value.go 66.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package reflect

import (
	"math"
	"runtime"
	"unsafe"
)

const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
const cannotSet = "cannot set value obtained from unexported struct field"

// Value is the reflection interface to a Go value.
//
// Not all methods apply to all kinds of values.  Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of value before
// calling kind-specific methods.  Calling a method
// inappropriate to the kind of type causes a run time panic.
//
// The zero Value represents no value.
// Its IsValid method returns false, its Kind method returns Invalid,
// its String method returns "<invalid Value>", and all other methods panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
//
// A Value can be used concurrently by multiple goroutines provided that
// the underlying Go value can be used concurrently for the equivalent
// direct operations.
//
// Using == on two Values does not compare the underlying values
// they represent, but rather the contents of the Value structs.
// To compare two Values, compare the results of the Interface method.
type Value struct {
	// typ holds the type of the value represented by a Value.
	typ *rtype

	// Pointer-valued data or, if flagIndir is set, pointer to data.
	// Valid when either flagIndir is set or typ.pointers() is true.
	ptr unsafe.Pointer

	// flag holds metadata about the value.
	// The lowest bits are flag bits:
	//	- flagStickyRO: obtained via unexported not embedded field, so read-only
	//	- flagEmbedRO: obtained via unexported embedded field, so read-only
	//	- flagIndir: val holds a pointer to the data
	//	- flagAddr: v.CanAddr is true (implies flagIndir)
	//	- flagMethod: v is a method value.
	// The next five bits give the Kind of the value.
	// This repeats typ.Kind() except for method values.
	// The remaining 23+ bits give a method number for method values.
	// If flag.kind() != Func, code can assume that flagMethod is unset.
	// If ifaceIndir(typ), code can assume that flagIndir is set.
	flag

	// A method value represents a curried method invocation
	// like r.Read for some receiver r.  The typ+val+flag bits describe
	// the receiver r, but the flag's Kind bits say Func (methods are
	// functions), and the top bits of the flag give the method number
	// in r's type's method table.
}

type flag uintptr

const (
	flagKindWidth        = 5 // there are 27 kinds
	flagKindMask    flag = 1<<flagKindWidth - 1
	flagStickyRO    flag = 1 << 5
	flagEmbedRO     flag = 1 << 6
	flagIndir       flag = 1 << 7
	flagAddr        flag = 1 << 8
	flagMethod      flag = 1 << 9
	flagMethodFn    flag = 1 << 10 // gccgo: first fn parameter is always pointer
	flagMethodShift      = 11
	flagRO          flag = flagStickyRO | flagEmbedRO
)

func (f flag) kind() Kind {
	return Kind(f & flagKindMask)
}

// pointer returns the underlying pointer represented by v.
// v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
func (v Value) pointer() unsafe.Pointer {
	if v.typ.size != ptrSize || !v.typ.pointers() {
		panic("can't call pointer on a non-pointer Value")
	}
	if v.flag&flagIndir != 0 {
		return *(*unsafe.Pointer)(v.ptr)
	}
	return v.ptr
}

// packEface converts v to the empty interface.
func packEface(v Value) interface{} {
	t := v.typ
	var i interface{}
	e := (*emptyInterface)(unsafe.Pointer(&i))
	// First, fill in the data portion of the interface.
	switch {
	case ifaceIndir(t):
		if v.flag&flagIndir == 0 {
			panic("bad indir")
		}
		// Value is indirect, and so is the interface we're making.
		ptr := v.ptr
		if v.flag&flagAddr != 0 {
			// TODO: pass safe boolean from valueInterface so
			// we don't need to copy if safe==true?
			c := unsafe_New(t)
			typedmemmove(t, c, ptr)
			ptr = c
		}
		e.word = ptr
	case v.flag&flagIndir != 0:
		// Value is indirect, but interface is direct.  We need
		// to load the data at v.ptr into the interface data word.
		e.word = *(*unsafe.Pointer)(v.ptr)
	default:
		// Value is direct, and so is the interface.
		e.word = v.ptr
	}
	// Now, fill in the type portion.  We're very careful here not
	// to have any operation between the e.word and e.typ assignments
	// that would let the garbage collector observe the partially-built
	// interface value.
	e.typ = t
	return i
}

// unpackEface converts the empty interface i to a Value.
func unpackEface(i interface{}) Value {
	e := (*emptyInterface)(unsafe.Pointer(&i))
	// NOTE: don't read e.word until we know whether it is really a pointer or not.
	t := e.typ
	if t == nil {
		return Value{}
	}
	f := flag(t.Kind())
	if ifaceIndir(t) {
		f |= flagIndir
	}
	return Value{t, unsafe.Pointer(e.word), f}
}

// A ValueError occurs when a Value method is invoked on
// a Value that does not support it.  Such cases are documented
// in the description of each method.
type ValueError struct {
	Method string
	Kind   Kind
}

func (e *ValueError) Error() string {
	if e.Kind == 0 {
		return "reflect: call of " + e.Method + " on zero Value"
	}
	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
}

// methodName returns the name of the calling method,
// assumed to be two stack frames above.
func methodName() string {
	pc, _, _, _ := runtime.Caller(2)
	f := runtime.FuncForPC(pc)
	if f == nil {
		return "unknown method"
	}
	return f.Name()
}

// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
	typ  *rtype
	word unsafe.Pointer
}

// nonEmptyInterface is the header for a interface value with methods.
type nonEmptyInterface struct {
	// see ../runtime/iface.go:/Itab
	itab *struct {
		typ *rtype                 // dynamic concrete type
		fun [100000]unsafe.Pointer // method table
	}
	word unsafe.Pointer
}

// mustBe panics if f's kind is not expected.
// Making this a method on flag instead of on Value
// (and embedding flag in Value) means that we can write
// the very clear v.mustBe(Bool) and have it compile into
// v.flag.mustBe(Bool), which will only bother to copy the
// single important word for the receiver.
func (f flag) mustBe(expected Kind) {
	if f.kind() != expected {
		panic(&ValueError{methodName(), f.kind()})
	}
}

// mustBeExported panics if f records that the value was obtained using
// an unexported field.
func (f flag) mustBeExported() {
	if f == 0 {
		panic(&ValueError{methodName(), 0})
	}
	if f&flagRO != 0 {
		panic("reflect: " + methodName() + " using value obtained using unexported field")
	}
}

// mustBeAssignable panics if f records that the value is not assignable,
// which is to say that either it was obtained using an unexported field
// or it is not addressable.
func (f flag) mustBeAssignable() {
	if f == 0 {
		panic(&ValueError{methodName(), Invalid})
	}
	// Assignable if addressable and not read-only.
	if f&flagRO != 0 {
		panic("reflect: " + methodName() + " using value obtained using unexported field")
	}
	if f&flagAddr == 0 {
		panic("reflect: " + methodName() + " using unaddressable value")
	}
}

// Addr returns a pointer value representing the address of v.
// It panics if CanAddr() returns false.
// Addr is typically used to obtain a pointer to a struct field
// or slice element in order to call a method that requires a
// pointer receiver.
func (v Value) Addr() Value {
	if v.flag&flagAddr == 0 {
		panic("reflect.Value.Addr of unaddressable value")
	}
	return Value{v.typ.ptrTo(), v.ptr, (v.flag & flagRO) | flag(Ptr)}
}

// Bool returns v's underlying value.
// It panics if v's kind is not Bool.
func (v Value) Bool() bool {
	v.mustBe(Bool)
	return *(*bool)(v.ptr)
}

// Bytes returns v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) Bytes() []byte {
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Uint8 {
		panic("reflect.Value.Bytes of non-byte slice")
	}
	// Slice is always bigger than a word; assume flagIndir.
	return *(*[]byte)(v.ptr)
}

// runes returns v's underlying value.
// It panics if v's underlying value is not a slice of runes (int32s).
func (v Value) runes() []rune {
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Int32 {
		panic("reflect.Value.Bytes of non-rune slice")
	}
	// Slice is always bigger than a word; assume flagIndir.
	return *(*[]rune)(v.ptr)
}

// CanAddr reports whether the value's address can be obtained with Addr.
// Such values are called addressable.  A value is addressable if it is
// an element of a slice, an element of an addressable array,
// a field of an addressable struct, or the result of dereferencing a pointer.
// If CanAddr returns false, calling Addr will panic.
func (v Value) CanAddr() bool {
	return v.flag&flagAddr != 0
}

// CanSet reports whether the value of v can be changed.
// A Value can be changed only if it is addressable and was not
// obtained by the use of unexported struct fields.
// If CanSet returns false, calling Set or any type-specific
// setter (e.g., SetBool, SetInt) will panic.
func (v Value) CanSet() bool {
	return v.flag&(flagAddr|flagRO) == flagAddr
}

// Call calls the function v with the input arguments in.
// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
// Call panics if v's Kind is not Func.
// It returns the output results as Values.
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
// If v is a variadic function, Call creates the variadic slice parameter
// itself, copying in the corresponding values.
func (v Value) Call(in []Value) []Value {
	v.mustBe(Func)
	v.mustBeExported()
	return v.call("Call", in)
}

// CallSlice calls the variadic function v with the input arguments in,
// assigning the slice in[len(in)-1] to v's final variadic argument.
// For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
// CallSlice panics if v's Kind is not Func or if v is not variadic.
// It returns the output results as Values.
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
func (v Value) CallSlice(in []Value) []Value {
	v.mustBe(Func)
	v.mustBeExported()
	return v.call("CallSlice", in)
}

var callGC bool // for testing; see TestCallMethodJump

func (v Value) call(op string, in []Value) []Value {
	// Get function pointer, type.
	t := v.typ
	var (
		fn   unsafe.Pointer
		rcvr Value
	)
	if v.flag&flagMethod != 0 {
		rcvr = v
		_, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
	} else if v.flag&flagIndir != 0 {
		fn = *(*unsafe.Pointer)(v.ptr)
	} else {
		fn = v.ptr
	}

	if fn == nil {
		panic("reflect.Value.Call: call of nil function")
	}

	isSlice := op == "CallSlice"
	n := t.NumIn()
	if isSlice {
		if !t.IsVariadic() {
			panic("reflect: CallSlice of non-variadic function")
		}
		if len(in) < n {
			panic("reflect: CallSlice with too few input arguments")
		}
		if len(in) > n {
			panic("reflect: CallSlice with too many input arguments")
		}
	} else {
		if t.IsVariadic() {
			n--
		}
		if len(in) < n {
			panic("reflect: Call with too few input arguments")
		}
		if !t.IsVariadic() && len(in) > n {
			panic("reflect: Call with too many input arguments")
		}
	}
	for _, x := range in {
		if x.Kind() == Invalid {
			panic("reflect: " + op + " using zero Value argument")
		}
	}
	for i := 0; i < n; i++ {
		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
		}
	}
	if !isSlice && t.IsVariadic() {
		// prepare slice for remaining values
		m := len(in) - n
		slice := MakeSlice(t.In(n), m, m)
		elem := t.In(n).Elem()
		for i := 0; i < m; i++ {
			x := in[n+i]
			if xt := x.Type(); !xt.AssignableTo(elem) {
				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
			}
			slice.Index(i).Set(x)
		}
		origIn := in
		in = make([]Value, n+1)
		copy(in[:n], origIn)
		in[n] = slice
	}

	nin := len(in)
	if nin != t.NumIn() {
		panic("reflect.Value.Call: wrong argument count")
	}
	nout := t.NumOut()

	if v.flag&flagMethod != 0 {
		nin++
	}
	firstPointer := len(in) > 0 && t.In(0).Kind() != Ptr && v.flag&flagMethodFn != 0
	params := make([]unsafe.Pointer, nin)
	off := 0
	if v.flag&flagMethod != 0 {
		// Hard-wired first argument.
		p := new(unsafe.Pointer)
		if rcvr.typ.Kind() == Interface {
			*p = unsafe.Pointer((*nonEmptyInterface)(v.ptr).word)
		} else if rcvr.typ.Kind() == Ptr || rcvr.typ.Kind() == UnsafePointer {
			*p = rcvr.pointer()
		} else {
			*p = rcvr.ptr
		}
		params[0] = unsafe.Pointer(p)
		off = 1
	}
	for i, pv := range in {
		pv.mustBeExported()
		targ := t.In(i).(*rtype)
		pv = pv.assignTo("reflect.Value.Call", targ, nil)
		if pv.flag&flagIndir == 0 {
			p := new(unsafe.Pointer)
			*p = pv.ptr
			params[off] = unsafe.Pointer(p)
		} else {
			params[off] = pv.ptr
		}
		if i == 0 && firstPointer {
			p := new(unsafe.Pointer)
			*p = params[off]
			params[off] = unsafe.Pointer(p)
		}
		off++
	}

	ret := make([]Value, nout)
	results := make([]unsafe.Pointer, nout)
	for i := 0; i < nout; i++ {
		v := New(t.Out(i))
		results[i] = unsafe.Pointer(v.Pointer())
		ret[i] = Indirect(v)
	}

	var pp *unsafe.Pointer
	if len(params) > 0 {
		pp = &params[0]
	}
	var pr *unsafe.Pointer
	if len(results) > 0 {
		pr = &results[0]
	}

	call(t, fn, v.flag&flagMethod != 0, firstPointer, pp, pr)

	// For testing; see TestCallMethodJump.
	if callGC {
		runtime.GC()
	}

	return ret
}

// methodReceiver returns information about the receiver
// described by v. The Value v may or may not have the
// flagMethod bit set, so the kind cached in v.flag should
// not be used.
// The return value rcvrtype gives the method's actual receiver type.
// The return value t gives the method type signature (without the receiver).
// The return value fn is a pointer to the method code.
func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) {
	i := methodIndex
	if v.typ.Kind() == Interface {
		tt := (*interfaceType)(unsafe.Pointer(v.typ))
		if uint(i) >= uint(len(tt.methods)) {
			panic("reflect: internal error: invalid method index")
		}
		m := &tt.methods[i]
		if m.pkgPath != nil {
			panic("reflect: " + op + " of unexported method")
		}
		iface := (*nonEmptyInterface)(v.ptr)
		if iface.itab == nil {
			panic("reflect: " + op + " of method on nil interface value")
		}
		rcvrtype = iface.itab.typ
		fn = unsafe.Pointer(&iface.itab.fun[i])
		t = m.typ
	} else {
		rcvrtype = v.typ
		ut := v.typ.uncommon()
		if ut == nil || uint(i) >= uint(len(ut.methods)) {
			panic("reflect: internal error: invalid method index")
		}
		m := &ut.methods[i]
		if m.pkgPath != nil {
			panic("reflect: " + op + " of unexported method")
		}
		fn = unsafe.Pointer(&m.tfn)
		t = m.mtyp
	}
	return
}

// v is a method receiver.  Store at p the word which is used to
// encode that receiver at the start of the argument list.
// Reflect uses the "interface" calling convention for
// methods, which always uses one word to record the receiver.
func storeRcvr(v Value, p unsafe.Pointer) {
	t := v.typ
	if t.Kind() == Interface {
		// the interface data word becomes the receiver word
		iface := (*nonEmptyInterface)(v.ptr)
		*(*unsafe.Pointer)(p) = unsafe.Pointer(iface.word)
	} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
	} else {
		*(*unsafe.Pointer)(p) = v.ptr
	}
}

// align returns the result of rounding x up to a multiple of n.
// n must be a power of two.
func align(x, n uintptr) uintptr {
	return (x + n - 1) &^ (n - 1)
}

// funcName returns the name of f, for use in error messages.
func funcName(f func([]Value) []Value) string {
	pc := *(*uintptr)(unsafe.Pointer(&f))
	rf := runtime.FuncForPC(pc)
	if rf != nil {
		return rf.Name()
	}
	return "closure"
}

// Cap returns v's capacity.
// It panics if v's Kind is not Array, Chan, or Slice.
func (v Value) Cap() int {
	k := v.kind()
	switch k {
	case Array:
		return v.typ.Len()
	case Chan:
		return int(chancap(v.pointer()))
	case Slice:
		// Slice is always bigger than a word; assume flagIndir.
		return (*sliceHeader)(v.ptr).Cap
	}
	panic(&ValueError{"reflect.Value.Cap", v.kind()})
}

// Close closes the channel v.
// It panics if v's Kind is not Chan.
func (v Value) Close() {
	v.mustBe(Chan)
	v.mustBeExported()
	chanclose(v.pointer())
}

// Complex returns v's underlying value, as a complex128.
// It panics if v's Kind is not Complex64 or Complex128
func (v Value) Complex() complex128 {
	k := v.kind()
	switch k {
	case Complex64:
		return complex128(*(*complex64)(v.ptr))
	case Complex128:
		return *(*complex128)(v.ptr)
	}
	panic(&ValueError{"reflect.Value.Complex", v.kind()})
}

// Elem returns the value that the interface v contains
// or that the pointer v points to.
// It panics if v's Kind is not Interface or Ptr.
// It returns the zero Value if v is nil.
func (v Value) Elem() Value {
	k := v.kind()
	switch k {
	case Interface:
		var eface interface{}
		if v.typ.NumMethod() == 0 {
			eface = *(*interface{})(v.ptr)
		} else {
			eface = (interface{})(*(*interface {
				M()
			})(v.ptr))
		}
		x := unpackEface(eface)
		if x.flag != 0 {
			x.flag |= v.flag & flagRO
		}
		return x
	case Ptr:
		ptr := v.ptr
		if v.flag&flagIndir != 0 {
			ptr = *(*unsafe.Pointer)(ptr)
		}
		// The returned value's address is v's value.
		if ptr == nil {
			return Value{}
		}
		tt := (*ptrType)(unsafe.Pointer(v.typ))
		typ := tt.elem
		fl := v.flag&flagRO | flagIndir | flagAddr
		fl |= flag(typ.Kind())
		return Value{typ, ptr, fl}
	}
	panic(&ValueError{"reflect.Value.Elem", v.kind()})
}

// Field returns the i'th field of the struct v.
// It panics if v's Kind is not Struct or i is out of range.
func (v Value) Field(i int) Value {
	if v.kind() != Struct {
		panic(&ValueError{"reflect.Value.Field", v.kind()})
	}
	tt := (*structType)(unsafe.Pointer(v.typ))
	if uint(i) >= uint(len(tt.fields)) {
		panic("reflect: Field index out of range")
	}
	field := &tt.fields[i]
	typ := field.typ

	// Inherit permission bits from v, but clear flagEmbedRO.
	fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
	// Using an unexported field forces flagRO.
	if field.pkgPath != nil {
		if field.name == nil {
			fl |= flagEmbedRO
		} else {
			fl |= flagStickyRO
		}
	}
	// Either flagIndir is set and v.ptr points at struct,
	// or flagIndir is not set and v.ptr is the actual struct data.
	// In the former case, we want v.ptr + offset.
	// In the latter case, we must have field.offset = 0,
	// so v.ptr + field.offset is still okay.
	ptr := unsafe.Pointer(uintptr(v.ptr) + field.offset)
	return Value{typ, ptr, fl}
}

// FieldByIndex returns the nested field corresponding to index.
// It panics if v's Kind is not struct.
func (v Value) FieldByIndex(index []int) Value {
	if len(index) == 1 {
		return v.Field(index[0])
	}
	v.mustBe(Struct)
	for i, x := range index {
		if i > 0 {
			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
				if v.IsNil() {
					panic("reflect: indirection through nil pointer to embedded struct")
				}
				v = v.Elem()
			}
		}
		v = v.Field(x)
	}
	return v
}

// FieldByName returns the struct field with the given name.
// It returns the zero Value if no field was found.
// It panics if v's Kind is not struct.
func (v Value) FieldByName(name string) Value {
	v.mustBe(Struct)
	if f, ok := v.typ.FieldByName(name); ok {
		return v.FieldByIndex(f.Index)
	}
	return Value{}
}

// FieldByNameFunc returns the struct field with a name
// that satisfies the match function.
// It panics if v's Kind is not struct.
// It returns the zero Value if no field was found.
func (v Value) FieldByNameFunc(match func(string) bool) Value {
	if f, ok := v.typ.FieldByNameFunc(match); ok {
		return v.FieldByIndex(f.Index)
	}
	return Value{}
}

// Float returns v's underlying value, as a float64.
// It panics if v's Kind is not Float32 or Float64
func (v Value) Float() float64 {
	k := v.kind()
	switch k {
	case Float32:
		return float64(*(*float32)(v.ptr))
	case Float64:
		return *(*float64)(v.ptr)
	}
	panic(&ValueError{"reflect.Value.Float", v.kind()})
}

var uint8Type = TypeOf(uint8(0)).(*rtype)

// Index returns v's i'th element.
// It panics if v's Kind is not Array, Slice, or String or i is out of range.
func (v Value) Index(i int) Value {
	switch v.kind() {
	case Array:
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		if uint(i) >= uint(tt.len) {
			panic("reflect: array index out of range")
		}
		typ := tt.elem
		offset := uintptr(i) * typ.size

		// Either flagIndir is set and v.ptr points at array,
		// or flagIndir is not set and v.ptr is the actual array data.
		// In the former case, we want v.ptr + offset.
		// In the latter case, we must be doing Index(0), so offset = 0,
		// so v.ptr + offset is still okay.
		val := unsafe.Pointer(uintptr(v.ptr) + offset)
		fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind()) // bits same as overall array
		return Value{typ, val, fl}

	case Slice:
		// Element flag same as Elem of Ptr.
		// Addressable, indirect, possibly read-only.
		s := (*sliceHeader)(v.ptr)
		if uint(i) >= uint(s.Len) {
			panic("reflect: slice index out of range")
		}
		tt := (*sliceType)(unsafe.Pointer(v.typ))
		typ := tt.elem
		val := arrayAt(s.Data, i, typ.size)
		fl := flagAddr | flagIndir | v.flag&flagRO | flag(typ.Kind())
		return Value{typ, val, fl}

	case String:
		s := (*stringHeader)(v.ptr)
		if uint(i) >= uint(s.Len) {
			panic("reflect: string index out of range")
		}
		p := arrayAt(s.Data, i, 1)
		fl := v.flag&flagRO | flag(Uint8) | flagIndir
		return Value{uint8Type, p, fl}
	}
	panic(&ValueError{"reflect.Value.Index", v.kind()})
}

// Int returns v's underlying value, as an int64.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
func (v Value) Int() int64 {
	k := v.kind()
	p := v.ptr
	switch k {
	case Int:
		return int64(*(*int)(p))
	case Int8:
		return int64(*(*int8)(p))
	case Int16:
		return int64(*(*int16)(p))
	case Int32:
		return int64(*(*int32)(p))
	case Int64:
		return int64(*(*int64)(p))
	}
	panic(&ValueError{"reflect.Value.Int", v.kind()})
}

// CanInterface reports whether Interface can be used without panicking.
func (v Value) CanInterface() bool {
	if v.flag == 0 {
		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
	}
	return v.flag&flagRO == 0
}

// Interface returns v's current value as an interface{}.
// It is equivalent to:
//	var i interface{} = (v's underlying value)
// It panics if the Value was obtained by accessing
// unexported struct fields.
func (v Value) Interface() (i interface{}) {
	return valueInterface(v, true)
}

func valueInterface(v Value, safe bool) interface{} {
	if v.flag == 0 {
		panic(&ValueError{"reflect.Value.Interface", 0})
	}
	if safe && v.flag&flagRO != 0 {
		// Do not allow access to unexported values via Interface,
		// because they might be pointers that should not be
		// writable or methods or function that should not be callable.
		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
	}
	if v.flag&flagMethod != 0 {
		v = makeMethodValue("Interface", v)
	}

	if v.flag&flagMethodFn != 0 {
		if v.typ.Kind() != Func {
			panic("reflect: MethodFn of non-Func")
		}
		ft := (*funcType)(unsafe.Pointer(v.typ))
		if ft.in[0].Kind() != Ptr {
			v = makeValueMethod(v)
		}
	}

	if v.kind() == Interface {
		// Special case: return the element inside the interface.
		// Empty interface has one layout, all interfaces with
		// methods have a second layout.
		if v.NumMethod() == 0 {
			return *(*interface{})(v.ptr)
		}
		return *(*interface {
			M()
		})(v.ptr)
	}

	// TODO: pass safe to packEface so we don't need to copy if safe==true?
	return packEface(v)
}

// InterfaceData returns the interface v's value as a uintptr pair.
// It panics if v's Kind is not Interface.
func (v Value) InterfaceData() [2]uintptr {
	// TODO: deprecate this
	v.mustBe(Interface)
	// We treat this as a read operation, so we allow
	// it even for unexported data, because the caller
	// has to import "unsafe" to turn it into something
	// that can be abused.
	// Interface value is always bigger than a word; assume flagIndir.
	return *(*[2]uintptr)(v.ptr)
}

// IsNil reports whether its argument v is nil. The argument must be
// a chan, func, interface, map, pointer, or slice value; if it is
// not, IsNil panics. Note that IsNil is not always equivalent to a
// regular comparison with nil in Go. For example, if v was created
// by calling ValueOf with an uninitialized interface variable i,
// i==nil will be true but v.IsNil will panic as v will be the zero
// Value.
func (v Value) IsNil() bool {
	k := v.kind()
	switch k {
	case Chan, Func, Map, Ptr:
		if v.flag&flagMethod != 0 {
			return false
		}
		ptr := v.ptr
		if v.flag&flagIndir != 0 {
			ptr = *(*unsafe.Pointer)(ptr)
		}
		return ptr == nil
	case Interface, Slice:
		// Both interface and slice are nil if first word is 0.
		// Both are always bigger than a word; assume flagIndir.
		return *(*unsafe.Pointer)(v.ptr) == nil
	}
	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
}

// IsValid reports whether v represents a value.
// It returns false if v is the zero Value.
// If IsValid returns false, all other methods except String panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
func (v Value) IsValid() bool {
	return v.flag != 0
}

// Kind returns v's Kind.
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
func (v Value) Kind() Kind {
	return v.kind()
}

// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
func (v Value) Len() int {
	k := v.kind()
	switch k {
	case Array:
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		return int(tt.len)
	case Chan:
		return chanlen(v.pointer())
	case Map:
		return maplen(v.pointer())
	case Slice:
		// Slice is bigger than a word; assume flagIndir.
		return (*sliceHeader)(v.ptr).Len
	case String:
		// String is bigger than a word; assume flagIndir.
		return (*stringHeader)(v.ptr).Len
	}
	panic(&ValueError{"reflect.Value.Len", v.kind()})
}

// MapIndex returns the value associated with key in the map v.
// It panics if v's Kind is not Map.
// It returns the zero Value if key is not found in the map or if v represents a nil map.
// As in Go, the key's value must be assignable to the map's key type.
func (v Value) MapIndex(key Value) Value {
	v.mustBe(Map)
	tt := (*mapType)(unsafe.Pointer(v.typ))

	// Do not require key to be exported, so that DeepEqual
	// and other programs can use all the keys returned by
	// MapKeys as arguments to MapIndex.  If either the map
	// or the key is unexported, though, the result will be
	// considered unexported.  This is consistent with the
	// behavior for structs, which allow read but not write
	// of unexported fields.
	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)

	var k unsafe.Pointer
	if key.flag&flagIndir != 0 {
		k = key.ptr
	} else {
		k = unsafe.Pointer(&key.ptr)
	}
	e := mapaccess(v.typ, v.pointer(), k)
	if e == nil {
		return Value{}
	}
	typ := tt.elem
	fl := (v.flag | key.flag) & flagRO
	fl |= flag(typ.Kind())
	if ifaceIndir(typ) {
		// Copy result so future changes to the map
		// won't change the underlying value.
		c := unsafe_New(typ)
		typedmemmove(typ, c, e)
		return Value{typ, c, fl | flagIndir}
	} else {
		return Value{typ, *(*unsafe.Pointer)(e), fl}
	}
}

// MapKeys returns a slice containing all the keys present in the map,
// in unspecified order.
// It panics if v's Kind is not Map.
// It returns an empty slice if v represents a nil map.
func (v Value) MapKeys() []Value {
	v.mustBe(Map)
	tt := (*mapType)(unsafe.Pointer(v.typ))
	keyType := tt.key

	fl := v.flag&flagRO | flag(keyType.Kind())

	m := v.pointer()
	mlen := int(0)
	if m != nil {
		mlen = maplen(m)
	}
	it := mapiterinit(v.typ, m)
	a := make([]Value, mlen)
	var i int
	for i = 0; i < len(a); i++ {
		key := mapiterkey(it)
		if key == nil {
			// Someone deleted an entry from the map since we
			// called maplen above.  It's a data race, but nothing
			// we can do about it.
			break
		}
		if ifaceIndir(keyType) {
			// Copy result so future changes to the map
			// won't change the underlying value.
			c := unsafe_New(keyType)
			typedmemmove(keyType, c, key)
			a[i] = Value{keyType, c, fl | flagIndir}
		} else {
			a[i] = Value{keyType, *(*unsafe.Pointer)(key), fl}
		}
		mapiternext(it)
	}
	return a[:i]
}

// Method returns a function value corresponding to v's i'th method.
// The arguments to a Call on the returned function should not include
// a receiver; the returned function will always use v as the receiver.
// Method panics if i is out of range or if v is a nil interface value.
func (v Value) Method(i int) Value {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.Method", Invalid})
	}
	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
		panic("reflect: Method index out of range")
	}
	if v.typ.Kind() == Interface && v.IsNil() {
		panic("reflect: Method on nil interface value")
	}
	fl := v.flag & (flagStickyRO | flagIndir) // Clear flagEmbedRO
	fl |= flag(Func)
	fl |= flag(i)<<flagMethodShift | flagMethod
	return Value{v.typ, v.ptr, fl}
}

// NumMethod returns the number of methods in the value's method set.
func (v Value) NumMethod() int {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
	}
	if v.flag&flagMethod != 0 {
		return 0
	}
	return v.typ.NumMethod()
}

// MethodByName returns a function value corresponding to the method
// of v with the given name.
// The arguments to a Call on the returned function should not include
// a receiver; the returned function will always use v as the receiver.
// It returns the zero Value if no method was found.
func (v Value) MethodByName(name string) Value {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
	}
	if v.flag&flagMethod != 0 {
		return Value{}
	}
	m, ok := v.typ.MethodByName(name)
	if !ok {
		return Value{}
	}
	return v.Method(m.Index)
}

// NumField returns the number of fields in the struct v.
// It panics if v's Kind is not Struct.
func (v Value) NumField() int {
	v.mustBe(Struct)
	tt := (*structType)(unsafe.Pointer(v.typ))
	return len(tt.fields)
}

// OverflowComplex reports whether the complex128 x cannot be represented by v's type.
// It panics if v's Kind is not Complex64 or Complex128.
func (v Value) OverflowComplex(x complex128) bool {
	k := v.kind()
	switch k {
	case Complex64:
		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
	case Complex128:
		return false
	}
	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
}

// OverflowFloat reports whether the float64 x cannot be represented by v's type.
// It panics if v's Kind is not Float32 or Float64.
func (v Value) OverflowFloat(x float64) bool {
	k := v.kind()
	switch k {
	case Float32:
		return overflowFloat32(x)
	case Float64:
		return false
	}
	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
}

func overflowFloat32(x float64) bool {
	if x < 0 {
		x = -x
	}
	return math.MaxFloat32 < x && x <= math.MaxFloat64
}

// OverflowInt reports whether the int64 x cannot be represented by v's type.
// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
func (v Value) OverflowInt(x int64) bool {
	k := v.kind()
	switch k {
	case Int, Int8, Int16, Int32, Int64:
		bitSize := v.typ.size * 8
		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
		return x != trunc
	}
	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
}

// OverflowUint reports whether the uint64 x cannot be represented by v's type.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) OverflowUint(x uint64) bool {
	k := v.kind()
	switch k {
	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
		bitSize := v.typ.size * 8
		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
		return x != trunc
	}
	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
}

// Pointer returns v's value as a uintptr.
// It returns uintptr instead of unsafe.Pointer so that
// code using reflect cannot obtain unsafe.Pointers
// without importing the unsafe package explicitly.
// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
//
// If v's Kind is Func, the returned pointer is an underlying
// code pointer, but not necessarily enough to identify a
// single function uniquely. The only guarantee is that the
// result is zero if and only if v is a nil func Value.
//
// If v's Kind is Slice, the returned pointer is to the first
// element of the slice.  If the slice is nil the returned value
// is 0.  If the slice is empty but non-nil the return value is non-zero.
func (v Value) Pointer() uintptr {
	// TODO: deprecate
	k := v.kind()
	switch k {
	case Chan, Map, Ptr, UnsafePointer:
		return uintptr(v.pointer())
	case Func:
		p := v.pointer()
		// Non-nil func value points at data block.
		// First word of data block is actual code.
		if p != nil {
			p = *(*unsafe.Pointer)(p)
		}
		return uintptr(p)

	case Slice:
		return (*SliceHeader)(v.ptr).Data
	}
	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
}

// Recv receives and returns a value from the channel v.
// It panics if v's Kind is not Chan.
// The receive blocks until a value is ready.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) Recv() (x Value, ok bool) {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.recv(false)
}

// internal recv, possibly non-blocking (nb).
// v is known to be a channel.
func (v Value) recv(nb bool) (val Value, ok bool) {
	tt := (*chanType)(unsafe.Pointer(v.typ))
	if ChanDir(tt.dir)&RecvDir == 0 {
		panic("reflect: recv on send-only channel")
	}
	t := tt.elem
	val = Value{t, nil, flag(t.Kind())}
	var p unsafe.Pointer
	if ifaceIndir(t) {
		p = unsafe_New(t)
		val.ptr = p
		val.flag |= flagIndir
	} else {
		p = unsafe.Pointer(&val.ptr)
	}
	selected, ok := chanrecv(v.typ, v.pointer(), nb, p)
	if !selected {
		val = Value{}
	}
	return
}

// Send sends x on the channel v.
// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) Send(x Value) {
	v.mustBe(Chan)
	v.mustBeExported()
	v.send(x, false)
}

// internal send, possibly non-blocking.
// v is known to be a channel.
func (v Value) send(x Value, nb bool) (selected bool) {
	tt := (*chanType)(unsafe.Pointer(v.typ))
	if ChanDir(tt.dir)&SendDir == 0 {
		panic("reflect: send on recv-only channel")
	}
	x.mustBeExported()
	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
	var p unsafe.Pointer
	if x.flag&flagIndir != 0 {
		p = x.ptr
	} else {
		p = unsafe.Pointer(&x.ptr)
	}
	return chansend(v.typ, v.pointer(), p, nb)
}

// Set assigns x to the value v.
// It panics if CanSet returns false.
// As in Go, x's value must be assignable to v's type.
func (v Value) Set(x Value) {
	v.mustBeAssignable()
	x.mustBeExported() // do not let unexported x leak
	var target unsafe.Pointer
	if v.kind() == Interface {
		target = v.ptr
	}
	x = x.assignTo("reflect.Set", v.typ, target)
	if x.flag&flagIndir != 0 {
		typedmemmove(v.typ, v.ptr, x.ptr)
	} else {
		*(*unsafe.Pointer)(v.ptr) = x.ptr
	}
}

// SetBool sets v's underlying value.
// It panics if v's Kind is not Bool or if CanSet() is false.
func (v Value) SetBool(x bool) {
	v.mustBeAssignable()
	v.mustBe(Bool)
	*(*bool)(v.ptr) = x
}

// SetBytes sets v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) SetBytes(x []byte) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Uint8 {
		panic("reflect.Value.SetBytes of non-byte slice")
	}
	*(*[]byte)(v.ptr) = x
}

// setRunes sets v's underlying value.
// It panics if v's underlying value is not a slice of runes (int32s).
func (v Value) setRunes(x []rune) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Int32 {
		panic("reflect.Value.setRunes of non-rune slice")
	}
	*(*[]rune)(v.ptr) = x
}

// SetComplex sets v's underlying value to x.
// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
func (v Value) SetComplex(x complex128) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
	case Complex64:
		*(*complex64)(v.ptr) = complex64(x)
	case Complex128:
		*(*complex128)(v.ptr) = x
	}
}

// SetFloat sets v's underlying value to x.
// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
func (v Value) SetFloat(x float64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
	case Float32:
		*(*float32)(v.ptr) = float32(x)
	case Float64:
		*(*float64)(v.ptr) = x
	}
}

// SetInt sets v's underlying value to x.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
func (v Value) SetInt(x int64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
	case Int:
		*(*int)(v.ptr) = int(x)
	case Int8:
		*(*int8)(v.ptr) = int8(x)
	case Int16:
		*(*int16)(v.ptr) = int16(x)
	case Int32:
		*(*int32)(v.ptr) = int32(x)
	case Int64:
		*(*int64)(v.ptr) = x
	}
}

// SetLen sets v's length to n.
// It panics if v's Kind is not Slice or if n is negative or
// greater than the capacity of the slice.
func (v Value) SetLen(n int) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	s := (*sliceHeader)(v.ptr)
	if uint(n) > uint(s.Cap) {
		panic("reflect: slice length out of range in SetLen")
	}
	s.Len = n
}

// SetCap sets v's capacity to n.
// It panics if v's Kind is not Slice or if n is smaller than the length or
// greater than the capacity of the slice.
func (v Value) SetCap(n int) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	s := (*sliceHeader)(v.ptr)
	if n < int(s.Len) || n > int(s.Cap) {
		panic("reflect: slice capacity out of range in SetCap")
	}
	s.Cap = n
}

// SetMapIndex sets the value associated with key in the map v to val.
// It panics if v's Kind is not Map.
// If val is the zero Value, SetMapIndex deletes the key from the map.
// Otherwise if v holds a nil map, SetMapIndex will panic.
// As in Go, key's value must be assignable to the map's key type,
// and val's value must be assignable to the map's value type.
func (v Value) SetMapIndex(key, val Value) {
	v.mustBe(Map)
	v.mustBeExported()
	key.mustBeExported()
	tt := (*mapType)(unsafe.Pointer(v.typ))
	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
	var k unsafe.Pointer
	if key.flag&flagIndir != 0 {
		k = key.ptr
	} else {
		k = unsafe.Pointer(&key.ptr)
	}
	if val.typ == nil {
		mapdelete(v.typ, v.pointer(), k)
		return
	}
	val.mustBeExported()
	val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
	var e unsafe.Pointer
	if val.flag&flagIndir != 0 {
		e = val.ptr
	} else {
		e = unsafe.Pointer(&val.ptr)
	}
	mapassign(v.typ, v.pointer(), k, e)
}

// SetUint sets v's underlying value to x.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
func (v Value) SetUint(x uint64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
	case Uint:
		*(*uint)(v.ptr) = uint(x)
	case Uint8:
		*(*uint8)(v.ptr) = uint8(x)
	case Uint16:
		*(*uint16)(v.ptr) = uint16(x)
	case Uint32:
		*(*uint32)(v.ptr) = uint32(x)
	case Uint64:
		*(*uint64)(v.ptr) = x
	case Uintptr:
		*(*uintptr)(v.ptr) = uintptr(x)
	}
}

// SetPointer sets the unsafe.Pointer value v to x.
// It panics if v's Kind is not UnsafePointer.
func (v Value) SetPointer(x unsafe.Pointer) {
	v.mustBeAssignable()
	v.mustBe(UnsafePointer)
	*(*unsafe.Pointer)(v.ptr) = x
}

// SetString sets v's underlying value to x.
// It panics if v's Kind is not String or if CanSet() is false.
func (v Value) SetString(x string) {
	v.mustBeAssignable()
	v.mustBe(String)
	*(*string)(v.ptr) = x
}

// Slice returns v[i:j].
// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
// or if the indexes are out of bounds.
func (v Value) Slice(i, j int) Value {
	var (
		cap  int
		typ  *sliceType
		base unsafe.Pointer
	)
	switch kind := v.kind(); kind {
	default:
		panic(&ValueError{"reflect.Value.Slice", v.kind()})

	case Array:
		if v.flag&flagAddr == 0 {
			panic("reflect.Value.Slice: slice of unaddressable array")
		}
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		cap = int(tt.len)
		typ = (*sliceType)(unsafe.Pointer(tt.slice))
		base = v.ptr

	case Slice:
		typ = (*sliceType)(unsafe.Pointer(v.typ))
		s := (*sliceHeader)(v.ptr)
		base = unsafe.Pointer(s.Data)
		cap = s.Cap

	case String:
		s := (*stringHeader)(v.ptr)
		if i < 0 || j < i || j > s.Len {
			panic("reflect.Value.Slice: string slice index out of bounds")
		}
		t := stringHeader{arrayAt(s.Data, i, 1), j - i}
		return Value{v.typ, unsafe.Pointer(&t), v.flag}
	}

	if i < 0 || j < i || j > cap {
		panic("reflect.Value.Slice: slice index out of bounds")
	}

	// Declare slice so that gc can see the base pointer in it.
	var x []unsafe.Pointer

	// Reinterpret as *sliceHeader to edit.
	s := (*sliceHeader)(unsafe.Pointer(&x))
	s.Len = j - i
	s.Cap = cap - i
	if cap-i > 0 {
		s.Data = arrayAt(base, i, typ.elem.Size())
	} else {
		// do not advance pointer, to avoid pointing beyond end of slice
		s.Data = base
	}

	fl := v.flag&flagRO | flagIndir | flag(Slice)
	return Value{typ.common(), unsafe.Pointer(&x), fl}
}

// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
// It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
// or if the indexes are out of bounds.
func (v Value) Slice3(i, j, k int) Value {
	var (
		cap  int
		typ  *sliceType
		base unsafe.Pointer
	)
	switch kind := v.kind(); kind {
	default:
		panic(&ValueError{"reflect.Value.Slice3", v.kind()})

	case Array:
		if v.flag&flagAddr == 0 {
			panic("reflect.Value.Slice3: slice of unaddressable array")
		}
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		cap = int(tt.len)
		typ = (*sliceType)(unsafe.Pointer(tt.slice))
		base = v.ptr

	case Slice:
		typ = (*sliceType)(unsafe.Pointer(v.typ))
		s := (*sliceHeader)(v.ptr)
		base = s.Data
		cap = s.Cap
	}

	if i < 0 || j < i || k < j || k > cap {
		panic("reflect.Value.Slice3: slice index out of bounds")
	}

	// Declare slice so that the garbage collector
	// can see the base pointer in it.
	var x []unsafe.Pointer

	// Reinterpret as *sliceHeader to edit.
	s := (*sliceHeader)(unsafe.Pointer(&x))
	s.Len = j - i
	s.Cap = k - i
	if k-i > 0 {
		s.Data = arrayAt(base, i, typ.elem.Size())
	} else {
		// do not advance pointer, to avoid pointing beyond end of slice
		s.Data = base
	}

	fl := v.flag&flagRO | flagIndir | flag(Slice)
	return Value{typ.common(), unsafe.Pointer(&x), fl}
}

// String returns the string v's underlying value, as a string.
// String is a special case because of Go's String method convention.
// Unlike the other getters, it does not panic if v's Kind is not String.
// Instead, it returns a string of the form "<T value>" where T is v's type.
// The fmt package treats Values specially. It does not call their String
// method implicitly but instead prints the concrete values they hold.
func (v Value) String() string {
	switch k := v.kind(); k {
	case Invalid:
		return "<invalid Value>"
	case String:
		return *(*string)(v.ptr)
	}
	// If you call String on a reflect.Value of other type, it's better to
	// print something than to panic. Useful in debugging.
	return "<" + v.Type().String() + " Value>"
}

// TryRecv attempts to receive a value from the channel v but will not block.
// It panics if v's Kind is not Chan.
// If the receive delivers a value, x is the transferred value and ok is true.
// If the receive cannot finish without blocking, x is the zero Value and ok is false.
// If the channel is closed, x is the zero value for the channel's element type and ok is false.
func (v Value) TryRecv() (x Value, ok bool) {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.recv(true)
}

// TrySend attempts to send x on the channel v but will not block.
// It panics if v's Kind is not Chan.
// It reports whether the value was sent.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) TrySend(x Value) bool {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.send(x, true)
}

// Type returns v's type.
func (v Value) Type() Type {
	f := v.flag
	if f == 0 {
		panic(&ValueError{"reflect.Value.Type", Invalid})
	}
	if f&flagMethod == 0 {
		// Easy case
		return toType(v.typ)
	}

	// Method value.
	// v.typ describes the receiver, not the method type.
	i := int(v.flag) >> flagMethodShift
	if v.typ.Kind() == Interface {
		// Method on interface.
		tt := (*interfaceType)(unsafe.Pointer(v.typ))
		if uint(i) >= uint(len(tt.methods)) {
			panic("reflect: internal error: invalid method index")
		}
		m := &tt.methods[i]
		return toType(m.typ)
	}
	// Method on concrete type.
	ut := v.typ.uncommon()
	if ut == nil || uint(i) >= uint(len(ut.methods)) {
		panic("reflect: internal error: invalid method index")
	}
	m := &ut.methods[i]
	return toType(m.mtyp)
}

// Uint returns v's underlying value, as a uint64.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) Uint() uint64 {
	k := v.kind()
	p := v.ptr
	switch k {
	case Uint:
		return uint64(*(*uint)(p))
	case Uint8:
		return uint64(*(*uint8)(p))
	case Uint16:
		return uint64(*(*uint16)(p))
	case Uint32:
		return uint64(*(*uint32)(p))
	case Uint64:
		return uint64(*(*uint64)(p))
	case Uintptr:
		return uint64(*(*uintptr)(p))
	}
	panic(&ValueError{"reflect.Value.Uint", v.kind()})
}

// UnsafeAddr returns a pointer to v's data.
// It is for advanced clients that also import the "unsafe" package.
// It panics if v is not addressable.
func (v Value) UnsafeAddr() uintptr {
	// TODO: deprecate
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
	}
	if v.flag&flagAddr == 0 {
		panic("reflect.Value.UnsafeAddr of unaddressable value")
	}
	return uintptr(v.ptr)
}

// StringHeader is the runtime representation of a string.
// It cannot be used safely or portably and its representation may
// change in a later release.
// Moreover, the Data field is not sufficient to guarantee the data
// it references will not be garbage collected, so programs must keep
// a separate, correctly typed pointer to the underlying data.
type StringHeader struct {
	Data uintptr
	Len  int
}

// stringHeader is a safe version of StringHeader used within this package.
type stringHeader struct {
	Data unsafe.Pointer
	Len  int
}

// SliceHeader is the runtime representation of a slice.
// It cannot be used safely or portably and its representation may
// change in a later release.
// Moreover, the Data field is not sufficient to guarantee the data
// it references will not be garbage collected, so programs must keep
// a separate, correctly typed pointer to the underlying data.
type SliceHeader struct {
	Data uintptr
	Len  int
	Cap  int
}

// sliceHeader is a safe version of SliceHeader used within this package.
type sliceHeader struct {
	Data unsafe.Pointer
	Len  int
	Cap  int
}

func typesMustMatch(what string, t1, t2 Type) {
	if t1 != t2 {
		panic(what + ": " + t1.String() + " != " + t2.String())
	}
}

// arrayAt returns the i-th element of p, a C-array whose elements are
// eltSize wide (in bytes).
func arrayAt(p unsafe.Pointer, i int, eltSize uintptr) unsafe.Pointer {
	return unsafe.Pointer(uintptr(p) + uintptr(i)*eltSize)
}

// grow grows the slice s so that it can hold extra more values, allocating
// more capacity if needed. It also returns the old and new slice lengths.
func grow(s Value, extra int) (Value, int, int) {
	i0 := s.Len()
	i1 := i0 + extra
	if i1 < i0 {
		panic("reflect.Append: slice overflow")
	}
	m := s.Cap()
	if i1 <= m {
		return s.Slice(0, i1), i0, i1
	}
	if m == 0 {
		m = extra
	} else {
		for m < i1 {
			if i0 < 1024 {
				m += m
			} else {
				m += m / 4
			}
		}
	}
	t := MakeSlice(s.Type(), i1, m)
	Copy(t, s)
	return t, i0, i1
}

// Append appends the values x to a slice s and returns the resulting slice.
// As in Go, each x's value must be assignable to the slice's element type.
func Append(s Value, x ...Value) Value {
	s.mustBe(Slice)
	s, i0, i1 := grow(s, len(x))
	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
		s.Index(i).Set(x[j])
	}
	return s
}

// AppendSlice appends a slice t to a slice s and returns the resulting slice.
// The slices s and t must have the same element type.
func AppendSlice(s, t Value) Value {
	s.mustBe(Slice)
	t.mustBe(Slice)
	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
	s, i0, i1 := grow(s, t.Len())
	Copy(s.Slice(i0, i1), t)
	return s
}

// Copy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
// Dst and src each must have kind Slice or Array, and
// dst and src must have the same element type.
func Copy(dst, src Value) int {
	dk := dst.kind()
	if dk != Array && dk != Slice {
		panic(&ValueError{"reflect.Copy", dk})
	}
	if dk == Array {
		dst.mustBeAssignable()
	}
	dst.mustBeExported()

	sk := src.kind()
	if sk != Array && sk != Slice {
		panic(&ValueError{"reflect.Copy", sk})
	}
	src.mustBeExported()

	de := dst.typ.Elem()
	se := src.typ.Elem()
	typesMustMatch("reflect.Copy", de, se)

	var ds, ss sliceHeader
	if dk == Array {
		ds.Data = dst.ptr
		ds.Len = dst.Len()
		ds.Cap = ds.Len
	} else {
		ds = *(*sliceHeader)(dst.ptr)
	}
	if sk == Array {
		ss.Data = src.ptr
		ss.Len = src.Len()
		ss.Cap = ss.Len
	} else {
		ss = *(*sliceHeader)(src.ptr)
	}

	return typedslicecopy(de.common(), ds, ss)
}

// A runtimeSelect is a single case passed to rselect.
// This must match ../runtime/select.go:/runtimeSelect
type runtimeSelect struct {
	dir uintptr        // 0, SendDir, or RecvDir
	typ *rtype         // channel type
	ch  unsafe.Pointer // channel
	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
}

// rselect runs a select.  It returns the index of the chosen case.
// If the case was a receive, val is filled in with the received value.
// The conventional OK bool indicates whether the receive corresponds
// to a sent value.
//go:noescape
func rselect([]runtimeSelect) (chosen int, recvOK bool)

// A SelectDir describes the communication direction of a select case.
type SelectDir int

// NOTE: These values must match ../runtime/select.go:/selectDir.

const (
	_             SelectDir = iota
	SelectSend              // case Chan <- Send
	SelectRecv              // case <-Chan:
	SelectDefault           // default
)

// A SelectCase describes a single case in a select operation.
// The kind of case depends on Dir, the communication direction.
//
// If Dir is SelectDefault, the case represents a default case.
// Chan and Send must be zero Values.
//
// If Dir is SelectSend, the case represents a send operation.
// Normally Chan's underlying value must be a channel, and Send's underlying value must be
// assignable to the channel's element type. As a special case, if Chan is a zero Value,
// then the case is ignored, and the field Send will also be ignored and may be either zero
// or non-zero.
//
// If Dir is SelectRecv, the case represents a receive operation.
// Normally Chan's underlying value must be a channel and Send must be a zero Value.
// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
// When a receive operation is selected, the received Value is returned by Select.
//
type SelectCase struct {
	Dir  SelectDir // direction of case
	Chan Value     // channel to use (for send or receive)
	Send Value     // value to send (for send)
}

// Select executes a select operation described by the list of cases.
// Like the Go select statement, it blocks until at least one of the cases
// can proceed, makes a uniform pseudo-random choice,
// and then executes that case. It returns the index of the chosen case
// and, if that case was a receive operation, the value received and a
// boolean indicating whether the value corresponds to a send on the channel
// (as opposed to a zero value received because the channel is closed).
func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
	// NOTE: Do not trust that caller is not modifying cases data underfoot.
	// The range is safe because the caller cannot modify our copy of the len
	// and each iteration makes its own copy of the value c.
	runcases := make([]runtimeSelect, len(cases))
	haveDefault := false
	for i, c := range cases {
		rc := &runcases[i]
		rc.dir = uintptr(c.Dir)
		switch c.Dir {
		default:
			panic("reflect.Select: invalid Dir")

		case SelectDefault: // default
			if haveDefault {
				panic("reflect.Select: multiple default cases")
			}
			haveDefault = true
			if c.Chan.IsValid() {
				panic("reflect.Select: default case has Chan value")
			}
			if c.Send.IsValid() {
				panic("reflect.Select: default case has Send value")
			}

		case SelectSend:
			ch := c.Chan
			if !ch.IsValid() {
				break
			}
			ch.mustBe(Chan)
			ch.mustBeExported()
			tt := (*chanType)(unsafe.Pointer(ch.typ))
			if ChanDir(tt.dir)&SendDir == 0 {
				panic("reflect.Select: SendDir case using recv-only channel")
			}
			rc.ch = ch.pointer()
			rc.typ = &tt.rtype
			v := c.Send
			if !v.IsValid() {
				panic("reflect.Select: SendDir case missing Send value")
			}
			v.mustBeExported()
			v = v.assignTo("reflect.Select", tt.elem, nil)
			if v.flag&flagIndir != 0 {
				rc.val = v.ptr
			} else {
				rc.val = unsafe.Pointer(&v.ptr)
			}

		case SelectRecv:
			if c.Send.IsValid() {
				panic("reflect.Select: RecvDir case has Send value")
			}
			ch := c.Chan
			if !ch.IsValid() {
				break
			}
			ch.mustBe(Chan)
			ch.mustBeExported()
			tt := (*chanType)(unsafe.Pointer(ch.typ))
			if ChanDir(tt.dir)&RecvDir == 0 {
				panic("reflect.Select: RecvDir case using send-only channel")
			}
			rc.ch = ch.pointer()
			rc.typ = &tt.rtype
			rc.val = unsafe_New(tt.elem)
		}
	}

	chosen, recvOK = rselect(runcases)
	if runcases[chosen].dir == uintptr(SelectRecv) {
		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
		t := tt.elem
		p := runcases[chosen].val
		fl := flag(t.Kind())
		if ifaceIndir(t) {
			recv = Value{t, p, fl | flagIndir}
		} else {
			recv = Value{t, *(*unsafe.Pointer)(p), fl}
		}
	}
	return chosen, recv, recvOK
}

/*
 * constructors
 */

// implemented in package runtime
func unsafe_New(*rtype) unsafe.Pointer
func unsafe_NewArray(*rtype, int) unsafe.Pointer

// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ Type, len, cap int) Value {
	if typ.Kind() != Slice {
		panic("reflect.MakeSlice of non-slice type")
	}
	if len < 0 {
		panic("reflect.MakeSlice: negative len")
	}
	if cap < 0 {
		panic("reflect.MakeSlice: negative cap")
	}
	if len > cap {
		panic("reflect.MakeSlice: len > cap")
	}

	s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
	return Value{typ.common(), unsafe.Pointer(&s), flagIndir | flag(Slice)}
}

// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ Type, buffer int) Value {
	if typ.Kind() != Chan {
		panic("reflect.MakeChan of non-chan type")
	}
	if buffer < 0 {
		panic("reflect.MakeChan: negative buffer size")
	}
	if typ.ChanDir() != BothDir {
		panic("reflect.MakeChan: unidirectional channel type")
	}
	ch := makechan(typ.(*rtype), uint64(buffer))
	return Value{typ.common(), unsafe.Pointer(&ch), flag(Chan) | flagIndir}
}

// MakeMap creates a new map of the specified type.
func MakeMap(typ Type) Value {
	if typ.Kind() != Map {
		panic("reflect.MakeMap of non-map type")
	}
	m := makemap(typ.(*rtype))
	return Value{typ.common(), unsafe.Pointer(&m), flag(Map) | flagIndir}
}

// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a zero Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
	if v.Kind() != Ptr {
		return v
	}
	return v.Elem()
}

// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i.  ValueOf(nil) returns the zero Value.
func ValueOf(i interface{}) Value {
	if i == nil {
		return Value{}
	}

	// TODO(rsc): Eliminate this terrible hack.
	// In the call to unpackEface, i.typ doesn't escape,
	// and i.word is an integer.  So it looks like
	// i doesn't escape.  But really it does,
	// because i.word is actually a pointer.
	escapes(i)

	return unpackEface(i)
}

// Zero returns a Value representing the zero value for the specified type.
// The result is different from the zero value of the Value struct,
// which represents no value at all.
// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
// The returned value is neither addressable nor settable.
func Zero(typ Type) Value {
	if typ == nil {
		panic("reflect: Zero(nil)")
	}
	t := typ.common()
	fl := flag(t.Kind())
	if ifaceIndir(t) {
		return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
	}
	return Value{t, nil, fl}
}

// New returns a Value representing a pointer to a new zero value
// for the specified type.  That is, the returned Value's Type is PtrTo(typ).
func New(typ Type) Value {
	if typ == nil {
		panic("reflect: New(nil)")
	}
	ptr := unsafe_New(typ.(*rtype))
	fl := flag(Ptr)
	return Value{typ.common().ptrTo(), ptr, fl}
}

// NewAt returns a Value representing a pointer to a value of the
// specified type, using p as that pointer.
func NewAt(typ Type, p unsafe.Pointer) Value {
	fl := flag(Ptr)
	return Value{typ.common().ptrTo(), p, fl}
}

// assignTo returns a value v that can be assigned directly to typ.
// It panics if v is not assignable to typ.
// For a conversion to an interface type, target is a suggested scratch space to use.
func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
	if v.flag&flagMethod != 0 {
		v = makeMethodValue(context, v)
	}

	switch {
	case directlyAssignable(dst, v.typ):
		// Overwrite type so that they match.
		// Same memory layout, so no harm done.
		v.typ = dst
		fl := v.flag & (flagRO | flagAddr | flagIndir)
		fl |= flag(dst.Kind())
		return Value{dst, v.ptr, fl}

	case implements(dst, v.typ):
		if target == nil {
			target = unsafe_New(dst)
		}
		x := valueInterface(v, false)
		if dst.NumMethod() == 0 {
			*(*interface{})(target) = x
		} else {
			ifaceE2I(dst, x, target)
		}
		return Value{dst, target, flagIndir | flag(Interface)}
	}

	// Failed.
	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
}

// Convert returns the value v converted to type t.
// If the usual Go conversion rules do not allow conversion
// of the value v to type t, Convert panics.
func (v Value) Convert(t Type) Value {
	if v.flag&flagMethod != 0 {
		v = makeMethodValue("Convert", v)
	}
	op := convertOp(t.common(), v.typ)
	if op == nil {
		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
	}
	return op(v, t)
}

// convertOp returns the function to convert a value of type src
// to a value of type dst. If the conversion is illegal, convertOp returns nil.
func convertOp(dst, src *rtype) func(Value, Type) Value {
	switch src.Kind() {
	case Int, Int8, Int16, Int32, Int64:
		switch dst.Kind() {
		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
			return cvtInt
		case Float32, Float64:
			return cvtIntFloat
		case String:
			return cvtIntString
		}

	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
		switch dst.Kind() {
		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
			return cvtUint
		case Float32, Float64:
			return cvtUintFloat
		case String:
			return cvtUintString
		}

	case Float32, Float64:
		switch dst.Kind() {
		case Int, Int8, Int16, Int32, Int64:
			return cvtFloatInt
		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
			return cvtFloatUint
		case Float32, Float64:
			return cvtFloat
		}

	case Complex64, Complex128:
		switch dst.Kind() {
		case Complex64, Complex128:
			return cvtComplex
		}

	case String:
		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
			switch dst.Elem().Kind() {
			case Uint8:
				return cvtStringBytes
			case Int32:
				return cvtStringRunes
			}
		}

	case Slice:
		if dst.Kind() == String && src.Elem().PkgPath() == "" {
			switch src.Elem().Kind() {
			case Uint8:
				return cvtBytesString
			case Int32:
				return cvtRunesString
			}
		}
	}

	// dst and src have same underlying type.
	if haveIdenticalUnderlyingType(dst, src) {
		return cvtDirect
	}

	// dst and src are unnamed pointer types with same underlying base type.
	if dst.Kind() == Ptr && dst.Name() == "" &&
		src.Kind() == Ptr && src.Name() == "" &&
		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
		return cvtDirect
	}

	if implements(dst, src) {
		if src.Kind() == Interface {
			return cvtI2I
		}
		return cvtT2I
	}

	return nil
}

// makeInt returns a Value of type t equal to bits (possibly truncated),
// where t is a signed or unsigned int type.
func makeInt(f flag, bits uint64, t Type) Value {
	typ := t.common()
	ptr := unsafe_New(typ)
	switch typ.size {
	case 1:
		*(*uint8)(unsafe.Pointer(ptr)) = uint8(bits)
	case 2:
		*(*uint16)(unsafe.Pointer(ptr)) = uint16(bits)
	case 4:
		*(*uint32)(unsafe.Pointer(ptr)) = uint32(bits)
	case 8:
		*(*uint64)(unsafe.Pointer(ptr)) = bits
	}
	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
}

// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
// where t is a float32 or float64 type.
func makeFloat(f flag, v float64, t Type) Value {
	typ := t.common()
	ptr := unsafe_New(typ)
	switch typ.size {
	case 4:
		*(*float32)(unsafe.Pointer(ptr)) = float32(v)
	case 8:
		*(*float64)(unsafe.Pointer(ptr)) = v
	}
	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
}

// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
// where t is a complex64 or complex128 type.
func makeComplex(f flag, v complex128, t Type) Value {
	typ := t.common()
	ptr := unsafe_New(typ)
	switch typ.size {
	case 8:
		*(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
	case 16:
		*(*complex128)(unsafe.Pointer(ptr)) = v
	}
	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
}

func makeString(f flag, v string, t Type) Value {
	ret := New(t).Elem()
	ret.SetString(v)
	ret.flag = ret.flag&^flagAddr | f
	return ret
}

func makeBytes(f flag, v []byte, t Type) Value {
	ret := New(t).Elem()
	ret.SetBytes(v)
	ret.flag = ret.flag&^flagAddr | f
	return ret
}

func makeRunes(f flag, v []rune, t Type) Value {
	ret := New(t).Elem()
	ret.setRunes(v)
	ret.flag = ret.flag&^flagAddr | f
	return ret
}

// These conversion functions are returned by convertOp
// for classes of conversions. For example, the first function, cvtInt,
// takes any value v of signed int type and returns the value converted
// to type t, where t is any signed or unsigned int type.

// convertOp: intXX -> [u]intXX
func cvtInt(v Value, t Type) Value {
	return makeInt(v.flag&flagRO, uint64(v.Int()), t)
}

// convertOp: uintXX -> [u]intXX
func cvtUint(v Value, t Type) Value {
	return makeInt(v.flag&flagRO, v.Uint(), t)
}

// convertOp: floatXX -> intXX
func cvtFloatInt(v Value, t Type) Value {
	return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
}

// convertOp: floatXX -> uintXX
func cvtFloatUint(v Value, t Type) Value {
	return makeInt(v.flag&flagRO, uint64(v.Float()), t)
}

// convertOp: intXX -> floatXX
func cvtIntFloat(v Value, t Type) Value {
	return makeFloat(v.flag&flagRO, float64(v.Int()), t)
}

// convertOp: uintXX -> floatXX
func cvtUintFloat(v Value, t Type) Value {
	return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
}

// convertOp: floatXX -> floatXX
func cvtFloat(v Value, t Type) Value {
	return makeFloat(v.flag&flagRO, v.Float(), t)
}

// convertOp: complexXX -> complexXX
func cvtComplex(v Value, t Type) Value {
	return makeComplex(v.flag&flagRO, v.Complex(), t)
}

// convertOp: intXX -> string
func cvtIntString(v Value, t Type) Value {
	return makeString(v.flag&flagRO, string(v.Int()), t)
}

// convertOp: uintXX -> string
func cvtUintString(v Value, t Type) Value {
	return makeString(v.flag&flagRO, string(v.Uint()), t)
}

// convertOp: []byte -> string
func cvtBytesString(v Value, t Type) Value {
	return makeString(v.flag&flagRO, string(v.Bytes()), t)
}

// convertOp: string -> []byte
func cvtStringBytes(v Value, t Type) Value {
	return makeBytes(v.flag&flagRO, []byte(v.String()), t)
}

// convertOp: []rune -> string
func cvtRunesString(v Value, t Type) Value {
	return makeString(v.flag&flagRO, string(v.runes()), t)
}

// convertOp: string -> []rune
func cvtStringRunes(v Value, t Type) Value {
	return makeRunes(v.flag&flagRO, []rune(v.String()), t)
}

// convertOp: direct copy
func cvtDirect(v Value, typ Type) Value {
	f := v.flag
	t := typ.common()
	ptr := v.ptr
	if f&flagAddr != 0 {
		// indirect, mutable word - make a copy
		c := unsafe_New(t)
		typedmemmove(t, c, ptr)
		ptr = c
		f &^= flagAddr
	}
	return Value{t, ptr, v.flag&flagRO | f} // v.flag&flagRO|f == f?
}

// convertOp: concrete -> interface
func cvtT2I(v Value, typ Type) Value {
	target := unsafe_New(typ.common())
	x := valueInterface(v, false)
	if typ.NumMethod() == 0 {
		*(*interface{})(target) = x
	} else {
		ifaceE2I(typ.(*rtype), x, target)
	}
	return Value{typ.common(), target, v.flag&flagRO | flagIndir | flag(Interface)}
}

// convertOp: interface -> interface
func cvtI2I(v Value, typ Type) Value {
	if v.IsNil() {
		ret := Zero(typ)
		ret.flag |= v.flag & flagRO
		return ret
	}
	return cvtT2I(v.Elem(), typ)
}

// implemented in ../runtime
func chancap(ch unsafe.Pointer) int
func chanclose(ch unsafe.Pointer)
func chanlen(ch unsafe.Pointer) int

//go:noescape
func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)

//go:noescape
func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool

func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)
func makemap(t *rtype) (m unsafe.Pointer)

//go:noescape
func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)

func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)

//go:noescape
func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)

// m escapes into the return value, but the caller of mapiterinit
// doesn't let the return value escape.
//go:noescape
func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer

//go:noescape
func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)

//go:noescape
func mapiternext(it unsafe.Pointer)

//go:noescape
func maplen(m unsafe.Pointer) int
func call(typ *rtype, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)

func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)

// typedmemmove copies a value of type t to dst from src.
//go:noescape
func typedmemmove(t *rtype, dst, src unsafe.Pointer)

// typedslicecopy copies a slice of elemType values from src to dst,
// returning the number of elements copied.
//go:noescape
func typedslicecopy(elemType *rtype, dst, src sliceHeader) int

//go:noescape
//extern memmove
func memmove(adst, asrc unsafe.Pointer, n uintptr)

// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that
// the compiler cannot follow.
func escapes(x interface{}) {
	if dummy.b {
		dummy.x = x
	}
}

var dummy struct {
	b bool
	x interface{}
}