malloc.goc 29.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// See malloc.h for overview.
//
// TODO(rsc): double-check stats.

package runtime
#include <stddef.h>
#include <errno.h>
#include <stdlib.h>
#include "go-alloc.h"
#include "runtime.h"
#include "arch.h"
#include "malloc.h"
#include "interface.h"
#include "go-type.h"

// Map gccgo field names to gc field names.
// Eface aka __go_empty_interface.
#define type __type_descriptor
// Type aka __go_type_descriptor
#define kind __code
#define string __reflection
#define KindPtr GO_PTR
#define KindNoPointers GO_NO_POINTERS
#define kindMask GO_CODE_MASK

// GCCGO SPECIFIC CHANGE
//
// There is a long comment in runtime_mallocinit about where to put the heap
// on a 64-bit system.  It makes assumptions that are not valid on linux/arm64
// -- it assumes user space can choose the lower 47 bits of a pointer, but on
// linux/arm64 we can only choose the lower 39 bits.  This means the heap is
// roughly a quarter of the available address space and we cannot choose a bit
// pattern that all pointers will have -- luckily the GC is mostly precise
// these days so this doesn't matter all that much.  The kernel (as of 3.13)
// will allocate address space starting either down from 0x7fffffffff or up
// from 0x2000000000, so we put the heap roughly in the middle of these two
// addresses to minimize the chance that a non-heap allocation will get in the
// way of the heap.
//
// This all means that there isn't much point in trying 256 different
// locations for the heap on such systems.
#ifdef __aarch64__
#define HeapBase(i) ((void*)(uintptr)(0x40ULL<<32))
#define HeapBaseOptions 1
#else
#define HeapBase(i) ((void*)(uintptr)(i<<40|0x00c0ULL<<32))
#define HeapBaseOptions 0x80
#endif
// END GCCGO SPECIFIC CHANGE

// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
MHeap runtime_mheap;
MStats mstats;

int32	runtime_checking;

extern MStats mstats;	// defined in zruntime_def_$GOOS_$GOARCH.go

extern volatile intgo runtime_MemProfileRate
  __asm__ (GOSYM_PREFIX "runtime.MemProfileRate");

static MSpan* largealloc(uint32, uintptr*);
static void runtime_profilealloc(void *v, uintptr size);
static void settype(MSpan *s, void *v, uintptr typ);

// Allocate an object of at least size bytes.
// Small objects are allocated from the per-thread cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
// If the block will be freed with runtime_free(), typ must be 0.
void*
runtime_mallocgc(uintptr size, uintptr typ, uint32 flag)
{
	M *m;
	G *g;
	int32 sizeclass;
	uintptr tinysize, size1;
	intgo rate;
	MCache *c;
	MSpan *s;
	MLink *v, *next;
	byte *tiny;
	bool incallback;

	if(size == 0) {
		// All 0-length allocations use this pointer.
		// The language does not require the allocations to
		// have distinct values.
		return &runtime_zerobase;
	}

	m = runtime_m();
	g = runtime_g();

	incallback = false;
	if(m->mcache == nil && g->ncgo > 0) {
		// For gccgo this case can occur when a cgo or SWIG function
		// has an interface return type and the function
		// returns a non-pointer, so memory allocation occurs
		// after syscall.Cgocall but before syscall.CgocallDone.
		// We treat it as a callback.
		runtime_exitsyscall();
		m = runtime_m();
		incallback = true;
		flag |= FlagNoInvokeGC;
	}

	if(runtime_gcwaiting() && g != m->g0 && m->locks == 0 && !(flag & FlagNoInvokeGC)) {
		runtime_gosched();
		m = runtime_m();
	}
	if(m->mallocing)
		runtime_throw("malloc/free - deadlock");
	// Disable preemption during settype.
	// We can not use m->mallocing for this, because settype calls mallocgc.
	m->locks++;
	m->mallocing = 1;

	if(DebugTypeAtBlockEnd)
		size += sizeof(uintptr);

	c = m->mcache;
	if(!runtime_debug.efence && size <= MaxSmallSize) {
		if((flag&(FlagNoScan|FlagNoGC)) == FlagNoScan && size < TinySize) {
			// Tiny allocator.
			//
			// Tiny allocator combines several tiny allocation requests
			// into a single memory block. The resulting memory block
			// is freed when all subobjects are unreachable. The subobjects
			// must be FlagNoScan (don't have pointers), this ensures that
			// the amount of potentially wasted memory is bounded.
			//
			// Size of the memory block used for combining (TinySize) is tunable.
			// Current setting is 16 bytes, which relates to 2x worst case memory
			// wastage (when all but one subobjects are unreachable).
			// 8 bytes would result in no wastage at all, but provides less
			// opportunities for combining.
			// 32 bytes provides more opportunities for combining,
			// but can lead to 4x worst case wastage.
			// The best case winning is 8x regardless of block size.
			//
			// Objects obtained from tiny allocator must not be freed explicitly.
			// So when an object will be freed explicitly, we ensure that
			// its size >= TinySize.
			//
			// SetFinalizer has a special case for objects potentially coming
			// from tiny allocator, it such case it allows to set finalizers
			// for an inner byte of a memory block.
			//
			// The main targets of tiny allocator are small strings and
			// standalone escaping variables. On a json benchmark
			// the allocator reduces number of allocations by ~12% and
			// reduces heap size by ~20%.

			tinysize = c->tinysize;
			if(size <= tinysize) {
				tiny = c->tiny;
				// Align tiny pointer for required (conservative) alignment.
				if((size&7) == 0)
					tiny = (byte*)ROUND((uintptr)tiny, 8);
				else if((size&3) == 0)
					tiny = (byte*)ROUND((uintptr)tiny, 4);
				else if((size&1) == 0)
					tiny = (byte*)ROUND((uintptr)tiny, 2);
				size1 = size + (tiny - c->tiny);
				if(size1 <= tinysize) {
					// The object fits into existing tiny block.
					v = (MLink*)tiny;
					c->tiny += size1;
					c->tinysize -= size1;
					m->mallocing = 0;
					m->locks--;
					if(incallback)
						runtime_entersyscall();
					return v;
				}
			}
			// Allocate a new TinySize block.
			s = c->alloc[TinySizeClass];
			if(s->freelist == nil)
				s = runtime_MCache_Refill(c, TinySizeClass);
			v = s->freelist;
			next = v->next;
			s->freelist = next;
			s->ref++;
			if(next != nil)  // prefetching nil leads to a DTLB miss
				PREFETCH(next);
			((uint64*)v)[0] = 0;
			((uint64*)v)[1] = 0;
			// See if we need to replace the existing tiny block with the new one
			// based on amount of remaining free space.
			if(TinySize-size > tinysize) {
				c->tiny = (byte*)v + size;
				c->tinysize = TinySize - size;
			}
			size = TinySize;
			goto done;
		}
		// Allocate from mcache free lists.
		// Inlined version of SizeToClass().
		if(size <= 1024-8)
			sizeclass = runtime_size_to_class8[(size+7)>>3];
		else
			sizeclass = runtime_size_to_class128[(size-1024+127) >> 7];
		size = runtime_class_to_size[sizeclass];
		s = c->alloc[sizeclass];
		if(s->freelist == nil)
			s = runtime_MCache_Refill(c, sizeclass);
		v = s->freelist;
		next = v->next;
		s->freelist = next;
		s->ref++;
		if(next != nil)  // prefetching nil leads to a DTLB miss
			PREFETCH(next);
		if(!(flag & FlagNoZero)) {
			v->next = nil;
			// block is zeroed iff second word is zero ...
			if(size > 2*sizeof(uintptr) && ((uintptr*)v)[1] != 0)
				runtime_memclr((byte*)v, size);
		}
	done:
		c->local_cachealloc += size;
	} else {
		// Allocate directly from heap.
		s = largealloc(flag, &size);
		v = (void*)(s->start << PageShift);
	}

	if(flag & FlagNoGC)
		runtime_marknogc(v);
	else if(!(flag & FlagNoScan))
		runtime_markscan(v);

	if(DebugTypeAtBlockEnd)
		*(uintptr*)((uintptr)v+size-sizeof(uintptr)) = typ;

	m->mallocing = 0;
	// TODO: save type even if FlagNoScan?  Potentially expensive but might help
	// heap profiling/tracing.
	if(UseSpanType && !(flag & FlagNoScan) && typ != 0)
		settype(s, v, typ);

	if(runtime_debug.allocfreetrace)
		runtime_tracealloc(v, size, typ);

	if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) {
		if(size < (uintptr)rate && size < (uintptr)(uint32)c->next_sample)
			c->next_sample -= size;
		else
			runtime_profilealloc(v, size);
	}

	m->locks--;

	if(!(flag & FlagNoInvokeGC) && mstats.heap_alloc >= mstats.next_gc)
		runtime_gc(0);

	if(incallback)
		runtime_entersyscall();

	return v;
}

static MSpan*
largealloc(uint32 flag, uintptr *sizep)
{
	uintptr npages, size;
	MSpan *s;
	void *v;

	// Allocate directly from heap.
	size = *sizep;
	if(size + PageSize < size)
		runtime_throw("out of memory");
	npages = size >> PageShift;
	if((size & PageMask) != 0)
		npages++;
	s = runtime_MHeap_Alloc(&runtime_mheap, npages, 0, 1, !(flag & FlagNoZero));
	if(s == nil)
		runtime_throw("out of memory");
	s->limit = (byte*)(s->start<<PageShift) + size;
	*sizep = npages<<PageShift;
	v = (void*)(s->start << PageShift);
	// setup for mark sweep
	runtime_markspan(v, 0, 0, true);
	return s;
}

static void
runtime_profilealloc(void *v, uintptr size)
{
	uintptr rate;
	int32 next;
	MCache *c;

	c = runtime_m()->mcache;
	rate = runtime_MemProfileRate;
	if(size < rate) {
		// pick next profile time
		// If you change this, also change allocmcache.
		if(rate > 0x3fffffff)	// make 2*rate not overflow
			rate = 0x3fffffff;
		next = runtime_fastrand1() % (2*rate);
		// Subtract the "remainder" of the current allocation.
		// Otherwise objects that are close in size to sampling rate
		// will be under-sampled, because we consistently discard this remainder.
		next -= (size - c->next_sample);
		if(next < 0)
			next = 0;
		c->next_sample = next;
	}
	runtime_MProf_Malloc(v, size);
}

void*
__go_alloc(uintptr size)
{
	return runtime_mallocgc(size, 0, FlagNoInvokeGC);
}

// Free the object whose base pointer is v.
void
__go_free(void *v)
{
	M *m;
	int32 sizeclass;
	MSpan *s;
	MCache *c;
	uintptr size;

	if(v == nil)
		return;
	
	// If you change this also change mgc0.c:/^sweep,
	// which has a copy of the guts of free.

	m = runtime_m();
	if(m->mallocing)
		runtime_throw("malloc/free - deadlock");
	m->mallocing = 1;

	if(!runtime_mlookup(v, nil, nil, &s)) {
		runtime_printf("free %p: not an allocated block\n", v);
		runtime_throw("free runtime_mlookup");
	}
	size = s->elemsize;
	sizeclass = s->sizeclass;
	// Objects that are smaller than TinySize can be allocated using tiny alloc,
	// if then such object is combined with an object with finalizer, we will crash.
	if(size < TinySize)
		runtime_throw("freeing too small block");

	if(runtime_debug.allocfreetrace)
		runtime_tracefree(v, size);

	// Ensure that the span is swept.
	// If we free into an unswept span, we will corrupt GC bitmaps.
	runtime_MSpan_EnsureSwept(s);

	if(s->specials != nil)
		runtime_freeallspecials(s, v, size);

	c = m->mcache;
	if(sizeclass == 0) {
		// Large object.
		s->needzero = 1;
		// Must mark v freed before calling unmarkspan and MHeap_Free:
		// they might coalesce v into other spans and change the bitmap further.
		runtime_markfreed(v);
		runtime_unmarkspan(v, 1<<PageShift);
		// NOTE(rsc,dvyukov): The original implementation of efence
		// in CL 22060046 used SysFree instead of SysFault, so that
		// the operating system would eventually give the memory
		// back to us again, so that an efence program could run
		// longer without running out of memory. Unfortunately,
		// calling SysFree here without any kind of adjustment of the
		// heap data structures means that when the memory does
		// come back to us, we have the wrong metadata for it, either in
		// the MSpan structures or in the garbage collection bitmap.
		// Using SysFault here means that the program will run out of
		// memory fairly quickly in efence mode, but at least it won't
		// have mysterious crashes due to confused memory reuse.
		// It should be possible to switch back to SysFree if we also 
		// implement and then call some kind of MHeap_DeleteSpan.
		if(runtime_debug.efence)
			runtime_SysFault((void*)(s->start<<PageShift), size);
		else
			runtime_MHeap_Free(&runtime_mheap, s, 1);
		c->local_nlargefree++;
		c->local_largefree += size;
	} else {
		// Small object.
		if(size > 2*sizeof(uintptr))
			((uintptr*)v)[1] = (uintptr)0xfeedfeedfeedfeedll;	// mark as "needs to be zeroed"
		else if(size > sizeof(uintptr))
			((uintptr*)v)[1] = 0;
		// Must mark v freed before calling MCache_Free:
		// it might coalesce v and other blocks into a bigger span
		// and change the bitmap further.
		c->local_nsmallfree[sizeclass]++;
		c->local_cachealloc -= size;
		if(c->alloc[sizeclass] == s) {
			// We own the span, so we can just add v to the freelist
			runtime_markfreed(v);
			((MLink*)v)->next = s->freelist;
			s->freelist = v;
			s->ref--;
		} else {
			// Someone else owns this span.  Add to free queue.
			runtime_MCache_Free(c, v, sizeclass, size);
		}
	}
	m->mallocing = 0;
}

int32
runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
{
	M *m;
	uintptr n, i;
	byte *p;
	MSpan *s;

	m = runtime_m();

	m->mcache->local_nlookup++;
	if (sizeof(void*) == 4 && m->mcache->local_nlookup >= (1<<30)) {
		// purge cache stats to prevent overflow
		runtime_lock(&runtime_mheap.lock);
		runtime_purgecachedstats(m->mcache);
		runtime_unlock(&runtime_mheap.lock);
	}

	s = runtime_MHeap_LookupMaybe(&runtime_mheap, v);
	if(sp)
		*sp = s;
	if(s == nil) {
		runtime_checkfreed(v, 1);
		if(base)
			*base = nil;
		if(size)
			*size = 0;
		return 0;
	}

	p = (byte*)((uintptr)s->start<<PageShift);
	if(s->sizeclass == 0) {
		// Large object.
		if(base)
			*base = p;
		if(size)
			*size = s->npages<<PageShift;
		return 1;
	}

	n = s->elemsize;
	if(base) {
		i = ((byte*)v - p)/n;
		*base = p + i*n;
	}
	if(size)
		*size = n;

	return 1;
}

void
runtime_purgecachedstats(MCache *c)
{
	MHeap *h;
	int32 i;

	// Protected by either heap or GC lock.
	h = &runtime_mheap;
	mstats.heap_alloc += c->local_cachealloc;
	c->local_cachealloc = 0;
	mstats.nlookup += c->local_nlookup;
	c->local_nlookup = 0;
	h->largefree += c->local_largefree;
	c->local_largefree = 0;
	h->nlargefree += c->local_nlargefree;
	c->local_nlargefree = 0;
	for(i=0; i<(int32)nelem(c->local_nsmallfree); i++) {
		h->nsmallfree[i] += c->local_nsmallfree[i];
		c->local_nsmallfree[i] = 0;
	}
}

extern uintptr runtime_sizeof_C_MStats
  __asm__ (GOSYM_PREFIX "runtime.Sizeof_C_MStats");

// Size of the trailing by_size array differs between Go and C,
// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
// sizeof_C_MStats is what C thinks about size of Go struct.

// Initialized in mallocinit because it's defined in go/runtime/mem.go.

#define MaxArena32 (2U<<30)

void
runtime_mallocinit(void)
{
	byte *p, *p1;
	uintptr arena_size, bitmap_size, spans_size, p_size;
	extern byte _end[];
	uintptr limit;
	uint64 i;
	bool reserved;

	runtime_sizeof_C_MStats = sizeof(MStats) - (NumSizeClasses - 61) * sizeof(mstats.by_size[0]);

	p = nil;
	p_size = 0;
	arena_size = 0;
	bitmap_size = 0;
	spans_size = 0;
	reserved = false;

	// for 64-bit build
	USED(p);
	USED(p_size);
	USED(arena_size);
	USED(bitmap_size);
	USED(spans_size);

	runtime_InitSizes();

	if(runtime_class_to_size[TinySizeClass] != TinySize)
		runtime_throw("bad TinySizeClass");

	// limit = runtime_memlimit();
	// See https://code.google.com/p/go/issues/detail?id=5049
	// TODO(rsc): Fix after 1.1.
	limit = 0;

	// Set up the allocation arena, a contiguous area of memory where
	// allocated data will be found.  The arena begins with a bitmap large
	// enough to hold 4 bits per allocated word.
	if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
		// On a 64-bit machine, allocate from a single contiguous reservation.
		// 128 GB (MaxMem) should be big enough for now.
		//
		// The code will work with the reservation at any address, but ask
		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
		// Allocating a 128 GB region takes away 37 bits, and the amd64
		// doesn't let us choose the top 17 bits, so that leaves the 11 bits
		// in the middle of 0x00c0 for us to choose.  Choosing 0x00c0 means
		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
		// UTF-8 sequences, and they are otherwise as far away from 
		// ff (likely a common byte) as possible.  If that fails, we try other 0xXXc0
		// addresses.  An earlier attempt to use 0x11f8 caused out of memory errors
		// on OS X during thread allocations.  0x00c0 causes conflicts with
		// AddressSanitizer which reserves all memory up to 0x0100.
		// These choices are both for debuggability and to reduce the
		// odds of the conservative garbage collector not collecting memory
		// because some non-pointer block of memory had a bit pattern
		// that matched a memory address.
		//
		// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
		// but it hardly matters: e0 00 is not valid UTF-8 either.
		//
		// If this fails we fall back to the 32 bit memory mechanism
		arena_size = MaxMem;
		bitmap_size = arena_size / (sizeof(void*)*8/4);
		spans_size = arena_size / PageSize * sizeof(runtime_mheap.spans[0]);
		spans_size = ROUND(spans_size, PageSize);
		for(i = 0; i < HeapBaseOptions; i++) {
			p = HeapBase(i);
			p_size = bitmap_size + spans_size + arena_size + PageSize;
			p = runtime_SysReserve(p, p_size, &reserved);
			if(p != nil)
				break;
		}
	}
	if (p == nil) {
		// On a 32-bit machine, we can't typically get away
		// with a giant virtual address space reservation.
		// Instead we map the memory information bitmap
		// immediately after the data segment, large enough
		// to handle another 2GB of mappings (256 MB),
		// along with a reservation for another 512 MB of memory.
		// When that gets used up, we'll start asking the kernel
		// for any memory anywhere and hope it's in the 2GB
		// following the bitmap (presumably the executable begins
		// near the bottom of memory, so we'll have to use up
		// most of memory before the kernel resorts to giving out
		// memory before the beginning of the text segment).
		//
		// Alternatively we could reserve 512 MB bitmap, enough
		// for 4GB of mappings, and then accept any memory the
		// kernel threw at us, but normally that's a waste of 512 MB
		// of address space, which is probably too much in a 32-bit world.
		bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
		arena_size = 512<<20;
		spans_size = MaxArena32 / PageSize * sizeof(runtime_mheap.spans[0]);
		if(limit > 0 && arena_size+bitmap_size+spans_size > limit) {
			bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
			arena_size = bitmap_size * 8;
			spans_size = arena_size / PageSize * sizeof(runtime_mheap.spans[0]);
		}
		spans_size = ROUND(spans_size, PageSize);

		// SysReserve treats the address we ask for, end, as a hint,
		// not as an absolute requirement.  If we ask for the end
		// of the data segment but the operating system requires
		// a little more space before we can start allocating, it will
		// give out a slightly higher pointer.  Except QEMU, which
		// is buggy, as usual: it won't adjust the pointer upward.
		// So adjust it upward a little bit ourselves: 1/4 MB to get
		// away from the running binary image and then round up
		// to a MB boundary.
		p = (byte*)ROUND((uintptr)_end + (1<<18), 1<<20);
		p_size = bitmap_size + spans_size + arena_size + PageSize;
		p = runtime_SysReserve(p, p_size, &reserved);
		if(p == nil)
			runtime_throw("runtime: cannot reserve arena virtual address space");
	}

	// PageSize can be larger than OS definition of page size,
	// so SysReserve can give us a PageSize-unaligned pointer.
	// To overcome this we ask for PageSize more and round up the pointer.
	p1 = (byte*)ROUND((uintptr)p, PageSize);

	runtime_mheap.spans = (MSpan**)p1;
	runtime_mheap.bitmap = p1 + spans_size;
	runtime_mheap.arena_start = p1 + spans_size + bitmap_size;
	runtime_mheap.arena_used = runtime_mheap.arena_start;
	runtime_mheap.arena_end = p + p_size;
	runtime_mheap.arena_reserved = reserved;

	if(((uintptr)runtime_mheap.arena_start & (PageSize-1)) != 0)
		runtime_throw("misrounded allocation in mallocinit");

	// Initialize the rest of the allocator.	
	runtime_MHeap_Init(&runtime_mheap);
	runtime_m()->mcache = runtime_allocmcache();

	// See if it works.
	runtime_free(runtime_malloc(TinySize));
}

void*
runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
{
	byte *p, *p_end;
	uintptr p_size;
	bool reserved;


	if(n > (uintptr)(h->arena_end - h->arena_used)) {
		// We are in 32-bit mode, maybe we didn't use all possible address space yet.
		// Reserve some more space.
		byte *new_end;

		p_size = ROUND(n + PageSize, 256<<20);
		new_end = h->arena_end + p_size;
		if(new_end <= h->arena_start + MaxArena32) {
			// TODO: It would be bad if part of the arena
			// is reserved and part is not.
			p = runtime_SysReserve(h->arena_end, p_size, &reserved);
			if(p == h->arena_end) {
				h->arena_end = new_end;
				h->arena_reserved = reserved;
			}
			else if(p+p_size <= h->arena_start + MaxArena32) {
				// Keep everything page-aligned.
				// Our pages are bigger than hardware pages.
				h->arena_end = p+p_size;
				h->arena_used = p + (-(uintptr)p&(PageSize-1));
				h->arena_reserved = reserved;
			} else {
				uint64 stat;
				stat = 0;
				runtime_SysFree(p, p_size, &stat);
			}
		}
	}
	if(n <= (uintptr)(h->arena_end - h->arena_used)) {
		// Keep taking from our reservation.
		p = h->arena_used;
		runtime_SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
		h->arena_used += n;
		runtime_MHeap_MapBits(h);
		runtime_MHeap_MapSpans(h);
		
		if(((uintptr)p & (PageSize-1)) != 0)
			runtime_throw("misrounded allocation in MHeap_SysAlloc");
		return p;
	}
	
	// If using 64-bit, our reservation is all we have.
	if((uintptr)(h->arena_end - h->arena_start) >= MaxArena32)
		return nil;

	// On 32-bit, once the reservation is gone we can
	// try to get memory at a location chosen by the OS
	// and hope that it is in the range we allocated bitmap for.
	p_size = ROUND(n, PageSize) + PageSize;
	p = runtime_SysAlloc(p_size, &mstats.heap_sys);
	if(p == nil)
		return nil;

	if(p < h->arena_start || (uintptr)(p+p_size - h->arena_start) >= MaxArena32) {
		runtime_printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
			p, h->arena_start, h->arena_start+MaxArena32);
		runtime_SysFree(p, p_size, &mstats.heap_sys);
		return nil;
	}
	
	p_end = p + p_size;
	p += -(uintptr)p & (PageSize-1);
	if(p+n > h->arena_used) {
		h->arena_used = p+n;
		if(p_end > h->arena_end)
			h->arena_end = p_end;
		runtime_MHeap_MapBits(h);
		runtime_MHeap_MapSpans(h);
	}
	
	if(((uintptr)p & (PageSize-1)) != 0)
		runtime_throw("misrounded allocation in MHeap_SysAlloc");
	return p;
}

static struct
{
	Lock	lock;
	byte*	pos;
	byte*	end;
} persistent;

enum
{
	PersistentAllocChunk	= 256<<10,
	PersistentAllocMaxBlock	= 64<<10,  // VM reservation granularity is 64K on windows
};

// Wrapper around SysAlloc that can allocate small chunks.
// There is no associated free operation.
// Intended for things like function/type/debug-related persistent data.
// If align is 0, uses default align (currently 8).
void*
runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
{
	byte *p;

	if(align != 0) {
		if(align&(align-1))
			runtime_throw("persistentalloc: align is not a power of 2");
		if(align > PageSize)
			runtime_throw("persistentalloc: align is too large");
	} else
		align = 8;
	if(size >= PersistentAllocMaxBlock)
		return runtime_SysAlloc(size, stat);
	runtime_lock(&persistent.lock);
	persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align);
	if(persistent.pos + size > persistent.end) {
		persistent.pos = runtime_SysAlloc(PersistentAllocChunk, &mstats.other_sys);
		if(persistent.pos == nil) {
			runtime_unlock(&persistent.lock);
			runtime_throw("runtime: cannot allocate memory");
		}
		persistent.end = persistent.pos + PersistentAllocChunk;
	}
	p = persistent.pos;
	persistent.pos += size;
	runtime_unlock(&persistent.lock);
	if(stat != &mstats.other_sys) {
		// reaccount the allocation against provided stat
		runtime_xadd64(stat, size);
		runtime_xadd64(&mstats.other_sys, -(uint64)size);
	}
	return p;
}

static void
settype(MSpan *s, void *v, uintptr typ)
{
	uintptr size, ofs, j, t;
	uintptr ntypes, nbytes2, nbytes3;
	uintptr *data2;
	byte *data3;

	if(s->sizeclass == 0) {
		s->types.compression = MTypes_Single;
		s->types.data = typ;
		return;
	}
	size = s->elemsize;
	ofs = ((uintptr)v - (s->start<<PageShift)) / size;

	switch(s->types.compression) {
	case MTypes_Empty:
		ntypes = (s->npages << PageShift) / size;
		nbytes3 = 8*sizeof(uintptr) + 1*ntypes;
		data3 = runtime_mallocgc(nbytes3, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC);
		s->types.compression = MTypes_Bytes;
		s->types.data = (uintptr)data3;
		((uintptr*)data3)[1] = typ;
		data3[8*sizeof(uintptr) + ofs] = 1;
		break;
		
	case MTypes_Words:
		((uintptr*)s->types.data)[ofs] = typ;
		break;
		
	case MTypes_Bytes:
		data3 = (byte*)s->types.data;
		for(j=1; j<8; j++) {
			if(((uintptr*)data3)[j] == typ) {
				break;
			}
			if(((uintptr*)data3)[j] == 0) {
				((uintptr*)data3)[j] = typ;
				break;
			}
		}
		if(j < 8) {
			data3[8*sizeof(uintptr) + ofs] = j;
		} else {
			ntypes = (s->npages << PageShift) / size;
			nbytes2 = ntypes * sizeof(uintptr);
			data2 = runtime_mallocgc(nbytes2, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC);
			s->types.compression = MTypes_Words;
			s->types.data = (uintptr)data2;
			
			// Move the contents of data3 to data2. Then deallocate data3.
			for(j=0; j<ntypes; j++) {
				t = data3[8*sizeof(uintptr) + j];
				t = ((uintptr*)data3)[t];
				data2[j] = t;
			}
			data2[ofs] = typ;
		}
		break;
	}
}

uintptr
runtime_gettype(void *v)
{
	MSpan *s;
	uintptr t, ofs;
	byte *data;

	s = runtime_MHeap_LookupMaybe(&runtime_mheap, v);
	if(s != nil) {
		t = 0;
		switch(s->types.compression) {
		case MTypes_Empty:
			break;
		case MTypes_Single:
			t = s->types.data;
			break;
		case MTypes_Words:
			ofs = (uintptr)v - (s->start<<PageShift);
			t = ((uintptr*)s->types.data)[ofs/s->elemsize];
			break;
		case MTypes_Bytes:
			ofs = (uintptr)v - (s->start<<PageShift);
			data = (byte*)s->types.data;
			t = data[8*sizeof(uintptr) + ofs/s->elemsize];
			t = ((uintptr*)data)[t];
			break;
		default:
			runtime_throw("runtime_gettype: invalid compression kind");
		}
		if(0) {
			runtime_printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t);
		}
		return t;
	}
	return 0;
}

// Runtime stubs.

void*
runtime_mal(uintptr n)
{
	return runtime_mallocgc(n, 0, 0);
}

func new(typ *Type) (ret *uint8) {
	ret = runtime_mallocgc(typ->__size, (uintptr)typ | TypeInfo_SingleObject, typ->kind&KindNoPointers ? FlagNoScan : 0);
}

static void*
cnew(const Type *typ, intgo n, int32 objtyp)
{
	if((objtyp&(PtrSize-1)) != objtyp)
		runtime_throw("runtime: invalid objtyp");
	if(n < 0 || (typ->__size > 0 && (uintptr)n > (MaxMem/typ->__size)))
		runtime_panicstring("runtime: allocation size out of range");
	return runtime_mallocgc(typ->__size*n, (uintptr)typ | objtyp, typ->kind&KindNoPointers ? FlagNoScan : 0);
}

// same as runtime_new, but callable from C
void*
runtime_cnew(const Type *typ)
{
	return cnew(typ, 1, TypeInfo_SingleObject);
}

void*
runtime_cnewarray(const Type *typ, intgo n)
{
	return cnew(typ, n, TypeInfo_Array);
}

func GC() {
	runtime_gc(2);  // force GC and do eager sweep
}

func SetFinalizer(obj Eface, finalizer Eface) {
	byte *base;
	uintptr size;
	const FuncType *ft;
	const Type *fint;
	const PtrType *ot;

	if(obj.__type_descriptor == nil) {
		runtime_printf("runtime.SetFinalizer: first argument is nil interface\n");
		goto throw;
	}
	if((obj.__type_descriptor->kind&kindMask) != GO_PTR) {
		runtime_printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.__type_descriptor->__reflection);
		goto throw;
	}
	ot = (const PtrType*)obj.type;
	// As an implementation detail we do not run finalizers for zero-sized objects,
	// because we use &runtime_zerobase for all such allocations.
	if(ot->__element_type != nil && ot->__element_type->__size == 0)
		return;
	// The following check is required for cases when a user passes a pointer to composite literal,
	// but compiler makes it a pointer to global. For example:
	//	var Foo = &Object{}
	//	func main() {
	//		runtime.SetFinalizer(Foo, nil)
	//	}
	// See issue 7656.
	if((byte*)obj.__object < runtime_mheap.arena_start || runtime_mheap.arena_used <= (byte*)obj.__object)
		return;
	if(!runtime_mlookup(obj.__object, &base, &size, nil) || obj.__object != base) {
		// As an implementation detail we allow to set finalizers for an inner byte
		// of an object if it could come from tiny alloc (see mallocgc for details).
		if(ot->__element_type == nil || (ot->__element_type->kind&KindNoPointers) == 0 || ot->__element_type->__size >= TinySize) {
			runtime_printf("runtime.SetFinalizer: pointer not at beginning of allocated block (%p)\n", obj.__object);
			goto throw;
		}
	}
	if(finalizer.__type_descriptor != nil) {
		runtime_createfing();
		if((finalizer.__type_descriptor->kind&kindMask) != GO_FUNC)
			goto badfunc;
		ft = (const FuncType*)finalizer.__type_descriptor;
		if(ft->__dotdotdot || ft->__in.__count != 1)
			goto badfunc;
		fint = *(Type**)ft->__in.__values;
		if(__go_type_descriptors_equal(fint, obj.__type_descriptor)) {
			// ok - same type
		} else if((fint->kind&kindMask) == GO_PTR && (fint->__uncommon == nil || fint->__uncommon->__name == nil || obj.type->__uncommon == nil || obj.type->__uncommon->__name == nil) && __go_type_descriptors_equal(((const PtrType*)fint)->__element_type, ((const PtrType*)obj.type)->__element_type)) {
			// ok - not same type, but both pointers,
			// one or the other is unnamed, and same element type, so assignable.
		} else if((fint->kind&kindMask) == GO_INTERFACE && ((const InterfaceType*)fint)->__methods.__count == 0) {
			// ok - satisfies empty interface
		} else if((fint->kind&kindMask) == GO_INTERFACE && __go_convert_interface_2(fint, obj.__type_descriptor, 1) != nil) {
			// ok - satisfies non-empty interface
		} else
			goto badfunc;

		ot = (const PtrType*)obj.__type_descriptor;
		if(!runtime_addfinalizer(obj.__object, *(FuncVal**)finalizer.__object, ft, ot)) {
			runtime_printf("runtime.SetFinalizer: finalizer already set\n");
			goto throw;
		}
	} else {
		// NOTE: asking to remove a finalizer when there currently isn't one set is OK.
		runtime_removefinalizer(obj.__object);
	}
	return;

badfunc:
	runtime_printf("runtime.SetFinalizer: cannot pass %S to finalizer %S\n", *obj.__type_descriptor->__reflection, *finalizer.__type_descriptor->__reflection);
throw:
	runtime_throw("runtime.SetFinalizer");
}