print.go 30.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package fmt

import (
	"errors"
	"io"
	"os"
	"reflect"
	"sync"
	"unicode/utf8"
)

// Some constants in the form of bytes, to avoid string overhead.
// Needlessly fastidious, I suppose.
var (
	commaSpaceBytes  = []byte(", ")
	nilAngleBytes    = []byte("<nil>")
	nilParenBytes    = []byte("(nil)")
	nilBytes         = []byte("nil")
	mapBytes         = []byte("map[")
	percentBangBytes = []byte("%!")
	missingBytes     = []byte("(MISSING)")
	badIndexBytes    = []byte("(BADINDEX)")
	panicBytes       = []byte("(PANIC=")
	extraBytes       = []byte("%!(EXTRA ")
	irparenBytes     = []byte("i)")
	bytesBytes       = []byte("[]byte{")
	badWidthBytes    = []byte("%!(BADWIDTH)")
	badPrecBytes     = []byte("%!(BADPREC)")
	noVerbBytes      = []byte("%!(NOVERB)")
)

// State represents the printer state passed to custom formatters.
// It provides access to the io.Writer interface plus information about
// the flags and options for the operand's format specifier.
type State interface {
	// Write is the function to call to emit formatted output to be printed.
	Write(b []byte) (ret int, err error)
	// Width returns the value of the width option and whether it has been set.
	Width() (wid int, ok bool)
	// Precision returns the value of the precision option and whether it has been set.
	Precision() (prec int, ok bool)

	// Flag reports whether the flag c, a character, has been set.
	Flag(c int) bool
}

// Formatter is the interface implemented by values with a custom formatter.
// The implementation of Format may call Sprint(f) or Fprint(f) etc.
// to generate its output.
type Formatter interface {
	Format(f State, c rune)
}

// Stringer is implemented by any value that has a String method,
// which defines the ``native'' format for that value.
// The String method is used to print values passed as an operand
// to any format that accepts a string or to an unformatted printer
// such as Print.
type Stringer interface {
	String() string
}

// GoStringer is implemented by any value that has a GoString method,
// which defines the Go syntax for that value.
// The GoString method is used to print values passed as an operand
// to a %#v format.
type GoStringer interface {
	GoString() string
}

// Use simple []byte instead of bytes.Buffer to avoid large dependency.
type buffer []byte

func (b *buffer) Write(p []byte) (n int, err error) {
	*b = append(*b, p...)
	return len(p), nil
}

func (b *buffer) WriteString(s string) (n int, err error) {
	*b = append(*b, s...)
	return len(s), nil
}

func (b *buffer) WriteByte(c byte) error {
	*b = append(*b, c)
	return nil
}

func (bp *buffer) WriteRune(r rune) error {
	if r < utf8.RuneSelf {
		*bp = append(*bp, byte(r))
		return nil
	}

	b := *bp
	n := len(b)
	for n+utf8.UTFMax > cap(b) {
		b = append(b, 0)
	}
	w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r)
	*bp = b[:n+w]
	return nil
}

type pp struct {
	n         int
	panicking bool
	erroring  bool // printing an error condition
	buf       buffer
	// arg holds the current item, as an interface{}.
	arg interface{}
	// value holds the current item, as a reflect.Value, and will be
	// the zero Value if the item has not been reflected.
	value reflect.Value
	// reordered records whether the format string used argument reordering.
	reordered bool
	// goodArgNum records whether the most recent reordering directive was valid.
	goodArgNum bool
	runeBuf    [utf8.UTFMax]byte
	fmt        fmt
}

var ppFree = sync.Pool{
	New: func() interface{} { return new(pp) },
}

// newPrinter allocates a new pp struct or grabs a cached one.
func newPrinter() *pp {
	p := ppFree.Get().(*pp)
	p.panicking = false
	p.erroring = false
	p.fmt.init(&p.buf)
	return p
}

// free saves used pp structs in ppFree; avoids an allocation per invocation.
func (p *pp) free() {
	// Don't hold on to pp structs with large buffers.
	if cap(p.buf) > 1024 {
		return
	}
	p.buf = p.buf[:0]
	p.arg = nil
	p.value = reflect.Value{}
	ppFree.Put(p)
}

func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }

func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }

func (p *pp) Flag(b int) bool {
	switch b {
	case '-':
		return p.fmt.minus
	case '+':
		return p.fmt.plus
	case '#':
		return p.fmt.sharp
	case ' ':
		return p.fmt.space
	case '0':
		return p.fmt.zero
	}
	return false
}

func (p *pp) add(c rune) {
	p.buf.WriteRune(c)
}

// Implement Write so we can call Fprintf on a pp (through State), for
// recursive use in custom verbs.
func (p *pp) Write(b []byte) (ret int, err error) {
	return p.buf.Write(b)
}

// These routines end in 'f' and take a format string.

// Fprintf formats according to a format specifier and writes to w.
// It returns the number of bytes written and any write error encountered.
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
	p := newPrinter()
	p.doPrintf(format, a)
	n, err = w.Write(p.buf)
	p.free()
	return
}

// Printf formats according to a format specifier and writes to standard output.
// It returns the number of bytes written and any write error encountered.
func Printf(format string, a ...interface{}) (n int, err error) {
	return Fprintf(os.Stdout, format, a...)
}

// Sprintf formats according to a format specifier and returns the resulting string.
func Sprintf(format string, a ...interface{}) string {
	p := newPrinter()
	p.doPrintf(format, a)
	s := string(p.buf)
	p.free()
	return s
}

// Errorf formats according to a format specifier and returns the string
// as a value that satisfies error.
func Errorf(format string, a ...interface{}) error {
	return errors.New(Sprintf(format, a...))
}

// These routines do not take a format string

// Fprint formats using the default formats for its operands and writes to w.
// Spaces are added between operands when neither is a string.
// It returns the number of bytes written and any write error encountered.
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
	p := newPrinter()
	p.doPrint(a, false, false)
	n, err = w.Write(p.buf)
	p.free()
	return
}

// Print formats using the default formats for its operands and writes to standard output.
// Spaces are added between operands when neither is a string.
// It returns the number of bytes written and any write error encountered.
func Print(a ...interface{}) (n int, err error) {
	return Fprint(os.Stdout, a...)
}

// Sprint formats using the default formats for its operands and returns the resulting string.
// Spaces are added between operands when neither is a string.
func Sprint(a ...interface{}) string {
	p := newPrinter()
	p.doPrint(a, false, false)
	s := string(p.buf)
	p.free()
	return s
}

// These routines end in 'ln', do not take a format string,
// always add spaces between operands, and add a newline
// after the last operand.

// Fprintln formats using the default formats for its operands and writes to w.
// Spaces are always added between operands and a newline is appended.
// It returns the number of bytes written and any write error encountered.
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
	p := newPrinter()
	p.doPrint(a, true, true)
	n, err = w.Write(p.buf)
	p.free()
	return
}

// Println formats using the default formats for its operands and writes to standard output.
// Spaces are always added between operands and a newline is appended.
// It returns the number of bytes written and any write error encountered.
func Println(a ...interface{}) (n int, err error) {
	return Fprintln(os.Stdout, a...)
}

// Sprintln formats using the default formats for its operands and returns the resulting string.
// Spaces are always added between operands and a newline is appended.
func Sprintln(a ...interface{}) string {
	p := newPrinter()
	p.doPrint(a, true, true)
	s := string(p.buf)
	p.free()
	return s
}

// getField gets the i'th field of the struct value.
// If the field is itself is an interface, return a value for
// the thing inside the interface, not the interface itself.
func getField(v reflect.Value, i int) reflect.Value {
	val := v.Field(i)
	if val.Kind() == reflect.Interface && !val.IsNil() {
		val = val.Elem()
	}
	return val
}

// tooLarge reports whether the magnitude of the integer is
// too large to be used as a formatting width or precision.
func tooLarge(x int) bool {
	const max int = 1e6
	return x > max || x < -max
}

// parsenum converts ASCII to integer.  num is 0 (and isnum is false) if no number present.
func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
	if start >= end {
		return 0, false, end
	}
	for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
		if tooLarge(num) {
			return 0, false, end // Overflow; crazy long number most likely.
		}
		num = num*10 + int(s[newi]-'0')
		isnum = true
	}
	return
}

func (p *pp) unknownType(v reflect.Value) {
	if !v.IsValid() {
		p.buf.Write(nilAngleBytes)
		return
	}
	p.buf.WriteByte('?')
	p.buf.WriteString(v.Type().String())
	p.buf.WriteByte('?')
}

func (p *pp) badVerb(verb rune) {
	p.erroring = true
	p.add('%')
	p.add('!')
	p.add(verb)
	p.add('(')
	switch {
	case p.arg != nil:
		p.buf.WriteString(reflect.TypeOf(p.arg).String())
		p.add('=')
		p.printArg(p.arg, 'v', 0)
	case p.value.IsValid():
		p.buf.WriteString(p.value.Type().String())
		p.add('=')
		p.printValue(p.value, 'v', 0)
	default:
		p.buf.Write(nilAngleBytes)
	}
	p.add(')')
	p.erroring = false
}

func (p *pp) fmtBool(v bool, verb rune) {
	switch verb {
	case 't', 'v':
		p.fmt.fmt_boolean(v)
	default:
		p.badVerb(verb)
	}
}

// fmtC formats a rune for the 'c' format.
func (p *pp) fmtC(c int64) {
	r := rune(c) // Check for overflow.
	if int64(r) != c {
		r = utf8.RuneError
	}
	w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r)
	p.fmt.pad(p.runeBuf[0:w])
}

func (p *pp) fmtInt64(v int64, verb rune) {
	switch verb {
	case 'b':
		p.fmt.integer(v, 2, signed, ldigits)
	case 'c':
		p.fmtC(v)
	case 'd', 'v':
		p.fmt.integer(v, 10, signed, ldigits)
	case 'o':
		p.fmt.integer(v, 8, signed, ldigits)
	case 'q':
		if 0 <= v && v <= utf8.MaxRune {
			p.fmt.fmt_qc(v)
		} else {
			p.badVerb(verb)
		}
	case 'x':
		p.fmt.integer(v, 16, signed, ldigits)
	case 'U':
		p.fmtUnicode(v)
	case 'X':
		p.fmt.integer(v, 16, signed, udigits)
	default:
		p.badVerb(verb)
	}
}

// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
// not, as requested, by temporarily setting the sharp flag.
func (p *pp) fmt0x64(v uint64, leading0x bool) {
	sharp := p.fmt.sharp
	p.fmt.sharp = leading0x
	p.fmt.integer(int64(v), 16, unsigned, ldigits)
	p.fmt.sharp = sharp
}

// fmtUnicode formats a uint64 in U+1234 form by
// temporarily turning on the unicode flag and tweaking the precision.
func (p *pp) fmtUnicode(v int64) {
	precPresent := p.fmt.precPresent
	sharp := p.fmt.sharp
	p.fmt.sharp = false
	prec := p.fmt.prec
	if !precPresent {
		// If prec is already set, leave it alone; otherwise 4 is minimum.
		p.fmt.prec = 4
		p.fmt.precPresent = true
	}
	p.fmt.unicode = true // turn on U+
	p.fmt.uniQuote = sharp
	p.fmt.integer(int64(v), 16, unsigned, udigits)
	p.fmt.unicode = false
	p.fmt.uniQuote = false
	p.fmt.prec = prec
	p.fmt.precPresent = precPresent
	p.fmt.sharp = sharp
}

func (p *pp) fmtUint64(v uint64, verb rune) {
	switch verb {
	case 'b':
		p.fmt.integer(int64(v), 2, unsigned, ldigits)
	case 'c':
		p.fmtC(int64(v))
	case 'd':
		p.fmt.integer(int64(v), 10, unsigned, ldigits)
	case 'v':
		if p.fmt.sharpV {
			p.fmt0x64(v, true)
		} else {
			p.fmt.integer(int64(v), 10, unsigned, ldigits)
		}
	case 'o':
		p.fmt.integer(int64(v), 8, unsigned, ldigits)
	case 'q':
		if 0 <= v && v <= utf8.MaxRune {
			p.fmt.fmt_qc(int64(v))
		} else {
			p.badVerb(verb)
		}
	case 'x':
		p.fmt.integer(int64(v), 16, unsigned, ldigits)
	case 'X':
		p.fmt.integer(int64(v), 16, unsigned, udigits)
	case 'U':
		p.fmtUnicode(int64(v))
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtFloat32(v float32, verb rune) {
	switch verb {
	case 'b':
		p.fmt.fmt_fb32(v)
	case 'e':
		p.fmt.fmt_e32(v)
	case 'E':
		p.fmt.fmt_E32(v)
	case 'f', 'F':
		p.fmt.fmt_f32(v)
	case 'g', 'v':
		p.fmt.fmt_g32(v)
	case 'G':
		p.fmt.fmt_G32(v)
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtFloat64(v float64, verb rune) {
	switch verb {
	case 'b':
		p.fmt.fmt_fb64(v)
	case 'e':
		p.fmt.fmt_e64(v)
	case 'E':
		p.fmt.fmt_E64(v)
	case 'f', 'F':
		p.fmt.fmt_f64(v)
	case 'g', 'v':
		p.fmt.fmt_g64(v)
	case 'G':
		p.fmt.fmt_G64(v)
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtComplex64(v complex64, verb rune) {
	switch verb {
	case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
		p.fmt.fmt_c64(v, verb)
	case 'v':
		p.fmt.fmt_c64(v, 'g')
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtComplex128(v complex128, verb rune) {
	switch verb {
	case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
		p.fmt.fmt_c128(v, verb)
	case 'v':
		p.fmt.fmt_c128(v, 'g')
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtString(v string, verb rune) {
	switch verb {
	case 'v':
		if p.fmt.sharpV {
			p.fmt.fmt_q(v)
		} else {
			p.fmt.fmt_s(v)
		}
	case 's':
		p.fmt.fmt_s(v)
	case 'x':
		p.fmt.fmt_sx(v, ldigits)
	case 'X':
		p.fmt.fmt_sx(v, udigits)
	case 'q':
		p.fmt.fmt_q(v)
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtBytes(v []byte, verb rune, typ reflect.Type, depth int) {
	if verb == 'v' || verb == 'd' {
		if p.fmt.sharpV {
			if v == nil {
				if typ == nil {
					p.buf.WriteString("[]byte(nil)")
				} else {
					p.buf.WriteString(typ.String())
					p.buf.Write(nilParenBytes)
				}
				return
			}
			if typ == nil {
				p.buf.Write(bytesBytes)
			} else {
				p.buf.WriteString(typ.String())
				p.buf.WriteByte('{')
			}
		} else {
			p.buf.WriteByte('[')
		}
		for i, c := range v {
			if i > 0 {
				if p.fmt.sharpV {
					p.buf.Write(commaSpaceBytes)
				} else {
					p.buf.WriteByte(' ')
				}
			}
			p.printArg(c, 'v', depth+1)
		}
		if p.fmt.sharpV {
			p.buf.WriteByte('}')
		} else {
			p.buf.WriteByte(']')
		}
		return
	}
	switch verb {
	case 's':
		p.fmt.fmt_s(string(v))
	case 'x':
		p.fmt.fmt_bx(v, ldigits)
	case 'X':
		p.fmt.fmt_bx(v, udigits)
	case 'q':
		p.fmt.fmt_q(string(v))
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtPointer(value reflect.Value, verb rune) {
	use0x64 := true
	switch verb {
	case 'p', 'v':
		// ok
	case 'b', 'd', 'o', 'x', 'X':
		use0x64 = false
		// ok
	default:
		p.badVerb(verb)
		return
	}

	var u uintptr
	switch value.Kind() {
	case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
		u = value.Pointer()
	default:
		p.badVerb(verb)
		return
	}

	if p.fmt.sharpV {
		p.add('(')
		p.buf.WriteString(value.Type().String())
		p.add(')')
		p.add('(')
		if u == 0 {
			p.buf.Write(nilBytes)
		} else {
			p.fmt0x64(uint64(u), true)
		}
		p.add(')')
	} else if verb == 'v' && u == 0 {
		p.buf.Write(nilAngleBytes)
	} else {
		if use0x64 {
			p.fmt0x64(uint64(u), !p.fmt.sharp)
		} else {
			p.fmtUint64(uint64(u), verb)
		}
	}
}

var (
	intBits     = reflect.TypeOf(0).Bits()
	uintptrBits = reflect.TypeOf(uintptr(0)).Bits()
)

func (p *pp) catchPanic(arg interface{}, verb rune) {
	if err := recover(); err != nil {
		// If it's a nil pointer, just say "<nil>". The likeliest causes are a
		// Stringer that fails to guard against nil or a nil pointer for a
		// value receiver, and in either case, "<nil>" is a nice result.
		if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
			p.buf.Write(nilAngleBytes)
			return
		}
		// Otherwise print a concise panic message. Most of the time the panic
		// value will print itself nicely.
		if p.panicking {
			// Nested panics; the recursion in printArg cannot succeed.
			panic(err)
		}
		p.fmt.clearflags() // We are done, and for this output we want default behavior.
		p.buf.Write(percentBangBytes)
		p.add(verb)
		p.buf.Write(panicBytes)
		p.panicking = true
		p.printArg(err, 'v', 0)
		p.panicking = false
		p.buf.WriteByte(')')
	}
}

// clearSpecialFlags pushes %#v back into the regular flags and returns their old state.
func (p *pp) clearSpecialFlags() (plusV, sharpV bool) {
	plusV = p.fmt.plusV
	if plusV {
		p.fmt.plus = true
		p.fmt.plusV = false
	}
	sharpV = p.fmt.sharpV
	if sharpV {
		p.fmt.sharp = true
		p.fmt.sharpV = false
	}
	return
}

// restoreSpecialFlags, whose argument should be a call to clearSpecialFlags,
// restores the setting of the plusV and sharpV flags.
func (p *pp) restoreSpecialFlags(plusV, sharpV bool) {
	if plusV {
		p.fmt.plus = false
		p.fmt.plusV = true
	}
	if sharpV {
		p.fmt.sharp = false
		p.fmt.sharpV = true
	}
}

func (p *pp) handleMethods(verb rune, depth int) (handled bool) {
	if p.erroring {
		return
	}
	// Is it a Formatter?
	if formatter, ok := p.arg.(Formatter); ok {
		handled = true
		defer p.restoreSpecialFlags(p.clearSpecialFlags())
		defer p.catchPanic(p.arg, verb)
		formatter.Format(p, verb)
		return
	}

	// If we're doing Go syntax and the argument knows how to supply it, take care of it now.
	if p.fmt.sharpV {
		if stringer, ok := p.arg.(GoStringer); ok {
			handled = true
			defer p.catchPanic(p.arg, verb)
			// Print the result of GoString unadorned.
			p.fmt.fmt_s(stringer.GoString())
			return
		}
	} else {
		// If a string is acceptable according to the format, see if
		// the value satisfies one of the string-valued interfaces.
		// Println etc. set verb to %v, which is "stringable".
		switch verb {
		case 'v', 's', 'x', 'X', 'q':
			// Is it an error or Stringer?
			// The duplication in the bodies is necessary:
			// setting handled and deferring catchPanic
			// must happen before calling the method.
			switch v := p.arg.(type) {
			case error:
				handled = true
				defer p.catchPanic(p.arg, verb)
				p.printArg(v.Error(), verb, depth)
				return

			case Stringer:
				handled = true
				defer p.catchPanic(p.arg, verb)
				p.printArg(v.String(), verb, depth)
				return
			}
		}
	}
	return false
}

func (p *pp) printArg(arg interface{}, verb rune, depth int) (wasString bool) {
	p.arg = arg
	p.value = reflect.Value{}

	if arg == nil {
		if verb == 'T' || verb == 'v' {
			p.fmt.pad(nilAngleBytes)
		} else {
			p.badVerb(verb)
		}
		return false
	}

	// Special processing considerations.
	// %T (the value's type) and %p (its address) are special; we always do them first.
	switch verb {
	case 'T':
		p.printArg(reflect.TypeOf(arg).String(), 's', 0)
		return false
	case 'p':
		p.fmtPointer(reflect.ValueOf(arg), verb)
		return false
	}

	// Some types can be done without reflection.
	switch f := arg.(type) {
	case bool:
		p.fmtBool(f, verb)
	case float32:
		p.fmtFloat32(f, verb)
	case float64:
		p.fmtFloat64(f, verb)
	case complex64:
		p.fmtComplex64(f, verb)
	case complex128:
		p.fmtComplex128(f, verb)
	case int:
		p.fmtInt64(int64(f), verb)
	case int8:
		p.fmtInt64(int64(f), verb)
	case int16:
		p.fmtInt64(int64(f), verb)
	case int32:
		p.fmtInt64(int64(f), verb)
	case int64:
		p.fmtInt64(f, verb)
	case uint:
		p.fmtUint64(uint64(f), verb)
	case uint8:
		p.fmtUint64(uint64(f), verb)
	case uint16:
		p.fmtUint64(uint64(f), verb)
	case uint32:
		p.fmtUint64(uint64(f), verb)
	case uint64:
		p.fmtUint64(f, verb)
	case uintptr:
		p.fmtUint64(uint64(f), verb)
	case string:
		p.fmtString(f, verb)
		wasString = verb == 's' || verb == 'v'
	case []byte:
		p.fmtBytes(f, verb, nil, depth)
		wasString = verb == 's'
	case reflect.Value:
		return p.printReflectValue(f, verb, depth)
	default:
		// If the type is not simple, it might have methods.
		if handled := p.handleMethods(verb, depth); handled {
			return false
		}
		// Need to use reflection
		return p.printReflectValue(reflect.ValueOf(arg), verb, depth)
	}
	p.arg = nil
	return
}

// printValue is like printArg but starts with a reflect value, not an interface{} value.
func (p *pp) printValue(value reflect.Value, verb rune, depth int) (wasString bool) {
	if !value.IsValid() {
		if verb == 'T' || verb == 'v' {
			p.buf.Write(nilAngleBytes)
		} else {
			p.badVerb(verb)
		}
		return false
	}

	// Special processing considerations.
	// %T (the value's type) and %p (its address) are special; we always do them first.
	switch verb {
	case 'T':
		p.printArg(value.Type().String(), 's', 0)
		return false
	case 'p':
		p.fmtPointer(value, verb)
		return false
	}

	// Handle values with special methods.
	// Call always, even when arg == nil, because handleMethods clears p.fmt.plus for us.
	p.arg = nil // Make sure it's cleared, for safety.
	if value.CanInterface() {
		p.arg = value.Interface()
	}
	if handled := p.handleMethods(verb, depth); handled {
		return false
	}

	return p.printReflectValue(value, verb, depth)
}

var byteType = reflect.TypeOf(byte(0))

// printReflectValue is the fallback for both printArg and printValue.
// It uses reflect to print the value.
func (p *pp) printReflectValue(value reflect.Value, verb rune, depth int) (wasString bool) {
	oldValue := p.value
	p.value = value
BigSwitch:
	switch f := value; f.Kind() {
	case reflect.Invalid:
		p.buf.WriteString("<invalid reflect.Value>")
	case reflect.Bool:
		p.fmtBool(f.Bool(), verb)
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		p.fmtInt64(f.Int(), verb)
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		p.fmtUint64(f.Uint(), verb)
	case reflect.Float32, reflect.Float64:
		if f.Type().Size() == 4 {
			p.fmtFloat32(float32(f.Float()), verb)
		} else {
			p.fmtFloat64(f.Float(), verb)
		}
	case reflect.Complex64, reflect.Complex128:
		if f.Type().Size() == 8 {
			p.fmtComplex64(complex64(f.Complex()), verb)
		} else {
			p.fmtComplex128(f.Complex(), verb)
		}
	case reflect.String:
		p.fmtString(f.String(), verb)
	case reflect.Map:
		if p.fmt.sharpV {
			p.buf.WriteString(f.Type().String())
			if f.IsNil() {
				p.buf.WriteString("(nil)")
				break
			}
			p.buf.WriteByte('{')
		} else {
			p.buf.Write(mapBytes)
		}
		keys := f.MapKeys()
		for i, key := range keys {
			if i > 0 {
				if p.fmt.sharpV {
					p.buf.Write(commaSpaceBytes)
				} else {
					p.buf.WriteByte(' ')
				}
			}
			p.printValue(key, verb, depth+1)
			p.buf.WriteByte(':')
			p.printValue(f.MapIndex(key), verb, depth+1)
		}
		if p.fmt.sharpV {
			p.buf.WriteByte('}')
		} else {
			p.buf.WriteByte(']')
		}
	case reflect.Struct:
		if p.fmt.sharpV {
			p.buf.WriteString(value.Type().String())
		}
		p.add('{')
		v := f
		t := v.Type()
		for i := 0; i < v.NumField(); i++ {
			if i > 0 {
				if p.fmt.sharpV {
					p.buf.Write(commaSpaceBytes)
				} else {
					p.buf.WriteByte(' ')
				}
			}
			if p.fmt.plusV || p.fmt.sharpV {
				if f := t.Field(i); f.Name != "" {
					p.buf.WriteString(f.Name)
					p.buf.WriteByte(':')
				}
			}
			p.printValue(getField(v, i), verb, depth+1)
		}
		p.buf.WriteByte('}')
	case reflect.Interface:
		value := f.Elem()
		if !value.IsValid() {
			if p.fmt.sharpV {
				p.buf.WriteString(f.Type().String())
				p.buf.Write(nilParenBytes)
			} else {
				p.buf.Write(nilAngleBytes)
			}
		} else {
			wasString = p.printValue(value, verb, depth+1)
		}
	case reflect.Array, reflect.Slice:
		// Byte slices are special:
		// - Handle []byte (== []uint8) with fmtBytes.
		// - Handle []T, where T is a named byte type, with fmtBytes only
		//   for the s, q, an x verbs. For other verbs, T might be a
		//   Stringer, so we use printValue to print each element.
		if typ := f.Type(); typ.Elem().Kind() == reflect.Uint8 && (typ.Elem() == byteType || verb == 's' || verb == 'q' || verb == 'x') {
			var bytes []byte
			if f.Kind() == reflect.Slice {
				bytes = f.Bytes()
			} else if f.CanAddr() {
				bytes = f.Slice(0, f.Len()).Bytes()
			} else {
				// We have an array, but we cannot Slice() a non-addressable array,
				// so we build a slice by hand. This is a rare case but it would be nice
				// if reflection could help a little more.
				bytes = make([]byte, f.Len())
				for i := range bytes {
					bytes[i] = byte(f.Index(i).Uint())
				}
			}
			p.fmtBytes(bytes, verb, typ, depth)
			wasString = verb == 's'
			break
		}
		if p.fmt.sharpV {
			p.buf.WriteString(value.Type().String())
			if f.Kind() == reflect.Slice && f.IsNil() {
				p.buf.WriteString("(nil)")
				break
			}
			p.buf.WriteByte('{')
		} else {
			p.buf.WriteByte('[')
		}
		for i := 0; i < f.Len(); i++ {
			if i > 0 {
				if p.fmt.sharpV {
					p.buf.Write(commaSpaceBytes)
				} else {
					p.buf.WriteByte(' ')
				}
			}
			p.printValue(f.Index(i), verb, depth+1)
		}
		if p.fmt.sharpV {
			p.buf.WriteByte('}')
		} else {
			p.buf.WriteByte(']')
		}
	case reflect.Ptr:
		v := f.Pointer()
		// pointer to array or slice or struct?  ok at top level
		// but not embedded (avoid loops)
		if v != 0 && depth == 0 {
			switch a := f.Elem(); a.Kind() {
			case reflect.Array, reflect.Slice:
				p.buf.WriteByte('&')
				p.printValue(a, verb, depth+1)
				break BigSwitch
			case reflect.Struct:
				p.buf.WriteByte('&')
				p.printValue(a, verb, depth+1)
				break BigSwitch
			case reflect.Map:
				p.buf.WriteByte('&')
				p.printValue(a, verb, depth+1)
				break BigSwitch
			}
		}
		fallthrough
	case reflect.Chan, reflect.Func, reflect.UnsafePointer:
		p.fmtPointer(value, verb)
	default:
		p.unknownType(f)
	}
	p.value = oldValue
	return wasString
}

// intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has type int.
func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) {
	newArgNum = argNum
	if argNum < len(a) {
		num, isInt = a[argNum].(int)
		newArgNum = argNum + 1
		if tooLarge(num) {
			num = 0
			isInt = false
		}
	}
	return
}

// parseArgNumber returns the value of the bracketed number, minus 1
// (explicit argument numbers are one-indexed but we want zero-indexed).
// The opening bracket is known to be present at format[0].
// The returned values are the index, the number of bytes to consume
// up to the closing paren, if present, and whether the number parsed
// ok. The bytes to consume will be 1 if no closing paren is present.
func parseArgNumber(format string) (index int, wid int, ok bool) {
	// There must be at least 3 bytes: [n].
	if len(format) < 3 {
		return 0, 1, false
	}

	// Find closing bracket.
	for i := 1; i < len(format); i++ {
		if format[i] == ']' {
			width, ok, newi := parsenum(format, 1, i)
			if !ok || newi != i {
				return 0, i + 1, false
			}
			return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
		}
	}
	return 0, 1, false
}

// argNumber returns the next argument to evaluate, which is either the value of the passed-in
// argNum or the value of the bracketed integer that begins format[i:]. It also returns
// the new value of i, that is, the index of the next byte of the format to process.
func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) {
	if len(format) <= i || format[i] != '[' {
		return argNum, i, false
	}
	p.reordered = true
	index, wid, ok := parseArgNumber(format[i:])
	if ok && 0 <= index && index < numArgs {
		return index, i + wid, true
	}
	p.goodArgNum = false
	return argNum, i + wid, ok
}

func (p *pp) doPrintf(format string, a []interface{}) {
	end := len(format)
	argNum := 0         // we process one argument per non-trivial format
	afterIndex := false // previous item in format was an index like [3].
	p.reordered = false
	for i := 0; i < end; {
		p.goodArgNum = true
		lasti := i
		for i < end && format[i] != '%' {
			i++
		}
		if i > lasti {
			p.buf.WriteString(format[lasti:i])
		}
		if i >= end {
			// done processing format string
			break
		}

		// Process one verb
		i++

		// Do we have flags?
		p.fmt.clearflags()
	F:
		for ; i < end; i++ {
			switch format[i] {
			case '#':
				p.fmt.sharp = true
			case '0':
				p.fmt.zero = true
			case '+':
				p.fmt.plus = true
			case '-':
				p.fmt.minus = true
			case ' ':
				p.fmt.space = true
			default:
				break F
			}
		}

		// Do we have an explicit argument index?
		argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))

		// Do we have width?
		if i < end && format[i] == '*' {
			i++
			p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum)

			if !p.fmt.widPresent {
				p.buf.Write(badWidthBytes)
			}

			// We have a negative width, so take its value and ensure
			// that the minus flag is set
			if p.fmt.wid < 0 {
				p.fmt.wid = -p.fmt.wid
				p.fmt.minus = true
			}
			afterIndex = false
		} else {
			p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
			if afterIndex && p.fmt.widPresent { // "%[3]2d"
				p.goodArgNum = false
			}
		}

		// Do we have precision?
		if i+1 < end && format[i] == '.' {
			i++
			if afterIndex { // "%[3].2d"
				p.goodArgNum = false
			}
			argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
			if i < end && format[i] == '*' {
				i++
				p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum)
				// Negative precision arguments don't make sense
				if p.fmt.prec < 0 {
					p.fmt.prec = 0
					p.fmt.precPresent = false
				}
				if !p.fmt.precPresent {
					p.buf.Write(badPrecBytes)
				}
				afterIndex = false
			} else {
				p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end)
				if !p.fmt.precPresent {
					p.fmt.prec = 0
					p.fmt.precPresent = true
				}
			}
		}

		if !afterIndex {
			argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
		}

		if i >= end {
			p.buf.Write(noVerbBytes)
			continue
		}
		c, w := utf8.DecodeRuneInString(format[i:])
		i += w
		// percent is special - absorbs no operand
		if c == '%' {
			p.buf.WriteByte('%') // We ignore width and prec.
			continue
		}
		if !p.goodArgNum {
			p.buf.Write(percentBangBytes)
			p.add(c)
			p.buf.Write(badIndexBytes)
			continue
		} else if argNum >= len(a) { // out of operands
			p.buf.Write(percentBangBytes)
			p.add(c)
			p.buf.Write(missingBytes)
			continue
		}
		arg := a[argNum]
		argNum++

		if c == 'v' {
			if p.fmt.sharp {
				// Go syntax. Set the flag in the fmt and clear the sharp flag.
				p.fmt.sharp = false
				p.fmt.sharpV = true
			}
			if p.fmt.plus {
				// Struct-field syntax. Set the flag in the fmt and clear the plus flag.
				p.fmt.plus = false
				p.fmt.plusV = true
			}
		}
		p.printArg(arg, c, 0)
	}

	// Check for extra arguments unless the call accessed the arguments
	// out of order, in which case it's too expensive to detect if they've all
	// been used and arguably OK if they're not.
	if !p.reordered && argNum < len(a) {
		p.buf.Write(extraBytes)
		for ; argNum < len(a); argNum++ {
			arg := a[argNum]
			if arg != nil {
				p.buf.WriteString(reflect.TypeOf(arg).String())
				p.buf.WriteByte('=')
			}
			p.printArg(arg, 'v', 0)
			if argNum+1 < len(a) {
				p.buf.Write(commaSpaceBytes)
			}
		}
		p.buf.WriteByte(')')
	}
}

func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
	prevString := false
	for argNum := 0; argNum < len(a); argNum++ {
		p.fmt.clearflags()
		// always add spaces if we're doing Println
		arg := a[argNum]
		if argNum > 0 {
			isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
			if addspace || !isString && !prevString {
				p.buf.WriteByte(' ')
			}
		}
		prevString = p.printArg(arg, 'v', 0)
	}
	if addnewline {
		p.buf.WriteByte('\n')
	}
}