mheap.c 25.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Page heap.
//
// See malloc.h for overview.
//
// When a MSpan is in the heap free list, state == MSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
//
// When a MSpan is allocated, state == MSpanInUse
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.

#include "runtime.h"
#include "arch.h"
#include "malloc.h"

static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
static bool MHeap_Grow(MHeap*, uintptr);
static void MHeap_FreeLocked(MHeap*, MSpan*);
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
static MSpan *BestFit(MSpan*, uintptr, MSpan*);

static void
RecordSpan(void *vh, byte *p)
{
	MHeap *h;
	MSpan *s;
	MSpan **all;
	uint32 cap;

	h = vh;
	s = (MSpan*)p;
	if(h->nspan >= h->nspancap) {
		cap = 64*1024/sizeof(all[0]);
		if(cap < h->nspancap*3/2)
			cap = h->nspancap*3/2;
		all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats.other_sys);
		if(all == nil)
			runtime_throw("runtime: cannot allocate memory");
		if(h->allspans) {
			runtime_memmove(all, h->allspans, h->nspancap*sizeof(all[0]));
			// Don't free the old array if it's referenced by sweep.
			// See the comment in mgc0.c.
			if(h->allspans != runtime_mheap.sweepspans)
				runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys);
		}
		h->allspans = all;
		h->nspancap = cap;
	}
	h->allspans[h->nspan++] = s;
}

// Initialize the heap; fetch memory using alloc.
void
runtime_MHeap_Init(MHeap *h)
{
	uint32 i;

	runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys);
	runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys);
	runtime_FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &mstats.other_sys);
	runtime_FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &mstats.other_sys);
	// h->mapcache needs no init
	for(i=0; i<nelem(h->free); i++) {
		runtime_MSpanList_Init(&h->free[i]);
		runtime_MSpanList_Init(&h->busy[i]);
	}
	runtime_MSpanList_Init(&h->freelarge);
	runtime_MSpanList_Init(&h->busylarge);
	for(i=0; i<nelem(h->central); i++)
		runtime_MCentral_Init(&h->central[i].mcentral, i);
}

void
runtime_MHeap_MapSpans(MHeap *h)
{
	uintptr pagesize;
	uintptr n;

	// Map spans array, PageSize at a time.
	n = (uintptr)h->arena_used;
	n -= (uintptr)h->arena_start;
	n = n / PageSize * sizeof(h->spans[0]);
	n = ROUND(n, PageSize);
	pagesize = getpagesize();
	n = ROUND(n, pagesize);
	if(h->spans_mapped >= n)
		return;
	runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats.other_sys);
	h->spans_mapped = n;
}

// Sweeps spans in list until reclaims at least npages into heap.
// Returns the actual number of pages reclaimed.
static uintptr
MHeap_ReclaimList(MHeap *h, MSpan *list, uintptr npages)
{
	MSpan *s;
	uintptr n;
	uint32 sg;

	n = 0;
	sg = runtime_mheap.sweepgen;
retry:
	for(s = list->next; s != list; s = s->next) {
		if(s->sweepgen == sg-2 && runtime_cas(&s->sweepgen, sg-2, sg-1)) {
			runtime_MSpanList_Remove(s);
			// swept spans are at the end of the list
			runtime_MSpanList_InsertBack(list, s);
			runtime_unlock(&h->lock);
			n += runtime_MSpan_Sweep(s);
			runtime_lock(&h->lock);
			if(n >= npages)
				return n;
			// the span could have been moved elsewhere
			goto retry;
		}
		if(s->sweepgen == sg-1) {
			// the span is being sweept by background sweeper, skip
			continue;
		}
		// already swept empty span,
		// all subsequent ones must also be either swept or in process of sweeping
		break;
	}
	return n;
}

// Sweeps and reclaims at least npage pages into heap.
// Called before allocating npage pages.
static void
MHeap_Reclaim(MHeap *h, uintptr npage)
{
	uintptr reclaimed, n;

	// First try to sweep busy spans with large objects of size >= npage,
	// this has good chances of reclaiming the necessary space.
	for(n=npage; n < nelem(h->busy); n++) {
		if(MHeap_ReclaimList(h, &h->busy[n], npage))
			return;  // Bingo!
	}

	// Then -- even larger objects.
	if(MHeap_ReclaimList(h, &h->busylarge, npage))
		return;  // Bingo!

	// Now try smaller objects.
	// One such object is not enough, so we need to reclaim several of them.
	reclaimed = 0;
	for(n=0; n < npage && n < nelem(h->busy); n++) {
		reclaimed += MHeap_ReclaimList(h, &h->busy[n], npage-reclaimed);
		if(reclaimed >= npage)
			return;
	}

	// Now sweep everything that is not yet swept.
	runtime_unlock(&h->lock);
	for(;;) {
		n = runtime_sweepone();
		if(n == (uintptr)-1)  // all spans are swept
			break;
		reclaimed += n;
		if(reclaimed >= npage)
			break;
	}
	runtime_lock(&h->lock);
}

// Allocate a new span of npage pages from the heap
// and record its size class in the HeapMap and HeapMapCache.
MSpan*
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero)
{
	MSpan *s;

	runtime_lock(&h->lock);
	mstats.heap_alloc += runtime_m()->mcache->local_cachealloc;
	runtime_m()->mcache->local_cachealloc = 0;
	s = MHeap_AllocLocked(h, npage, sizeclass);
	if(s != nil) {
		mstats.heap_inuse += npage<<PageShift;
		if(large) {
			mstats.heap_objects++;
			mstats.heap_alloc += npage<<PageShift;
			// Swept spans are at the end of lists.
			if(s->npages < nelem(h->free))
				runtime_MSpanList_InsertBack(&h->busy[s->npages], s);
			else
				runtime_MSpanList_InsertBack(&h->busylarge, s);
		}
	}
	runtime_unlock(&h->lock);
	if(s != nil) {
		if(needzero && s->needzero)
			runtime_memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
		s->needzero = 0;
	}
	return s;
}

static MSpan*
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
{
	uintptr n;
	MSpan *s, *t;
	PageID p;

	// To prevent excessive heap growth, before allocating n pages
	// we need to sweep and reclaim at least n pages.
	if(!h->sweepdone)
		MHeap_Reclaim(h, npage);

	// Try in fixed-size lists up to max.
	for(n=npage; n < nelem(h->free); n++) {
		if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
			s = h->free[n].next;
			goto HaveSpan;
		}
	}

	// Best fit in list of large spans.
	if((s = MHeap_AllocLarge(h, npage)) == nil) {
		if(!MHeap_Grow(h, npage))
			return nil;
		if((s = MHeap_AllocLarge(h, npage)) == nil)
			return nil;
	}

HaveSpan:
	// Mark span in use.
	if(s->state != MSpanFree)
		runtime_throw("MHeap_AllocLocked - MSpan not free");
	if(s->npages < npage)
		runtime_throw("MHeap_AllocLocked - bad npages");
	runtime_MSpanList_Remove(s);
	runtime_atomicstore(&s->sweepgen, h->sweepgen);
	s->state = MSpanInUse;
	mstats.heap_idle -= s->npages<<PageShift;
	mstats.heap_released -= s->npreleased<<PageShift;
	if(s->npreleased > 0)
		runtime_SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift);
	s->npreleased = 0;

	if(s->npages > npage) {
		// Trim extra and put it back in the heap.
		t = runtime_FixAlloc_Alloc(&h->spanalloc);
		runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
		s->npages = npage;
		p = t->start;
		p -= ((uintptr)h->arena_start>>PageShift);
		if(p > 0)
			h->spans[p-1] = s;
		h->spans[p] = t;
		h->spans[p+t->npages-1] = t;
		t->needzero = s->needzero;
		runtime_atomicstore(&t->sweepgen, h->sweepgen);
		t->state = MSpanInUse;
		MHeap_FreeLocked(h, t);
		t->unusedsince = s->unusedsince; // preserve age
	}
	s->unusedsince = 0;

	// Record span info, because gc needs to be
	// able to map interior pointer to containing span.
	s->sizeclass = sizeclass;
	s->elemsize = (sizeclass==0 ? s->npages<<PageShift : (uintptr)runtime_class_to_size[sizeclass]);
	s->types.compression = MTypes_Empty;
	p = s->start;
	p -= ((uintptr)h->arena_start>>PageShift);
	for(n=0; n<npage; n++)
		h->spans[p+n] = s;
	return s;
}

// Allocate a span of exactly npage pages from the list of large spans.
static MSpan*
MHeap_AllocLarge(MHeap *h, uintptr npage)
{
	return BestFit(&h->freelarge, npage, nil);
}

// Search list for smallest span with >= npage pages.
// If there are multiple smallest spans, take the one
// with the earliest starting address.
static MSpan*
BestFit(MSpan *list, uintptr npage, MSpan *best)
{
	MSpan *s;

	for(s=list->next; s != list; s=s->next) {
		if(s->npages < npage)
			continue;
		if(best == nil
		|| s->npages < best->npages
		|| (s->npages == best->npages && s->start < best->start))
			best = s;
	}
	return best;
}

// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
static bool
MHeap_Grow(MHeap *h, uintptr npage)
{
	uintptr ask;
	void *v;
	MSpan *s;
	PageID p;

	// Ask for a big chunk, to reduce the number of mappings
	// the operating system needs to track; also amortizes
	// the overhead of an operating system mapping.
	// Allocate a multiple of 64kB (16 pages).
	npage = (npage+15)&~15;
	ask = npage<<PageShift;
	if(ask < HeapAllocChunk)
		ask = HeapAllocChunk;

	v = runtime_MHeap_SysAlloc(h, ask);
	if(v == nil) {
		if(ask > (npage<<PageShift)) {
			ask = npage<<PageShift;
			v = runtime_MHeap_SysAlloc(h, ask);
		}
		if(v == nil) {
			runtime_printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys);
			return false;
		}
	}

	// Create a fake "in use" span and free it, so that the
	// right coalescing happens.
	s = runtime_FixAlloc_Alloc(&h->spanalloc);
	runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
	p = s->start;
	p -= ((uintptr)h->arena_start>>PageShift);
	h->spans[p] = s;
	h->spans[p + s->npages - 1] = s;
	runtime_atomicstore(&s->sweepgen, h->sweepgen);
	s->state = MSpanInUse;
	MHeap_FreeLocked(h, s);
	return true;
}

// Look up the span at the given address.
// Address is guaranteed to be in map
// and is guaranteed to be start or end of span.
MSpan*
runtime_MHeap_Lookup(MHeap *h, void *v)
{
	uintptr p;
	
	p = (uintptr)v;
	p -= (uintptr)h->arena_start;
	return h->spans[p >> PageShift];
}

// Look up the span at the given address.
// Address is *not* guaranteed to be in map
// and may be anywhere in the span.
// Map entries for the middle of a span are only
// valid for allocated spans.  Free spans may have
// other garbage in their middles, so we have to
// check for that.
MSpan*
runtime_MHeap_LookupMaybe(MHeap *h, void *v)
{
	MSpan *s;
	PageID p, q;

	if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
		return nil;
	p = (uintptr)v>>PageShift;
	q = p;
	q -= (uintptr)h->arena_start >> PageShift;
	s = h->spans[q];
	if(s == nil || p < s->start || (byte*)v >= s->limit || s->state != MSpanInUse)
		return nil;
	return s;
}

// Free the span back into the heap.
void
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
{
	runtime_lock(&h->lock);
	mstats.heap_alloc += runtime_m()->mcache->local_cachealloc;
	runtime_m()->mcache->local_cachealloc = 0;
	mstats.heap_inuse -= s->npages<<PageShift;
	if(acct) {
		mstats.heap_alloc -= s->npages<<PageShift;
		mstats.heap_objects--;
	}
	MHeap_FreeLocked(h, s);
	runtime_unlock(&h->lock);
}

static void
MHeap_FreeLocked(MHeap *h, MSpan *s)
{
	MSpan *t;
	PageID p;

	s->types.compression = MTypes_Empty;

	if(s->state != MSpanInUse || s->ref != 0 || s->sweepgen != h->sweepgen) {
		runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d sweepgen %d/%d\n",
			s, s->start<<PageShift, s->state, s->ref, s->sweepgen, h->sweepgen);
		runtime_throw("MHeap_FreeLocked - invalid free");
	}
	mstats.heap_idle += s->npages<<PageShift;
	s->state = MSpanFree;
	runtime_MSpanList_Remove(s);
	// Stamp newly unused spans. The scavenger will use that
	// info to potentially give back some pages to the OS.
	s->unusedsince = runtime_nanotime();
	s->npreleased = 0;

	// Coalesce with earlier, later spans.
	p = s->start;
	p -= (uintptr)h->arena_start >> PageShift;
	if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse) {
		s->start = t->start;
		s->npages += t->npages;
		s->npreleased = t->npreleased; // absorb released pages
		s->needzero |= t->needzero;
		p -= t->npages;
		h->spans[p] = s;
		runtime_MSpanList_Remove(t);
		t->state = MSpanDead;
		runtime_FixAlloc_Free(&h->spanalloc, t);
	}
	if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse) {
		s->npages += t->npages;
		s->npreleased += t->npreleased;
		s->needzero |= t->needzero;
		h->spans[p + s->npages - 1] = s;
		runtime_MSpanList_Remove(t);
		t->state = MSpanDead;
		runtime_FixAlloc_Free(&h->spanalloc, t);
	}

	// Insert s into appropriate list.
	if(s->npages < nelem(h->free))
		runtime_MSpanList_Insert(&h->free[s->npages], s);
	else
		runtime_MSpanList_Insert(&h->freelarge, s);
}

static void
forcegchelper(void *vnote)
{
	Note *note = (Note*)vnote;

	runtime_gc(1);
	runtime_notewakeup(note);
}

static uintptr
scavengelist(MSpan *list, uint64 now, uint64 limit)
{
	uintptr released, sumreleased, start, end, pagesize;
	MSpan *s;

	if(runtime_MSpanList_IsEmpty(list))
		return 0;

	sumreleased = 0;
	for(s=list->next; s != list; s=s->next) {
		if((now - s->unusedsince) > limit && s->npreleased != s->npages) {
			released = (s->npages - s->npreleased) << PageShift;
			mstats.heap_released += released;
			sumreleased += released;
			s->npreleased = s->npages;

			start = s->start << PageShift;
			end = start + (s->npages << PageShift);

			// Round start up and end down to ensure we
			// are acting on entire pages.
			pagesize = getpagesize();
			start = ROUND(start, pagesize);
			end &= ~(pagesize - 1);
			if(end > start)
				runtime_SysUnused((void*)start, end - start);
		}
	}
	return sumreleased;
}

static void
scavenge(int32 k, uint64 now, uint64 limit)
{
	uint32 i;
	uintptr sumreleased;
	MHeap *h;
	
	h = &runtime_mheap;
	sumreleased = 0;
	for(i=0; i < nelem(h->free); i++)
		sumreleased += scavengelist(&h->free[i], now, limit);
	sumreleased += scavengelist(&h->freelarge, now, limit);

	if(runtime_debug.gctrace > 0) {
		if(sumreleased > 0)
			runtime_printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20);
		runtime_printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
			k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20,
			mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20);
	}
}

// Release (part of) unused memory to OS.
// Goroutine created at startup.
// Loop forever.
void
runtime_MHeap_Scavenger(void* dummy)
{
	G *g;
	MHeap *h;
	uint64 tick, now, forcegc, limit;
	int64 unixnow;
	uint32 k;
	Note note, *notep;

	USED(dummy);

	g = runtime_g();
	g->issystem = true;
	g->isbackground = true;

	// If we go two minutes without a garbage collection, force one to run.
	forcegc = 2*60*1e9;
	// If a span goes unused for 5 minutes after a garbage collection,
	// we hand it back to the operating system.
	limit = 5*60*1e9;
	// Make wake-up period small enough for the sampling to be correct.
	if(forcegc < limit)
		tick = forcegc/2;
	else
		tick = limit/2;

	h = &runtime_mheap;
	for(k=0;; k++) {
		runtime_noteclear(&note);
		runtime_notetsleepg(&note, tick);

		runtime_lock(&h->lock);
		unixnow = runtime_unixnanotime();
		if(unixnow - mstats.last_gc > forcegc) {
			runtime_unlock(&h->lock);
			// The scavenger can not block other goroutines,
			// otherwise deadlock detector can fire spuriously.
			// GC blocks other goroutines via the runtime_worldsema.
			runtime_noteclear(&note);
			notep = &note;
			__go_go(forcegchelper, (void*)notep);
			runtime_notetsleepg(&note, -1);
			if(runtime_debug.gctrace > 0)
				runtime_printf("scvg%d: GC forced\n", k);
			runtime_lock(&h->lock);
		}
		now = runtime_nanotime();
		scavenge(k, now, limit);
		runtime_unlock(&h->lock);
	}
}

void runtime_debug_freeOSMemory(void) __asm__("runtime_debug.freeOSMemory");

void
runtime_debug_freeOSMemory(void)
{
	runtime_gc(2);  // force GC and do eager sweep
	runtime_lock(&runtime_mheap.lock);
	scavenge(-1, ~(uintptr)0, 0);
	runtime_unlock(&runtime_mheap.lock);
}

// Initialize a new span with the given start and npages.
void
runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
{
	span->next = nil;
	span->prev = nil;
	span->start = start;
	span->npages = npages;
	span->freelist = nil;
	span->ref = 0;
	span->sizeclass = 0;
	span->incache = false;
	span->elemsize = 0;
	span->state = MSpanDead;
	span->unusedsince = 0;
	span->npreleased = 0;
	span->types.compression = MTypes_Empty;
	span->specialLock.key = 0;
	span->specials = nil;
	span->needzero = 0;
	span->freebuf = nil;
}

// Initialize an empty doubly-linked list.
void
runtime_MSpanList_Init(MSpan *list)
{
	list->state = MSpanListHead;
	list->next = list;
	list->prev = list;
}

void
runtime_MSpanList_Remove(MSpan *span)
{
	if(span->prev == nil && span->next == nil)
		return;
	span->prev->next = span->next;
	span->next->prev = span->prev;
	span->prev = nil;
	span->next = nil;
}

bool
runtime_MSpanList_IsEmpty(MSpan *list)
{
	return list->next == list;
}

void
runtime_MSpanList_Insert(MSpan *list, MSpan *span)
{
	if(span->next != nil || span->prev != nil) {
		runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
		runtime_throw("MSpanList_Insert");
	}
	span->next = list->next;
	span->prev = list;
	span->next->prev = span;
	span->prev->next = span;
}

void
runtime_MSpanList_InsertBack(MSpan *list, MSpan *span)
{
	if(span->next != nil || span->prev != nil) {
		runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
		runtime_throw("MSpanList_Insert");
	}
	span->next = list;
	span->prev = list->prev;
	span->next->prev = span;
	span->prev->next = span;
}

// Adds the special record s to the list of special records for
// the object p.  All fields of s should be filled in except for
// offset & next, which this routine will fill in.
// Returns true if the special was successfully added, false otherwise.
// (The add will fail only if a record with the same p and s->kind
//  already exists.)
static bool
addspecial(void *p, Special *s)
{
	MSpan *span;
	Special **t, *x;
	uintptr offset;
	byte kind;

	span = runtime_MHeap_LookupMaybe(&runtime_mheap, p);
	if(span == nil)
		runtime_throw("addspecial on invalid pointer");

	// Ensure that the span is swept.
	// GC accesses specials list w/o locks. And it's just much safer.
	runtime_m()->locks++;
	runtime_MSpan_EnsureSwept(span);

	offset = (uintptr)p - (span->start << PageShift);
	kind = s->kind;

	runtime_lock(&span->specialLock);

	// Find splice point, check for existing record.
	t = &span->specials;
	while((x = *t) != nil) {
		if(offset == x->offset && kind == x->kind) {
			runtime_unlock(&span->specialLock);
			runtime_m()->locks--;
			return false; // already exists
		}
		if(offset < x->offset || (offset == x->offset && kind < x->kind))
			break;
		t = &x->next;
	}
	// Splice in record, fill in offset.
	s->offset = offset;
	s->next = x;
	*t = s;
	runtime_unlock(&span->specialLock);
	runtime_m()->locks--;
	return true;
}

// Removes the Special record of the given kind for the object p.
// Returns the record if the record existed, nil otherwise.
// The caller must FixAlloc_Free the result.
static Special*
removespecial(void *p, byte kind)
{
	MSpan *span;
	Special *s, **t;
	uintptr offset;

	span = runtime_MHeap_LookupMaybe(&runtime_mheap, p);
	if(span == nil)
		runtime_throw("removespecial on invalid pointer");

	// Ensure that the span is swept.
	// GC accesses specials list w/o locks. And it's just much safer.
	runtime_m()->locks++;
	runtime_MSpan_EnsureSwept(span);

	offset = (uintptr)p - (span->start << PageShift);

	runtime_lock(&span->specialLock);
	t = &span->specials;
	while((s = *t) != nil) {
		// This function is used for finalizers only, so we don't check for
		// "interior" specials (p must be exactly equal to s->offset).
		if(offset == s->offset && kind == s->kind) {
			*t = s->next;
			runtime_unlock(&span->specialLock);
			runtime_m()->locks--;
			return s;
		}
		t = &s->next;
	}
	runtime_unlock(&span->specialLock);
	runtime_m()->locks--;
	return nil;
}

// Adds a finalizer to the object p.  Returns true if it succeeded.
bool
runtime_addfinalizer(void *p, FuncVal *f, const FuncType *ft, const PtrType *ot)
{
	SpecialFinalizer *s;

	runtime_lock(&runtime_mheap.speciallock);
	s = runtime_FixAlloc_Alloc(&runtime_mheap.specialfinalizeralloc);
	runtime_unlock(&runtime_mheap.speciallock);
	s->special.kind = KindSpecialFinalizer;
	s->fn = f;
	s->ft = ft;
	s->ot = ot;
	if(addspecial(p, &s->special))
		return true;

	// There was an old finalizer
	runtime_lock(&runtime_mheap.speciallock);
	runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, s);
	runtime_unlock(&runtime_mheap.speciallock);
	return false;
}

// Removes the finalizer (if any) from the object p.
void
runtime_removefinalizer(void *p)
{
	SpecialFinalizer *s;

	s = (SpecialFinalizer*)removespecial(p, KindSpecialFinalizer);
	if(s == nil)
		return; // there wasn't a finalizer to remove
	runtime_lock(&runtime_mheap.speciallock);
	runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, s);
	runtime_unlock(&runtime_mheap.speciallock);
}

// Set the heap profile bucket associated with addr to b.
void
runtime_setprofilebucket(void *p, Bucket *b)
{
	SpecialProfile *s;

	runtime_lock(&runtime_mheap.speciallock);
	s = runtime_FixAlloc_Alloc(&runtime_mheap.specialprofilealloc);
	runtime_unlock(&runtime_mheap.speciallock);
	s->special.kind = KindSpecialProfile;
	s->b = b;
	if(!addspecial(p, &s->special))
		runtime_throw("setprofilebucket: profile already set");
}

// Do whatever cleanup needs to be done to deallocate s.  It has
// already been unlinked from the MSpan specials list.
// Returns true if we should keep working on deallocating p.
bool
runtime_freespecial(Special *s, void *p, uintptr size, bool freed)
{
	SpecialFinalizer *sf;
	SpecialProfile *sp;

	switch(s->kind) {
	case KindSpecialFinalizer:
		sf = (SpecialFinalizer*)s;
		runtime_queuefinalizer(p, sf->fn, sf->ft, sf->ot);
		runtime_lock(&runtime_mheap.speciallock);
		runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, sf);
		runtime_unlock(&runtime_mheap.speciallock);
		return false; // don't free p until finalizer is done
	case KindSpecialProfile:
		sp = (SpecialProfile*)s;
		runtime_MProf_Free(sp->b, size, freed);
		runtime_lock(&runtime_mheap.speciallock);
		runtime_FixAlloc_Free(&runtime_mheap.specialprofilealloc, sp);
		runtime_unlock(&runtime_mheap.speciallock);
		return true;
	default:
		runtime_throw("bad special kind");
		return true;
	}
}

// Free all special records for p.
void
runtime_freeallspecials(MSpan *span, void *p, uintptr size)
{
	Special *s, **t, *list;
	uintptr offset;

	if(span->sweepgen != runtime_mheap.sweepgen)
		runtime_throw("runtime: freeallspecials: unswept span");
	// first, collect all specials into the list; then, free them
	// this is required to not cause deadlock between span->specialLock and proflock
	list = nil;
	offset = (uintptr)p - (span->start << PageShift);
	runtime_lock(&span->specialLock);
	t = &span->specials;
	while((s = *t) != nil) {
		if(offset + size <= s->offset)
			break;
		if(offset <= s->offset) {
			*t = s->next;
			s->next = list;
			list = s;
		} else
			t = &s->next;
	}
	runtime_unlock(&span->specialLock);

	while(list != nil) {
		s = list;
		list = s->next;
		if(!runtime_freespecial(s, p, size, true))
			runtime_throw("can't explicitly free an object with a finalizer");
	}
}

// Split an allocated span into two equal parts.
void
runtime_MHeap_SplitSpan(MHeap *h, MSpan *s)
{
	MSpan *t;
	MCentral *c;
	uintptr i;
	uintptr npages;
	PageID p;

	if(s->state != MSpanInUse)
		runtime_throw("MHeap_SplitSpan on a free span");
	if(s->sizeclass != 0 && s->ref != 1)
		runtime_throw("MHeap_SplitSpan doesn't have an allocated object");
	npages = s->npages;

	// remove the span from whatever list it is in now
	if(s->sizeclass > 0) {
		// must be in h->central[x].empty
		c = &h->central[s->sizeclass].mcentral;
		runtime_lock(&c->lock);
		runtime_MSpanList_Remove(s);
		runtime_unlock(&c->lock);
		runtime_lock(&h->lock);
	} else {
		// must be in h->busy/busylarge
		runtime_lock(&h->lock);
		runtime_MSpanList_Remove(s);
	}
	// heap is locked now

	if(npages == 1) {
		// convert span of 1 PageSize object to a span of 2 PageSize/2 objects.
		s->ref = 2;
		s->sizeclass = runtime_SizeToClass(PageSize/2);
		s->elemsize = PageSize/2;
	} else {
		// convert span of n>1 pages into two spans of n/2 pages each.
		if((s->npages & 1) != 0)
			runtime_throw("MHeap_SplitSpan on an odd size span");

		// compute position in h->spans
		p = s->start;
		p -= (uintptr)h->arena_start >> PageShift;

		// Allocate a new span for the first half.
		t = runtime_FixAlloc_Alloc(&h->spanalloc);
		runtime_MSpan_Init(t, s->start, npages/2);
		t->limit = (byte*)((t->start + npages/2) << PageShift);
		t->state = MSpanInUse;
		t->elemsize = npages << (PageShift - 1);
		t->sweepgen = s->sweepgen;
		if(t->elemsize <= MaxSmallSize) {
			t->sizeclass = runtime_SizeToClass(t->elemsize);
			t->ref = 1;
		}

		// the old span holds the second half.
		s->start += npages/2;
		s->npages = npages/2;
		s->elemsize = npages << (PageShift - 1);
		if(s->elemsize <= MaxSmallSize) {
			s->sizeclass = runtime_SizeToClass(s->elemsize);
			s->ref = 1;
		}

		// update span lookup table
		for(i = p; i < p + npages/2; i++)
			h->spans[i] = t;
	}

	// place the span into a new list
	if(s->sizeclass > 0) {
		runtime_unlock(&h->lock);
		c = &h->central[s->sizeclass].mcentral;
		runtime_lock(&c->lock);
		// swept spans are at the end of the list
		runtime_MSpanList_InsertBack(&c->empty, s);
		runtime_unlock(&c->lock);
	} else {
		// Swept spans are at the end of lists.
		if(s->npages < nelem(h->free))
			runtime_MSpanList_InsertBack(&h->busy[s->npages], s);
		else
			runtime_MSpanList_InsertBack(&h->busylarge, s);
		runtime_unlock(&h->lock);
	}
}