmParser::OperandType, 16> regionArgs(
LaunchOp::kNumConfigRegionAttributes);
MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs);
// Parse the size assignment segments: the first segment assigns grid sizes
// and defines values for block identifiers; the second segment assigns block
// sizes and defines values for thread identifiers. In the region argument
// list, identifiers precede sizes, and block-related values precede
// thread-related values.
if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
parseSizeAssignment(parser, sizesRef.take_front(3),
regionArgsRef.slice(6, 3),
regionArgsRef.slice(0, 3)) ||
parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
parseSizeAssignment(parser, sizesRef.drop_front(3),
regionArgsRef.slice(9, 3),
regionArgsRef.slice(3, 3)) ||
parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
result.operands))
return failure();
// If kernel argument renaming segment is present, parse it. When present,
// the segment should have at least one element. If this segment is present,
// so is the trailing type list. Parse it as well and use the parsed types
// to resolve the operands passed to the kernel arguments.
SmallVector<Type, 4> dataTypes;
if (!parser.parseOptionalKeyword(LaunchOp::getArgsKeyword())) {
llvm::SMLoc argsLoc = parser.getCurrentLocation();
regionArgs.push_back({});
dataOperands.push_back({});
if (parser.parseLParen() || parser.parseRegionArgument(regionArgs.back()) ||
parser.parseEqual() || parser.parseOperand(dataOperands.back()))
return failure();
while (!parser.parseOptionalComma()) {
regionArgs.push_back({});
dataOperands.push_back({});
if (parser.parseRegionArgument(regionArgs.back()) ||
parser.parseEqual() || parser.parseOperand(dataOperands.back()))
return failure();
}
if (parser.parseRParen() || parser.parseColonTypeList(dataTypes) ||
parser.resolveOperands(dataOperands, dataTypes, argsLoc,
result.operands))
return failure();
}
// Introduce the body region and parse it. The region has
// kNumConfigRegionAttributes leading arguments that correspond to
// block/thread identifiers and grid/block sizes, all of the `index` type.
// Follow the actual kernel arguments.
Type index = parser.getBuilder().getIndexType();
dataTypes.insert(dataTypes.begin(), LaunchOp::kNumConfigRegionAttributes,
index);
Region *body = result.addRegion();
return failure(parser.parseRegion(*body, regionArgs, dataTypes) ||
parser.parseOptionalAttrDict(result.attributes));
}
void LaunchOp::eraseKernelArgument(unsigned index) {
Block &entryBlock = body().front();
assert(index < entryBlock.getNumArguments() - kNumConfigRegionAttributes &&
"kernel argument index overflow");
entryBlock.eraseArgument(kNumConfigRegionAttributes + index);
getOperation()->eraseOperand(kNumConfigOperands + index);
}
namespace {
// Clone any known constants passed as operands to the kernel into its body.
class PropagateConstantBounds : public OpRewritePattern<LaunchOp> {
using OpRewritePattern<LaunchOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(LaunchOp launchOp,
PatternRewriter &rewriter) const override {
rewriter.startRootUpdate(launchOp);
PatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&launchOp.body().front());
// Traverse operands passed to kernel and check if some of them are known
// constants. If so, clone the constant operation inside the kernel region
// and use it instead of passing the value from the parent region. Perform
// the traversal in the inverse order to simplify index arithmetics when
// dropping arguments.
auto operands = launchOp.getKernelOperandValues();
auto kernelArgs = launchOp.getKernelArguments();
bool found = false;
for (unsigned i = operands.size(); i > 0; --i) {
unsigned index = i - 1;
Value operand = operands[index];
if (!isa_and_nonnull<ConstantOp>(operand.getDefiningOp()))
continue;
found = true;
Value internalConstant =
rewriter.clone(*operand.getDefiningOp())->getResult(0);
Value kernelArg = *std::next(kernelArgs.begin(), index);
kernelArg.replaceAllUsesWith(internalConstant);
launchOp.eraseKernelArgument(index);
}
if (!found) {
rewriter.cancelRootUpdate(launchOp);
return matchFailure();
}
rewriter.finalizeRootUpdate(launchOp);
return matchSuccess();
}
};
} // end namespace
void LaunchOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<PropagateConstantBounds>(context);
}
//===----------------------------------------------------------------------===//
// LaunchFuncOp
//===----------------------------------------------------------------------===//
void LaunchFuncOp::build(Builder *builder, OperationState &result,
GPUFuncOp kernelFunc, Value gridSizeX, Value gridSizeY,
Value gridSizeZ, Value blockSizeX, Value blockSizeY,
Value blockSizeZ, ValueRange kernelOperands) {
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands(
{gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ});
result.addOperands(kernelOperands);
result.addAttribute(getKernelAttrName(),
builder->getStringAttr(kernelFunc.getName()));
auto kernelModule = kernelFunc.getParentOfType<ModuleOp>();
if (Optional<StringRef> kernelModuleName = kernelModule.getName())
result.addAttribute(getKernelModuleAttrName(),
builder->getSymbolRefAttr(*kernelModuleName));
}
void LaunchFuncOp::build(Builder *builder, OperationState &result,
GPUFuncOp kernelFunc, KernelDim3 gridSize,
KernelDim3 blockSize, ValueRange kernelOperands) {
build(builder, result, kernelFunc, gridSize.x, gridSize.y, gridSize.z,
blockSize.x, blockSize.y, blockSize.z, kernelOperands);
}
StringRef LaunchFuncOp::kernel() {
return getAttrOfType<StringAttr>(getKernelAttrName()).getValue();
}
unsigned LaunchFuncOp::getNumKernelOperands() {
return getNumOperands() - kNumConfigOperands;
}
StringRef LaunchFuncOp::getKernelModuleName() {
return getAttrOfType<SymbolRefAttr>(getKernelModuleAttrName())
.getRootReference();
}
Value LaunchFuncOp::getKernelOperand(unsigned i) {
return getOperation()->getOperand(i + kNumConfigOperands);
}
KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
return KernelDim3{getOperand(0), getOperand(1), getOperand(2)};
}
KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
return KernelDim3{getOperand(3), getOperand(4), getOperand(5)};
}
static LogicalResult verify(LaunchFuncOp op) {
auto module = op.getParentOfType<ModuleOp>();
if (!module)
return op.emitOpError("expected to belong to a module");
if (!module.getAttrOfType<UnitAttr>(GPUDialect::getContainerModuleAttrName()))
return op.emitOpError(
"expected the closest surrounding module to have the '" +
GPUDialect::getContainerModuleAttrName() + "' attribute");
auto kernelAttr = op.getAttrOfType<StringAttr>(op.getKernelAttrName());
if (!kernelAttr)
return op.emitOpError("string attribute '" + op.getKernelAttrName() +
"' must be specified");
auto kernelModuleAttr =
op.getAttrOfType<SymbolRefAttr>(op.getKernelModuleAttrName());
if (!kernelModuleAttr)
return op.emitOpError("symbol reference attribute '" +
op.getKernelModuleAttrName() + "' must be specified");
return success();
}
//===----------------------------------------------------------------------===//
// GPUFuncOp
//===----------------------------------------------------------------------===//
/// Adds a workgroup attribution to "op" of the MemRef type with the given shape
/// and element type.
Value GPUFuncOp::addWorkgroupAttribution(ArrayRef<int64_t> shape,
Type elementType) {
unsigned pos = getNumFuncArguments() + getNumWorkgroupAttributions();
Block &bodyBlock = body().front();
Value attribution = bodyBlock.insertArgument(
std::next(bodyBlock.args_begin(), pos),
MemRefType::get(shape, elementType, /*affineMapComposition=*/{},
GPUDialect::getWorkgroupAddressSpace()));
auto numWorkgroupBuffersAttr =
getAttrOfType<IntegerAttr>(getNumWorkgroupAttributionsAttrName());
setAttr(getNumWorkgroupAttributionsAttrName(),
IntegerAttr::get(numWorkgroupBuffersAttr.getType(),
numWorkgroupBuffersAttr.getValue() + 1));
return attribution;
}
void GPUFuncOp::build(Builder *builder, OperationState &result, StringRef name,
FunctionType type, ArrayRef<Type> workgroupAttributions,
ArrayRef<Type> privateAttributions,
ArrayRef<NamedAttribute> attrs) {
result.addAttribute(SymbolTable::getSymbolAttrName(),
builder->getStringAttr(name));
result.addAttribute(getTypeAttrName(), TypeAttr::get(type));
result.addAttribute(getNumWorkgroupAttributionsAttrName(),
builder->getI64IntegerAttr(workgroupAttributions.size()));
result.addAttributes(attrs);
Region *body = result.addRegion();
Block *entryBlock = new Block;
entryBlock->addArguments(type.getInputs());
entryBlock->addArguments(workgroupAttributions);
entryBlock->addArguments(privateAttributions);
body->getBlocks().push_back(entryBlock);
}
/// Parses a GPU function memory attribution.
///
/// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
/// (`private` `(` ssa-id-and-type-list `)`)?
///
/// Note that this function parses only one of the two similar parts, with the
/// keyword provided as argument.
static ParseResult
parseAttributions(OpAsmParser &parser, StringRef keyword,
SmallVectorImpl<OpAsmParser::OperandType> &args,
SmallVectorImpl<Type> &argTypes) {
// If we could not parse the keyword, just assume empty list and succeed.
if (failed(parser.parseOptionalKeyword(keyword)))
return success();
if (failed(parser.parseLParen()))
return failure();
// Early exit for an empty list.
if (succeeded(parser.parseOptionalRParen()))
return success();
do {
OpAsmParser::OperandType arg;
Type type;
if (parser.parseRegionArgument(arg) || parser.parseColonType(type))
return failure();
args.push_back(arg);
argTypes.push_back(type);
} while (succeeded(parser.parseOptionalComma()));
return parser.parseRParen();
}
/// Parses a GPU function.
///
/// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
/// (`->` function-result-list)? memory-attribution `kernel`?
/// function-attributes? region
static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 8> entryArgs;
SmallVector<SmallVector<NamedAttribute, 2>, 1> argAttrs;
SmallVector<SmallVector<NamedAttribute, 2>, 1> resultAttrs;
SmallVector<Type, 8> argTypes;
SmallVector<Type, 4> resultTypes;
bool isVariadic;
// Parse the function name.
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
auto signatureLocation = parser.getCurrentLocation();
if (failed(impl::parseFunctionSignature(
parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs,
isVariadic, resultTypes, resultAttrs)))
return failure();
if (entryArgs.empty() && !argTypes.empty())
return parser.emitError(signatureLocation)
<< "gpu.func requires named arguments";
// Construct the function type. More types will be added to the region, but
// not to the functiont type.
Builder &builder = parser.getBuilder();
auto type = builder.getFunctionType(argTypes, resultTypes);
result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type));
// Parse workgroup memory attributions.
if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
entryArgs, argTypes)))
return failure();
// Store the number of operands we just parsed as the number of workgroup
// memory attributions.
unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs();
result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(numWorkgroupAttrs));
// Parse private memory attributions.
if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(),
entryArgs, argTypes)))
return failure();
// Parse the kernel attribute if present.
if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
result.addAttribute(GPUDialect::getKernelFuncAttrName(),
builder.getUnitAttr());
// Parse attributes.
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
return failure();
mlir::impl::addArgAndResultAttrs(builder, result, argAttrs, resultAttrs);
// Parse the region. If no argument names were provided, take all names
// (including those of attributions) from the entry block.
auto *body = result.addRegion();
return parser.parseRegion(*body, entryArgs, argTypes);
}
static void printAttributions(OpAsmPrinter &p, StringRef keyword,
ArrayRef<BlockArgument> values) {
if (values.empty())
return;
p << ' ' << keyword << '(';
interleaveComma(values, p,
[&p](BlockArgument v) { p << v << " : " << v.getType(); });
p << ')';
}
/// Prints a GPU Func op.
static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) {
p << GPUFuncOp::getOperationName() << ' ';
p.printSymbolName(op.getName());
FunctionType type = op.getType();
impl::printFunctionSignature(p, op.getOperation(), type.getInputs(),
/*isVariadic=*/false, type.getResults());
printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions());
printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions());
if (op.isKernel())
p << ' ' << op.getKernelKeyword();
impl::printFunctionAttributes(p, op.getOperation(), type.getNumInputs(),
type.getNumResults(),
{op.getNumWorkgroupAttributionsAttrName(),
GPUDialect::getKernelFuncAttrName()});
p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false);
}
void GPUFuncOp::setType(FunctionType newType) {
auto oldType = getType();
assert(newType.getNumResults() == oldType.getNumResults() &&
"unimplemented: changes to the number of results");
SmallVector<char, 16> nameBuf;
for (int i = newType.getNumInputs(), e = oldType.getNumInputs(); i < e; i++)
removeAttr(getArgAttrName(i, nameBuf));
setAttr(getTypeAttrName(), TypeAttr::get(newType));
}
/// Hook for FunctionLike verifier.
LogicalResult GPUFuncOp::verifyType() {
Type type = getTypeAttr().getValue();
if (!type.isa<FunctionType>())
return emitOpError("requires '" + getTypeAttrName() +
"' attribute of function type");
return success();
}
static LogicalResult verifyAttributions(Operation *op,
ArrayRef<BlockArgument> attributions,
unsigned memorySpace) {
for (Value v : attributions) {
auto type = v.getType().dyn_cast<MemRefType>();
if (!type)
return op->emitOpError() << "expected memref type in attribution";
if (type.getMemorySpace() != memorySpace) {
return op->emitOpError()
<< "expected memory space " << memorySpace << " in attribution";
}
}
return success();
}
/// Verifies the body of the function.
LogicalResult GPUFuncOp::verifyBody() {
unsigned numFuncArguments = getNumArguments();
unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
unsigned numBlockArguments = front().getNumArguments();
if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
return emitOpError() << "expected at least "
<< numFuncArguments + numWorkgroupAttributions
<< " arguments to body region";
ArrayRef<Type> funcArgTypes = getType().getInputs();
for (unsigned i = 0; i < numFuncArguments; ++i) {
Type blockArgType = front().getArgument(i).getType();
if (funcArgTypes[i] != blockArgType)
return emitOpError() << "expected body region argument #" << i
<< " to be of type " << funcArgTypes[i] << ", got "
<< blockArgType;
}
if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
GPUDialect::getWorkgroupAddressSpace())) ||
failed(verifyAttributions(getOperation(), getPrivateAttributions(),
GPUDialect::getPrivateAddressSpace())))
return failure();
return success();
}
// Namespace avoids ambiguous ReturnOpOperandAdaptor.
namespace mlir {
namespace gpu {
#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/GPUOps.cpp.inc"
} // namespace gpu
} // namespace mlir