extfloat.go 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package strconv

// An extFloat represents an extended floating-point number, with more
// precision than a float64. It does not try to save bits: the
// number represented by the structure is mant*(2^exp), with a negative
// sign if neg is true.
type extFloat struct {
	mant uint64
	exp  int
	neg  bool
}

// Powers of ten taken from double-conversion library.
// http://code.google.com/p/double-conversion/
const (
	firstPowerOfTen = -348
	stepPowerOfTen  = 8
)

var smallPowersOfTen = [...]extFloat{
	{1 << 63, -63, false},        // 1
	{0xa << 60, -60, false},      // 1e1
	{0x64 << 57, -57, false},     // 1e2
	{0x3e8 << 54, -54, false},    // 1e3
	{0x2710 << 50, -50, false},   // 1e4
	{0x186a0 << 47, -47, false},  // 1e5
	{0xf4240 << 44, -44, false},  // 1e6
	{0x989680 << 40, -40, false}, // 1e7
}

var powersOfTen = [...]extFloat{
	{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
	{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
	{0x8b16fb203055ac76, -1166, false}, // 10^-332
	{0xcf42894a5dce35ea, -1140, false}, // 10^-324
	{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
	{0xe61acf033d1a45df, -1087, false}, // 10^-308
	{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
	{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
	{0xbe5691ef416bd60c, -1007, false}, // 10^-284
	{0x8dd01fad907ffc3c, -980, false},  // 10^-276
	{0xd3515c2831559a83, -954, false},  // 10^-268
	{0x9d71ac8fada6c9b5, -927, false},  // 10^-260
	{0xea9c227723ee8bcb, -901, false},  // 10^-252
	{0xaecc49914078536d, -874, false},  // 10^-244
	{0x823c12795db6ce57, -847, false},  // 10^-236
	{0xc21094364dfb5637, -821, false},  // 10^-228
	{0x9096ea6f3848984f, -794, false},  // 10^-220
	{0xd77485cb25823ac7, -768, false},  // 10^-212
	{0xa086cfcd97bf97f4, -741, false},  // 10^-204
	{0xef340a98172aace5, -715, false},  // 10^-196
	{0xb23867fb2a35b28e, -688, false},  // 10^-188
	{0x84c8d4dfd2c63f3b, -661, false},  // 10^-180
	{0xc5dd44271ad3cdba, -635, false},  // 10^-172
	{0x936b9fcebb25c996, -608, false},  // 10^-164
	{0xdbac6c247d62a584, -582, false},  // 10^-156
	{0xa3ab66580d5fdaf6, -555, false},  // 10^-148
	{0xf3e2f893dec3f126, -529, false},  // 10^-140
	{0xb5b5ada8aaff80b8, -502, false},  // 10^-132
	{0x87625f056c7c4a8b, -475, false},  // 10^-124
	{0xc9bcff6034c13053, -449, false},  // 10^-116
	{0x964e858c91ba2655, -422, false},  // 10^-108
	{0xdff9772470297ebd, -396, false},  // 10^-100
	{0xa6dfbd9fb8e5b88f, -369, false},  // 10^-92
	{0xf8a95fcf88747d94, -343, false},  // 10^-84
	{0xb94470938fa89bcf, -316, false},  // 10^-76
	{0x8a08f0f8bf0f156b, -289, false},  // 10^-68
	{0xcdb02555653131b6, -263, false},  // 10^-60
	{0x993fe2c6d07b7fac, -236, false},  // 10^-52
	{0xe45c10c42a2b3b06, -210, false},  // 10^-44
	{0xaa242499697392d3, -183, false},  // 10^-36
	{0xfd87b5f28300ca0e, -157, false},  // 10^-28
	{0xbce5086492111aeb, -130, false},  // 10^-20
	{0x8cbccc096f5088cc, -103, false},  // 10^-12
	{0xd1b71758e219652c, -77, false},   // 10^-4
	{0x9c40000000000000, -50, false},   // 10^4
	{0xe8d4a51000000000, -24, false},   // 10^12
	{0xad78ebc5ac620000, 3, false},     // 10^20
	{0x813f3978f8940984, 30, false},    // 10^28
	{0xc097ce7bc90715b3, 56, false},    // 10^36
	{0x8f7e32ce7bea5c70, 83, false},    // 10^44
	{0xd5d238a4abe98068, 109, false},   // 10^52
	{0x9f4f2726179a2245, 136, false},   // 10^60
	{0xed63a231d4c4fb27, 162, false},   // 10^68
	{0xb0de65388cc8ada8, 189, false},   // 10^76
	{0x83c7088e1aab65db, 216, false},   // 10^84
	{0xc45d1df942711d9a, 242, false},   // 10^92
	{0x924d692ca61be758, 269, false},   // 10^100
	{0xda01ee641a708dea, 295, false},   // 10^108
	{0xa26da3999aef774a, 322, false},   // 10^116
	{0xf209787bb47d6b85, 348, false},   // 10^124
	{0xb454e4a179dd1877, 375, false},   // 10^132
	{0x865b86925b9bc5c2, 402, false},   // 10^140
	{0xc83553c5c8965d3d, 428, false},   // 10^148
	{0x952ab45cfa97a0b3, 455, false},   // 10^156
	{0xde469fbd99a05fe3, 481, false},   // 10^164
	{0xa59bc234db398c25, 508, false},   // 10^172
	{0xf6c69a72a3989f5c, 534, false},   // 10^180
	{0xb7dcbf5354e9bece, 561, false},   // 10^188
	{0x88fcf317f22241e2, 588, false},   // 10^196
	{0xcc20ce9bd35c78a5, 614, false},   // 10^204
	{0x98165af37b2153df, 641, false},   // 10^212
	{0xe2a0b5dc971f303a, 667, false},   // 10^220
	{0xa8d9d1535ce3b396, 694, false},   // 10^228
	{0xfb9b7cd9a4a7443c, 720, false},   // 10^236
	{0xbb764c4ca7a44410, 747, false},   // 10^244
	{0x8bab8eefb6409c1a, 774, false},   // 10^252
	{0xd01fef10a657842c, 800, false},   // 10^260
	{0x9b10a4e5e9913129, 827, false},   // 10^268
	{0xe7109bfba19c0c9d, 853, false},   // 10^276
	{0xac2820d9623bf429, 880, false},   // 10^284
	{0x80444b5e7aa7cf85, 907, false},   // 10^292
	{0xbf21e44003acdd2d, 933, false},   // 10^300
	{0x8e679c2f5e44ff8f, 960, false},   // 10^308
	{0xd433179d9c8cb841, 986, false},   // 10^316
	{0x9e19db92b4e31ba9, 1013, false},  // 10^324
	{0xeb96bf6ebadf77d9, 1039, false},  // 10^332
	{0xaf87023b9bf0ee6b, 1066, false},  // 10^340
}

// floatBits returns the bits of the float64 that best approximates
// the extFloat passed as receiver. Overflow is set to true if
// the resulting float64 is ±Inf.
func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
	f.Normalize()

	exp := f.exp + 63

	// Exponent too small.
	if exp < flt.bias+1 {
		n := flt.bias + 1 - exp
		f.mant >>= uint(n)
		exp += n
	}

	// Extract 1+flt.mantbits bits from the 64-bit mantissa.
	mant := f.mant >> (63 - flt.mantbits)
	if f.mant&(1<<(62-flt.mantbits)) != 0 {
		// Round up.
		mant += 1
	}

	// Rounding might have added a bit; shift down.
	if mant == 2<<flt.mantbits {
		mant >>= 1
		exp++
	}

	// Infinities.
	if exp-flt.bias >= 1<<flt.expbits-1 {
		// ±Inf
		mant = 0
		exp = 1<<flt.expbits - 1 + flt.bias
		overflow = true
	} else if mant&(1<<flt.mantbits) == 0 {
		// Denormalized?
		exp = flt.bias
	}
	// Assemble bits.
	bits = mant & (uint64(1)<<flt.mantbits - 1)
	bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
	if f.neg {
		bits |= 1 << (flt.mantbits + flt.expbits)
	}
	return
}

// AssignComputeBounds sets f to the floating point value
// defined by mant, exp and precision given by flt. It returns
// lower, upper such that any number in the closed interval
// [lower, upper] is converted back to the same floating point number.
func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
	f.mant = mant
	f.exp = exp - int(flt.mantbits)
	f.neg = neg
	if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
		// An exact integer
		f.mant >>= uint(-f.exp)
		f.exp = 0
		return *f, *f
	}
	expBiased := exp - flt.bias

	upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
	if mant != 1<<flt.mantbits || expBiased == 1 {
		lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
	} else {
		lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
	}
	return
}

// Normalize normalizes f so that the highest bit of the mantissa is
// set, and returns the number by which the mantissa was left-shifted.
func (f *extFloat) Normalize() (shift uint) {
	mant, exp := f.mant, f.exp
	if mant == 0 {
		return 0
	}
	if mant>>(64-32) == 0 {
		mant <<= 32
		exp -= 32
	}
	if mant>>(64-16) == 0 {
		mant <<= 16
		exp -= 16
	}
	if mant>>(64-8) == 0 {
		mant <<= 8
		exp -= 8
	}
	if mant>>(64-4) == 0 {
		mant <<= 4
		exp -= 4
	}
	if mant>>(64-2) == 0 {
		mant <<= 2
		exp -= 2
	}
	if mant>>(64-1) == 0 {
		mant <<= 1
		exp -= 1
	}
	shift = uint(f.exp - exp)
	f.mant, f.exp = mant, exp
	return
}

// Multiply sets f to the product f*g: the result is correctly rounded,
// but not normalized.
func (f *extFloat) Multiply(g extFloat) {
	fhi, flo := f.mant>>32, uint64(uint32(f.mant))
	ghi, glo := g.mant>>32, uint64(uint32(g.mant))

	// Cross products.
	cross1 := fhi * glo
	cross2 := flo * ghi

	// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
	f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
	rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
	// Round up.
	rem += (1 << 31)

	f.mant += (rem >> 32)
	f.exp = f.exp + g.exp + 64
}

var uint64pow10 = [...]uint64{
	1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
	1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
}

// AssignDecimal sets f to an approximate value mantissa*10^exp. It
// reports whether the value represented by f is guaranteed to be the
// best approximation of d after being rounded to a float64 or
// float32 depending on flt.
func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
	const uint64digits = 19
	const errorscale = 8
	errors := 0 // An upper bound for error, computed in errorscale*ulp.
	if trunc {
		// the decimal number was truncated.
		errors += errorscale / 2
	}

	f.mant = mantissa
	f.exp = 0
	f.neg = neg

	// Multiply by powers of ten.
	i := (exp10 - firstPowerOfTen) / stepPowerOfTen
	if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
		return false
	}
	adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen

	// We multiply by exp%step
	if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
		// We can multiply the mantissa exactly.
		f.mant *= uint64pow10[adjExp]
		f.Normalize()
	} else {
		f.Normalize()
		f.Multiply(smallPowersOfTen[adjExp])
		errors += errorscale / 2
	}

	// We multiply by 10 to the exp - exp%step.
	f.Multiply(powersOfTen[i])
	if errors > 0 {
		errors += 1
	}
	errors += errorscale / 2

	// Normalize
	shift := f.Normalize()
	errors <<= shift

	// Now f is a good approximation of the decimal.
	// Check whether the error is too large: that is, if the mantissa
	// is perturbated by the error, the resulting float64 will change.
	// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
	//
	// In many cases the approximation will be good enough.
	denormalExp := flt.bias - 63
	var extrabits uint
	if f.exp <= denormalExp {
		// f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
		extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
	} else {
		extrabits = uint(63 - flt.mantbits)
	}

	halfway := uint64(1) << (extrabits - 1)
	mant_extra := f.mant & (1<<extrabits - 1)

	// Do a signed comparison here! If the error estimate could make
	// the mantissa round differently for the conversion to double,
	// then we can't give a definite answer.
	if int64(halfway)-int64(errors) < int64(mant_extra) &&
		int64(mant_extra) < int64(halfway)+int64(errors) {
		return false
	}
	return true
}

// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
// f by an approximate power of ten 10^-exp, and returns exp10, so
// that f*10^exp10 has the same value as the old f, up to an ulp,
// as well as the index of 10^-exp in the powersOfTen table.
func (f *extFloat) frexp10() (exp10, index int) {
	// The constants expMin and expMax constrain the final value of the
	// binary exponent of f. We want a small integral part in the result
	// because finding digits of an integer requires divisions, whereas
	// digits of the fractional part can be found by repeatedly multiplying
	// by 10.
	const expMin = -60
	const expMax = -32
	// Find power of ten such that x * 10^n has a binary exponent
	// between expMin and expMax.
	approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
	i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
Loop:
	for {
		exp := f.exp + powersOfTen[i].exp + 64
		switch {
		case exp < expMin:
			i++
		case exp > expMax:
			i--
		default:
			break Loop
		}
	}
	// Apply the desired decimal shift on f. It will have exponent
	// in the desired range. This is multiplication by 10^-exp10.
	f.Multiply(powersOfTen[i])

	return -(firstPowerOfTen + i*stepPowerOfTen), i
}

// frexp10Many applies a common shift by a power of ten to a, b, c.
func frexp10Many(a, b, c *extFloat) (exp10 int) {
	exp10, i := c.frexp10()
	a.Multiply(powersOfTen[i])
	b.Multiply(powersOfTen[i])
	return
}

// FixedDecimal stores in d the first n significant digits
// of the decimal representation of f. It returns false
// if it cannot be sure of the answer.
func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
	if f.mant == 0 {
		d.nd = 0
		d.dp = 0
		d.neg = f.neg
		return true
	}
	if n == 0 {
		panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
	}
	// Multiply by an appropriate power of ten to have a reasonable
	// number to process.
	f.Normalize()
	exp10, _ := f.frexp10()

	shift := uint(-f.exp)
	integer := uint32(f.mant >> shift)
	fraction := f.mant - (uint64(integer) << shift)
	ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.

	// Write exactly n digits to d.
	needed := n        // how many digits are left to write.
	integerDigits := 0 // the number of decimal digits of integer.
	pow10 := uint64(1) // the power of ten by which f was scaled.
	for i, pow := 0, uint64(1); i < 20; i++ {
		if pow > uint64(integer) {
			integerDigits = i
			break
		}
		pow *= 10
	}
	rest := integer
	if integerDigits > needed {
		// the integral part is already large, trim the last digits.
		pow10 = uint64pow10[integerDigits-needed]
		integer /= uint32(pow10)
		rest -= integer * uint32(pow10)
	} else {
		rest = 0
	}

	// Write the digits of integer: the digits of rest are omitted.
	var buf [32]byte
	pos := len(buf)
	for v := integer; v > 0; {
		v1 := v / 10
		v -= 10 * v1
		pos--
		buf[pos] = byte(v + '0')
		v = v1
	}
	for i := pos; i < len(buf); i++ {
		d.d[i-pos] = buf[i]
	}
	nd := len(buf) - pos
	d.nd = nd
	d.dp = integerDigits + exp10
	needed -= nd

	if needed > 0 {
		if rest != 0 || pow10 != 1 {
			panic("strconv: internal error, rest != 0 but needed > 0")
		}
		// Emit digits for the fractional part. Each time, 10*fraction
		// fits in a uint64 without overflow.
		for needed > 0 {
			fraction *= 10
			ε *= 10 // the uncertainty scales as we multiply by ten.
			if 2*ε > 1<<shift {
				// the error is so large it could modify which digit to write, abort.
				return false
			}
			digit := fraction >> shift
			d.d[nd] = byte(digit + '0')
			fraction -= digit << shift
			nd++
			needed--
		}
		d.nd = nd
	}

	// We have written a truncation of f (a numerator / 10^d.dp). The remaining part
	// can be interpreted as a small number (< 1) to be added to the last digit of the
	// numerator.
	//
	// If rest > 0, the amount is:
	//    (rest<<shift | fraction) / (pow10 << shift)
	//    fraction being known with a ±ε uncertainty.
	//    The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
	//
	// If rest = 0, pow10 == 1 and the amount is
	//    fraction / (1 << shift)
	//    fraction being known with a ±ε uncertainty.
	//
	// We pass this information to the rounding routine for adjustment.

	ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
	if !ok {
		return false
	}
	// Trim trailing zeros.
	for i := d.nd - 1; i >= 0; i-- {
		if d.d[i] != '0' {
			d.nd = i + 1
			break
		}
	}
	return true
}

// adjustLastDigitFixed assumes d contains the representation of the integral part
// of some number, whose fractional part is num / (den << shift). The numerator
// num is only known up to an uncertainty of size ε, assumed to be less than
// (den << shift)/2.
//
// It will increase the last digit by one to account for correct rounding, typically
// when the fractional part is greater than 1/2, and will return false if ε is such
// that no correct answer can be given.
func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
	if num > den<<shift {
		panic("strconv: num > den<<shift in adjustLastDigitFixed")
	}
	if 2*ε > den<<shift {
		panic("strconv: ε > (den<<shift)/2")
	}
	if 2*(num+ε) < den<<shift {
		return true
	}
	if 2*(num-ε) > den<<shift {
		// increment d by 1.
		i := d.nd - 1
		for ; i >= 0; i-- {
			if d.d[i] == '9' {
				d.nd--
			} else {
				break
			}
		}
		if i < 0 {
			d.d[0] = '1'
			d.nd = 1
			d.dp++
		} else {
			d.d[i]++
		}
		return true
	}
	return false
}

// ShortestDecimal stores in d the shortest decimal representation of f
// which belongs to the open interval (lower, upper), where f is supposed
// to lie. It returns false whenever the result is unsure. The implementation
// uses the Grisu3 algorithm.
func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
	if f.mant == 0 {
		d.nd = 0
		d.dp = 0
		d.neg = f.neg
		return true
	}
	if f.exp == 0 && *lower == *f && *lower == *upper {
		// an exact integer.
		var buf [24]byte
		n := len(buf) - 1
		for v := f.mant; v > 0; {
			v1 := v / 10
			v -= 10 * v1
			buf[n] = byte(v + '0')
			n--
			v = v1
		}
		nd := len(buf) - n - 1
		for i := 0; i < nd; i++ {
			d.d[i] = buf[n+1+i]
		}
		d.nd, d.dp = nd, nd
		for d.nd > 0 && d.d[d.nd-1] == '0' {
			d.nd--
		}
		if d.nd == 0 {
			d.dp = 0
		}
		d.neg = f.neg
		return true
	}
	upper.Normalize()
	// Uniformize exponents.
	if f.exp > upper.exp {
		f.mant <<= uint(f.exp - upper.exp)
		f.exp = upper.exp
	}
	if lower.exp > upper.exp {
		lower.mant <<= uint(lower.exp - upper.exp)
		lower.exp = upper.exp
	}

	exp10 := frexp10Many(lower, f, upper)
	// Take a safety margin due to rounding in frexp10Many, but we lose precision.
	upper.mant++
	lower.mant--

	// The shortest representation of f is either rounded up or down, but
	// in any case, it is a truncation of upper.
	shift := uint(-upper.exp)
	integer := uint32(upper.mant >> shift)
	fraction := upper.mant - (uint64(integer) << shift)

	// How far we can go down from upper until the result is wrong.
	allowance := upper.mant - lower.mant
	// How far we should go to get a very precise result.
	targetDiff := upper.mant - f.mant

	// Count integral digits: there are at most 10.
	var integerDigits int
	for i, pow := 0, uint64(1); i < 20; i++ {
		if pow > uint64(integer) {
			integerDigits = i
			break
		}
		pow *= 10
	}
	for i := 0; i < integerDigits; i++ {
		pow := uint64pow10[integerDigits-i-1]
		digit := integer / uint32(pow)
		d.d[i] = byte(digit + '0')
		integer -= digit * uint32(pow)
		// evaluate whether we should stop.
		if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
			d.nd = i + 1
			d.dp = integerDigits + exp10
			d.neg = f.neg
			// Sometimes allowance is so large the last digit might need to be
			// decremented to get closer to f.
			return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
		}
	}
	d.nd = integerDigits
	d.dp = d.nd + exp10
	d.neg = f.neg

	// Compute digits of the fractional part. At each step fraction does not
	// overflow. The choice of minExp implies that fraction is less than 2^60.
	var digit int
	multiplier := uint64(1)
	for {
		fraction *= 10
		multiplier *= 10
		digit = int(fraction >> shift)
		d.d[d.nd] = byte(digit + '0')
		d.nd++
		fraction -= uint64(digit) << shift
		if fraction < allowance*multiplier {
			// We are in the admissible range. Note that if allowance is about to
			// overflow, that is, allowance > 2^64/10, the condition is automatically
			// true due to the limited range of fraction.
			return adjustLastDigit(d,
				fraction, targetDiff*multiplier, allowance*multiplier,
				1<<shift, multiplier*2)
		}
	}
}

// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
// It assumes that a decimal digit is worth ulpDecimal*ε, and that
// all data is known with a error estimate of ulpBinary*ε.
func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
	if ulpDecimal < 2*ulpBinary {
		// Approximation is too wide.
		return false
	}
	for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
		d.d[d.nd-1]--
		currentDiff += ulpDecimal
	}
	if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
		// we have two choices, and don't know what to do.
		return false
	}
	if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
		// we went too far
		return false
	}
	if d.nd == 1 && d.d[0] == '0' {
		// the number has actually reached zero.
		d.nd = 0
		d.dp = 0
	}
	return true
}