malloc.h 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Memory allocator, based on tcmalloc.
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html

// The main allocator works in runs of pages.
// Small allocation sizes (up to and including 32 kB) are
// rounded to one of about 100 size classes, each of which
// has its own free list of objects of exactly that size.
// Any free page of memory can be split into a set of objects
// of one size class, which are then managed using free list
// allocators.
//
// The allocator's data structures are:
//
//	FixAlloc: a free-list allocator for fixed-size objects,
//		used to manage storage used by the allocator.
//	MHeap: the malloc heap, managed at page (4096-byte) granularity.
//	MSpan: a run of pages managed by the MHeap.
//	MCentral: a shared free list for a given size class.
//	MCache: a per-thread (in Go, per-P) cache for small objects.
//	MStats: allocation statistics.
//
// Allocating a small object proceeds up a hierarchy of caches:
//
//	1. Round the size up to one of the small size classes
//	   and look in the corresponding MCache free list.
//	   If the list is not empty, allocate an object from it.
//	   This can all be done without acquiring a lock.
//
//	2. If the MCache free list is empty, replenish it by
//	   taking a bunch of objects from the MCentral free list.
//	   Moving a bunch amortizes the cost of acquiring the MCentral lock.
//
//	3. If the MCentral free list is empty, replenish it by
//	   allocating a run of pages from the MHeap and then
//	   chopping that memory into a objects of the given size.
//	   Allocating many objects amortizes the cost of locking
//	   the heap.
//
//	4. If the MHeap is empty or has no page runs large enough,
//	   allocate a new group of pages (at least 1MB) from the
//	   operating system.  Allocating a large run of pages
//	   amortizes the cost of talking to the operating system.
//
// Freeing a small object proceeds up the same hierarchy:
//
//	1. Look up the size class for the object and add it to
//	   the MCache free list.
//
//	2. If the MCache free list is too long or the MCache has
//	   too much memory, return some to the MCentral free lists.
//
//	3. If all the objects in a given span have returned to
//	   the MCentral list, return that span to the page heap.
//
//	4. If the heap has too much memory, return some to the
//	   operating system.
//
//	TODO(rsc): Step 4 is not implemented.
//
// Allocating and freeing a large object uses the page heap
// directly, bypassing the MCache and MCentral free lists.
//
// The small objects on the MCache and MCentral free lists
// may or may not be zeroed.  They are zeroed if and only if
// the second word of the object is zero.  A span in the
// page heap is zeroed unless s->needzero is set. When a span
// is allocated to break into small objects, it is zeroed if needed
// and s->needzero is set. There are two main benefits to delaying the
// zeroing this way:
//
//	1. stack frames allocated from the small object lists
//	   or the page heap can avoid zeroing altogether.
//	2. the cost of zeroing when reusing a small object is
//	   charged to the mutator, not the garbage collector.
//
// This C code was written with an eye toward translating to Go
// in the future.  Methods have the form Type_Method(Type *t, ...).

typedef struct MCentral	MCentral;
typedef struct MHeap	MHeap;
typedef struct MSpan	MSpan;
typedef struct MStats	MStats;
typedef struct MLink	MLink;
typedef struct MTypes	MTypes;
typedef struct GCStats	GCStats;

enum
{
	PageShift	= 13,
	PageSize	= 1<<PageShift,
	PageMask	= PageSize - 1,
};
typedef	uintptr	PageID;		// address >> PageShift

enum
{
	// Computed constant.  The definition of MaxSmallSize and the
	// algorithm in msize.c produce some number of different allocation
	// size classes.  NumSizeClasses is that number.  It's needed here
	// because there are static arrays of this length; when msize runs its
	// size choosing algorithm it double-checks that NumSizeClasses agrees.
	NumSizeClasses = 67,

	// Tunable constants.
	MaxSmallSize = 32<<10,

	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
	TinySize = 16,
	TinySizeClass = 2,

	FixAllocChunk = 16<<10,		// Chunk size for FixAlloc
	MaxMHeapList = 1<<(20 - PageShift),	// Maximum page length for fixed-size list in MHeap.
	HeapAllocChunk = 1<<20,		// Chunk size for heap growth

	// Number of bits in page to span calculations (4k pages).
	// On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
	// On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
	// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
#if __SIZEOF_POINTER__ == 8
#ifdef GOOS_windows
	// Windows counts memory used by page table into committed memory
	// of the process, so we can't reserve too much memory.
	// See http://golang.org/issue/5402 and http://golang.org/issue/5236.
	MHeapMap_Bits = 35 - PageShift,
#else
	MHeapMap_Bits = 37 - PageShift,
#endif
#else
	MHeapMap_Bits = 32 - PageShift,
#endif

	// Max number of threads to run garbage collection.
	// 2, 3, and 4 are all plausible maximums depending
	// on the hardware details of the machine.  The garbage
	// collector scales well to 8 cpus.
	MaxGcproc = 8,
};

// Maximum memory allocation size, a hint for callers.
// This must be a #define instead of an enum because it
// is so large.
#if __SIZEOF_POINTER__ == 8
#define	MaxMem	(1ULL<<(MHeapMap_Bits+PageShift))	/* 128 GB or 32 GB */
#else
#define	MaxMem	((uintptr)-1)
#endif

// A generic linked list of blocks.  (Typically the block is bigger than sizeof(MLink).)
struct MLink
{
	MLink *next;
};

// SysAlloc obtains a large chunk of zeroed memory from the
// operating system, typically on the order of a hundred kilobytes
// or a megabyte.
// NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by SysAlloc.
//
// SysUnused notifies the operating system that the contents
// of the memory region are no longer needed and can be reused
// for other purposes.
// SysUsed notifies the operating system that the contents
// of the memory region are needed again.
//
// SysFree returns it unconditionally; this is only used if
// an out-of-memory error has been detected midway through
// an allocation.  It is okay if SysFree is a no-op.
//
// SysReserve reserves address space without allocating memory.
// If the pointer passed to it is non-nil, the caller wants the
// reservation there, but SysReserve can still choose another
// location if that one is unavailable.  On some systems and in some
// cases SysReserve will simply check that the address space is
// available and not actually reserve it.  If SysReserve returns
// non-nil, it sets *reserved to true if the address space is
// reserved, false if it has merely been checked.
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by SysAlloc.
//
// SysMap maps previously reserved address space for use.
// The reserved argument is true if the address space was really
// reserved, not merely checked.
//
// SysFault marks a (already SysAlloc'd) region to fault
// if accessed.  Used only for debugging the runtime.

void*	runtime_SysAlloc(uintptr nbytes, uint64 *stat);
void	runtime_SysFree(void *v, uintptr nbytes, uint64 *stat);
void	runtime_SysUnused(void *v, uintptr nbytes);
void	runtime_SysUsed(void *v, uintptr nbytes);
void	runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
void*	runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
void	runtime_SysFault(void *v, uintptr nbytes);

// FixAlloc is a simple free-list allocator for fixed size objects.
// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
// MCache and MSpan objects.
//
// Memory returned by FixAlloc_Alloc is not zeroed.
// The caller is responsible for locking around FixAlloc calls.
// Callers can keep state in the object but the first word is
// smashed by freeing and reallocating.
struct FixAlloc
{
	uintptr	size;
	void	(*first)(void *arg, byte *p);	// called first time p is returned
	void*	arg;
	MLink*	list;
	byte*	chunk;
	uint32	nchunk;
	uintptr	inuse;	// in-use bytes now
	uint64*	stat;
};

void	runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
void*	runtime_FixAlloc_Alloc(FixAlloc *f);
void	runtime_FixAlloc_Free(FixAlloc *f, void *p);


// Statistics.
// Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
struct MStats
{
	// General statistics.
	uint64	alloc;		// bytes allocated and still in use
	uint64	total_alloc;	// bytes allocated (even if freed)
	uint64	sys;		// bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
	uint64	nlookup;	// number of pointer lookups
	uint64	nmalloc;	// number of mallocs
	uint64	nfree;  // number of frees

	// Statistics about malloc heap.
	// protected by mheap.Lock
	uint64	heap_alloc;	// bytes allocated and still in use
	uint64	heap_sys;	// bytes obtained from system
	uint64	heap_idle;	// bytes in idle spans
	uint64	heap_inuse;	// bytes in non-idle spans
	uint64	heap_released;	// bytes released to the OS
	uint64	heap_objects;	// total number of allocated objects

	// Statistics about allocation of low-level fixed-size structures.
	// Protected by FixAlloc locks.
	uint64	stacks_inuse;	// bootstrap stacks
	uint64	stacks_sys;
	uint64	mspan_inuse;	// MSpan structures
	uint64	mspan_sys;
	uint64	mcache_inuse;	// MCache structures
	uint64	mcache_sys;
	uint64	buckhash_sys;	// profiling bucket hash table
	uint64	gc_sys;
	uint64	other_sys;

	// Statistics about garbage collector.
	// Protected by mheap or stopping the world during GC.
	uint64	next_gc;	// next GC (in heap_alloc time)
	uint64  last_gc;	// last GC (in absolute time)
	uint64	pause_total_ns;
	uint64	pause_ns[256];
	uint64	pause_end[256];
	uint32	numgc;
	float64	gc_cpu_fraction;
	bool	enablegc;
	bool	debuggc;

	// Statistics about allocation size classes.
	struct {
		uint32 size;
		uint64 nmalloc;
		uint64 nfree;
	} by_size[NumSizeClasses];
};

extern MStats mstats
  __asm__ (GOSYM_PREFIX "runtime.memStats");
void	runtime_updatememstats(GCStats *stats);

// Size classes.  Computed and initialized by InitSizes.
//
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
//	1 <= sizeclass < NumSizeClasses, for n.
//	Size class 0 is reserved to mean "not small".
//
// class_to_size[i] = largest size in class i
// class_to_allocnpages[i] = number of pages to allocate when
//	making new objects in class i

int32	runtime_SizeToClass(int32);
uintptr	runtime_roundupsize(uintptr);
extern	int32	runtime_class_to_size[NumSizeClasses];
extern	int32	runtime_class_to_allocnpages[NumSizeClasses];
extern	int8	runtime_size_to_class8[1024/8 + 1];
extern	int8	runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
extern	void	runtime_InitSizes(void);


typedef struct MCacheList MCacheList;
struct MCacheList
{
	MLink *list;
	uint32 nlist;
};

// Per-thread (in Go, per-P) cache for small objects.
// No locking needed because it is per-thread (per-P).
struct MCache
{
	// The following members are accessed on every malloc,
	// so they are grouped here for better caching.
	int32 next_sample;		// trigger heap sample after allocating this many bytes
	intptr local_cachealloc;	// bytes allocated (or freed) from cache since last lock of heap
	// Allocator cache for tiny objects w/o pointers.
	// See "Tiny allocator" comment in malloc.goc.
	byte*	tiny;
	uintptr	tinysize;
	// The rest is not accessed on every malloc.
	MSpan*	alloc[NumSizeClasses];	// spans to allocate from
	MCacheList free[NumSizeClasses];// lists of explicitly freed objects
	// Local allocator stats, flushed during GC.
	uintptr local_nlookup;		// number of pointer lookups
	uintptr local_largefree;	// bytes freed for large objects (>MaxSmallSize)
	uintptr local_nlargefree;	// number of frees for large objects (>MaxSmallSize)
	uintptr local_nsmallfree[NumSizeClasses];	// number of frees for small objects (<=MaxSmallSize)
};

MSpan*	runtime_MCache_Refill(MCache *c, int32 sizeclass);
void	runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
void	runtime_MCache_ReleaseAll(MCache *c);

// MTypes describes the types of blocks allocated within a span.
// The compression field describes the layout of the data.
//
// MTypes_Empty:
//     All blocks are free, or no type information is available for
//     allocated blocks.
//     The data field has no meaning.
// MTypes_Single:
//     The span contains just one block.
//     The data field holds the type information.
//     The sysalloc field has no meaning.
// MTypes_Words:
//     The span contains multiple blocks.
//     The data field points to an array of type [NumBlocks]uintptr,
//     and each element of the array holds the type of the corresponding
//     block.
// MTypes_Bytes:
//     The span contains at most seven different types of blocks.
//     The data field points to the following structure:
//         struct {
//             type  [8]uintptr       // type[0] is always 0
//             index [NumBlocks]byte
//         }
//     The type of the i-th block is: data.type[data.index[i]]
enum
{
	MTypes_Empty = 0,
	MTypes_Single = 1,
	MTypes_Words = 2,
	MTypes_Bytes = 3,
};
struct MTypes
{
	byte	compression;	// one of MTypes_*
	uintptr	data;
};

enum
{
	KindSpecialFinalizer = 1,
	KindSpecialProfile = 2,
	// Note: The finalizer special must be first because if we're freeing
	// an object, a finalizer special will cause the freeing operation
	// to abort, and we want to keep the other special records around
	// if that happens.
};

typedef struct Special Special;
struct Special
{
	Special*	next;	// linked list in span
	uint16		offset;	// span offset of object
	byte		kind;	// kind of Special
};

// The described object has a finalizer set for it.
typedef struct SpecialFinalizer SpecialFinalizer;
struct SpecialFinalizer
{
	Special		special;
	FuncVal*	fn;
	const FuncType*	ft;
	const PtrType*	ot;
};

// The described object is being heap profiled.
typedef struct Bucket Bucket; // from mprof.goc
typedef struct SpecialProfile SpecialProfile;
struct SpecialProfile
{
	Special	special;
	Bucket*	b;
};

// An MSpan is a run of pages.
enum
{
	MSpanInUse = 0,
	MSpanFree,
	MSpanListHead,
	MSpanDead,
};
struct MSpan
{
	MSpan	*next;		// in a span linked list
	MSpan	*prev;		// in a span linked list
	PageID	start;		// starting page number
	uintptr	npages;		// number of pages in span
	MLink	*freelist;	// list of free objects
	// sweep generation:
	// if sweepgen == h->sweepgen - 2, the span needs sweeping
	// if sweepgen == h->sweepgen - 1, the span is currently being swept
	// if sweepgen == h->sweepgen, the span is swept and ready to use
	// h->sweepgen is incremented by 2 after every GC
	uint32	sweepgen;
	uint16	ref;		// capacity - number of objects in freelist
	uint8	sizeclass;	// size class
	bool	incache;	// being used by an MCache
	uint8	state;		// MSpanInUse etc
	uint8	needzero;	// needs to be zeroed before allocation
	uintptr	elemsize;	// computed from sizeclass or from npages
	int64   unusedsince;	// First time spotted by GC in MSpanFree state
	uintptr npreleased;	// number of pages released to the OS
	byte	*limit;		// end of data in span
	MTypes	types;		// types of allocated objects in this span
	Lock	specialLock;	// guards specials list
	Special	*specials;	// linked list of special records sorted by offset.
	MLink	*freebuf;	// objects freed explicitly, not incorporated into freelist yet
};

void	runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
void	runtime_MSpan_EnsureSwept(MSpan *span);
bool	runtime_MSpan_Sweep(MSpan *span);

// Every MSpan is in one doubly-linked list,
// either one of the MHeap's free lists or one of the
// MCentral's span lists.  We use empty MSpan structures as list heads.
void	runtime_MSpanList_Init(MSpan *list);
bool	runtime_MSpanList_IsEmpty(MSpan *list);
void	runtime_MSpanList_Insert(MSpan *list, MSpan *span);
void	runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
void	runtime_MSpanList_Remove(MSpan *span);	// from whatever list it is in


// Central list of free objects of a given size.
struct MCentral
{
	Lock  lock;
	int32 sizeclass;
	MSpan nonempty;	// list of spans with a free object
	MSpan empty;	// list of spans with no free objects (or cached in an MCache)
	int32 nfree;	// # of objects available in nonempty spans
};

void	runtime_MCentral_Init(MCentral *c, int32 sizeclass);
MSpan*	runtime_MCentral_CacheSpan(MCentral *c);
void	runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
bool	runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
void	runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?

// Main malloc heap.
// The heap itself is the "free[]" and "large" arrays,
// but all the other global data is here too.
struct MHeap
{
	Lock lock;
	MSpan free[MaxMHeapList];	// free lists of given length
	MSpan freelarge;		// free lists length >= MaxMHeapList
	MSpan busy[MaxMHeapList];	// busy lists of large objects of given length
	MSpan busylarge;		// busy lists of large objects length >= MaxMHeapList
	MSpan **allspans;		// all spans out there
	MSpan **sweepspans;		// copy of allspans referenced by sweeper
	uint32	nspan;
	uint32	nspancap;
	uint32	sweepgen;		// sweep generation, see comment in MSpan
	uint32	sweepdone;		// all spans are swept

	// span lookup
	MSpan**	spans;
	uintptr	spans_mapped;

	// range of addresses we might see in the heap
	byte *bitmap;
	uintptr bitmap_mapped;
	byte *arena_start;
	byte *arena_used;
	byte *arena_end;
	bool arena_reserved;

	// central free lists for small size classes.
	// the padding makes sure that the MCentrals are
	// spaced CacheLineSize bytes apart, so that each MCentral.Lock
	// gets its own cache line.
	struct {
		MCentral mcentral;
		byte pad[64];
	} central[NumSizeClasses];

	FixAlloc spanalloc;	// allocator for Span*
	FixAlloc cachealloc;	// allocator for MCache*
	FixAlloc specialfinalizeralloc;	// allocator for SpecialFinalizer*
	FixAlloc specialprofilealloc;	// allocator for SpecialProfile*
	Lock speciallock; // lock for sepcial record allocators.

	// Malloc stats.
	uint64 largefree;	// bytes freed for large objects (>MaxSmallSize)
	uint64 nlargefree;	// number of frees for large objects (>MaxSmallSize)
	uint64 nsmallfree[NumSizeClasses];	// number of frees for small objects (<=MaxSmallSize)
};
extern MHeap runtime_mheap;

void	runtime_MHeap_Init(MHeap *h);
MSpan*	runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
void	runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
MSpan*	runtime_MHeap_Lookup(MHeap *h, void *v);
MSpan*	runtime_MHeap_LookupMaybe(MHeap *h, void *v);
void	runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
void*	runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
void	runtime_MHeap_MapBits(MHeap *h);
void	runtime_MHeap_MapSpans(MHeap *h);
void	runtime_MHeap_Scavenger(void*);
void	runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);

void*	runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
void*	runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat);
int32	runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
void	runtime_gc(int32 force);
uintptr	runtime_sweepone(void);
void	runtime_markscan(void *v);
void	runtime_marknogc(void *v);
void	runtime_checkallocated(void *v, uintptr n);
void	runtime_markfreed(void *v);
void	runtime_checkfreed(void *v, uintptr n);
extern	int32	runtime_checking;
void	runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
void	runtime_unmarkspan(void *v, uintptr size);
void	runtime_purgecachedstats(MCache*);
void*	runtime_cnew(const Type*);
void*	runtime_cnewarray(const Type*, intgo);
void	runtime_tracealloc(void*, uintptr, uintptr);
void	runtime_tracefree(void*, uintptr);
void	runtime_tracegc(void);

uintptr	runtime_gettype(void*);

enum
{
	// flags to malloc
	FlagNoScan	= 1<<0,	// GC doesn't have to scan object
	FlagNoProfiling	= 1<<1,	// must not profile
	FlagNoGC	= 1<<2,	// must not free or scan for pointers
	FlagNoZero	= 1<<3, // don't zero memory
	FlagNoInvokeGC	= 1<<4, // don't invoke GC
};

typedef struct Obj Obj;
struct Obj
{
	byte	*p;	// data pointer
	uintptr	n;	// size of data in bytes
	uintptr	ti;	// type info
};

void	runtime_MProf_Malloc(void*, uintptr);
void	runtime_MProf_Free(Bucket*, uintptr, bool);
void	runtime_MProf_GC(void);
void	runtime_iterate_memprof(void (*callback)(Bucket*, uintptr, Location*, uintptr, uintptr, uintptr));
int32	runtime_gcprocs(void);
void	runtime_helpgc(int32 nproc);
void	runtime_gchelper(void);
void	runtime_createfing(void);
G*	runtime_wakefing(void);
extern bool	runtime_fingwait;
extern bool	runtime_fingwake;

void	runtime_setprofilebucket(void *p, Bucket *b);

struct __go_func_type;
struct __go_ptr_type;
bool	runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
void	runtime_removefinalizer(void*);
void	runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);

void	runtime_freeallspecials(MSpan *span, void *p, uintptr size);
bool	runtime_freespecial(Special *s, void *p, uintptr size, bool freed);

enum
{
	TypeInfo_SingleObject = 0,
	TypeInfo_Array = 1,
	TypeInfo_Chan = 2,

	// Enables type information at the end of blocks allocated from heap	
	DebugTypeAtBlockEnd = 0,
};

// Information from the compiler about the layout of stack frames.
typedef struct BitVector BitVector;
struct BitVector
{
	int32 n; // # of bits
	uint32 *data;
};
typedef struct StackMap StackMap;
struct StackMap
{
	int32 n; // number of bitmaps
	int32 nbit; // number of bits in each bitmap
	uint32 data[];
};
enum {
	// Pointer map
	BitsPerPointer = 2,
	BitsDead = 0,
	BitsScalar = 1,
	BitsPointer = 2,
	BitsMultiWord = 3,
	// BitsMultiWord will be set for the first word of a multi-word item.
	// When it is set, one of the following will be set for the second word.
	BitsString = 0,
	BitsSlice = 1,
	BitsIface = 2,
	BitsEface = 3,
};
// Returns pointer map data for the given stackmap index
// (the index is encoded in PCDATA_StackMapIndex).
BitVector	runtime_stackmapdata(StackMap *stackmap, int32 n);

// defined in mgc0.go
void	runtime_gc_m_ptr(Eface*);
void	runtime_gc_g_ptr(Eface*);
void	runtime_gc_itab_ptr(Eface*);

void	runtime_memorydump(void);
int32	runtime_setgcpercent(int32);

// Value we use to mark dead pointers when GODEBUG=gcdead=1.
#define PoisonGC ((uintptr)0xf969696969696969ULL)
#define PoisonStack ((uintptr)0x6868686868686868ULL)

struct Workbuf;
void	runtime_MProf_Mark(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void	runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void	runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void	runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));