heapdump.c 17.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Implementation of runtime/debug.WriteHeapDump.  Writes all
// objects in the heap plus additional info (roots, threads,
// finalizers, etc.) to a file.

// The format of the dumped file is described at
// http://code.google.com/p/go-wiki/wiki/heapdump13

#include "runtime.h"
#include "arch.h"
#include "malloc.h"
#include "mgc0.h"
#include "go-type.h"
#include "go-defer.h"
#include "go-panic.h"

#define hash __hash
#define KindNoPointers GO_NO_POINTERS

enum {
	FieldKindEol = 0,
	FieldKindPtr = 1,
	FieldKindString = 2,
	FieldKindSlice = 3,
	FieldKindIface = 4,
	FieldKindEface = 5,

	TagEOF = 0,
	TagObject = 1,
	TagOtherRoot = 2,
	TagType = 3,
	TagGoRoutine = 4,
	TagStackFrame = 5,
	TagParams = 6,
	TagFinalizer = 7,
	TagItab = 8,
	TagOSThread = 9,
	TagMemStats = 10,
	TagQueuedFinalizer = 11,
	TagData = 12,
	TagBss = 13,
	TagDefer = 14,
	TagPanic = 15,
	TagMemProf = 16,
	TagAllocSample = 17,

	TypeInfo_Conservative = 127,
};

// static uintptr* playgcprog(uintptr offset, uintptr *prog, void (*callback)(void*,uintptr,uintptr), void *arg);
// static void dumpfields(uintptr *prog);
static void dumpefacetypes(void *obj, uintptr size, const Type *type, uintptr kind);

// fd to write the dump to.
static uintptr dumpfd;

// buffer of pending write data
enum {
	BufSize = 4096,
};
static byte buf[BufSize];
static uintptr nbuf;

static void
hwrite(const byte *data, uintptr len)
{
	if(len + nbuf <= BufSize) {
		runtime_memmove(buf + nbuf, data, len);
		nbuf += len;
		return;
	}
	runtime_write(dumpfd, buf, nbuf);
	if(len >= BufSize) {
		runtime_write(dumpfd, data, len);
		nbuf = 0;
	} else {
		runtime_memmove(buf, data, len);
		nbuf = len;
	}
}

static void
flush(void)
{
	runtime_write(dumpfd, buf, nbuf);
	nbuf = 0;
}

// Cache of types that have been serialized already.
// We use a type's hash field to pick a bucket.
// Inside a bucket, we keep a list of types that
// have been serialized so far, most recently used first.
// Note: when a bucket overflows we may end up
// serializing a type more than once.  That's ok.
enum {
	TypeCacheBuckets = 256, // must be a power of 2
	TypeCacheAssoc = 4,
};
typedef struct TypeCacheBucket TypeCacheBucket;
struct TypeCacheBucket {
	const Type *t[TypeCacheAssoc];
};
static TypeCacheBucket typecache[TypeCacheBuckets];

// dump a uint64 in a varint format parseable by encoding/binary
static void
dumpint(uint64 v)
{
	byte buf[10];
	int32 n;
	n = 0;
	while(v >= 0x80) {
		buf[n++] = v | 0x80;
		v >>= 7;
	}
	buf[n++] = v;
	hwrite(buf, n);
}

static void
dumpbool(bool b)
{
	dumpint(b ? 1 : 0);
}

// dump varint uint64 length followed by memory contents
static void
dumpmemrange(const byte *data, uintptr len)
{
	dumpint(len);
	hwrite(data, len);
}

static void
dumpstr(String s)
{
	dumpmemrange(s.str, s.len);
}

static void
dumpcstr(const int8 *c)
{
	dumpmemrange((const byte*)c, runtime_findnull((const byte*)c));
}

// dump information for a type
static void
dumptype(const Type *t)
{
	TypeCacheBucket *b;
	int32 i, j;

	if(t == nil) {
		return;
	}

	// If we've definitely serialized the type before,
	// no need to do it again.
	b = &typecache[t->hash & (TypeCacheBuckets-1)];
	if(t == b->t[0]) return;
	for(i = 1; i < TypeCacheAssoc; i++) {
		if(t == b->t[i]) {
			// Move-to-front
			for(j = i; j > 0; j--) {
				b->t[j] = b->t[j-1];
			}
			b->t[0] = t;
			return;
		}
	}
	// Might not have been dumped yet.  Dump it and
	// remember we did so.
	for(j = TypeCacheAssoc-1; j > 0; j--) {
		b->t[j] = b->t[j-1];
	}
	b->t[0] = t;
	
	// dump the type
	dumpint(TagType);
	dumpint((uintptr)t);
	dumpint(t->__size);
	if(t->__uncommon == nil || t->__uncommon->__pkg_path == nil || t->__uncommon->__name == nil) {
		dumpstr(*t->__reflection);
	} else {
		dumpint(t->__uncommon->__pkg_path->len + 1 + t->__uncommon->__name->len);
		hwrite(t->__uncommon->__pkg_path->str, t->__uncommon->__pkg_path->len);
		hwrite((const byte*)".", 1);
		hwrite(t->__uncommon->__name->str, t->__uncommon->__name->len);
	}
	dumpbool(t->__size > PtrSize || (t->__code & KindNoPointers) == 0);
	// dumpfields((uintptr*)t->gc + 1);
}

// returns true if object is scannable
static bool
scannable(byte *obj)
{
	uintptr *b, off, shift;

	off = (uintptr*)obj - (uintptr*)runtime_mheap.arena_start;  // word offset
	b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
	shift = off % wordsPerBitmapWord;
	return ((*b >> shift) & bitScan) != 0;
}

// dump an object
static void
dumpobj(byte *obj, uintptr size, const Type *type, uintptr kind)
{
	if(type != nil) {
		dumptype(type);
		dumpefacetypes(obj, size, type, kind);
	}

	dumpint(TagObject);
	dumpint((uintptr)obj);
	dumpint((uintptr)type);
	dumpint(kind);
	dumpmemrange(obj, size);
}

static void
dumpotherroot(const char *description, byte *to)
{
	dumpint(TagOtherRoot);
	dumpcstr((const int8 *)description);
	dumpint((uintptr)to);
}

static void
dumpfinalizer(byte *obj, FuncVal *fn, const FuncType* ft, const PtrType *ot)
{
	dumpint(TagFinalizer);
	dumpint((uintptr)obj);
	dumpint((uintptr)fn);
	dumpint((uintptr)fn->fn);
	dumpint((uintptr)ft);
	dumpint((uintptr)ot);
}

typedef struct ChildInfo ChildInfo;
struct ChildInfo {
	// Information passed up from the callee frame about
	// the layout of the outargs region.
	uintptr argoff;     // where the arguments start in the frame
	uintptr arglen;     // size of args region
	BitVector args;    // if args.n >= 0, pointer map of args region

	byte *sp;           // callee sp
	uintptr depth;      // depth in call stack (0 == most recent)
};

static void
dumpgoroutine(G *gp)
{
	// ChildInfo child;
	Defer *d;
	Panic *p;

	dumpint(TagGoRoutine);
	dumpint((uintptr)gp);
	dumpint((uintptr)0);
	dumpint(gp->goid);
	dumpint(gp->gopc);
	dumpint(gp->status);
	dumpbool(gp->issystem);
	dumpbool(gp->isbackground);
	dumpint(gp->waitsince);
	dumpcstr((const int8 *)gp->waitreason);
	dumpint((uintptr)0);
	dumpint((uintptr)gp->m);
	dumpint((uintptr)gp->defer);
	dumpint((uintptr)gp->panic);

	// dump stack
	// child.args.n = -1;
	// child.arglen = 0;
	// child.sp = nil;
	// child.depth = 0;
	// if(!ScanStackByFrames)
	// 	runtime_throw("need frame info to dump stacks");
	// runtime_gentraceback(pc, sp, lr, gp, 0, nil, 0x7fffffff, dumpframe, &child, false);

	// dump defer & panic records
	for(d = gp->defer; d != nil; d = d->__next) {
		dumpint(TagDefer);
		dumpint((uintptr)d);
		dumpint((uintptr)gp);
		dumpint((uintptr)d->__arg);
		dumpint((uintptr)d->__frame);
		dumpint((uintptr)d->__pfn);
		dumpint((uintptr)0);
		dumpint((uintptr)d->__next);
	}
	for (p = gp->panic; p != nil; p = p->__next) {
		dumpint(TagPanic);
		dumpint((uintptr)p);
		dumpint((uintptr)gp);
		dumpint((uintptr)p->__arg.__type_descriptor);
		dumpint((uintptr)p->__arg.__object);
		dumpint((uintptr)0);
		dumpint((uintptr)p->__next);
	}
}

static void
dumpgs(void)
{
	G *gp;
	uint32 i;

	// goroutines & stacks
	for(i = 0; i < runtime_allglen; i++) {
		gp = runtime_allg[i];
		switch(gp->status){
		default:
			runtime_printf("unexpected G.status %d\n", gp->status);
			runtime_throw("mark - bad status");
		case Gdead:
			break;
		case Grunnable:
		case Gsyscall:
		case Gwaiting:
			dumpgoroutine(gp);
			break;
		}
	}
}

static void
finq_callback(FuncVal *fn, void *obj, const FuncType *ft, const PtrType *ot)
{
	dumpint(TagQueuedFinalizer);
	dumpint((uintptr)obj);
	dumpint((uintptr)fn);
	dumpint((uintptr)fn->fn);
	dumpint((uintptr)ft);
	dumpint((uintptr)ot);
}


static void
dumproots(void)
{
	MSpan *s, **allspans;
	uint32 spanidx;
	Special *sp;
	SpecialFinalizer *spf;
	byte *p;

	// data segment
	// dumpint(TagData);
	// dumpint((uintptr)data);
	// dumpmemrange(data, edata - data);
	// dumpfields((uintptr*)gcdata + 1);

	// bss segment
	// dumpint(TagBss);
	// dumpint((uintptr)bss);
	// dumpmemrange(bss, ebss - bss);
	// dumpfields((uintptr*)gcbss + 1);
	
	// MSpan.types
	allspans = runtime_mheap.allspans;
	for(spanidx=0; spanidx<runtime_mheap.nspan; spanidx++) {
		s = allspans[spanidx];
		if(s->state == MSpanInUse) {
			// The garbage collector ignores type pointers stored in MSpan.types:
			//  - Compiler-generated types are stored outside of heap.
			//  - The reflect package has runtime-generated types cached in its data structures.
			//    The garbage collector relies on finding the references via that cache.
			switch(s->types.compression) {
			case MTypes_Empty:
			case MTypes_Single:
				break;
			case MTypes_Words:
			case MTypes_Bytes:
				dumpotherroot("runtime type info", (byte*)s->types.data);
				break;
			}

			// Finalizers
			for(sp = s->specials; sp != nil; sp = sp->next) {
				if(sp->kind != KindSpecialFinalizer)
					continue;
				spf = (SpecialFinalizer*)sp;
				p = (byte*)((s->start << PageShift) + spf->special.offset);
				dumpfinalizer(p, spf->fn, spf->ft, spf->ot);
			}
		}
	}

	// Finalizer queue
	runtime_iterate_finq(finq_callback);
}

// Bit vector of free marks.
// Needs to be as big as the largest number of objects per span.
static byte hfree[PageSize/8];

static void
dumpobjs(void)
{
	uintptr i, j, size, n, off, shift, *bitp, bits, ti, kind;
	MSpan *s;
	MLink *l;
	byte *p;
	const Type *t;

	for(i = 0; i < runtime_mheap.nspan; i++) {
		s = runtime_mheap.allspans[i];
		if(s->state != MSpanInUse)
			continue;
		p = (byte*)(s->start << PageShift);
		size = s->elemsize;
		n = (s->npages << PageShift) / size;
		if(n > PageSize/8)
			runtime_throw("free array doesn't have enough entries");
		for(l = s->freelist; l != nil; l = l->next) {
			hfree[((byte*)l - p) / size] = true;
		}
		for(j = 0; j < n; j++, p += size) {
			if(hfree[j]) {
				hfree[j] = false;
				continue;
			}
			off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start;
			bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1;
			shift = off % wordsPerBitmapWord;
			bits = *bitp >> shift;

			// Skip FlagNoGC allocations (stacks)
			if((bits & bitAllocated) == 0)
				continue;

			// extract type and kind
			ti = runtime_gettype(p);
			t = (Type*)(ti & ~(uintptr)(PtrSize-1));
			kind = ti & (PtrSize-1);
			
			// dump it
			if(kind == TypeInfo_Chan)
				t = ((const ChanType*)t)->__element_type; // use element type for chan encoding
			if(t == nil && scannable(p))
				kind = TypeInfo_Conservative; // special kind for conservatively scanned objects
			dumpobj(p, size, t, kind);
		}
	}
}

static void
dumpparams(void)
{
	byte *x;

	dumpint(TagParams);
	x = (byte*)1;
	if(*(byte*)&x == 1)
		dumpbool(false); // little-endian ptrs
	else
		dumpbool(true); // big-endian ptrs
	dumpint(PtrSize);
	dumpint(runtime_Hchansize);
	dumpint((uintptr)runtime_mheap.arena_start);
	dumpint((uintptr)runtime_mheap.arena_used);
	dumpint(0);
	dumpcstr((const int8 *)"");
	dumpint(runtime_ncpu);
}

static void
dumpms(void)
{
	M *mp;

	for(mp = runtime_allm; mp != nil; mp = mp->alllink) {
		dumpint(TagOSThread);
		dumpint((uintptr)mp);
		dumpint(mp->id);
		dumpint(0);
	}
}

static void
dumpmemstats(void)
{
	int32 i;

	dumpint(TagMemStats);
	dumpint(mstats.alloc);
	dumpint(mstats.total_alloc);
	dumpint(mstats.sys);
	dumpint(mstats.nlookup);
	dumpint(mstats.nmalloc);
	dumpint(mstats.nfree);
	dumpint(mstats.heap_alloc);
	dumpint(mstats.heap_sys);
	dumpint(mstats.heap_idle);
	dumpint(mstats.heap_inuse);
	dumpint(mstats.heap_released);
	dumpint(mstats.heap_objects);
	dumpint(mstats.stacks_inuse);
	dumpint(mstats.stacks_sys);
	dumpint(mstats.mspan_inuse);
	dumpint(mstats.mspan_sys);
	dumpint(mstats.mcache_inuse);
	dumpint(mstats.mcache_sys);
	dumpint(mstats.buckhash_sys);
	dumpint(mstats.gc_sys);
	dumpint(mstats.other_sys);
	dumpint(mstats.next_gc);
	dumpint(mstats.last_gc);
	dumpint(mstats.pause_total_ns);
	for(i = 0; i < 256; i++)
		dumpint(mstats.pause_ns[i]);
	dumpint(mstats.numgc);
}

static void
dumpmemprof_callback(Bucket *b, uintptr nstk, Location *stk, uintptr size, uintptr allocs, uintptr frees)
{
	uintptr i, pc;
	byte buf[20];

	dumpint(TagMemProf);
	dumpint((uintptr)b);
	dumpint(size);
	dumpint(nstk);
	for(i = 0; i < nstk; i++) {
		pc = stk[i].pc;
		if(stk[i].function.len == 0) {
			runtime_snprintf(buf, sizeof(buf), "%X", (uint64)pc);
			dumpcstr((int8*)buf);
			dumpcstr((const int8*)"?");
			dumpint(0);
		} else {
			dumpstr(stk[i].function);
			dumpstr(stk[i].filename);
			dumpint(stk[i].lineno);
		}
	}
	dumpint(allocs);
	dumpint(frees);
}

static void
dumpmemprof(void)
{
	MSpan *s, **allspans;
	uint32 spanidx;
	Special *sp;
	SpecialProfile *spp;
	byte *p;

	runtime_iterate_memprof(dumpmemprof_callback);

	allspans = runtime_mheap.allspans;
	for(spanidx=0; spanidx<runtime_mheap.nspan; spanidx++) {
		s = allspans[spanidx];
		if(s->state != MSpanInUse)
			continue;
		for(sp = s->specials; sp != nil; sp = sp->next) {
			if(sp->kind != KindSpecialProfile)
				continue;
			spp = (SpecialProfile*)sp;
			p = (byte*)((s->start << PageShift) + spp->special.offset);
			dumpint(TagAllocSample);
			dumpint((uintptr)p);
			dumpint((uintptr)spp->b);
		}
	}
}

static void
mdump(G *gp)
{
	const byte *hdr;
	uintptr i;
	MSpan *s;

	// make sure we're done sweeping
	for(i = 0; i < runtime_mheap.nspan; i++) {
		s = runtime_mheap.allspans[i];
		if(s->state == MSpanInUse)
			runtime_MSpan_EnsureSwept(s);
	}

	runtime_memclr((byte*)&typecache[0], sizeof(typecache));
	hdr = (const byte*)"go1.3 heap dump\n";
	hwrite(hdr, runtime_findnull(hdr));
	dumpparams();
	dumpobjs();
	dumpgs();
	dumpms();
	dumproots();
	dumpmemstats();
	dumpmemprof();
	dumpint(TagEOF);
	flush();

	gp->param = nil;
	gp->status = Grunning;
	runtime_gogo(gp);
}

void runtime_debug_WriteHeapDump(uintptr)
  __asm__(GOSYM_PREFIX "runtime_debug.WriteHeapDump");

void
runtime_debug_WriteHeapDump(uintptr fd)
{
	M *m;
	G *g;

	// Stop the world.
	runtime_semacquire(&runtime_worldsema, false);
	m = runtime_m();
	m->gcing = 1;
	m->locks++;
	runtime_stoptheworld();

	// Update stats so we can dump them.
	// As a side effect, flushes all the MCaches so the MSpan.freelist
	// lists contain all the free objects.
	runtime_updatememstats(nil);

	// Set dump file.
	dumpfd = fd;

	// Call dump routine on M stack.
	g = runtime_g();
	g->status = Gwaiting;
	g->waitreason = "dumping heap";
	runtime_mcall(mdump);

	// Reset dump file.
	dumpfd = 0;

	// Start up the world again.
	m->gcing = 0;
	runtime_semrelease(&runtime_worldsema);
	runtime_starttheworld();
	m->locks--;
}

// Runs the specified gc program.  Calls the callback for every
// pointer-like field specified by the program and passes to the
// callback the kind and offset of that field within the object.
// offset is the offset in the object of the start of the program.
// Returns a pointer to the opcode that ended the gc program (either
// GC_END or GC_ARRAY_NEXT).
/*
static uintptr*
playgcprog(uintptr offset, uintptr *prog, void (*callback)(void*,uintptr,uintptr), void *arg)
{
	uintptr len, elemsize, i, *end;

	for(;;) {
		switch(prog[0]) {
		case GC_END:
			return prog;
		case GC_PTR:
			callback(arg, FieldKindPtr, offset + prog[1]);
			prog += 3;
			break;
		case GC_APTR:
			callback(arg, FieldKindPtr, offset + prog[1]);
			prog += 2;
			break;
		case GC_ARRAY_START:
			len = prog[2];
			elemsize = prog[3];
			end = nil;
			for(i = 0; i < len; i++) {
				end = playgcprog(offset + prog[1] + i * elemsize, prog + 4, callback, arg);
				if(end[0] != GC_ARRAY_NEXT)
					runtime_throw("GC_ARRAY_START did not have matching GC_ARRAY_NEXT");
			}
			prog = end + 1;
			break;
		case GC_ARRAY_NEXT:
			return prog;
		case GC_CALL:
			playgcprog(offset + prog[1], (uintptr*)((byte*)prog + *(int32*)&prog[2]), callback, arg);
			prog += 3;
			break;
		case GC_CHAN_PTR:
			callback(arg, FieldKindPtr, offset + prog[1]);
			prog += 3;
			break;
		case GC_STRING:
			callback(arg, FieldKindString, offset + prog[1]);
			prog += 2;
			break;
		case GC_EFACE:
			callback(arg, FieldKindEface, offset + prog[1]);
			prog += 2;
			break;
		case GC_IFACE:
			callback(arg, FieldKindIface, offset + prog[1]);
			prog += 2;
			break;
		case GC_SLICE:
			callback(arg, FieldKindSlice, offset + prog[1]);
			prog += 3;
			break;
		case GC_REGION:
			playgcprog(offset + prog[1], (uintptr*)prog[3] + 1, callback, arg);
			prog += 4;
			break;
		default:
			runtime_printf("%D\n", (uint64)prog[0]);
			runtime_throw("bad gc op");
		}
	}
}

static void
dump_callback(void *p, uintptr kind, uintptr offset)
{
	USED(&p);
	dumpint(kind);
	dumpint(offset);
}

// dumpint() the kind & offset of each field in an object.
static void
dumpfields(uintptr *prog)
{
	playgcprog(0, prog, dump_callback, nil);
	dumpint(FieldKindEol);
}

static void
dumpeface_callback(void *p, uintptr kind, uintptr offset)
{
	Eface *e;

	if(kind != FieldKindEface)
		return;
	e = (Eface*)((byte*)p + offset);
	dumptype(e->__type_descriptor);
}
*/

// The heap dump reader needs to be able to disambiguate
// Eface entries.  So it needs to know every type that might
// appear in such an entry.  The following two routines accomplish
// that.

// Dump all the types that appear in the type field of
// any Eface contained in obj.
static void
dumpefacetypes(void *obj __attribute__ ((unused)), uintptr size, const Type *type, uintptr kind)
{
	uintptr i;

	switch(kind) {
	case TypeInfo_SingleObject:
		//playgcprog(0, (uintptr*)type->gc + 1, dumpeface_callback, obj);
		break;
	case TypeInfo_Array:
		for(i = 0; i <= size - type->__size; i += type->__size)
			//playgcprog(i, (uintptr*)type->gc + 1, dumpeface_callback, obj);
		break;
	case TypeInfo_Chan:
		if(type->__size == 0) // channels may have zero-sized objects in them
			break;
		for(i = runtime_Hchansize; i <= size - type->__size; i += type->__size)
			//playgcprog(i, (uintptr*)type->gc + 1, dumpeface_callback, obj);
		break;
	}
}