AffineStructures.cpp
107 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
//===- AffineStructures.cpp - MLIR Affine Structures Class-----------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Structures for affine/polyhedral analysis of MLIR functions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "affine-structures"
using namespace mlir;
using llvm::SmallDenseMap;
using llvm::SmallDenseSet;
namespace {
// See comments for SimpleAffineExprFlattener.
// An AffineExprFlattener extends a SimpleAffineExprFlattener by recording
// constraint information associated with mod's, floordiv's, and ceildiv's
// in FlatAffineConstraints 'localVarCst'.
struct AffineExprFlattener : public SimpleAffineExprFlattener {
public:
// Constraints connecting newly introduced local variables (for mod's and
// div's) to existing (dimensional and symbolic) ones. These are always
// inequalities.
FlatAffineConstraints localVarCst;
AffineExprFlattener(unsigned nDims, unsigned nSymbols, MLIRContext *ctx)
: SimpleAffineExprFlattener(nDims, nSymbols) {
localVarCst.reset(nDims, nSymbols, /*numLocals=*/0);
}
private:
// Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
// The local identifier added is always a floordiv of a pure add/mul affine
// function of other identifiers, coefficients of which are specified in
// `dividend' and with respect to the positive constant `divisor'. localExpr
// is the simplified tree expression (AffineExpr) corresponding to the
// quantifier.
void addLocalFloorDivId(ArrayRef<int64_t> dividend, int64_t divisor,
AffineExpr localExpr) override {
SimpleAffineExprFlattener::addLocalFloorDivId(dividend, divisor, localExpr);
// Update localVarCst.
localVarCst.addLocalFloorDiv(dividend, divisor);
}
};
} // end anonymous namespace
// Flattens the expressions in map. Returns failure if 'expr' was unable to be
// flattened (i.e., semi-affine expressions not handled yet).
static LogicalResult
getFlattenedAffineExprs(ArrayRef<AffineExpr> exprs, unsigned numDims,
unsigned numSymbols,
std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (exprs.empty()) {
localVarCst->reset(numDims, numSymbols);
return success();
}
AffineExprFlattener flattener(numDims, numSymbols, exprs[0].getContext());
// Use the same flattener to simplify each expression successively. This way
// local identifiers / expressions are shared.
for (auto expr : exprs) {
if (!expr.isPureAffine())
return failure();
flattener.walkPostOrder(expr);
}
assert(flattener.operandExprStack.size() == exprs.size());
flattenedExprs->clear();
flattenedExprs->assign(flattener.operandExprStack.begin(),
flattener.operandExprStack.end());
if (localVarCst) {
localVarCst->clearAndCopyFrom(flattener.localVarCst);
}
return success();
}
// Flattens 'expr' into 'flattenedExpr'. Returns failure if 'expr' was unable to
// be flattened (semi-affine expressions not handled yet).
LogicalResult
mlir::getFlattenedAffineExpr(AffineExpr expr, unsigned numDims,
unsigned numSymbols,
SmallVectorImpl<int64_t> *flattenedExpr,
FlatAffineConstraints *localVarCst) {
std::vector<SmallVector<int64_t, 8>> flattenedExprs;
LogicalResult ret = ::getFlattenedAffineExprs({expr}, numDims, numSymbols,
&flattenedExprs, localVarCst);
*flattenedExpr = flattenedExprs[0];
return ret;
}
/// Flattens the expressions in map. Returns failure if 'expr' was unable to be
/// flattened (i.e., semi-affine expressions not handled yet).
LogicalResult mlir::getFlattenedAffineExprs(
AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (map.getNumResults() == 0) {
localVarCst->reset(map.getNumDims(), map.getNumSymbols());
return success();
}
return ::getFlattenedAffineExprs(map.getResults(), map.getNumDims(),
map.getNumSymbols(), flattenedExprs,
localVarCst);
}
LogicalResult mlir::getFlattenedAffineExprs(
IntegerSet set, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
FlatAffineConstraints *localVarCst) {
if (set.getNumConstraints() == 0) {
localVarCst->reset(set.getNumDims(), set.getNumSymbols());
return success();
}
return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(),
set.getNumSymbols(), flattenedExprs,
localVarCst);
}
//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//
MutableAffineMap::MutableAffineMap(AffineMap map)
: numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
// A map always has at least 1 result by construction
context(map.getResult(0).getContext()) {
for (auto result : map.getResults())
results.push_back(result);
}
void MutableAffineMap::reset(AffineMap map) {
results.clear();
numDims = map.getNumDims();
numSymbols = map.getNumSymbols();
// A map always has at least 1 result by construction
context = map.getResult(0).getContext();
for (auto result : map.getResults())
results.push_back(result);
}
bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
if (results[idx].isMultipleOf(factor))
return true;
// TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to
// complete this (for a more powerful analysis).
return false;
}
// Simplifies the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
// TODO(ntv): functional-style map
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
}
}
AffineMap MutableAffineMap::getAffineMap() const {
return AffineMap::get(numDims, numSymbols, results);
}
MutableIntegerSet::MutableIntegerSet(IntegerSet set, MLIRContext *context)
: numDims(set.getNumDims()), numSymbols(set.getNumSymbols()) {
// TODO(bondhugula)
}
// Universal set.
MutableIntegerSet::MutableIntegerSet(unsigned numDims, unsigned numSymbols,
MLIRContext *context)
: numDims(numDims), numSymbols(numSymbols) {}
//===----------------------------------------------------------------------===//
// AffineValueMap.
//===----------------------------------------------------------------------===//
AffineValueMap::AffineValueMap(AffineMap map, ArrayRef<Value> operands,
ArrayRef<Value> results)
: map(map), operands(operands.begin(), operands.end()),
results(results.begin(), results.end()) {}
AffineValueMap::AffineValueMap(AffineApplyOp applyOp)
: map(applyOp.getAffineMap()),
operands(applyOp.operand_begin(), applyOp.operand_end()) {
results.push_back(applyOp.getResult());
}
AffineValueMap::AffineValueMap(AffineBound bound)
: map(bound.getMap()),
operands(bound.operand_begin(), bound.operand_end()) {}
void AffineValueMap::reset(AffineMap map, ArrayRef<Value> operands,
ArrayRef<Value> results) {
this->map.reset(map);
this->operands.assign(operands.begin(), operands.end());
this->results.assign(results.begin(), results.end());
}
void AffineValueMap::difference(const AffineValueMap &a,
const AffineValueMap &b, AffineValueMap *res) {
assert(a.getNumResults() == b.getNumResults() && "invalid inputs");
// Fully compose A's map + operands.
auto aMap = a.getAffineMap();
SmallVector<Value, 4> aOperands(a.getOperands().begin(),
a.getOperands().end());
fullyComposeAffineMapAndOperands(&aMap, &aOperands);
// Use the affine apply normalizer to get B's map into A's coordinate space.
AffineApplyNormalizer normalizer(aMap, aOperands);
SmallVector<Value, 4> bOperands(b.getOperands().begin(),
b.getOperands().end());
auto bMap = b.getAffineMap();
normalizer.normalize(&bMap, &bOperands);
assert(std::equal(bOperands.begin(), bOperands.end(),
normalizer.getOperands().begin()) &&
"operands are expected to be the same after normalization");
// Construct the difference expressions.
SmallVector<AffineExpr, 4> diffExprs;
diffExprs.reserve(a.getNumResults());
for (unsigned i = 0, e = bMap.getNumResults(); i < e; ++i)
diffExprs.push_back(normalizer.getAffineMap().getResult(i) -
bMap.getResult(i));
auto diffMap = AffineMap::get(normalizer.getNumDims(),
normalizer.getNumSymbols(), diffExprs);
canonicalizeMapAndOperands(&diffMap, &bOperands);
diffMap = simplifyAffineMap(diffMap);
res->reset(diffMap, bOperands);
}
// Returns true and sets 'indexOfMatch' if 'valueToMatch' is found in
// 'valuesToSearch' beginning at 'indexStart'. Returns false otherwise.
static bool findIndex(Value valueToMatch, ArrayRef<Value> valuesToSearch,
unsigned indexStart, unsigned *indexOfMatch) {
unsigned size = valuesToSearch.size();
for (unsigned i = indexStart; i < size; ++i) {
if (valueToMatch == valuesToSearch[i]) {
*indexOfMatch = i;
return true;
}
}
return false;
}
inline bool AffineValueMap::isMultipleOf(unsigned idx, int64_t factor) const {
return map.isMultipleOf(idx, factor);
}
/// This method uses the invariant that operands are always positionally aligned
/// with the AffineDimExpr in the underlying AffineMap.
bool AffineValueMap::isFunctionOf(unsigned idx, Value value) const {
unsigned index;
if (!findIndex(value, operands, /*indexStart=*/0, &index)) {
return false;
}
auto expr = const_cast<AffineValueMap *>(this)->getAffineMap().getResult(idx);
// TODO(ntv): this is better implemented on a flattened representation.
// At least for now it is conservative.
return expr.isFunctionOfDim(index);
}
Value AffineValueMap::getOperand(unsigned i) const {
return static_cast<Value>(operands[i]);
}
ArrayRef<Value> AffineValueMap::getOperands() const {
return ArrayRef<Value>(operands);
}
AffineMap AffineValueMap::getAffineMap() const { return map.getAffineMap(); }
AffineValueMap::~AffineValueMap() {}
//===----------------------------------------------------------------------===//
// FlatAffineConstraints.
//===----------------------------------------------------------------------===//
// Copy constructor.
FlatAffineConstraints::FlatAffineConstraints(
const FlatAffineConstraints &other) {
numReservedCols = other.numReservedCols;
numDims = other.getNumDimIds();
numSymbols = other.getNumSymbolIds();
numIds = other.getNumIds();
auto otherIds = other.getIds();
ids.reserve(numReservedCols);
ids.append(otherIds.begin(), otherIds.end());
unsigned numReservedEqualities = other.getNumReservedEqualities();
unsigned numReservedInequalities = other.getNumReservedInequalities();
equalities.reserve(numReservedEqualities * numReservedCols);
inequalities.reserve(numReservedInequalities * numReservedCols);
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
addInequality(other.getInequality(r));
}
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
addEquality(other.getEquality(r));
}
}
// Clones this object.
std::unique_ptr<FlatAffineConstraints> FlatAffineConstraints::clone() const {
return std::make_unique<FlatAffineConstraints>(*this);
}
// Construct from an IntegerSet.
FlatAffineConstraints::FlatAffineConstraints(IntegerSet set)
: numReservedCols(set.getNumInputs() + 1),
numIds(set.getNumDims() + set.getNumSymbols()), numDims(set.getNumDims()),
numSymbols(set.getNumSymbols()) {
equalities.reserve(set.getNumEqualities() * numReservedCols);
inequalities.reserve(set.getNumInequalities() * numReservedCols);
ids.resize(numIds, None);
// Flatten expressions and add them to the constraint system.
std::vector<SmallVector<int64_t, 8>> flatExprs;
FlatAffineConstraints localVarCst;
if (failed(getFlattenedAffineExprs(set, &flatExprs, &localVarCst))) {
assert(false && "flattening unimplemented for semi-affine integer sets");
return;
}
assert(flatExprs.size() == set.getNumConstraints());
for (unsigned l = 0, e = localVarCst.getNumLocalIds(); l < e; l++) {
addLocalId(getNumLocalIds());
}
for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
const auto &flatExpr = flatExprs[i];
assert(flatExpr.size() == getNumCols());
if (set.getEqFlags()[i]) {
addEquality(flatExpr);
} else {
addInequality(flatExpr);
}
}
// Add the other constraints involving local id's from flattening.
append(localVarCst);
}
void FlatAffineConstraints::reset(unsigned numReservedInequalities,
unsigned numReservedEqualities,
unsigned newNumReservedCols,
unsigned newNumDims, unsigned newNumSymbols,
unsigned newNumLocals,
ArrayRef<Value> idArgs) {
assert(newNumReservedCols >= newNumDims + newNumSymbols + newNumLocals + 1 &&
"minimum 1 column");
numReservedCols = newNumReservedCols;
numDims = newNumDims;
numSymbols = newNumSymbols;
numIds = numDims + numSymbols + newNumLocals;
assert(idArgs.empty() || idArgs.size() == numIds);
clearConstraints();
if (numReservedEqualities >= 1)
equalities.reserve(newNumReservedCols * numReservedEqualities);
if (numReservedInequalities >= 1)
inequalities.reserve(newNumReservedCols * numReservedInequalities);
if (idArgs.empty()) {
ids.resize(numIds, None);
} else {
ids.assign(idArgs.begin(), idArgs.end());
}
}
void FlatAffineConstraints::reset(unsigned newNumDims, unsigned newNumSymbols,
unsigned newNumLocals,
ArrayRef<Value> idArgs) {
reset(0, 0, newNumDims + newNumSymbols + newNumLocals + 1, newNumDims,
newNumSymbols, newNumLocals, idArgs);
}
void FlatAffineConstraints::append(const FlatAffineConstraints &other) {
assert(other.getNumCols() == getNumCols());
assert(other.getNumDimIds() == getNumDimIds());
assert(other.getNumSymbolIds() == getNumSymbolIds());
inequalities.reserve(inequalities.size() +
other.getNumInequalities() * numReservedCols);
equalities.reserve(equalities.size() +
other.getNumEqualities() * numReservedCols);
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
addInequality(other.getInequality(r));
}
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
addEquality(other.getEquality(r));
}
}
void FlatAffineConstraints::addLocalId(unsigned pos) {
addId(IdKind::Local, pos);
}
void FlatAffineConstraints::addDimId(unsigned pos, Value id) {
addId(IdKind::Dimension, pos, id);
}
void FlatAffineConstraints::addSymbolId(unsigned pos, Value id) {
addId(IdKind::Symbol, pos, id);
}
/// Adds a dimensional identifier. The added column is initialized to
/// zero.
void FlatAffineConstraints::addId(IdKind kind, unsigned pos, Value id) {
if (kind == IdKind::Dimension) {
assert(pos <= getNumDimIds());
} else if (kind == IdKind::Symbol) {
assert(pos <= getNumSymbolIds());
} else {
assert(pos <= getNumLocalIds());
}
unsigned oldNumReservedCols = numReservedCols;
// Check if a resize is necessary.
if (getNumCols() + 1 > numReservedCols) {
equalities.resize(getNumEqualities() * (getNumCols() + 1));
inequalities.resize(getNumInequalities() * (getNumCols() + 1));
numReservedCols++;
}
int absolutePos;
if (kind == IdKind::Dimension) {
absolutePos = pos;
numDims++;
} else if (kind == IdKind::Symbol) {
absolutePos = pos + getNumDimIds();
numSymbols++;
} else {
absolutePos = pos + getNumDimIds() + getNumSymbolIds();
}
numIds++;
// Note that getNumCols() now will already return the new size, which will be
// at least one.
int numInequalities = static_cast<int>(getNumInequalities());
int numEqualities = static_cast<int>(getNumEqualities());
int numCols = static_cast<int>(getNumCols());
for (int r = numInequalities - 1; r >= 0; r--) {
for (int c = numCols - 2; c >= 0; c--) {
if (c < absolutePos)
atIneq(r, c) = inequalities[r * oldNumReservedCols + c];
else
atIneq(r, c + 1) = inequalities[r * oldNumReservedCols + c];
}
atIneq(r, absolutePos) = 0;
}
for (int r = numEqualities - 1; r >= 0; r--) {
for (int c = numCols - 2; c >= 0; c--) {
// All values in column absolutePositions < absolutePos have the same
// coordinates in the 2-d view of the coefficient buffer.
if (c < absolutePos)
atEq(r, c) = equalities[r * oldNumReservedCols + c];
else
// Those at absolutePosition >= absolutePos, get a shifted
// absolutePosition.
atEq(r, c + 1) = equalities[r * oldNumReservedCols + c];
}
// Initialize added dimension to zero.
atEq(r, absolutePos) = 0;
}
// If an 'id' is provided, insert it; otherwise use None.
if (id) {
ids.insert(ids.begin() + absolutePos, id);
} else {
ids.insert(ids.begin() + absolutePos, None);
}
assert(ids.size() == getNumIds());
}
/// Checks if two constraint systems are in the same space, i.e., if they are
/// associated with the same set of identifiers, appearing in the same order.
static bool areIdsAligned(const FlatAffineConstraints &A,
const FlatAffineConstraints &B) {
return A.getNumDimIds() == B.getNumDimIds() &&
A.getNumSymbolIds() == B.getNumSymbolIds() &&
A.getNumIds() == B.getNumIds() && A.getIds().equals(B.getIds());
}
/// Calls areIdsAligned to check if two constraint systems have the same set
/// of identifiers in the same order.
bool FlatAffineConstraints::areIdsAlignedWithOther(
const FlatAffineConstraints &other) {
return areIdsAligned(*this, other);
}
/// Checks if the SSA values associated with `cst''s identifiers are unique.
static bool LLVM_ATTRIBUTE_UNUSED
areIdsUnique(const FlatAffineConstraints &cst) {
SmallPtrSet<Value, 8> uniqueIds;
for (auto id : cst.getIds()) {
if (id.hasValue() && !uniqueIds.insert(id.getValue()).second)
return false;
}
return true;
}
// Swap the posA^th identifier with the posB^th identifier.
static void swapId(FlatAffineConstraints *A, unsigned posA, unsigned posB) {
assert(posA < A->getNumIds() && "invalid position A");
assert(posB < A->getNumIds() && "invalid position B");
if (posA == posB)
return;
for (unsigned r = 0, e = A->getNumInequalities(); r < e; r++) {
std::swap(A->atIneq(r, posA), A->atIneq(r, posB));
}
for (unsigned r = 0, e = A->getNumEqualities(); r < e; r++) {
std::swap(A->atEq(r, posA), A->atEq(r, posB));
}
std::swap(A->getId(posA), A->getId(posB));
}
/// Merge and align the identifiers of A and B starting at 'offset', so that
/// both constraint systems get the union of the contained identifiers that is
/// dimension-wise and symbol-wise unique; both constraint systems are updated
/// so that they have the union of all identifiers, with A's original
/// identifiers appearing first followed by any of B's identifiers that didn't
/// appear in A. Local identifiers of each system are by design separate/local
/// and are placed one after other (A's followed by B's).
// Eg: Input: A has ((%i %j) [%M %N]) and B has (%k, %j) [%P, %N, %M])
// Output: both A, B have (%i, %j, %k) [%M, %N, %P]
//
static void mergeAndAlignIds(unsigned offset, FlatAffineConstraints *A,
FlatAffineConstraints *B) {
assert(offset <= A->getNumDimIds() && offset <= B->getNumDimIds());
// A merge/align isn't meaningful if a cst's ids aren't distinct.
assert(areIdsUnique(*A) && "A's id values aren't unique");
assert(areIdsUnique(*B) && "B's id values aren't unique");
assert(std::all_of(A->getIds().begin() + offset,
A->getIds().begin() + A->getNumDimAndSymbolIds(),
[](Optional<Value> id) { return id.hasValue(); }));
assert(std::all_of(B->getIds().begin() + offset,
B->getIds().begin() + B->getNumDimAndSymbolIds(),
[](Optional<Value> id) { return id.hasValue(); }));
// Place local id's of A after local id's of B.
for (unsigned l = 0, e = A->getNumLocalIds(); l < e; l++) {
B->addLocalId(0);
}
for (unsigned t = 0, e = B->getNumLocalIds() - A->getNumLocalIds(); t < e;
t++) {
A->addLocalId(A->getNumLocalIds());
}
SmallVector<Value, 4> aDimValues, aSymValues;
A->getIdValues(offset, A->getNumDimIds(), &aDimValues);
A->getIdValues(A->getNumDimIds(), A->getNumDimAndSymbolIds(), &aSymValues);
{
// Merge dims from A into B.
unsigned d = offset;
for (auto aDimValue : aDimValues) {
unsigned loc;
if (B->findId(aDimValue, &loc)) {
assert(loc >= offset && "A's dim appears in B's aligned range");
assert(loc < B->getNumDimIds() &&
"A's dim appears in B's non-dim position");
swapId(B, d, loc);
} else {
B->addDimId(d);
B->setIdValue(d, aDimValue);
}
d++;
}
// Dimensions that are in B, but not in A, are added at the end.
for (unsigned t = A->getNumDimIds(), e = B->getNumDimIds(); t < e; t++) {
A->addDimId(A->getNumDimIds());
A->setIdValue(A->getNumDimIds() - 1, B->getIdValue(t));
}
}
{
// Merge symbols: merge A's symbols into B first.
unsigned s = B->getNumDimIds();
for (auto aSymValue : aSymValues) {
unsigned loc;
if (B->findId(aSymValue, &loc)) {
assert(loc >= B->getNumDimIds() && loc < B->getNumDimAndSymbolIds() &&
"A's symbol appears in B's non-symbol position");
swapId(B, s, loc);
} else {
B->addSymbolId(s - B->getNumDimIds());
B->setIdValue(s, aSymValue);
}
s++;
}
// Symbols that are in B, but not in A, are added at the end.
for (unsigned t = A->getNumDimAndSymbolIds(),
e = B->getNumDimAndSymbolIds();
t < e; t++) {
A->addSymbolId(A->getNumSymbolIds());
A->setIdValue(A->getNumDimAndSymbolIds() - 1, B->getIdValue(t));
}
}
assert(areIdsAligned(*A, *B) && "IDs expected to be aligned");
}
// Call 'mergeAndAlignIds' to align constraint systems of 'this' and 'other'.
void FlatAffineConstraints::mergeAndAlignIdsWithOther(
unsigned offset, FlatAffineConstraints *other) {
mergeAndAlignIds(offset, this, other);
}
// This routine may add additional local variables if the flattened expression
// corresponding to the map has such variables due to mod's, ceildiv's, and
// floordiv's in it.
LogicalResult FlatAffineConstraints::composeMap(const AffineValueMap *vMap) {
std::vector<SmallVector<int64_t, 8>> flatExprs;
FlatAffineConstraints localCst;
if (failed(getFlattenedAffineExprs(vMap->getAffineMap(), &flatExprs,
&localCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "composition unimplemented for semi-affine maps\n");
return failure();
}
assert(flatExprs.size() == vMap->getNumResults());
// Add localCst information.
if (localCst.getNumLocalIds() > 0) {
localCst.setIdValues(0, /*end=*/localCst.getNumDimAndSymbolIds(),
/*values=*/vMap->getOperands());
// Align localCst and this.
mergeAndAlignIds(/*offset=*/0, &localCst, this);
// Finally, append localCst to this constraint set.
append(localCst);
}
// Add dimensions corresponding to the map's results.
for (unsigned t = 0, e = vMap->getNumResults(); t < e; t++) {
// TODO: Consider using a batched version to add a range of IDs.
addDimId(0);
}
// We add one equality for each result connecting the result dim of the map to
// the other identifiers.
// For eg: if the expression is 16*i0 + i1, and this is the r^th
// iteration/result of the value map, we are adding the equality:
// d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we
// add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
const auto &flatExpr = flatExprs[r];
assert(flatExpr.size() >= vMap->getNumOperands() + 1);
// eqToAdd is the equality corresponding to the flattened affine expression.
SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
// Set the coefficient for this result to one.
eqToAdd[r] = 1;
// Dims and symbols.
for (unsigned i = 0, e = vMap->getNumOperands(); i < e; i++) {
unsigned loc;
bool ret = findId(vMap->getOperand(i), &loc);
assert(ret && "value map's id can't be found");
(void)ret;
// Negate 'eq[r]' since the newly added dimension will be set to this one.
eqToAdd[loc] = -flatExpr[i];
}
// Local vars common to eq and localCst are at the beginning.
unsigned j = getNumDimIds() + getNumSymbolIds();
unsigned end = flatExpr.size() - 1;
for (unsigned i = vMap->getNumOperands(); i < end; i++, j++) {
eqToAdd[j] = -flatExpr[i];
}
// Constant term.
eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];
// Add the equality connecting the result of the map to this constraint set.
addEquality(eqToAdd);
}
return success();
}
// Similar to composeMap except that no Value's need be associated with the
// constraint system nor are they looked at -- since the dimensions and
// symbols of 'other' are expected to correspond 1:1 to 'this' system. It
// is thus not convenient to share code with composeMap.
LogicalResult FlatAffineConstraints::composeMatchingMap(AffineMap other) {
assert(other.getNumDims() == getNumDimIds() && "dim mismatch");
assert(other.getNumSymbols() == getNumSymbolIds() && "symbol mismatch");
std::vector<SmallVector<int64_t, 8>> flatExprs;
FlatAffineConstraints localCst;
if (failed(getFlattenedAffineExprs(other, &flatExprs, &localCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "composition unimplemented for semi-affine maps\n");
return failure();
}
assert(flatExprs.size() == other.getNumResults());
// Add localCst information.
if (localCst.getNumLocalIds() > 0) {
// Place local id's of A after local id's of B.
for (unsigned l = 0, e = localCst.getNumLocalIds(); l < e; l++) {
addLocalId(0);
}
// Finally, append localCst to this constraint set.
append(localCst);
}
// Add dimensions corresponding to the map's results.
for (unsigned t = 0, e = other.getNumResults(); t < e; t++) {
addDimId(0);
}
// We add one equality for each result connecting the result dim of the map to
// the other identifiers.
// For eg: if the expression is 16*i0 + i1, and this is the r^th
// iteration/result of the value map, we are adding the equality:
// d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we
// add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
const auto &flatExpr = flatExprs[r];
assert(flatExpr.size() >= other.getNumInputs() + 1);
// eqToAdd is the equality corresponding to the flattened affine expression.
SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
// Set the coefficient for this result to one.
eqToAdd[r] = 1;
// Dims and symbols.
for (unsigned i = 0, f = other.getNumInputs(); i < f; i++) {
// Negate 'eq[r]' since the newly added dimension will be set to this one.
eqToAdd[e + i] = -flatExpr[i];
}
// Local vars common to eq and localCst are at the beginning.
unsigned j = getNumDimIds() + getNumSymbolIds();
unsigned end = flatExpr.size() - 1;
for (unsigned i = other.getNumInputs(); i < end; i++, j++) {
eqToAdd[j] = -flatExpr[i];
}
// Constant term.
eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];
// Add the equality connecting the result of the map to this constraint set.
addEquality(eqToAdd);
}
return success();
}
// Turn a dimension into a symbol.
static void turnDimIntoSymbol(FlatAffineConstraints *cst, Value id) {
unsigned pos;
if (cst->findId(id, &pos) && pos < cst->getNumDimIds()) {
swapId(cst, pos, cst->getNumDimIds() - 1);
cst->setDimSymbolSeparation(cst->getNumSymbolIds() + 1);
}
}
// Turn a symbol into a dimension.
static void turnSymbolIntoDim(FlatAffineConstraints *cst, Value id) {
unsigned pos;
if (cst->findId(id, &pos) && pos >= cst->getNumDimIds() &&
pos < cst->getNumDimAndSymbolIds()) {
swapId(cst, pos, cst->getNumDimIds());
cst->setDimSymbolSeparation(cst->getNumSymbolIds() - 1);
}
}
// Changes all symbol identifiers which are loop IVs to dim identifiers.
void FlatAffineConstraints::convertLoopIVSymbolsToDims() {
// Gather all symbols which are loop IVs.
SmallVector<Value, 4> loopIVs;
for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++) {
if (ids[i].hasValue() && getForInductionVarOwner(ids[i].getValue()))
loopIVs.push_back(ids[i].getValue());
}
// Turn each symbol in 'loopIVs' into a dim identifier.
for (auto iv : loopIVs) {
turnSymbolIntoDim(this, iv);
}
}
void FlatAffineConstraints::addInductionVarOrTerminalSymbol(Value id) {
if (containsId(id))
return;
// Caller is expected to fully compose map/operands if necessary.
assert((isTopLevelValue(id) || isForInductionVar(id)) &&
"non-terminal symbol / loop IV expected");
// Outer loop IVs could be used in forOp's bounds.
if (auto loop = getForInductionVarOwner(id)) {
addDimId(getNumDimIds(), id);
if (failed(this->addAffineForOpDomain(loop)))
LLVM_DEBUG(
loop.emitWarning("failed to add domain info to constraint system"));
return;
}
// Add top level symbol.
addSymbolId(getNumSymbolIds(), id);
// Check if the symbol is a constant.
if (auto constOp = dyn_cast_or_null<ConstantIndexOp>(id.getDefiningOp()))
setIdToConstant(id, constOp.getValue());
}
LogicalResult FlatAffineConstraints::addAffineForOpDomain(AffineForOp forOp) {
unsigned pos;
// Pre-condition for this method.
if (!findId(forOp.getInductionVar(), &pos)) {
assert(false && "Value not found");
return failure();
}
int64_t step = forOp.getStep();
if (step != 1) {
if (!forOp.hasConstantLowerBound())
forOp.emitWarning("domain conservatively approximated");
else {
// Add constraints for the stride.
// (iv - lb) % step = 0 can be written as:
// (iv - lb) - step * q = 0 where q = (iv - lb) / step.
// Add local variable 'q' and add the above equality.
// The first constraint is q = (iv - lb) floordiv step
SmallVector<int64_t, 8> dividend(getNumCols(), 0);
int64_t lb = forOp.getConstantLowerBound();
dividend[pos] = 1;
dividend.back() -= lb;
addLocalFloorDiv(dividend, step);
// Second constraint: (iv - lb) - step * q = 0.
SmallVector<int64_t, 8> eq(getNumCols(), 0);
eq[pos] = 1;
eq.back() -= lb;
// For the local var just added above.
eq[getNumCols() - 2] = -step;
addEquality(eq);
}
}
if (forOp.hasConstantLowerBound()) {
addConstantLowerBound(pos, forOp.getConstantLowerBound());
} else {
// Non-constant lower bound case.
SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands().begin(),
forOp.getLowerBoundOperands().end());
if (failed(addLowerOrUpperBound(pos, forOp.getLowerBoundMap(), lbOperands,
/*eq=*/false, /*lower=*/true)))
return failure();
}
if (forOp.hasConstantUpperBound()) {
addConstantUpperBound(pos, forOp.getConstantUpperBound() - 1);
return success();
}
// Non-constant upper bound case.
SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands().begin(),
forOp.getUpperBoundOperands().end());
return addLowerOrUpperBound(pos, forOp.getUpperBoundMap(), ubOperands,
/*eq=*/false, /*lower=*/false);
}
// Searches for a constraint with a non-zero coefficient at 'colIdx' in
// equality (isEq=true) or inequality (isEq=false) constraints.
// Returns true and sets row found in search in 'rowIdx'.
// Returns false otherwise.
static bool
findConstraintWithNonZeroAt(const FlatAffineConstraints &constraints,
unsigned colIdx, bool isEq, unsigned *rowIdx) {
auto at = [&](unsigned rowIdx) -> int64_t {
return isEq ? constraints.atEq(rowIdx, colIdx)
: constraints.atIneq(rowIdx, colIdx);
};
unsigned e =
isEq ? constraints.getNumEqualities() : constraints.getNumInequalities();
for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
if (at(*rowIdx) != 0) {
return true;
}
}
return false;
}
// Normalizes the coefficient values across all columns in 'rowIDx' by their
// GCD in equality or inequality constraints as specified by 'isEq'.
template <bool isEq>
static void normalizeConstraintByGCD(FlatAffineConstraints *constraints,
unsigned rowIdx) {
auto at = [&](unsigned colIdx) -> int64_t {
return isEq ? constraints->atEq(rowIdx, colIdx)
: constraints->atIneq(rowIdx, colIdx);
};
uint64_t gcd = std::abs(at(0));
for (unsigned j = 1, e = constraints->getNumCols(); j < e; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(at(j)));
}
if (gcd > 0 && gcd != 1) {
for (unsigned j = 0, e = constraints->getNumCols(); j < e; ++j) {
int64_t v = at(j) / static_cast<int64_t>(gcd);
isEq ? constraints->atEq(rowIdx, j) = v
: constraints->atIneq(rowIdx, j) = v;
}
}
}
void FlatAffineConstraints::normalizeConstraintsByGCD() {
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
normalizeConstraintByGCD</*isEq=*/true>(this, i);
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
normalizeConstraintByGCD</*isEq=*/false>(this, i);
}
}
bool FlatAffineConstraints::hasConsistentState() const {
if (inequalities.size() != getNumInequalities() * numReservedCols)
return false;
if (equalities.size() != getNumEqualities() * numReservedCols)
return false;
if (ids.size() != getNumIds())
return false;
// Catches errors where numDims, numSymbols, numIds aren't consistent.
if (numDims > numIds || numSymbols > numIds || numDims + numSymbols > numIds)
return false;
return true;
}
/// Checks all rows of equality/inequality constraints for trivial
/// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced
/// after elimination. Returns 'true' if an invalid constraint is found;
/// 'false' otherwise.
bool FlatAffineConstraints::hasInvalidConstraint() const {
assert(hasConsistentState());
auto check = [&](bool isEq) -> bool {
unsigned numCols = getNumCols();
unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
for (unsigned i = 0, e = numRows; i < e; ++i) {
unsigned j;
for (j = 0; j < numCols - 1; ++j) {
int64_t v = isEq ? atEq(i, j) : atIneq(i, j);
// Skip rows with non-zero variable coefficients.
if (v != 0)
break;
}
if (j < numCols - 1) {
continue;
}
// Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
// Example invalid constraints include: '1 == 0' or '-1 >= 0'
int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
if ((isEq && v != 0) || (!isEq && v < 0)) {
return true;
}
}
return false;
};
if (check(/*isEq=*/true))
return true;
return check(/*isEq=*/false);
}
// Eliminate identifier from constraint at 'rowIdx' based on coefficient at
// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
// updated as they have already been eliminated.
static void eliminateFromConstraint(FlatAffineConstraints *constraints,
unsigned rowIdx, unsigned pivotRow,
unsigned pivotCol, unsigned elimColStart,
bool isEq) {
// Skip if equality 'rowIdx' if same as 'pivotRow'.
if (isEq && rowIdx == pivotRow)
return;
auto at = [&](unsigned i, unsigned j) -> int64_t {
return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
};
int64_t leadCoeff = at(rowIdx, pivotCol);
// Skip if leading coefficient at 'rowIdx' is already zero.
if (leadCoeff == 0)
return;
int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol);
int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff);
int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff));
int64_t rowMultiplier = lcm / std::abs(leadCoeff);
unsigned numCols = constraints->getNumCols();
for (unsigned j = 0; j < numCols; ++j) {
// Skip updating column 'j' if it was just eliminated.
if (j >= elimColStart && j < pivotCol)
continue;
int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) +
rowMultiplier * at(rowIdx, j);
isEq ? constraints->atEq(rowIdx, j) = v
: constraints->atIneq(rowIdx, j) = v;
}
}
// Remove coefficients in column range [colStart, colLimit) in place.
// This removes in data in the specified column range, and copies any
// remaining valid data into place.
static void shiftColumnsToLeft(FlatAffineConstraints *constraints,
unsigned colStart, unsigned colLimit,
bool isEq) {
assert(colLimit <= constraints->getNumIds());
if (colLimit <= colStart)
return;
unsigned numCols = constraints->getNumCols();
unsigned numRows = isEq ? constraints->getNumEqualities()
: constraints->getNumInequalities();
unsigned numToEliminate = colLimit - colStart;
for (unsigned r = 0, e = numRows; r < e; ++r) {
for (unsigned c = colLimit; c < numCols; ++c) {
if (isEq) {
constraints->atEq(r, c - numToEliminate) = constraints->atEq(r, c);
} else {
constraints->atIneq(r, c - numToEliminate) = constraints->atIneq(r, c);
}
}
}
}
// Removes identifiers in column range [idStart, idLimit), and copies any
// remaining valid data into place, and updates member variables.
void FlatAffineConstraints::removeIdRange(unsigned idStart, unsigned idLimit) {
assert(idLimit < getNumCols() && "invalid id limit");
if (idStart >= idLimit)
return;
// We are going to be removing one or more identifiers from the range.
assert(idStart < numIds && "invalid idStart position");
// TODO(andydavis) Make 'removeIdRange' a lambda called from here.
// Remove eliminated identifiers from equalities.
shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/true);
// Remove eliminated identifiers from inequalities.
shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/false);
// Update members numDims, numSymbols and numIds.
unsigned numDimsEliminated = 0;
unsigned numLocalsEliminated = 0;
unsigned numColsEliminated = idLimit - idStart;
if (idStart < numDims) {
numDimsEliminated = std::min(numDims, idLimit) - idStart;
}
// Check how many local id's were removed. Note that our identifier order is
// [dims, symbols, locals]. Local id start at position numDims + numSymbols.
if (idLimit > numDims + numSymbols) {
numLocalsEliminated = std::min(
idLimit - std::max(idStart, numDims + numSymbols), getNumLocalIds());
}
unsigned numSymbolsEliminated =
numColsEliminated - numDimsEliminated - numLocalsEliminated;
numDims -= numDimsEliminated;
numSymbols -= numSymbolsEliminated;
numIds = numIds - numColsEliminated;
ids.erase(ids.begin() + idStart, ids.begin() + idLimit);
// No resize necessary. numReservedCols remains the same.
}
/// Returns the position of the identifier that has the minimum <number of lower
/// bounds> times <number of upper bounds> from the specified range of
/// identifiers [start, end). It is often best to eliminate in the increasing
/// order of these counts when doing Fourier-Motzkin elimination since FM adds
/// that many new constraints.
static unsigned getBestIdToEliminate(const FlatAffineConstraints &cst,
unsigned start, unsigned end) {
assert(start < cst.getNumIds() && end < cst.getNumIds() + 1);
auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
unsigned numLb = 0;
unsigned numUb = 0;
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
if (cst.atIneq(r, pos) > 0) {
++numLb;
} else if (cst.atIneq(r, pos) < 0) {
++numUb;
}
}
return numLb * numUb;
};
unsigned minLoc = start;
unsigned min = getProductOfNumLowerUpperBounds(start);
for (unsigned c = start + 1; c < end; c++) {
unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
if (numLbUbProduct < min) {
min = numLbUbProduct;
minLoc = c;
}
}
return minLoc;
}
// Checks for emptiness of the set by eliminating identifiers successively and
// using the GCD test (on all equality constraints) and checking for trivially
// invalid constraints. Returns 'true' if the constraint system is found to be
// empty; false otherwise.
bool FlatAffineConstraints::isEmpty() const {
if (isEmptyByGCDTest() || hasInvalidConstraint())
return true;
// First, eliminate as many identifiers as possible using Gaussian
// elimination.
FlatAffineConstraints tmpCst(*this);
unsigned currentPos = 0;
while (currentPos < tmpCst.getNumIds()) {
tmpCst.gaussianEliminateIds(currentPos, tmpCst.getNumIds());
++currentPos;
// We check emptiness through trivial checks after eliminating each ID to
// detect emptiness early. Since the checks isEmptyByGCDTest() and
// hasInvalidConstraint() are linear time and single sweep on the constraint
// buffer, this appears reasonable - but can optimize in the future.
if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
return true;
}
// Eliminate the remaining using FM.
for (unsigned i = 0, e = tmpCst.getNumIds(); i < e; i++) {
tmpCst.FourierMotzkinEliminate(
getBestIdToEliminate(tmpCst, 0, tmpCst.getNumIds()));
// Check for a constraint explosion. This rarely happens in practice, but
// this check exists as a safeguard against improperly constructed
// constraint systems or artificially created arbitrarily complex systems
// that aren't the intended use case for FlatAffineConstraints. This is
// needed since FM has a worst case exponential complexity in theory.
if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumIds()) {
LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
return false;
}
// FM wouldn't have modified the equalities in any way. So no need to again
// run GCD test. Check for trivial invalid constraints.
if (tmpCst.hasInvalidConstraint())
return true;
}
return false;
}
// Runs the GCD test on all equality constraints. Returns 'true' if this test
// fails on any equality. Returns 'false' otherwise.
// This test can be used to disprove the existence of a solution. If it returns
// true, no integer solution to the equality constraints can exist.
//
// GCD test definition:
//
// The equality constraint:
//
// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
//
// has an integer solution iff:
//
// GCD of c_1, c_2, ..., c_n divides c_0.
//
bool FlatAffineConstraints::isEmptyByGCDTest() const {
assert(hasConsistentState());
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
uint64_t gcd = std::abs(atEq(i, 0));
for (unsigned j = 1; j < numCols - 1; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j)));
}
int64_t v = std::abs(atEq(i, numCols - 1));
if (gcd > 0 && (v % gcd != 0)) {
return true;
}
}
return false;
}
/// Tightens inequalities given that we are dealing with integer spaces. This is
/// analogous to the GCD test but applied to inequalities. The constant term can
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
/// fast method - linear in the number of coefficients.
// Example on how this affects practical cases: consider the scenario:
// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
// j >= 100 instead of the tighter (exact) j >= 128.
void FlatAffineConstraints::GCDTightenInequalities() {
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
uint64_t gcd = std::abs(atIneq(i, 0));
for (unsigned j = 1; j < numCols - 1; ++j) {
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atIneq(i, j)));
}
if (gcd > 0 && gcd != 1) {
int64_t gcdI = static_cast<int64_t>(gcd);
// Tighten the constant term and normalize the constraint by the GCD.
atIneq(i, numCols - 1) = mlir::floorDiv(atIneq(i, numCols - 1), gcdI);
for (unsigned j = 0, e = numCols - 1; j < e; ++j)
atIneq(i, j) /= gcdI;
}
}
}
// Eliminates all identifier variables in column range [posStart, posLimit).
// Returns the number of variables eliminated.
unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart,
unsigned posLimit) {
// Return if identifier positions to eliminate are out of range.
assert(posLimit <= numIds);
assert(hasConsistentState());
if (posStart >= posLimit)
return 0;
GCDTightenInequalities();
unsigned pivotCol = 0;
for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
// Find a row which has a non-zero coefficient in column 'j'.
unsigned pivotRow;
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true,
&pivotRow)) {
// No pivot row in equalities with non-zero at 'pivotCol'.
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false,
&pivotRow)) {
// If inequalities are also non-zero in 'pivotCol', it can be
// eliminated.
continue;
}
break;
}
// Eliminate identifier at 'pivotCol' from each equality row.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/true);
normalizeConstraintByGCD</*isEq=*/true>(this, i);
}
// Eliminate identifier at 'pivotCol' from each inequality row.
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/false);
normalizeConstraintByGCD</*isEq=*/false>(this, i);
}
removeEquality(pivotRow);
GCDTightenInequalities();
}
// Update position limit based on number eliminated.
posLimit = pivotCol;
// Remove eliminated columns from all constraints.
removeIdRange(posStart, posLimit);
return posLimit - posStart;
}
// Detect the identifier at 'pos' (say id_r) as modulo of another identifier
// (say id_n) w.r.t a constant. When this happens, another identifier (say id_q)
// could be detected as the floordiv of n. For eg:
// id_n - 4*id_q - id_r = 0, 0 <= id_r <= 3 <=>
// id_r = id_n mod 4, id_q = id_n floordiv 4.
// lbConst and ubConst are the constant lower and upper bounds for 'pos' -
// pre-detected at the caller.
static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos,
int64_t lbConst, int64_t ubConst,
SmallVectorImpl<AffineExpr> *memo) {
assert(pos < cst.getNumIds() && "invalid position");
// Check if 0 <= id_r <= divisor - 1 and if id_r is equal to
// id_n - divisor * id_q. If these are true, then id_n becomes the dividend
// and id_q the quotient when dividing id_n by the divisor.
if (lbConst != 0 || ubConst < 1)
return false;
int64_t divisor = ubConst + 1;
// Now check for: id_r = id_n - divisor * id_q. As an example, we
// are looking r = d - 4q, i.e., either r - d + 4q = 0 or -r + d - 4q = 0.
unsigned seenQuotient = 0, seenDividend = 0;
int quotientPos = -1, dividendPos = -1;
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
// id_n should have coeff 1 or -1.
if (std::abs(cst.atEq(r, pos)) != 1)
continue;
// constant term should be 0.
if (cst.atEq(r, cst.getNumCols() - 1) != 0)
continue;
unsigned c, f;
int quotientSign = 1, dividendSign = 1;
for (c = 0, f = cst.getNumDimAndSymbolIds(); c < f; c++) {
if (c == pos)
continue;
// The coefficient of the quotient should be +/-divisor.
// TODO(bondhugula): could be extended to detect an affine function for
// the quotient (i.e., the coeff could be a non-zero multiple of divisor).
int64_t v = cst.atEq(r, c) * cst.atEq(r, pos);
if (v == divisor || v == -divisor) {
seenQuotient++;
quotientPos = c;
quotientSign = v > 0 ? 1 : -1;
}
// The coefficient of the dividend should be +/-1.
// TODO(bondhugula): could be extended to detect an affine function of
// the other identifiers as the dividend.
else if (v == -1 || v == 1) {
seenDividend++;
dividendPos = c;
dividendSign = v < 0 ? 1 : -1;
} else if (cst.atEq(r, c) != 0) {
// Cannot be inferred as a mod since the constraint has a coefficient
// for an identifier that's neither a unit nor the divisor (see TODOs
// above).
break;
}
}
if (c < f)
// Cannot be inferred as a mod since the constraint has a coefficient for
// an identifier that's neither a unit nor the divisor (see TODOs above).
continue;
// We are looking for exactly one identifier as the dividend.
if (seenDividend == 1 && seenQuotient >= 1) {
if (!(*memo)[dividendPos])
return false;
// Successfully detected a mod.
(*memo)[pos] = (*memo)[dividendPos] % divisor * dividendSign;
auto ub = cst.getConstantUpperBound(dividendPos);
if (ub.hasValue() && ub.getValue() < divisor)
// The mod can be optimized away.
(*memo)[pos] = (*memo)[dividendPos] * dividendSign;
else
(*memo)[pos] = (*memo)[dividendPos] % divisor * dividendSign;
if (seenQuotient == 1 && !(*memo)[quotientPos])
// Successfully detected a floordiv as well.
(*memo)[quotientPos] =
(*memo)[dividendPos].floorDiv(divisor) * quotientSign;
return true;
}
}
return false;
}
// Gather lower and upper bounds for the pos^th identifier.
static void getLowerAndUpperBoundIndices(const FlatAffineConstraints &cst,
unsigned pos,
SmallVectorImpl<unsigned> *lbIndices,
SmallVectorImpl<unsigned> *ubIndices) {
assert(pos < cst.getNumIds() && "invalid position");
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
if (cst.atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices->push_back(r);
} else if (cst.atIneq(r, pos) <= -1) {
// Upper bound.
ubIndices->push_back(r);
}
}
}
// Check if the pos^th identifier can be expressed as a floordiv of an affine
// function of other identifiers (where the divisor is a positive constant).
// For eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4.
static bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos,
SmallVectorImpl<AffineExpr> *memo,
MLIRContext *context) {
assert(pos < cst.getNumIds() && "invalid position");
SmallVector<unsigned, 4> lbIndices, ubIndices;
getLowerAndUpperBoundIndices(cst, pos, &lbIndices, &ubIndices);
// Check if any lower bound, upper bound pair is of the form:
// divisor * id >= expr - (divisor - 1) <-- Lower bound for 'id'
// divisor * id <= expr <-- Upper bound for 'id'
// Then, 'id' is equivalent to 'expr floordiv divisor'. (where divisor > 1).
//
// For example, if -32*k + 16*i + j >= 0
// 32*k - 16*i - j + 31 >= 0 <=>
// k = ( 16*i + j ) floordiv 32
unsigned seenDividends = 0;
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
// Check if lower bound's constant term is 'divisor - 1'. The 'divisor'
// here is cst.atIneq(lbPos, pos) and we already know that it's positive
// (since cst.Ineq(lbPos, ...) is a lower bound expression for 'pos'.
if (cst.atIneq(lbPos, cst.getNumCols() - 1) != cst.atIneq(lbPos, pos) - 1)
continue;
// Check if upper bound's constant term is 0.
if (cst.atIneq(ubPos, cst.getNumCols() - 1) != 0)
continue;
// For the remaining part, check if the lower bound expr's coeff's are
// negations of corresponding upper bound ones'.
unsigned c, f;
for (c = 0, f = cst.getNumCols() - 1; c < f; c++) {
if (cst.atIneq(lbPos, c) != -cst.atIneq(ubPos, c))
break;
if (c != pos && cst.atIneq(lbPos, c) != 0)
seenDividends++;
}
// Lb coeff's aren't negative of ub coeff's (for the non constant term
// part).
if (c < f)
continue;
if (seenDividends >= 1) {
// The divisor is the constant term of the lower bound expression.
// We already know that cst.atIneq(lbPos, pos) > 0.
int64_t divisor = cst.atIneq(lbPos, pos);
// Construct the dividend expression.
auto dividendExpr = getAffineConstantExpr(0, context);
unsigned c, f;
for (c = 0, f = cst.getNumCols() - 1; c < f; c++) {
if (c == pos)
continue;
int64_t ubVal = cst.atIneq(ubPos, c);
if (ubVal == 0)
continue;
if (!(*memo)[c])
break;
dividendExpr = dividendExpr + ubVal * (*memo)[c];
}
// Expression can't be constructed as it depends on a yet unknown
// identifier.
// TODO(mlir-team): Visit/compute the identifiers in an order so that
// this doesn't happen. More complex but much more efficient.
if (c < f)
continue;
// Successfully detected the floordiv.
(*memo)[pos] = dividendExpr.floorDiv(divisor);
return true;
}
}
}
return false;
}
// Fills an inequality row with the value 'val'.
static inline void fillInequality(FlatAffineConstraints *cst, unsigned r,
int64_t val) {
for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) {
cst->atIneq(r, c) = val;
}
}
// Negates an inequality.
static inline void negateInequality(FlatAffineConstraints *cst, unsigned r) {
for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) {
cst->atIneq(r, c) = -cst->atIneq(r, c);
}
}
// A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
// to check if a constraint is redundant.
void FlatAffineConstraints::removeRedundantInequalities() {
SmallVector<bool, 32> redun(getNumInequalities(), false);
// To check if an inequality is redundant, we replace the inequality by its
// complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
// system is empty. If it is, the inequality is redundant.
FlatAffineConstraints tmpCst(*this);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
// Change the inequality to its complement.
negateInequality(&tmpCst, r);
tmpCst.atIneq(r, tmpCst.getNumCols() - 1)--;
if (tmpCst.isEmpty()) {
redun[r] = true;
// Zero fill the redundant inequality.
fillInequality(this, r, /*val=*/0);
fillInequality(&tmpCst, r, /*val=*/0);
} else {
// Reverse the change (to avoid recreating tmpCst each time).
tmpCst.atIneq(r, tmpCst.getNumCols() - 1)++;
negateInequality(&tmpCst, r);
}
}
// Scan to get rid of all rows marked redundant, in-place.
auto copyRow = [&](unsigned src, unsigned dest) {
if (src == dest)
return;
for (unsigned c = 0, e = getNumCols(); c < e; c++) {
atIneq(dest, c) = atIneq(src, c);
}
};
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (!redun[r])
copyRow(r, pos++);
}
inequalities.resize(numReservedCols * pos);
}
std::pair<AffineMap, AffineMap> FlatAffineConstraints::getLowerAndUpperBound(
unsigned pos, unsigned offset, unsigned num, unsigned symStartPos,
ArrayRef<AffineExpr> localExprs, MLIRContext *context) const {
assert(pos + offset < getNumDimIds() && "invalid dim start pos");
assert(symStartPos >= (pos + offset) && "invalid sym start pos");
assert(getNumLocalIds() == localExprs.size() &&
"incorrect local exprs count");
SmallVector<unsigned, 4> lbIndices, ubIndices;
getLowerAndUpperBoundIndices(*this, pos + offset, &lbIndices, &ubIndices);
/// Add to 'b' from 'a' in set [0, offset) U [offset + num, symbStartPos).
auto addCoeffs = [&](ArrayRef<int64_t> a, SmallVectorImpl<int64_t> &b) {
b.clear();
for (unsigned i = 0, e = a.size(); i < e; ++i) {
if (i < offset || i >= offset + num)
b.push_back(a[i]);
}
};
SmallVector<int64_t, 8> lb, ub;
SmallVector<AffineExpr, 4> exprs;
unsigned dimCount = symStartPos - num;
unsigned symCount = getNumDimAndSymbolIds() - symStartPos;
exprs.reserve(lbIndices.size());
// Lower bound expressions.
for (auto idx : lbIndices) {
auto ineq = getInequality(idx);
// Extract the lower bound (in terms of other coeff's + const), i.e., if
// i - j + 1 >= 0 is the constraint, 'pos' is for i the lower bound is j
// - 1.
addCoeffs(ineq, lb);
std::transform(lb.begin(), lb.end(), lb.begin(), std::negate<int64_t>());
auto expr = mlir::toAffineExpr(lb, dimCount, symCount, localExprs, context);
exprs.push_back(expr);
}
auto lbMap =
exprs.empty() ? AffineMap() : AffineMap::get(dimCount, symCount, exprs);
exprs.clear();
exprs.reserve(ubIndices.size());
// Upper bound expressions.
for (auto idx : ubIndices) {
auto ineq = getInequality(idx);
// Extract the upper bound (in terms of other coeff's + const).
addCoeffs(ineq, ub);
auto expr = mlir::toAffineExpr(ub, dimCount, symCount, localExprs, context);
// Upper bound is exclusive.
exprs.push_back(expr + 1);
}
auto ubMap =
exprs.empty() ? AffineMap() : AffineMap::get(dimCount, symCount, exprs);
return {lbMap, ubMap};
}
/// Computes the lower and upper bounds of the first 'num' dimensional
/// identifiers (starting at 'offset') as affine maps of the remaining
/// identifiers (dimensional and symbolic identifiers). Local identifiers are
/// themselves explicitly computed as affine functions of other identifiers in
/// this process if needed.
void FlatAffineConstraints::getSliceBounds(unsigned offset, unsigned num,
MLIRContext *context,
SmallVectorImpl<AffineMap> *lbMaps,
SmallVectorImpl<AffineMap> *ubMaps) {
assert(num < getNumDimIds() && "invalid range");
// Basic simplification.
normalizeConstraintsByGCD();
LLVM_DEBUG(llvm::dbgs() << "getSliceBounds for first " << num
<< " identifiers\n");
LLVM_DEBUG(dump());
// Record computed/detected identifiers.
SmallVector<AffineExpr, 8> memo(getNumIds());
// Initialize dimensional and symbolic identifiers.
for (unsigned i = 0, e = getNumDimIds(); i < e; i++) {
if (i < offset)
memo[i] = getAffineDimExpr(i, context);
else if (i >= offset + num)
memo[i] = getAffineDimExpr(i - num, context);
}
for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++)
memo[i] = getAffineSymbolExpr(i - getNumDimIds(), context);
bool changed;
do {
changed = false;
// Identify yet unknown identifiers as constants or mod's / floordiv's of
// other identifiers if possible.
for (unsigned pos = 0; pos < getNumIds(); pos++) {
if (memo[pos])
continue;
auto lbConst = getConstantLowerBound(pos);
auto ubConst = getConstantUpperBound(pos);
if (lbConst.hasValue() && ubConst.hasValue()) {
// Detect equality to a constant.
if (lbConst.getValue() == ubConst.getValue()) {
memo[pos] = getAffineConstantExpr(lbConst.getValue(), context);
changed = true;
continue;
}
// Detect an identifier as modulo of another identifier w.r.t a
// constant.
if (detectAsMod(*this, pos, lbConst.getValue(), ubConst.getValue(),
&memo)) {
changed = true;
continue;
}
}
// Detect an identifier as floordiv of another identifier w.r.t a
// constant.
if (detectAsFloorDiv(*this, pos, &memo, context)) {
changed = true;
continue;
}
// Detect an identifier as an expression of other identifiers.
unsigned idx;
if (!findConstraintWithNonZeroAt(*this, pos, /*isEq=*/true, &idx)) {
continue;
}
// Build AffineExpr solving for identifier 'pos' in terms of all others.
auto expr = getAffineConstantExpr(0, context);
unsigned j, e;
for (j = 0, e = getNumIds(); j < e; ++j) {
if (j == pos)
continue;
int64_t c = atEq(idx, j);
if (c == 0)
continue;
// If any of the involved IDs hasn't been found yet, we can't proceed.
if (!memo[j])
break;
expr = expr + memo[j] * c;
}
if (j < e)
// Can't construct expression as it depends on a yet uncomputed
// identifier.
continue;
// Add constant term to AffineExpr.
expr = expr + atEq(idx, getNumIds());
int64_t vPos = atEq(idx, pos);
assert(vPos != 0 && "expected non-zero here");
if (vPos > 0)
expr = (-expr).floorDiv(vPos);
else
// vPos < 0.
expr = expr.floorDiv(-vPos);
// Successfully constructed expression.
memo[pos] = expr;
changed = true;
}
// This loop is guaranteed to reach a fixed point - since once an
// identifier's explicit form is computed (in memo[pos]), it's not updated
// again.
} while (changed);
// Set the lower and upper bound maps for all the identifiers that were
// computed as affine expressions of the rest as the "detected expr" and
// "detected expr + 1" respectively; set the undetected ones to null.
Optional<FlatAffineConstraints> tmpClone;
for (unsigned pos = 0; pos < num; pos++) {
unsigned numMapDims = getNumDimIds() - num;
unsigned numMapSymbols = getNumSymbolIds();
AffineExpr expr = memo[pos + offset];
if (expr)
expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols);
AffineMap &lbMap = (*lbMaps)[pos];
AffineMap &ubMap = (*ubMaps)[pos];
if (expr) {
lbMap = AffineMap::get(numMapDims, numMapSymbols, expr);
ubMap = AffineMap::get(numMapDims, numMapSymbols, expr + 1);
} else {
// TODO(bondhugula): Whenever there are local identifiers in the
// dependence constraints, we'll conservatively over-approximate, since we
// don't always explicitly compute them above (in the while loop).
if (getNumLocalIds() == 0) {
// Work on a copy so that we don't update this constraint system.
if (!tmpClone) {
tmpClone.emplace(FlatAffineConstraints(*this));
// Removing redundant inequalities is necessary so that we don't get
// redundant loop bounds.
tmpClone->removeRedundantInequalities();
}
std::tie(lbMap, ubMap) = tmpClone->getLowerAndUpperBound(
pos, offset, num, getNumDimIds(), {}, context);
}
// If the above fails, we'll just use the constant lower bound and the
// constant upper bound (if they exist) as the slice bounds.
// TODO(b/126426796): being conservative for the moment in cases that
// lead to multiple bounds - until getConstDifference in LoopFusion.cpp is
// fixed (b/126426796).
if (!lbMap || lbMap.getNumResults() > 1) {
LLVM_DEBUG(llvm::dbgs()
<< "WARNING: Potentially over-approximating slice lb\n");
auto lbConst = getConstantLowerBound(pos + offset);
if (lbConst.hasValue()) {
lbMap = AffineMap::get(
numMapDims, numMapSymbols,
getAffineConstantExpr(lbConst.getValue(), context));
}
}
if (!ubMap || ubMap.getNumResults() > 1) {
LLVM_DEBUG(llvm::dbgs()
<< "WARNING: Potentially over-approximating slice ub\n");
auto ubConst = getConstantUpperBound(pos + offset);
if (ubConst.hasValue()) {
(ubMap) = AffineMap::get(
numMapDims, numMapSymbols,
getAffineConstantExpr(ubConst.getValue() + 1, context));
}
}
}
LLVM_DEBUG(llvm::dbgs()
<< "lb map for pos = " << Twine(pos + offset) << ", expr: ");
LLVM_DEBUG(lbMap.dump(););
LLVM_DEBUG(llvm::dbgs()
<< "ub map for pos = " << Twine(pos + offset) << ", expr: ");
LLVM_DEBUG(ubMap.dump(););
}
}
LogicalResult
FlatAffineConstraints::addLowerOrUpperBound(unsigned pos, AffineMap boundMap,
ArrayRef<Value> boundOperands,
bool eq, bool lower) {
assert(pos < getNumDimAndSymbolIds() && "invalid position");
// Equality follows the logic of lower bound except that we add an equality
// instead of an inequality.
assert((!eq || boundMap.getNumResults() == 1) && "single result expected");
if (eq)
lower = true;
// Fully compose map and operands; canonicalize and simplify so that we
// transitively get to terminal symbols or loop IVs.
auto map = boundMap;
SmallVector<Value, 4> operands(boundOperands.begin(), boundOperands.end());
fullyComposeAffineMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
canonicalizeMapAndOperands(&map, &operands);
for (auto operand : operands)
addInductionVarOrTerminalSymbol(operand);
FlatAffineConstraints localVarCst;
std::vector<SmallVector<int64_t, 8>> flatExprs;
if (failed(getFlattenedAffineExprs(map, &flatExprs, &localVarCst))) {
LLVM_DEBUG(llvm::dbgs() << "semi-affine expressions not yet supported\n");
return failure();
}
// Merge and align with localVarCst.
if (localVarCst.getNumLocalIds() > 0) {
// Set values for localVarCst.
localVarCst.setIdValues(0, localVarCst.getNumDimAndSymbolIds(), operands);
for (auto operand : operands) {
unsigned pos;
if (findId(operand, &pos)) {
if (pos >= getNumDimIds() && pos < getNumDimAndSymbolIds()) {
// If the local var cst has this as a dim, turn it into its symbol.
turnDimIntoSymbol(&localVarCst, operand);
} else if (pos < getNumDimIds()) {
// Or vice versa.
turnSymbolIntoDim(&localVarCst, operand);
}
}
}
mergeAndAlignIds(/*offset=*/0, this, &localVarCst);
append(localVarCst);
}
// Record positions of the operands in the constraint system. Need to do
// this here since the constraint system changes after a bound is added.
SmallVector<unsigned, 8> positions;
unsigned numOperands = operands.size();
for (auto operand : operands) {
unsigned pos;
if (!findId(operand, &pos))
assert(0 && "expected to be found");
positions.push_back(pos);
}
for (const auto &flatExpr : flatExprs) {
SmallVector<int64_t, 4> ineq(getNumCols(), 0);
ineq[pos] = lower ? 1 : -1;
// Dims and symbols.
for (unsigned j = 0, e = map.getNumInputs(); j < e; j++) {
ineq[positions[j]] = lower ? -flatExpr[j] : flatExpr[j];
}
// Copy over the local id coefficients.
unsigned numLocalIds = flatExpr.size() - 1 - numOperands;
for (unsigned jj = 0, j = getNumIds() - numLocalIds; jj < numLocalIds;
jj++, j++) {
ineq[j] =
lower ? -flatExpr[numOperands + jj] : flatExpr[numOperands + jj];
}
// Constant term.
ineq[getNumCols() - 1] =
lower ? -flatExpr[flatExpr.size() - 1]
// Upper bound in flattenedExpr is an exclusive one.
: flatExpr[flatExpr.size() - 1] - 1;
eq ? addEquality(ineq) : addInequality(ineq);
}
return success();
}
// Adds slice lower bounds represented by lower bounds in 'lbMaps' and upper
// bounds in 'ubMaps' to each value in `values' that appears in the constraint
// system. Note that both lower/upper bounds share the same operand list
// 'operands'.
// This function assumes 'values.size' == 'lbMaps.size' == 'ubMaps.size', and
// skips any null AffineMaps in 'lbMaps' or 'ubMaps'.
// Note that both lower/upper bounds use operands from 'operands'.
// Returns failure for unimplemented cases such as semi-affine expressions or
// expressions with mod/floordiv.
LogicalResult FlatAffineConstraints::addSliceBounds(ArrayRef<Value> values,
ArrayRef<AffineMap> lbMaps,
ArrayRef<AffineMap> ubMaps,
ArrayRef<Value> operands) {
assert(values.size() == lbMaps.size());
assert(lbMaps.size() == ubMaps.size());
for (unsigned i = 0, e = lbMaps.size(); i < e; ++i) {
unsigned pos;
if (!findId(values[i], &pos))
continue;
AffineMap lbMap = lbMaps[i];
AffineMap ubMap = ubMaps[i];
assert(!lbMap || lbMap.getNumInputs() == operands.size());
assert(!ubMap || ubMap.getNumInputs() == operands.size());
// Check if this slice is just an equality along this dimension.
if (lbMap && ubMap && lbMap.getNumResults() == 1 &&
ubMap.getNumResults() == 1 &&
lbMap.getResult(0) + 1 == ubMap.getResult(0)) {
if (failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/true,
/*lower=*/true)))
return failure();
continue;
}
if (lbMap && failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/false,
/*lower=*/true)))
return failure();
if (ubMap && failed(addLowerOrUpperBound(pos, ubMap, operands, /*eq=*/false,
/*lower=*/false)))
return failure();
}
return success();
}
void FlatAffineConstraints::addEquality(ArrayRef<int64_t> eq) {
assert(eq.size() == getNumCols());
unsigned offset = equalities.size();
equalities.resize(equalities.size() + numReservedCols);
std::copy(eq.begin(), eq.end(), equalities.begin() + offset);
}
void FlatAffineConstraints::addInequality(ArrayRef<int64_t> inEq) {
assert(inEq.size() == getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::copy(inEq.begin(), inEq.end(), inequalities.begin() + offset);
}
void FlatAffineConstraints::addConstantLowerBound(unsigned pos, int64_t lb) {
assert(pos < getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::fill(inequalities.begin() + offset,
inequalities.begin() + offset + getNumCols(), 0);
inequalities[offset + pos] = 1;
inequalities[offset + getNumCols() - 1] = -lb;
}
void FlatAffineConstraints::addConstantUpperBound(unsigned pos, int64_t ub) {
assert(pos < getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::fill(inequalities.begin() + offset,
inequalities.begin() + offset + getNumCols(), 0);
inequalities[offset + pos] = -1;
inequalities[offset + getNumCols() - 1] = ub;
}
void FlatAffineConstraints::addConstantLowerBound(ArrayRef<int64_t> expr,
int64_t lb) {
assert(expr.size() == getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::fill(inequalities.begin() + offset,
inequalities.begin() + offset + getNumCols(), 0);
std::copy(expr.begin(), expr.end(), inequalities.begin() + offset);
inequalities[offset + getNumCols() - 1] += -lb;
}
void FlatAffineConstraints::addConstantUpperBound(ArrayRef<int64_t> expr,
int64_t ub) {
assert(expr.size() == getNumCols());
unsigned offset = inequalities.size();
inequalities.resize(inequalities.size() + numReservedCols);
std::fill(inequalities.begin() + offset,
inequalities.begin() + offset + getNumCols(), 0);
for (unsigned i = 0, e = getNumCols(); i < e; i++) {
inequalities[offset + i] = -expr[i];
}
inequalities[offset + getNumCols() - 1] += ub;
}
/// Adds a new local identifier as the floordiv of an affine function of other
/// identifiers, the coefficients of which are provided in 'dividend' and with
/// respect to a positive constant 'divisor'. Two constraints are added to the
/// system to capture equivalence with the floordiv.
/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
void FlatAffineConstraints::addLocalFloorDiv(ArrayRef<int64_t> dividend,
int64_t divisor) {
assert(dividend.size() == getNumCols() && "incorrect dividend size");
assert(divisor > 0 && "positive divisor expected");
addLocalId(getNumLocalIds());
// Add two constraints for this new identifier 'q'.
SmallVector<int64_t, 8> bound(dividend.size() + 1);
// dividend - q * divisor >= 0
std::copy(dividend.begin(), dividend.begin() + dividend.size() - 1,
bound.begin());
bound.back() = dividend.back();
bound[getNumIds() - 1] = -divisor;
addInequality(bound);
// -dividend +qdivisor * q + divisor - 1 >= 0
std::transform(bound.begin(), bound.end(), bound.begin(),
std::negate<int64_t>());
bound[bound.size() - 1] += divisor - 1;
addInequality(bound);
}
bool FlatAffineConstraints::findId(Value id, unsigned *pos) const {
unsigned i = 0;
for (const auto &mayBeId : ids) {
if (mayBeId.hasValue() && mayBeId.getValue() == id) {
*pos = i;
return true;
}
i++;
}
return false;
}
bool FlatAffineConstraints::containsId(Value id) const {
return llvm::any_of(ids, [&](const Optional<Value> &mayBeId) {
return mayBeId.hasValue() && mayBeId.getValue() == id;
});
}
void FlatAffineConstraints::setDimSymbolSeparation(unsigned newSymbolCount) {
assert(newSymbolCount <= numDims + numSymbols &&
"invalid separation position");
numDims = numDims + numSymbols - newSymbolCount;
numSymbols = newSymbolCount;
}
/// Sets the specified identifier to a constant value.
void FlatAffineConstraints::setIdToConstant(unsigned pos, int64_t val) {
unsigned offset = equalities.size();
equalities.resize(equalities.size() + numReservedCols);
std::fill(equalities.begin() + offset,
equalities.begin() + offset + getNumCols(), 0);
equalities[offset + pos] = 1;
equalities[offset + getNumCols() - 1] = -val;
}
/// Sets the specified identifier to a constant value; asserts if the id is not
/// found.
void FlatAffineConstraints::setIdToConstant(Value id, int64_t val) {
unsigned pos;
if (!findId(id, &pos))
// This is a pre-condition for this method.
assert(0 && "id not found");
setIdToConstant(pos, val);
}
void FlatAffineConstraints::removeEquality(unsigned pos) {
unsigned numEqualities = getNumEqualities();
assert(pos < numEqualities);
unsigned outputIndex = pos * numReservedCols;
unsigned inputIndex = (pos + 1) * numReservedCols;
unsigned numElemsToCopy = (numEqualities - pos - 1) * numReservedCols;
std::copy(equalities.begin() + inputIndex,
equalities.begin() + inputIndex + numElemsToCopy,
equalities.begin() + outputIndex);
equalities.resize(equalities.size() - numReservedCols);
}
/// Finds an equality that equates the specified identifier to a constant.
/// Returns the position of the equality row. If 'symbolic' is set to true,
/// symbols are also treated like a constant, i.e., an affine function of the
/// symbols is also treated like a constant.
static int findEqualityToConstant(const FlatAffineConstraints &cst,
unsigned pos, bool symbolic = false) {
assert(pos < cst.getNumIds() && "invalid position");
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
int64_t v = cst.atEq(r, pos);
if (v * v != 1)
continue;
unsigned c;
unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds();
// This checks for zeros in all positions other than 'pos' in [0, f)
for (c = 0; c < f; c++) {
if (c == pos)
continue;
if (cst.atEq(r, c) != 0) {
// Dependent on another identifier.
break;
}
}
if (c == f)
// Equality is free of other identifiers.
return r;
}
return -1;
}
void FlatAffineConstraints::setAndEliminate(unsigned pos, int64_t constVal) {
assert(pos < getNumIds() && "invalid position");
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
atIneq(r, getNumCols() - 1) += atIneq(r, pos) * constVal;
}
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
atEq(r, getNumCols() - 1) += atEq(r, pos) * constVal;
}
removeId(pos);
}
LogicalResult FlatAffineConstraints::constantFoldId(unsigned pos) {
assert(pos < getNumIds() && "invalid position");
int rowIdx;
if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
return failure();
// atEq(rowIdx, pos) is either -1 or 1.
assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
setAndEliminate(pos, constVal);
return success();
}
void FlatAffineConstraints::constantFoldIdRange(unsigned pos, unsigned num) {
for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
if (failed(constantFoldId(t)))
t++;
}
}
/// Returns the extent (upper bound - lower bound) of the specified
/// identifier if it is found to be a constant; returns None if it's not a
/// constant. This methods treats symbolic identifiers specially, i.e.,
/// it looks for constant differences between affine expressions involving
/// only the symbolic identifiers. See comments at function definition for
/// example. 'lb', if provided, is set to the lower bound associated with the
/// constant difference. Note that 'lb' is purely symbolic and thus will contain
/// the coefficients of the symbolic identifiers and the constant coefficient.
// Egs: 0 <= i <= 15, return 16.
// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
// s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
// s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
// ceil(s0 - 7 / 8) = floor(s0 / 8)).
Optional<int64_t> FlatAffineConstraints::getConstantBoundOnDimSize(
unsigned pos, SmallVectorImpl<int64_t> *lb, int64_t *lbFloorDivisor,
SmallVectorImpl<int64_t> *ub) const {
assert(pos < getNumDimIds() && "Invalid identifier position");
assert(getNumLocalIds() == 0);
// TODO(bondhugula): eliminate all remaining dimensional identifiers (other
// than the one at 'pos' to make this more powerful. Not needed for
// hyper-rectangular spaces.
// Find an equality for 'pos'^th identifier that equates it to some function
// of the symbolic identifiers (+ constant).
int eqRow = findEqualityToConstant(*this, pos, /*symbolic=*/true);
if (eqRow != -1) {
// This identifier can only take a single value.
if (lb) {
// Set lb to the symbolic value.
lb->resize(getNumSymbolIds() + 1);
if (ub)
ub->resize(getNumSymbolIds() + 1);
for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) {
int64_t v = atEq(eqRow, pos);
// atEq(eqRow, pos) is either -1 or 1.
assert(v * v == 1);
(*lb)[c] = v < 0 ? atEq(eqRow, getNumDimIds() + c) / -v
: -atEq(eqRow, getNumDimIds() + c) / v;
// Since this is an equality, ub = lb.
if (ub)
(*ub)[c] = (*lb)[c];
}
assert(lbFloorDivisor &&
"both lb and divisor or none should be provided");
*lbFloorDivisor = 1;
}
return 1;
}
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return None;
// Positions of constraints that are lower/upper bounds on the variable.
SmallVector<unsigned, 4> lbIndices, ubIndices;
// Gather all symbolic lower bounds and upper bounds of the variable. Since
// the canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a
// lower bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
unsigned c, f;
for (c = 0, f = getNumDimIds(); c < f; c++) {
if (c != pos && atIneq(r, c) != 0)
break;
}
if (c < getNumDimIds())
// Not a pure symbolic bound.
continue;
if (atIneq(r, pos) >= 1)
// Lower bound.
lbIndices.push_back(r);
else if (atIneq(r, pos) <= -1)
// Upper bound.
ubIndices.push_back(r);
}
// TODO(bondhugula): eliminate other dimensional identifiers to make this more
// powerful. Not needed for hyper-rectangular iteration spaces.
Optional<int64_t> minDiff = None;
unsigned minLbPosition, minUbPosition;
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
// Look for a lower bound and an upper bound that only differ by a
// constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
// For example, if ii is the pos^th variable, we are looking for
// constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
// minimum among all such constant differences is kept since that's the
// constant bounding the extent of the pos^th variable.
unsigned j, e;
for (j = 0, e = getNumCols() - 1; j < e; j++)
if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
break;
}
if (j < getNumCols() - 1)
continue;
int64_t diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
atIneq(lbPos, getNumCols() - 1) + 1,
atIneq(lbPos, pos));
if (minDiff == None || diff < minDiff) {
minDiff = diff;
minLbPosition = lbPos;
minUbPosition = ubPos;
}
}
}
if (lb && minDiff.hasValue()) {
// Set lb to the symbolic lower bound.
lb->resize(getNumSymbolIds() + 1);
if (ub)
ub->resize(getNumSymbolIds() + 1);
// The lower bound is the ceildiv of the lb constraint over the coefficient
// of the variable at 'pos'. We express the ceildiv equivalently as a floor
// for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
// 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
*lbFloorDivisor = atIneq(minLbPosition, pos);
assert(*lbFloorDivisor == -atIneq(minUbPosition, pos));
for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) {
(*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c);
}
if (ub) {
for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++)
(*ub)[c] = atIneq(minUbPosition, getNumDimIds() + c);
}
// The lower bound leads to a ceildiv while the upper bound is a floordiv
// whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
// d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
// the constant term for the lower bound.
(*lb)[getNumSymbolIds()] += atIneq(minLbPosition, pos) - 1;
}
return minDiff;
}
template <bool isLower>
Optional<int64_t>
FlatAffineConstraints::computeConstantLowerOrUpperBound(unsigned pos) {
assert(pos < getNumIds() && "invalid position");
// Project to 'pos'.
projectOut(0, pos);
projectOut(1, getNumIds() - 1);
// Check if there's an equality equating the '0'^th identifier to a constant.
int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false);
if (eqRowIdx != -1)
// atEq(rowIdx, 0) is either -1 or 1.
return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, 0) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return None;
Optional<int64_t> minOrMaxConst = None;
// Take the max across all const lower bounds (or min across all constant
// upper bounds).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (isLower) {
if (atIneq(r, 0) <= 0)
// Not a lower bound.
continue;
} else if (atIneq(r, 0) >= 0) {
// Not an upper bound.
continue;
}
unsigned c, f;
for (c = 0, f = getNumCols() - 1; c < f; c++)
if (c != 0 && atIneq(r, c) != 0)
break;
if (c < getNumCols() - 1)
// Not a constant bound.
continue;
int64_t boundConst =
isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
: mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
if (isLower) {
if (minOrMaxConst == None || boundConst > minOrMaxConst)
minOrMaxConst = boundConst;
} else {
if (minOrMaxConst == None || boundConst < minOrMaxConst)
minOrMaxConst = boundConst;
}
}
return minOrMaxConst;
}
Optional<int64_t>
FlatAffineConstraints::getConstantLowerBound(unsigned pos) const {
FlatAffineConstraints tmpCst(*this);
return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
}
Optional<int64_t>
FlatAffineConstraints::getConstantUpperBound(unsigned pos) const {
FlatAffineConstraints tmpCst(*this);
return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
}
// A simple (naive and conservative) check for hyper-rectangularity.
bool FlatAffineConstraints::isHyperRectangular(unsigned pos,
unsigned num) const {
assert(pos < getNumCols() - 1);
// Check for two non-zero coefficients in the range [pos, pos + sum).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atIneq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atEq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
return true;
}
void FlatAffineConstraints::print(raw_ostream &os) const {
assert(hasConsistentState());
os << "\nConstraints (" << getNumDimIds() << " dims, " << getNumSymbolIds()
<< " symbols, " << getNumLocalIds() << " locals), (" << getNumConstraints()
<< " constraints)\n";
os << "(";
for (unsigned i = 0, e = getNumIds(); i < e; i++) {
if (ids[i] == None)
os << "None ";
else
os << "Value ";
}
os << " const)\n";
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atEq(i, j) << " ";
}
os << "= 0\n";
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atIneq(i, j) << " ";
}
os << ">= 0\n";
}
os << '\n';
}
void FlatAffineConstraints::dump() const { print(llvm::errs()); }
/// Removes duplicate constraints, trivially true constraints, and constraints
/// that can be detected as redundant as a result of differing only in their
/// constant term part. A constraint of the form <non-negative constant> >= 0 is
/// considered trivially true.
// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
// remove duplicates in place.
void FlatAffineConstraints::removeTrivialRedundancy() {
SmallDenseSet<ArrayRef<int64_t>, 8> rowSet;
// A map used to detect redundancy stemming from constraints that only differ
// in their constant term. The value stored is <row position, const term>
// for a given row.
SmallDenseMap<ArrayRef<int64_t>, std::pair<unsigned, int64_t>>
rowsWithoutConstTerm;
// Check if constraint is of the form <non-negative-constant> >= 0.
auto isTriviallyValid = [&](unsigned r) -> bool {
for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
if (atIneq(r, c) != 0)
return false;
}
return atIneq(r, getNumCols() - 1) >= 0;
};
// Detect and mark redundant constraints.
SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
int64_t *rowStart = inequalities.data() + numReservedCols * r;
auto row = ArrayRef<int64_t>(rowStart, getNumCols());
if (isTriviallyValid(r) || !rowSet.insert(row).second) {
redunIneq[r] = true;
continue;
}
// Among constraints that only differ in the constant term part, mark
// everything other than the one with the smallest constant term redundant.
// (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
// former two are redundant).
int64_t constTerm = atIneq(r, getNumCols() - 1);
auto rowWithoutConstTerm = ArrayRef<int64_t>(rowStart, getNumCols() - 1);
const auto &ret =
rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
if (!ret.second) {
// Check if the other constraint has a higher constant term.
auto &val = ret.first->second;
if (val.second > constTerm) {
// The stored row is redundant. Mark it so, and update with this one.
redunIneq[val.first] = true;
val = {r, constTerm};
} else {
// The one stored makes this one redundant.
redunIneq[r] = true;
}
}
}
auto copyRow = [&](unsigned src, unsigned dest) {
if (src == dest)
return;
for (unsigned c = 0, e = getNumCols(); c < e; c++) {
atIneq(dest, c) = atIneq(src, c);
}
};
// Scan to get rid of all rows marked redundant, in-place.
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (!redunIneq[r])
copyRow(r, pos++);
}
inequalities.resize(numReservedCols * pos);
// TODO(bondhugula): consider doing this for equalities as well, but probably
// not worth the savings.
}
void FlatAffineConstraints::clearAndCopyFrom(
const FlatAffineConstraints &other) {
FlatAffineConstraints copy(other);
std::swap(*this, copy);
assert(copy.getNumIds() == copy.getIds().size());
}
void FlatAffineConstraints::removeId(unsigned pos) {
removeIdRange(pos, pos + 1);
}
static std::pair<unsigned, unsigned>
getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) {
unsigned numDims = cst.getNumDimIds();
unsigned numSymbols = cst.getNumSymbolIds();
unsigned newNumDims, newNumSymbols;
if (pos < numDims) {
newNumDims = numDims - 1;
newNumSymbols = numSymbols;
} else if (pos < numDims + numSymbols) {
assert(numSymbols >= 1);
newNumDims = numDims;
newNumSymbols = numSymbols - 1;
} else {
newNumDims = numDims;
newNumSymbols = numSymbols;
}
return {newNumDims, newNumSymbols};
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "fm"
/// Eliminates identifier at the specified position using Fourier-Motzkin
/// variable elimination. This technique is exact for rational spaces but
/// conservative (in "rare" cases) for integer spaces. The operation corresponds
/// to a projection operation yielding the (convex) set of integer points
/// contained in the rational shadow of the set. An emptiness test that relies
/// on this method will guarantee emptiness, i.e., it disproves the existence of
/// a solution if it says it's empty.
/// If a non-null isResultIntegerExact is passed, it is set to true if the
/// result is also integer exact. If it's set to false, the obtained solution
/// *may* not be exact, i.e., it may contain integer points that do not have an
/// integer pre-image in the original set.
///
/// Eg:
/// j >= 0, j <= i + 1
/// i >= 0, i <= N + 1
/// Eliminating i yields,
/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
///
/// If darkShadow = true, this method computes the dark shadow on elimination;
/// the dark shadow is a convex integer subset of the exact integer shadow. A
/// non-empty dark shadow proves the existence of an integer solution. The
/// elimination in such a case could however be an under-approximation, and thus
/// should not be used for scanning sets or used by itself for dependence
/// checking.
///
/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
/// ^
/// |
/// | * * * * o o
/// i | * * o o o o
/// | o * * * * *
/// --------------->
/// j ->
///
/// Eliminating i from this system (projecting on the j dimension):
/// rational shadow / integer light shadow: 1 <= j <= 6
/// dark shadow: 3 <= j <= 6
/// exact integer shadow: j = 1 \union 3 <= j <= 6
/// holes/splinters: j = 2
///
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
// TODO(bondhugula): a slight modification to yield dark shadow version of FM
// (tightened), which can prove the existence of a solution if there is one.
void FlatAffineConstraints::FourierMotzkinEliminate(
unsigned pos, bool darkShadow, bool *isResultIntegerExact) {
LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
LLVM_DEBUG(dump());
assert(pos < getNumIds() && "invalid position");
assert(hasConsistentState());
// Check if this identifier can be eliminated through a substitution.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (atEq(r, pos) != 0) {
// Use Gaussian elimination here (since we have an equality).
LogicalResult ret = gaussianEliminateId(pos);
(void)ret;
assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed");
LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
LLVM_DEBUG(dump());
return;
}
}
// A fast linear time tightening.
GCDTightenInequalities();
// Check if the identifier appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) != 0)
break;
}
if (r == getNumInequalities()) {
// If it doesn't appear, just remove the column and return.
// TODO(andydavis,bondhugula): refactor removeColumns to use it from here.
removeId(pos);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
return;
}
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> lbIndices;
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> ubIndices;
// Positions of constraints that do not involve the variable.
std::vector<unsigned> nbIndices;
nbIndices.reserve(getNumInequalities());
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) == 0) {
// Id does not appear in bound.
nbIndices.push_back(r);
} else if (atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices.push_back(r);
} else {
// Upper bound.
ubIndices.push_back(r);
}
}
// Set the number of dimensions, symbols in the resulting system.
const auto &dimsSymbols = getNewNumDimsSymbols(pos, *this);
unsigned newNumDims = dimsSymbols.first;
unsigned newNumSymbols = dimsSymbols.second;
SmallVector<Optional<Value>, 8> newIds;
newIds.reserve(numIds - 1);
newIds.append(ids.begin(), ids.begin() + pos);
newIds.append(ids.begin() + pos + 1, ids.end());
/// Create the new system which has one identifier less.
FlatAffineConstraints newFac(
lbIndices.size() * ubIndices.size() + nbIndices.size(),
getNumEqualities(), getNumCols() - 1, newNumDims, newNumSymbols,
/*numLocals=*/getNumIds() - 1 - newNumDims - newNumSymbols, newIds);
assert(newFac.getIds().size() == newFac.getNumIds());
// This will be used to check if the elimination was integer exact.
unsigned lcmProducts = 1;
// Let x be the variable we are eliminating.
// For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
// that c_l, c_u >= 1) we have:
// lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
// We thus generate a constraint:
// lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
// Note if c_l = c_u = 1, all integer points captured by the resulting
// constraint correspond to integer points in the original system (i.e., they
// have integer pre-images). Hence, if the lcm's are all 1, the elimination is
// integer exact.
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
SmallVector<int64_t, 4> ineq;
ineq.reserve(newFac.getNumCols());
int64_t lbCoeff = atIneq(lbPos, pos);
// Note that in the comments above, ubCoeff is the negation of the
// coefficient in the canonical form as the view taken here is that of the
// term being moved to the other size of '>='.
int64_t ubCoeff = -atIneq(ubPos, pos);
// TODO(bondhugula): refactor this loop to avoid all branches inside.
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
int64_t lcm = mlir::lcm(lbCoeff, ubCoeff);
ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
atIneq(lbPos, l) * (lcm / lbCoeff));
lcmProducts *= lcm;
}
if (darkShadow) {
// The dark shadow is a convex subset of the exact integer shadow. If
// there is a point here, it proves the existence of a solution.
ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
}
// TODO: we need to have a way to add inequalities in-place in
// FlatAffineConstraints instead of creating and copying over.
newFac.addInequality(ineq);
}
}
LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << (lcmProducts == 1)
<< "\n");
if (lcmProducts == 1 && isResultIntegerExact)
*isResultIntegerExact = true;
// Copy over the constraints not involving this variable.
for (auto nbPos : nbIndices) {
SmallVector<int64_t, 4> ineq;
ineq.reserve(getNumCols() - 1);
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
ineq.push_back(atIneq(nbPos, l));
}
newFac.addInequality(ineq);
}
assert(newFac.getNumConstraints() ==
lbIndices.size() * ubIndices.size() + nbIndices.size());
// Copy over the equalities.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
SmallVector<int64_t, 4> eq;
eq.reserve(newFac.getNumCols());
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
eq.push_back(atEq(r, l));
}
newFac.addEquality(eq);
}
// GCD tightening and normalization allows detection of more trivially
// redundant constraints.
newFac.GCDTightenInequalities();
newFac.normalizeConstraintsByGCD();
newFac.removeTrivialRedundancy();
clearAndCopyFrom(newFac);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "affine-structures"
void FlatAffineConstraints::projectOut(unsigned pos, unsigned num) {
if (num == 0)
return;
// 'pos' can be at most getNumCols() - 2 if num > 0.
assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
assert(pos + num < getNumCols() && "invalid range");
// Eliminate as many identifiers as possible using Gaussian elimination.
unsigned currentPos = pos;
unsigned numToEliminate = num;
unsigned numGaussianEliminated = 0;
while (currentPos < getNumIds()) {
unsigned curNumEliminated =
gaussianEliminateIds(currentPos, currentPos + numToEliminate);
++currentPos;
numToEliminate -= curNumEliminated + 1;
numGaussianEliminated += curNumEliminated;
}
// Eliminate the remaining using Fourier-Motzkin.
for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
unsigned numToEliminate = num - numGaussianEliminated - i;
FourierMotzkinEliminate(
getBestIdToEliminate(*this, pos, pos + numToEliminate));
}
// Fast/trivial simplifications.
GCDTightenInequalities();
// Normalize constraints after tightening since the latter impacts this, but
// not the other way round.
normalizeConstraintsByGCD();
}
void FlatAffineConstraints::projectOut(Value id) {
unsigned pos;
bool ret = findId(id, &pos);
assert(ret);
(void)ret;
FourierMotzkinEliminate(pos);
}
void FlatAffineConstraints::clearConstraints() {
equalities.clear();
inequalities.clear();
}
namespace {
enum BoundCmpResult { Greater, Less, Equal, Unknown };
/// Compares two affine bounds whose coefficients are provided in 'first' and
/// 'second'. The last coefficient is the constant term.
static BoundCmpResult compareBounds(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
assert(a.size() == b.size());
// For the bounds to be comparable, their corresponding identifier
// coefficients should be equal; the constant terms are then compared to
// determine less/greater/equal.
if (!std::equal(a.begin(), a.end() - 1, b.begin()))
return Unknown;
if (a.back() == b.back())
return Equal;
return a.back() < b.back() ? Less : Greater;
}
} // namespace
// Computes the bounding box with respect to 'other' by finding the min of the
// lower bounds and the max of the upper bounds along each of the dimensions.
LogicalResult
FlatAffineConstraints::unionBoundingBox(const FlatAffineConstraints &otherCst) {
assert(otherCst.getNumDimIds() == numDims && "dims mismatch");
assert(otherCst.getIds()
.slice(0, getNumDimIds())
.equals(getIds().slice(0, getNumDimIds())) &&
"dim values mismatch");
assert(otherCst.getNumLocalIds() == 0 && "local ids not supported here");
assert(getNumLocalIds() == 0 && "local ids not supported yet here");
Optional<FlatAffineConstraints> otherCopy;
if (!areIdsAligned(*this, otherCst)) {
otherCopy.emplace(FlatAffineConstraints(otherCst));
mergeAndAlignIds(/*offset=*/numDims, this, &otherCopy.getValue());
}
const auto &other = otherCopy ? *otherCopy : otherCst;
std::vector<SmallVector<int64_t, 8>> boundingLbs;
std::vector<SmallVector<int64_t, 8>> boundingUbs;
boundingLbs.reserve(2 * getNumDimIds());
boundingUbs.reserve(2 * getNumDimIds());
// To hold lower and upper bounds for each dimension.
SmallVector<int64_t, 4> lb, otherLb, ub, otherUb;
// To compute min of lower bounds and max of upper bounds for each dimension.
SmallVector<int64_t, 4> minLb(getNumSymbolIds() + 1);
SmallVector<int64_t, 4> maxUb(getNumSymbolIds() + 1);
// To compute final new lower and upper bounds for the union.
SmallVector<int64_t, 8> newLb(getNumCols()), newUb(getNumCols());
int64_t lbFloorDivisor, otherLbFloorDivisor;
for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
if (!extent.hasValue())
// TODO(bondhugula): symbolic extents when necessary.
// TODO(bondhugula): handle union if a dimension is unbounded.
return failure();
auto otherExtent = other.getConstantBoundOnDimSize(
d, &otherLb, &otherLbFloorDivisor, &otherUb);
if (!otherExtent.hasValue() || lbFloorDivisor != otherLbFloorDivisor)
// TODO(bondhugula): symbolic extents when necessary.
return failure();
assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
auto res = compareBounds(lb, otherLb);
// Identify min.
if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
minLb = lb;
// Since the divisor is for a floordiv, we need to convert to ceildiv,
// i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
// div * i >= expr - div + 1.
minLb.back() -= lbFloorDivisor - 1;
} else if (res == BoundCmpResult::Greater) {
minLb = otherLb;
minLb.back() -= otherLbFloorDivisor - 1;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constLb = getConstantLowerBound(d);
auto constOtherLb = other.getConstantLowerBound(d);
if (!constLb.hasValue() || !constOtherLb.hasValue())
return failure();
std::fill(minLb.begin(), minLb.end(), 0);
minLb.back() = std::min(constLb.getValue(), constOtherLb.getValue());
}
// Do the same for ub's but max of upper bounds. Identify max.
auto uRes = compareBounds(ub, otherUb);
if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
maxUb = ub;
} else if (uRes == BoundCmpResult::Less) {
maxUb = otherUb;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constUb = getConstantUpperBound(d);
auto constOtherUb = other.getConstantUpperBound(d);
if (!constUb.hasValue() || !constOtherUb.hasValue())
return failure();
std::fill(maxUb.begin(), maxUb.end(), 0);
maxUb.back() = std::max(constUb.getValue(), constOtherUb.getValue());
}
std::fill(newLb.begin(), newLb.end(), 0);
std::fill(newUb.begin(), newUb.end(), 0);
// The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
// and so it's the divisor for newLb and newUb as well.
newLb[d] = lbFloorDivisor;
newUb[d] = -lbFloorDivisor;
// Copy over the symbolic part + constant term.
std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimIds());
std::transform(newLb.begin() + getNumDimIds(), newLb.end(),
newLb.begin() + getNumDimIds(), std::negate<int64_t>());
std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimIds());
boundingLbs.push_back(newLb);
boundingUbs.push_back(newUb);
}
// Clear all constraints and add the lower/upper bounds for the bounding box.
clearConstraints();
for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
addInequality(boundingLbs[d]);
addInequality(boundingUbs[d]);
}
// TODO(mlir-team): copy over pure symbolic constraints from this and 'other'
// over to the union (since the above are just the union along dimensions); we
// shouldn't be discarding any other constraints on the symbols.
return success();
}