SemaTemplateDeduction.cpp 239 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
//===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements C++ template argument deduction.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/TemplateDeduction.h"
#include "TreeTransform.h"
#include "TypeLocBuilder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <tuple>
#include <utility>

namespace clang {

  /// Various flags that control template argument deduction.
  ///
  /// These flags can be bitwise-OR'd together.
  enum TemplateDeductionFlags {
    /// No template argument deduction flags, which indicates the
    /// strictest results for template argument deduction (as used for, e.g.,
    /// matching class template partial specializations).
    TDF_None = 0,

    /// Within template argument deduction from a function call, we are
    /// matching with a parameter type for which the original parameter was
    /// a reference.
    TDF_ParamWithReferenceType = 0x1,

    /// Within template argument deduction from a function call, we
    /// are matching in a case where we ignore cv-qualifiers.
    TDF_IgnoreQualifiers = 0x02,

    /// Within template argument deduction from a function call,
    /// we are matching in a case where we can perform template argument
    /// deduction from a template-id of a derived class of the argument type.
    TDF_DerivedClass = 0x04,

    /// Allow non-dependent types to differ, e.g., when performing
    /// template argument deduction from a function call where conversions
    /// may apply.
    TDF_SkipNonDependent = 0x08,

    /// Whether we are performing template argument deduction for
    /// parameters and arguments in a top-level template argument
    TDF_TopLevelParameterTypeList = 0x10,

    /// Within template argument deduction from overload resolution per
    /// C++ [over.over] allow matching function types that are compatible in
    /// terms of noreturn and default calling convention adjustments, or
    /// similarly matching a declared template specialization against a
    /// possible template, per C++ [temp.deduct.decl]. In either case, permit
    /// deduction where the parameter is a function type that can be converted
    /// to the argument type.
    TDF_AllowCompatibleFunctionType = 0x20,

    /// Within template argument deduction for a conversion function, we are
    /// matching with an argument type for which the original argument was
    /// a reference.
    TDF_ArgWithReferenceType = 0x40,
  };
}

using namespace clang;
using namespace sema;

/// Compare two APSInts, extending and switching the sign as
/// necessary to compare their values regardless of underlying type.
static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
  if (Y.getBitWidth() > X.getBitWidth())
    X = X.extend(Y.getBitWidth());
  else if (Y.getBitWidth() < X.getBitWidth())
    Y = Y.extend(X.getBitWidth());

  // If there is a signedness mismatch, correct it.
  if (X.isSigned() != Y.isSigned()) {
    // If the signed value is negative, then the values cannot be the same.
    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
      return false;

    Y.setIsSigned(true);
    X.setIsSigned(true);
  }

  return X == Y;
}

static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
                        TemplateParameterList *TemplateParams,
                        const TemplateArgument &Param,
                        TemplateArgument Arg,
                        TemplateDeductionInfo &Info,
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced);

static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema &S,
                                   TemplateParameterList *TemplateParams,
                                   QualType Param,
                                   QualType Arg,
                                   TemplateDeductionInfo &Info,
                                   SmallVectorImpl<DeducedTemplateArgument> &
                                                      Deduced,
                                   unsigned TDF,
                                   bool PartialOrdering = false,
                                   bool DeducedFromArrayBound = false);

static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
                        ArrayRef<TemplateArgument> Params,
                        ArrayRef<TemplateArgument> Args,
                        TemplateDeductionInfo &Info,
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
                        bool NumberOfArgumentsMustMatch);

static void MarkUsedTemplateParameters(ASTContext &Ctx,
                                       const TemplateArgument &TemplateArg,
                                       bool OnlyDeduced, unsigned Depth,
                                       llvm::SmallBitVector &Used);

static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
                                       bool OnlyDeduced, unsigned Level,
                                       llvm::SmallBitVector &Deduced);

/// If the given expression is of a form that permits the deduction
/// of a non-type template parameter, return the declaration of that
/// non-type template parameter.
static NonTypeTemplateParmDecl *
getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
  // If we are within an alias template, the expression may have undergone
  // any number of parameter substitutions already.
  while (true) {
    if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
      E = IC->getSubExpr();
    else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
      E = CE->getSubExpr();
    else if (SubstNonTypeTemplateParmExpr *Subst =
               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
      E = Subst->getReplacement();
    else
      break;
  }

  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
      if (NTTP->getDepth() == Info.getDeducedDepth())
        return NTTP;

  return nullptr;
}

/// Determine whether two declaration pointers refer to the same
/// declaration.
static bool isSameDeclaration(Decl *X, Decl *Y) {
  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    X = NX->getUnderlyingDecl();
  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    Y = NY->getUnderlyingDecl();

  return X->getCanonicalDecl() == Y->getCanonicalDecl();
}

/// Verify that the given, deduced template arguments are compatible.
///
/// \returns The deduced template argument, or a NULL template argument if
/// the deduced template arguments were incompatible.
static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext &Context,
                              const DeducedTemplateArgument &X,
                              const DeducedTemplateArgument &Y) {
  // We have no deduction for one or both of the arguments; they're compatible.
  if (X.isNull())
    return Y;
  if (Y.isNull())
    return X;

  // If we have two non-type template argument values deduced for the same
  // parameter, they must both match the type of the parameter, and thus must
  // match each other's type. As we're only keeping one of them, we must check
  // for that now. The exception is that if either was deduced from an array
  // bound, the type is permitted to differ.
  if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
    QualType XType = X.getNonTypeTemplateArgumentType();
    if (!XType.isNull()) {
      QualType YType = Y.getNonTypeTemplateArgumentType();
      if (YType.isNull() || !Context.hasSameType(XType, YType))
        return DeducedTemplateArgument();
    }
  }

  switch (X.getKind()) {
  case TemplateArgument::Null:
    llvm_unreachable("Non-deduced template arguments handled above");

  case TemplateArgument::Type:
    // If two template type arguments have the same type, they're compatible.
    if (Y.getKind() == TemplateArgument::Type &&
        Context.hasSameType(X.getAsType(), Y.getAsType()))
      return X;

    // If one of the two arguments was deduced from an array bound, the other
    // supersedes it.
    if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
      return X.wasDeducedFromArrayBound() ? Y : X;

    // The arguments are not compatible.
    return DeducedTemplateArgument();

  case TemplateArgument::Integral:
    // If we deduced a constant in one case and either a dependent expression or
    // declaration in another case, keep the integral constant.
    // If both are integral constants with the same value, keep that value.
    if (Y.getKind() == TemplateArgument::Expression ||
        Y.getKind() == TemplateArgument::Declaration ||
        (Y.getKind() == TemplateArgument::Integral &&
         hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
      return X.wasDeducedFromArrayBound() ? Y : X;

    // All other combinations are incompatible.
    return DeducedTemplateArgument();

  case TemplateArgument::Template:
    if (Y.getKind() == TemplateArgument::Template &&
        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
      return X;

    // All other combinations are incompatible.
    return DeducedTemplateArgument();

  case TemplateArgument::TemplateExpansion:
    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
                                    Y.getAsTemplateOrTemplatePattern()))
      return X;

    // All other combinations are incompatible.
    return DeducedTemplateArgument();

  case TemplateArgument::Expression: {
    if (Y.getKind() != TemplateArgument::Expression)
      return checkDeducedTemplateArguments(Context, Y, X);

    // Compare the expressions for equality
    llvm::FoldingSetNodeID ID1, ID2;
    X.getAsExpr()->Profile(ID1, Context, true);
    Y.getAsExpr()->Profile(ID2, Context, true);
    if (ID1 == ID2)
      return X.wasDeducedFromArrayBound() ? Y : X;

    // Differing dependent expressions are incompatible.
    return DeducedTemplateArgument();
  }

  case TemplateArgument::Declaration:
    assert(!X.wasDeducedFromArrayBound());

    // If we deduced a declaration and a dependent expression, keep the
    // declaration.
    if (Y.getKind() == TemplateArgument::Expression)
      return X;

    // If we deduced a declaration and an integral constant, keep the
    // integral constant and whichever type did not come from an array
    // bound.
    if (Y.getKind() == TemplateArgument::Integral) {
      if (Y.wasDeducedFromArrayBound())
        return TemplateArgument(Context, Y.getAsIntegral(),
                                X.getParamTypeForDecl());
      return Y;
    }

    // If we deduced two declarations, make sure that they refer to the
    // same declaration.
    if (Y.getKind() == TemplateArgument::Declaration &&
        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
      return X;

    // All other combinations are incompatible.
    return DeducedTemplateArgument();

  case TemplateArgument::NullPtr:
    // If we deduced a null pointer and a dependent expression, keep the
    // null pointer.
    if (Y.getKind() == TemplateArgument::Expression)
      return X;

    // If we deduced a null pointer and an integral constant, keep the
    // integral constant.
    if (Y.getKind() == TemplateArgument::Integral)
      return Y;

    // If we deduced two null pointers, they are the same.
    if (Y.getKind() == TemplateArgument::NullPtr)
      return X;

    // All other combinations are incompatible.
    return DeducedTemplateArgument();

  case TemplateArgument::Pack: {
    if (Y.getKind() != TemplateArgument::Pack ||
        X.pack_size() != Y.pack_size())
      return DeducedTemplateArgument();

    llvm::SmallVector<TemplateArgument, 8> NewPack;
    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
                                      XAEnd = X.pack_end(),
                                         YA = Y.pack_begin();
         XA != XAEnd; ++XA, ++YA) {
      TemplateArgument Merged = checkDeducedTemplateArguments(
          Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
          DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
      if (Merged.isNull())
        return DeducedTemplateArgument();
      NewPack.push_back(Merged);
    }

    return DeducedTemplateArgument(
        TemplateArgument::CreatePackCopy(Context, NewPack),
        X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
  }
  }

  llvm_unreachable("Invalid TemplateArgument Kind!");
}

/// Deduce the value of the given non-type template parameter
/// as the given deduced template argument. All non-type template parameter
/// deduction is funneled through here.
static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
    Sema &S, TemplateParameterList *TemplateParams,
    NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced,
    QualType ValueType, TemplateDeductionInfo &Info,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  assert(NTTP->getDepth() == Info.getDeducedDepth() &&
         "deducing non-type template argument with wrong depth");

  DeducedTemplateArgument Result = checkDeducedTemplateArguments(
      S.Context, Deduced[NTTP->getIndex()], NewDeduced);
  if (Result.isNull()) {
    Info.Param = NTTP;
    Info.FirstArg = Deduced[NTTP->getIndex()];
    Info.SecondArg = NewDeduced;
    return Sema::TDK_Inconsistent;
  }

  Deduced[NTTP->getIndex()] = Result;
  if (!S.getLangOpts().CPlusPlus17)
    return Sema::TDK_Success;

  if (NTTP->isExpandedParameterPack())
    // FIXME: We may still need to deduce parts of the type here! But we
    // don't have any way to find which slice of the type to use, and the
    // type stored on the NTTP itself is nonsense. Perhaps the type of an
    // expanded NTTP should be a pack expansion type?
    return Sema::TDK_Success;

  // Get the type of the parameter for deduction. If it's a (dependent) array
  // or function type, we will not have decayed it yet, so do that now.
  QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
  if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
    ParamType = Expansion->getPattern();

  // FIXME: It's not clear how deduction of a parameter of reference
  // type from an argument (of non-reference type) should be performed.
  // For now, we just remove reference types from both sides and let
  // the final check for matching types sort out the mess.
  return DeduceTemplateArgumentsByTypeMatch(
      S, TemplateParams, ParamType.getNonReferenceType(),
      ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent,
      /*PartialOrdering=*/false,
      /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound());
}

/// Deduce the value of the given non-type template parameter
/// from the given integral constant.
static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
    Sema &S, TemplateParameterList *TemplateParams,
    NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
    QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  return DeduceNonTypeTemplateArgument(
      S, TemplateParams, NTTP,
      DeducedTemplateArgument(S.Context, Value, ValueType,
                              DeducedFromArrayBound),
      ValueType, Info, Deduced);
}

/// Deduce the value of the given non-type template parameter
/// from the given null pointer template argument type.
static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument(
    Sema &S, TemplateParameterList *TemplateParams,
    NonTypeTemplateParmDecl *NTTP, QualType NullPtrType,
    TemplateDeductionInfo &Info,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  Expr *Value =
      S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr(
                              S.Context.NullPtrTy, NTTP->getLocation()),
                          NullPtrType, CK_NullToPointer)
          .get();
  return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
                                       DeducedTemplateArgument(Value),
                                       Value->getType(), Info, Deduced);
}

/// Deduce the value of the given non-type template parameter
/// from the given type- or value-dependent expression.
///
/// \returns true if deduction succeeded, false otherwise.
static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
    Sema &S, TemplateParameterList *TemplateParams,
    NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
                                       DeducedTemplateArgument(Value),
                                       Value->getType(), Info, Deduced);
}

/// Deduce the value of the given non-type template parameter
/// from the given declaration.
///
/// \returns true if deduction succeeded, false otherwise.
static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
    Sema &S, TemplateParameterList *TemplateParams,
    NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T,
    TemplateDeductionInfo &Info,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
  TemplateArgument New(D, T);
  return DeduceNonTypeTemplateArgument(
      S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced);
}

static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
                        TemplateParameterList *TemplateParams,
                        TemplateName Param,
                        TemplateName Arg,
                        TemplateDeductionInfo &Info,
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
  if (!ParamDecl) {
    // The parameter type is dependent and is not a template template parameter,
    // so there is nothing that we can deduce.
    return Sema::TDK_Success;
  }

  if (TemplateTemplateParmDecl *TempParam
        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    // If we're not deducing at this depth, there's nothing to deduce.
    if (TempParam->getDepth() != Info.getDeducedDepth())
      return Sema::TDK_Success;

    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
                                                 Deduced[TempParam->getIndex()],
                                                                   NewDeduced);
    if (Result.isNull()) {
      Info.Param = TempParam;
      Info.FirstArg = Deduced[TempParam->getIndex()];
      Info.SecondArg = NewDeduced;
      return Sema::TDK_Inconsistent;
    }

    Deduced[TempParam->getIndex()] = Result;
    return Sema::TDK_Success;
  }

  // Verify that the two template names are equivalent.
  if (S.Context.hasSameTemplateName(Param, Arg))
    return Sema::TDK_Success;

  // Mismatch of non-dependent template parameter to argument.
  Info.FirstArg = TemplateArgument(Param);
  Info.SecondArg = TemplateArgument(Arg);
  return Sema::TDK_NonDeducedMismatch;
}

/// Deduce the template arguments by comparing the template parameter
/// type (which is a template-id) with the template argument type.
///
/// \param S the Sema
///
/// \param TemplateParams the template parameters that we are deducing
///
/// \param Param the parameter type
///
/// \param Arg the argument type
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
                        TemplateParameterList *TemplateParams,
                        const TemplateSpecializationType *Param,
                        QualType Arg,
                        TemplateDeductionInfo &Info,
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  assert(Arg.isCanonical() && "Argument type must be canonical");

  // Treat an injected-class-name as its underlying template-id.
  if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg))
    Arg = Injected->getInjectedSpecializationType();

  // Check whether the template argument is a dependent template-id.
  if (const TemplateSpecializationType *SpecArg
        = dyn_cast<TemplateSpecializationType>(Arg)) {
    // Perform template argument deduction for the template name.
    if (Sema::TemplateDeductionResult Result
          = DeduceTemplateArguments(S, TemplateParams,
                                    Param->getTemplateName(),
                                    SpecArg->getTemplateName(),
                                    Info, Deduced))
      return Result;


    // Perform template argument deduction on each template
    // argument. Ignore any missing/extra arguments, since they could be
    // filled in by default arguments.
    return DeduceTemplateArguments(S, TemplateParams,
                                   Param->template_arguments(),
                                   SpecArg->template_arguments(), Info, Deduced,
                                   /*NumberOfArgumentsMustMatch=*/false);
  }

  // If the argument type is a class template specialization, we
  // perform template argument deduction using its template
  // arguments.
  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
  if (!RecordArg) {
    Info.FirstArg = TemplateArgument(QualType(Param, 0));
    Info.SecondArg = TemplateArgument(Arg);
    return Sema::TDK_NonDeducedMismatch;
  }

  ClassTemplateSpecializationDecl *SpecArg
    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
  if (!SpecArg) {
    Info.FirstArg = TemplateArgument(QualType(Param, 0));
    Info.SecondArg = TemplateArgument(Arg);
    return Sema::TDK_NonDeducedMismatch;
  }

  // Perform template argument deduction for the template name.
  if (Sema::TemplateDeductionResult Result
        = DeduceTemplateArguments(S,
                                  TemplateParams,
                                  Param->getTemplateName(),
                               TemplateName(SpecArg->getSpecializedTemplate()),
                                  Info, Deduced))
    return Result;

  // Perform template argument deduction for the template arguments.
  return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(),
                                 SpecArg->getTemplateArgs().asArray(), Info,
                                 Deduced, /*NumberOfArgumentsMustMatch=*/true);
}

/// Determines whether the given type is an opaque type that
/// might be more qualified when instantiated.
static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
  switch (T->getTypeClass()) {
  case Type::TypeOfExpr:
  case Type::TypeOf:
  case Type::DependentName:
  case Type::Decltype:
  case Type::UnresolvedUsing:
  case Type::TemplateTypeParm:
    return true;

  case Type::ConstantArray:
  case Type::IncompleteArray:
  case Type::VariableArray:
  case Type::DependentSizedArray:
    return IsPossiblyOpaquelyQualifiedType(
                                      cast<ArrayType>(T)->getElementType());

  default:
    return false;
  }
}

/// Helper function to build a TemplateParameter when we don't
/// know its type statically.
static TemplateParameter makeTemplateParameter(Decl *D) {
  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    return TemplateParameter(TTP);
  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    return TemplateParameter(NTTP);

  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
}

/// If \p Param is an expanded parameter pack, get the number of expansions.
static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
  if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
    if (TTP->isExpandedParameterPack())
      return TTP->getNumExpansionParameters();

  if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
    if (NTTP->isExpandedParameterPack())
      return NTTP->getNumExpansionTypes();

  if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param))
    if (TTP->isExpandedParameterPack())
      return TTP->getNumExpansionTemplateParameters();

  return None;
}

/// A pack that we're currently deducing.
struct clang::DeducedPack {
  // The index of the pack.
  unsigned Index;

  // The old value of the pack before we started deducing it.
  DeducedTemplateArgument Saved;

  // A deferred value of this pack from an inner deduction, that couldn't be
  // deduced because this deduction hadn't happened yet.
  DeducedTemplateArgument DeferredDeduction;

  // The new value of the pack.
  SmallVector<DeducedTemplateArgument, 4> New;

  // The outer deduction for this pack, if any.
  DeducedPack *Outer = nullptr;

  DeducedPack(unsigned Index) : Index(Index) {}
};

namespace {

/// A scope in which we're performing pack deduction.
class PackDeductionScope {
public:
  /// Prepare to deduce the packs named within Pattern.
  PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
                     TemplateDeductionInfo &Info, TemplateArgument Pattern)
      : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
    unsigned NumNamedPacks = addPacks(Pattern);
    finishConstruction(NumNamedPacks);
  }

  /// Prepare to directly deduce arguments of the parameter with index \p Index.
  PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
                     TemplateDeductionInfo &Info, unsigned Index)
      : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
    addPack(Index);
    finishConstruction(1);
  }

private:
  void addPack(unsigned Index) {
    // Save the deduced template argument for the parameter pack expanded
    // by this pack expansion, then clear out the deduction.
    DeducedPack Pack(Index);
    Pack.Saved = Deduced[Index];
    Deduced[Index] = TemplateArgument();

    // FIXME: What if we encounter multiple packs with different numbers of
    // pre-expanded expansions? (This should already have been diagnosed
    // during substitution.)
    if (Optional<unsigned> ExpandedPackExpansions =
            getExpandedPackSize(TemplateParams->getParam(Index)))
      FixedNumExpansions = ExpandedPackExpansions;

    Packs.push_back(Pack);
  }

  unsigned addPacks(TemplateArgument Pattern) {
    // Compute the set of template parameter indices that correspond to
    // parameter packs expanded by the pack expansion.
    llvm::SmallBitVector SawIndices(TemplateParams->size());
    llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;

    auto AddPack = [&](unsigned Index) {
      if (SawIndices[Index])
        return;
      SawIndices[Index] = true;
      addPack(Index);

      // Deducing a parameter pack that is a pack expansion also constrains the
      // packs appearing in that parameter to have the same deduced arity. Also,
      // in C++17 onwards, deducing a non-type template parameter deduces its
      // type, so we need to collect the pending deduced values for those packs.
      if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
              TemplateParams->getParam(Index))) {
        if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType()))
          ExtraDeductions.push_back(Expansion->getPattern());
      }
      // FIXME: Also collect the unexpanded packs in any type and template
      // parameter packs that are pack expansions.
    };

    auto Collect = [&](TemplateArgument Pattern) {
      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
        unsigned Depth, Index;
        std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
        if (Depth == Info.getDeducedDepth())
          AddPack(Index);
      }
    };

    // Look for unexpanded packs in the pattern.
    Collect(Pattern);
    assert(!Packs.empty() && "Pack expansion without unexpanded packs?");

    unsigned NumNamedPacks = Packs.size();

    // Also look for unexpanded packs that are indirectly deduced by deducing
    // the sizes of the packs in this pattern.
    while (!ExtraDeductions.empty())
      Collect(ExtraDeductions.pop_back_val());

    return NumNamedPacks;
  }

  void finishConstruction(unsigned NumNamedPacks) {
    // Dig out the partially-substituted pack, if there is one.
    const TemplateArgument *PartialPackArgs = nullptr;
    unsigned NumPartialPackArgs = 0;
    std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
    if (auto *Scope = S.CurrentInstantiationScope)
      if (auto *Partial = Scope->getPartiallySubstitutedPack(
              &PartialPackArgs, &NumPartialPackArgs))
        PartialPackDepthIndex = getDepthAndIndex(Partial);

    // This pack expansion will have been partially or fully expanded if
    // it only names explicitly-specified parameter packs (including the
    // partially-substituted one, if any).
    bool IsExpanded = true;
    for (unsigned I = 0; I != NumNamedPacks; ++I) {
      if (Packs[I].Index >= Info.getNumExplicitArgs()) {
        IsExpanded = false;
        IsPartiallyExpanded = false;
        break;
      }
      if (PartialPackDepthIndex ==
            std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
        IsPartiallyExpanded = true;
      }
    }

    // Skip over the pack elements that were expanded into separate arguments.
    // If we partially expanded, this is the number of partial arguments.
    if (IsPartiallyExpanded)
      PackElements += NumPartialPackArgs;
    else if (IsExpanded)
      PackElements += *FixedNumExpansions;

    for (auto &Pack : Packs) {
      if (Info.PendingDeducedPacks.size() > Pack.Index)
        Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
      else
        Info.PendingDeducedPacks.resize(Pack.Index + 1);
      Info.PendingDeducedPacks[Pack.Index] = &Pack;

      if (PartialPackDepthIndex ==
            std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
        Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
        // We pre-populate the deduced value of the partially-substituted
        // pack with the specified value. This is not entirely correct: the
        // value is supposed to have been substituted, not deduced, but the
        // cases where this is observable require an exact type match anyway.
        //
        // FIXME: If we could represent a "depth i, index j, pack elem k"
        // parameter, we could substitute the partially-substituted pack
        // everywhere and avoid this.
        if (!IsPartiallyExpanded)
          Deduced[Pack.Index] = Pack.New[PackElements];
      }
    }
  }

public:
  ~PackDeductionScope() {
    for (auto &Pack : Packs)
      Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
  }

  /// Determine whether this pack has already been partially expanded into a
  /// sequence of (prior) function parameters / template arguments.
  bool isPartiallyExpanded() { return IsPartiallyExpanded; }

  /// Determine whether this pack expansion scope has a known, fixed arity.
  /// This happens if it involves a pack from an outer template that has
  /// (notionally) already been expanded.
  bool hasFixedArity() { return FixedNumExpansions.hasValue(); }

  /// Determine whether the next element of the argument is still part of this
  /// pack. This is the case unless the pack is already expanded to a fixed
  /// length.
  bool hasNextElement() {
    return !FixedNumExpansions || *FixedNumExpansions > PackElements;
  }

  /// Move to deducing the next element in each pack that is being deduced.
  void nextPackElement() {
    // Capture the deduced template arguments for each parameter pack expanded
    // by this pack expansion, add them to the list of arguments we've deduced
    // for that pack, then clear out the deduced argument.
    for (auto &Pack : Packs) {
      DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
      if (!Pack.New.empty() || !DeducedArg.isNull()) {
        while (Pack.New.size() < PackElements)
          Pack.New.push_back(DeducedTemplateArgument());
        if (Pack.New.size() == PackElements)
          Pack.New.push_back(DeducedArg);
        else
          Pack.New[PackElements] = DeducedArg;
        DeducedArg = Pack.New.size() > PackElements + 1
                         ? Pack.New[PackElements + 1]
                         : DeducedTemplateArgument();
      }
    }
    ++PackElements;
  }

  /// Finish template argument deduction for a set of argument packs,
  /// producing the argument packs and checking for consistency with prior
  /// deductions.
  Sema::TemplateDeductionResult finish() {
    // Build argument packs for each of the parameter packs expanded by this
    // pack expansion.
    for (auto &Pack : Packs) {
      // Put back the old value for this pack.
      Deduced[Pack.Index] = Pack.Saved;

      // Always make sure the size of this pack is correct, even if we didn't
      // deduce any values for it.
      //
      // FIXME: This isn't required by the normative wording, but substitution
      // and post-substitution checking will always fail if the arity of any
      // pack is not equal to the number of elements we processed. (Either that
      // or something else has gone *very* wrong.) We're permitted to skip any
      // hard errors from those follow-on steps by the intent (but not the
      // wording) of C++ [temp.inst]p8:
      //
      //   If the function selected by overload resolution can be determined
      //   without instantiating a class template definition, it is unspecified
      //   whether that instantiation actually takes place
      Pack.New.resize(PackElements);

      // Build or find a new value for this pack.
      DeducedTemplateArgument NewPack;
      if (Pack.New.empty()) {
        // If we deduced an empty argument pack, create it now.
        NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
      } else {
        TemplateArgument *ArgumentPack =
            new (S.Context) TemplateArgument[Pack.New.size()];
        std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
        NewPack = DeducedTemplateArgument(
            TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
            // FIXME: This is wrong, it's possible that some pack elements are
            // deduced from an array bound and others are not:
            //   template<typename ...T, T ...V> void g(const T (&...p)[V]);
            //   g({1, 2, 3}, {{}, {}});
            // ... should deduce T = {int, size_t (from array bound)}.
            Pack.New[0].wasDeducedFromArrayBound());
      }

      // Pick where we're going to put the merged pack.
      DeducedTemplateArgument *Loc;
      if (Pack.Outer) {
        if (Pack.Outer->DeferredDeduction.isNull()) {
          // Defer checking this pack until we have a complete pack to compare
          // it against.
          Pack.Outer->DeferredDeduction = NewPack;
          continue;
        }
        Loc = &Pack.Outer->DeferredDeduction;
      } else {
        Loc = &Deduced[Pack.Index];
      }

      // Check the new pack matches any previous value.
      DeducedTemplateArgument OldPack = *Loc;
      DeducedTemplateArgument Result =
          checkDeducedTemplateArguments(S.Context, OldPack, NewPack);

      // If we deferred a deduction of this pack, check that one now too.
      if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
        OldPack = Result;
        NewPack = Pack.DeferredDeduction;
        Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
      }

      NamedDecl *Param = TemplateParams->getParam(Pack.Index);
      if (Result.isNull()) {
        Info.Param = makeTemplateParameter(Param);
        Info.FirstArg = OldPack;
        Info.SecondArg = NewPack;
        return Sema::TDK_Inconsistent;
      }

      // If we have a pre-expanded pack and we didn't deduce enough elements
      // for it, fail deduction.
      if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) {
        if (*Expansions != PackElements) {
          Info.Param = makeTemplateParameter(Param);
          Info.FirstArg = Result;
          return Sema::TDK_IncompletePack;
        }
      }

      *Loc = Result;
    }

    return Sema::TDK_Success;
  }

private:
  Sema &S;
  TemplateParameterList *TemplateParams;
  SmallVectorImpl<DeducedTemplateArgument> &Deduced;
  TemplateDeductionInfo &Info;
  unsigned PackElements = 0;
  bool IsPartiallyExpanded = false;
  /// The number of expansions, if we have a fully-expanded pack in this scope.
  Optional<unsigned> FixedNumExpansions;

  SmallVector<DeducedPack, 2> Packs;
};

} // namespace

/// Deduce the template arguments by comparing the list of parameter
/// types to the list of argument types, as in the parameter-type-lists of
/// function types (C++ [temp.deduct.type]p10).
///
/// \param S The semantic analysis object within which we are deducing
///
/// \param TemplateParams The template parameters that we are deducing
///
/// \param Params The list of parameter types
///
/// \param NumParams The number of types in \c Params
///
/// \param Args The list of argument types
///
/// \param NumArgs The number of types in \c Args
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
/// how template argument deduction is performed.
///
/// \param PartialOrdering If true, we are performing template argument
/// deduction for during partial ordering for a call
/// (C++0x [temp.deduct.partial]).
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
                        TemplateParameterList *TemplateParams,
                        const QualType *Params, unsigned NumParams,
                        const QualType *Args, unsigned NumArgs,
                        TemplateDeductionInfo &Info,
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
                        unsigned TDF,
                        bool PartialOrdering = false) {
  // C++0x [temp.deduct.type]p10:
  //   Similarly, if P has a form that contains (T), then each parameter type
  //   Pi of the respective parameter-type- list of P is compared with the
  //   corresponding parameter type Ai of the corresponding parameter-type-list
  //   of A. [...]
  unsigned ArgIdx = 0, ParamIdx = 0;
  for (; ParamIdx != NumParams; ++ParamIdx) {
    // Check argument types.
    const PackExpansionType *Expansion
                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    if (!Expansion) {
      // Simple case: compare the parameter and argument types at this point.

      // Make sure we have an argument.
      if (ArgIdx >= NumArgs)
        return Sema::TDK_MiscellaneousDeductionFailure;

      if (isa<PackExpansionType>(Args[ArgIdx])) {
        // C++0x [temp.deduct.type]p22:
        //   If the original function parameter associated with A is a function
        //   parameter pack and the function parameter associated with P is not
        //   a function parameter pack, then template argument deduction fails.
        return Sema::TDK_MiscellaneousDeductionFailure;
      }

      if (Sema::TemplateDeductionResult Result
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                                 Params[ParamIdx], Args[ArgIdx],
                                                 Info, Deduced, TDF,
                                                 PartialOrdering))
        return Result;

      ++ArgIdx;
      continue;
    }

    // C++0x [temp.deduct.type]p10:
    //   If the parameter-declaration corresponding to Pi is a function
    //   parameter pack, then the type of its declarator- id is compared with
    //   each remaining parameter type in the parameter-type-list of A. Each
    //   comparison deduces template arguments for subsequent positions in the
    //   template parameter packs expanded by the function parameter pack.

    QualType Pattern = Expansion->getPattern();
    PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);

    // A pack scope with fixed arity is not really a pack any more, so is not
    // a non-deduced context.
    if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) {
      for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) {
        // Deduce template arguments from the pattern.
        if (Sema::TemplateDeductionResult Result
              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
                                                   Args[ArgIdx], Info, Deduced,
                                                   TDF, PartialOrdering))
          return Result;

        PackScope.nextPackElement();
      }
    } else {
      // C++0x [temp.deduct.type]p5:
      //   The non-deduced contexts are:
      //     - A function parameter pack that does not occur at the end of the
      //       parameter-declaration-clause.
      //
      // FIXME: There is no wording to say what we should do in this case. We
      // choose to resolve this by applying the same rule that is applied for a
      // function call: that is, deduce all contained packs to their
      // explicitly-specified values (or to <> if there is no such value).
      //
      // This is seemingly-arbitrarily different from the case of a template-id
      // with a non-trailing pack-expansion in its arguments, which renders the
      // entire template-argument-list a non-deduced context.

      // If the parameter type contains an explicitly-specified pack that we
      // could not expand, skip the number of parameters notionally created
      // by the expansion.
      Optional<unsigned> NumExpansions = Expansion->getNumExpansions();
      if (NumExpansions && !PackScope.isPartiallyExpanded()) {
        for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs;
             ++I, ++ArgIdx)
          PackScope.nextPackElement();
      }
    }

    // Build argument packs for each of the parameter packs expanded by this
    // pack expansion.
    if (auto Result = PackScope.finish())
      return Result;
  }

  // Make sure we don't have any extra arguments.
  if (ArgIdx < NumArgs)
    return Sema::TDK_MiscellaneousDeductionFailure;

  return Sema::TDK_Success;
}

/// Determine whether the parameter has qualifiers that the argument
/// lacks. Put another way, determine whether there is no way to add
/// a deduced set of qualifiers to the ParamType that would result in
/// its qualifiers matching those of the ArgType.
static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
                                                  QualType ArgType) {
  Qualifiers ParamQs = ParamType.getQualifiers();
  Qualifiers ArgQs = ArgType.getQualifiers();

  if (ParamQs == ArgQs)
    return false;

  // Mismatched (but not missing) Objective-C GC attributes.
  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
      ParamQs.hasObjCGCAttr())
    return true;

  // Mismatched (but not missing) address spaces.
  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
      ParamQs.hasAddressSpace())
    return true;

  // Mismatched (but not missing) Objective-C lifetime qualifiers.
  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
      ParamQs.hasObjCLifetime())
    return true;

  // CVR qualifiers inconsistent or a superset.
  return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
}

/// Compare types for equality with respect to possibly compatible
/// function types (noreturn adjustment, implicit calling conventions). If any
/// of parameter and argument is not a function, just perform type comparison.
///
/// \param Param the template parameter type.
///
/// \param Arg the argument type.
bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
                                          CanQualType Arg) {
  const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
                     *ArgFunction   = Arg->getAs<FunctionType>();

  // Just compare if not functions.
  if (!ParamFunction || !ArgFunction)
    return Param == Arg;

  // Noreturn and noexcept adjustment.
  QualType AdjustedParam;
  if (IsFunctionConversion(Param, Arg, AdjustedParam))
    return Arg == Context.getCanonicalType(AdjustedParam);

  // FIXME: Compatible calling conventions.

  return Param == Arg;
}

/// Get the index of the first template parameter that was originally from the
/// innermost template-parameter-list. This is 0 except when we concatenate
/// the template parameter lists of a class template and a constructor template
/// when forming an implicit deduction guide.
static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
  auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
  if (!Guide || !Guide->isImplicit())
    return 0;
  return Guide->getDeducedTemplate()->getTemplateParameters()->size();
}

/// Determine whether a type denotes a forwarding reference.
static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
  // C++1z [temp.deduct.call]p3:
  //   A forwarding reference is an rvalue reference to a cv-unqualified
  //   template parameter that does not represent a template parameter of a
  //   class template.
  if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
    if (ParamRef->getPointeeType().getQualifiers())
      return false;
    auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
    return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
  }
  return false;
}

/// Deduce the template arguments by comparing the parameter type and
/// the argument type (C++ [temp.deduct.type]).
///
/// \param S the semantic analysis object within which we are deducing
///
/// \param TemplateParams the template parameters that we are deducing
///
/// \param ParamIn the parameter type
///
/// \param ArgIn the argument type
///
/// \param Info information about the template argument deduction itself
///
/// \param Deduced the deduced template arguments
///
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
/// how template argument deduction is performed.
///
/// \param PartialOrdering Whether we're performing template argument deduction
/// in the context of partial ordering (C++0x [temp.deduct.partial]).
///
/// \returns the result of template argument deduction so far. Note that a
/// "success" result means that template argument deduction has not yet failed,
/// but it may still fail, later, for other reasons.
static Sema::TemplateDeductionResult
DeduceTemplateArgumentsByTypeMatch(Sema &S,
                                   TemplateParameterList *TemplateParams,
                                   QualType ParamIn, QualType ArgIn,
                                   TemplateDeductionInfo &Info,
                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
                                   unsigned TDF,
                                   bool PartialOrdering,
                                   bool DeducedFromArrayBound) {
  // We only want to look at the canonical types, since typedefs and
  // sugar are not part of template argument deduction.
  QualType Param = S.Context.getCanonicalType(ParamIn);
  QualType Arg = S.Context.getCanonicalType(ArgIn);

  // If the argument type is a pack expansion, look at its pattern.
  // This isn't explicitly called out
  if (const PackExpansionType *ArgExpansion
                                            = dyn_cast<PackExpansionType>(Arg))
    Arg = ArgExpansion->getPattern();

  if (PartialOrdering) {
    // C++11 [temp.deduct.partial]p5:
    //   Before the partial ordering is done, certain transformations are
    //   performed on the types used for partial ordering:
    //     - If P is a reference type, P is replaced by the type referred to.
    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
    if (ParamRef)
      Param = ParamRef->getPointeeType();

    //     - If A is a reference type, A is replaced by the type referred to.
    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
    if (ArgRef)
      Arg = ArgRef->getPointeeType();

    if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
      // C++11 [temp.deduct.partial]p9:
      //   If, for a given type, deduction succeeds in both directions (i.e.,
      //   the types are identical after the transformations above) and both
      //   P and A were reference types [...]:
      //     - if [one type] was an lvalue reference and [the other type] was
      //       not, [the other type] is not considered to be at least as
      //       specialized as [the first type]
      //     - if [one type] is more cv-qualified than [the other type],
      //       [the other type] is not considered to be at least as specialized
      //       as [the first type]
      // Objective-C ARC adds:
      //     - [one type] has non-trivial lifetime, [the other type] has
      //       __unsafe_unretained lifetime, and the types are otherwise
      //       identical
      //
      // A is "considered to be at least as specialized" as P iff deduction
      // succeeds, so we model this as a deduction failure. Note that
      // [the first type] is P and [the other type] is A here; the standard
      // gets this backwards.
      Qualifiers ParamQuals = Param.getQualifiers();
      Qualifiers ArgQuals = Arg.getQualifiers();
      if ((ParamRef->isLValueReferenceType() &&
           !ArgRef->isLValueReferenceType()) ||
          ParamQuals.isStrictSupersetOf(ArgQuals) ||
          (ParamQuals.hasNonTrivialObjCLifetime() &&
           ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
           ParamQuals.withoutObjCLifetime() ==
               ArgQuals.withoutObjCLifetime())) {
        Info.FirstArg = TemplateArgument(ParamIn);
        Info.SecondArg = TemplateArgument(ArgIn);
        return Sema::TDK_NonDeducedMismatch;
      }
    }

    // C++11 [temp.deduct.partial]p7:
    //   Remove any top-level cv-qualifiers:
    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
    //       version of P.
    Param = Param.getUnqualifiedType();
    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
    //       version of A.
    Arg = Arg.getUnqualifiedType();
  } else {
    // C++0x [temp.deduct.call]p4 bullet 1:
    //   - If the original P is a reference type, the deduced A (i.e., the type
    //     referred to by the reference) can be more cv-qualified than the
    //     transformed A.
    if (TDF & TDF_ParamWithReferenceType) {
      Qualifiers Quals;
      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
                             Arg.getCVRQualifiers());
      Param = S.Context.getQualifiedType(UnqualParam, Quals);
    }

    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
      // C++0x [temp.deduct.type]p10:
      //   If P and A are function types that originated from deduction when
      //   taking the address of a function template (14.8.2.2) or when deducing
      //   template arguments from a function declaration (14.8.2.6) and Pi and
      //   Ai are parameters of the top-level parameter-type-list of P and A,
      //   respectively, Pi is adjusted if it is a forwarding reference and Ai
      //   is an lvalue reference, in
      //   which case the type of Pi is changed to be the template parameter
      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
      //   deduced as X&. - end note ]
      TDF &= ~TDF_TopLevelParameterTypeList;
      if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType())
        Param = Param->getPointeeType();
    }
  }

  // C++ [temp.deduct.type]p9:
  //   A template type argument T, a template template argument TT or a
  //   template non-type argument i can be deduced if P and A have one of
  //   the following forms:
  //
  //     T
  //     cv-list T
  if (const TemplateTypeParmType *TemplateTypeParm
        = Param->getAs<TemplateTypeParmType>()) {
    // Just skip any attempts to deduce from a placeholder type or a parameter
    // at a different depth.
    if (Arg->isPlaceholderType() ||
        Info.getDeducedDepth() != TemplateTypeParm->getDepth())
      return Sema::TDK_Success;

    unsigned Index = TemplateTypeParm->getIndex();
    bool RecanonicalizeArg = false;

    // If the argument type is an array type, move the qualifiers up to the
    // top level, so they can be matched with the qualifiers on the parameter.
    if (isa<ArrayType>(Arg)) {
      Qualifiers Quals;
      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
      if (Quals) {
        Arg = S.Context.getQualifiedType(Arg, Quals);
        RecanonicalizeArg = true;
      }
    }

    // The argument type can not be less qualified than the parameter
    // type.
    if (!(TDF & TDF_IgnoreQualifiers) &&
        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
      Info.FirstArg = TemplateArgument(Param);
      Info.SecondArg = TemplateArgument(Arg);
      return Sema::TDK_Underqualified;
    }

    // Do not match a function type with a cv-qualified type.
    // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
    if (Arg->isFunctionType() && Param.hasQualifiers()) {
      return Sema::TDK_NonDeducedMismatch;
    }

    assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() &&
           "saw template type parameter with wrong depth");
    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
    QualType DeducedType = Arg;

    // Remove any qualifiers on the parameter from the deduced type.
    // We checked the qualifiers for consistency above.
    Qualifiers DeducedQs = DeducedType.getQualifiers();
    Qualifiers ParamQs = Param.getQualifiers();
    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
    if (ParamQs.hasObjCGCAttr())
      DeducedQs.removeObjCGCAttr();
    if (ParamQs.hasAddressSpace())
      DeducedQs.removeAddressSpace();
    if (ParamQs.hasObjCLifetime())
      DeducedQs.removeObjCLifetime();

    // Objective-C ARC:
    //   If template deduction would produce a lifetime qualifier on a type
    //   that is not a lifetime type, template argument deduction fails.
    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
        !DeducedType->isDependentType()) {
      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
      Info.FirstArg = TemplateArgument(Param);
      Info.SecondArg = TemplateArgument(Arg);
      return Sema::TDK_Underqualified;
    }

    // Objective-C ARC:
    //   If template deduction would produce an argument type with lifetime type
    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
    if (S.getLangOpts().ObjCAutoRefCount &&
        DeducedType->isObjCLifetimeType() &&
        !DeducedQs.hasObjCLifetime())
      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);

    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
                                             DeducedQs);

    if (RecanonicalizeArg)
      DeducedType = S.Context.getCanonicalType(DeducedType);

    DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
                                                                 Deduced[Index],
                                                                   NewDeduced);
    if (Result.isNull()) {
      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
      Info.FirstArg = Deduced[Index];
      Info.SecondArg = NewDeduced;
      return Sema::TDK_Inconsistent;
    }

    Deduced[Index] = Result;
    return Sema::TDK_Success;
  }

  // Set up the template argument deduction information for a failure.
  Info.FirstArg = TemplateArgument(ParamIn);
  Info.SecondArg = TemplateArgument(ArgIn);

  // If the parameter is an already-substituted template parameter
  // pack, do nothing: we don't know which of its arguments to look
  // at, so we have to wait until all of the parameter packs in this
  // expansion have arguments.
  if (isa<SubstTemplateTypeParmPackType>(Param))
    return Sema::TDK_Success;

  // Check the cv-qualifiers on the parameter and argument types.
  CanQualType CanParam = S.Context.getCanonicalType(Param);
  CanQualType CanArg = S.Context.getCanonicalType(Arg);
  if (!(TDF & TDF_IgnoreQualifiers)) {
    if (TDF & TDF_ParamWithReferenceType) {
      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
        return Sema::TDK_NonDeducedMismatch;
    } else if (TDF & TDF_ArgWithReferenceType) {
      // C++ [temp.deduct.conv]p4:
      //   If the original A is a reference type, A can be more cv-qualified
      //   than the deduced A
      if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers()))
        return Sema::TDK_NonDeducedMismatch;

      // Strip out all extra qualifiers from the argument to figure out the
      // type we're converting to, prior to the qualification conversion.
      Qualifiers Quals;
      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
      Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers());
    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
        return Sema::TDK_NonDeducedMismatch;
    }

    // If the parameter type is not dependent, there is nothing to deduce.
    if (!Param->isDependentType()) {
      if (!(TDF & TDF_SkipNonDependent)) {
        bool NonDeduced =
            (TDF & TDF_AllowCompatibleFunctionType)
                ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg)
                : Param != Arg;
        if (NonDeduced) {
          return Sema::TDK_NonDeducedMismatch;
        }
      }
      return Sema::TDK_Success;
    }
  } else if (!Param->isDependentType()) {
    CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
                ArgUnqualType = CanArg.getUnqualifiedType();
    bool Success =
        (TDF & TDF_AllowCompatibleFunctionType)
            ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType)
            : ParamUnqualType == ArgUnqualType;
    if (Success)
      return Sema::TDK_Success;
  }

  switch (Param->getTypeClass()) {
    // Non-canonical types cannot appear here.
#define NON_CANONICAL_TYPE(Class, Base) \
  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
#define TYPE(Class, Base)
#include "clang/AST/TypeNodes.inc"

    case Type::TemplateTypeParm:
    case Type::SubstTemplateTypeParmPack:
      llvm_unreachable("Type nodes handled above");

    // These types cannot be dependent, so simply check whether the types are
    // the same.
    case Type::Builtin:
    case Type::VariableArray:
    case Type::Vector:
    case Type::FunctionNoProto:
    case Type::Record:
    case Type::Enum:
    case Type::ObjCObject:
    case Type::ObjCInterface:
    case Type::ObjCObjectPointer:
      if (TDF & TDF_SkipNonDependent)
        return Sema::TDK_Success;

      if (TDF & TDF_IgnoreQualifiers) {
        Param = Param.getUnqualifiedType();
        Arg = Arg.getUnqualifiedType();
      }

      return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;

    //     _Complex T   [placeholder extension]
    case Type::Complex:
      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                    cast<ComplexType>(Param)->getElementType(),
                                    ComplexArg->getElementType(),
                                    Info, Deduced, TDF);

      return Sema::TDK_NonDeducedMismatch;

    //     _Atomic T   [extension]
    case Type::Atomic:
      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                       cast<AtomicType>(Param)->getValueType(),
                                       AtomicArg->getValueType(),
                                       Info, Deduced, TDF);

      return Sema::TDK_NonDeducedMismatch;

    //     T *
    case Type::Pointer: {
      QualType PointeeType;
      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
        PointeeType = PointerArg->getPointeeType();
      } else if (const ObjCObjectPointerType *PointerArg
                   = Arg->getAs<ObjCObjectPointerType>()) {
        PointeeType = PointerArg->getPointeeType();
      } else {
        return Sema::TDK_NonDeducedMismatch;
      }

      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                     cast<PointerType>(Param)->getPointeeType(),
                                     PointeeType,
                                     Info, Deduced, SubTDF);
    }

    //     T &
    case Type::LValueReference: {
      const LValueReferenceType *ReferenceArg =
          Arg->getAs<LValueReferenceType>();
      if (!ReferenceArg)
        return Sema::TDK_NonDeducedMismatch;

      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                           cast<LValueReferenceType>(Param)->getPointeeType(),
                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
    }

    //     T && [C++0x]
    case Type::RValueReference: {
      const RValueReferenceType *ReferenceArg =
          Arg->getAs<RValueReferenceType>();
      if (!ReferenceArg)
        return Sema::TDK_NonDeducedMismatch;

      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                             cast<RValueReferenceType>(Param)->getPointeeType(),
                             ReferenceArg->getPointeeType(),
                             Info, Deduced, 0);
    }

    //     T [] (implied, but not stated explicitly)
    case Type::IncompleteArray: {
      const IncompleteArrayType *IncompleteArrayArg =
        S.Context.getAsIncompleteArrayType(Arg);
      if (!IncompleteArrayArg)
        return Sema::TDK_NonDeducedMismatch;

      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
                    IncompleteArrayArg->getElementType(),
                    Info, Deduced, SubTDF);
    }

    //     T [integer-constant]
    case Type::ConstantArray: {
      const ConstantArrayType *ConstantArrayArg =
        S.Context.getAsConstantArrayType(Arg);
      if (!ConstantArrayArg)
        return Sema::TDK_NonDeducedMismatch;

      const ConstantArrayType *ConstantArrayParm =
        S.Context.getAsConstantArrayType(Param);
      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
        return Sema::TDK_NonDeducedMismatch;

      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                           ConstantArrayParm->getElementType(),
                                           ConstantArrayArg->getElementType(),
                                           Info, Deduced, SubTDF);
    }

    //     type [i]
    case Type::DependentSizedArray: {
      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
      if (!ArrayArg)
        return Sema::TDK_NonDeducedMismatch;

      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;

      // Check the element type of the arrays
      const DependentSizedArrayType *DependentArrayParm
        = S.Context.getAsDependentSizedArrayType(Param);
      if (Sema::TemplateDeductionResult Result
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                          DependentArrayParm->getElementType(),
                                          ArrayArg->getElementType(),
                                          Info, Deduced, SubTDF))
        return Result;

      // Determine the array bound is something we can deduce.
      NonTypeTemplateParmDecl *NTTP
        = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr());
      if (!NTTP)
        return Sema::TDK_Success;

      // We can perform template argument deduction for the given non-type
      // template parameter.
      assert(NTTP->getDepth() == Info.getDeducedDepth() &&
             "saw non-type template parameter with wrong depth");
      if (const ConstantArrayType *ConstantArrayArg
            = dyn_cast<ConstantArrayType>(ArrayArg)) {
        llvm::APSInt Size(ConstantArrayArg->getSize());
        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size,
                                             S.Context.getSizeType(),
                                             /*ArrayBound=*/true,
                                             Info, Deduced);
      }
      if (const DependentSizedArrayType *DependentArrayArg
            = dyn_cast<DependentSizedArrayType>(ArrayArg))
        if (DependentArrayArg->getSizeExpr())
          return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
                                               DependentArrayArg->getSizeExpr(),
                                               Info, Deduced);

      // Incomplete type does not match a dependently-sized array type
      return Sema::TDK_NonDeducedMismatch;
    }

    //     type(*)(T)
    //     T(*)()
    //     T(*)(T)
    case Type::FunctionProto: {
      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
      const FunctionProtoType *FunctionProtoArg =
        dyn_cast<FunctionProtoType>(Arg);
      if (!FunctionProtoArg)
        return Sema::TDK_NonDeducedMismatch;

      const FunctionProtoType *FunctionProtoParam =
        cast<FunctionProtoType>(Param);

      if (FunctionProtoParam->getMethodQuals()
            != FunctionProtoArg->getMethodQuals() ||
          FunctionProtoParam->getRefQualifier()
            != FunctionProtoArg->getRefQualifier() ||
          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
        return Sema::TDK_NonDeducedMismatch;

      // Check return types.
      if (auto Result = DeduceTemplateArgumentsByTypeMatch(
              S, TemplateParams, FunctionProtoParam->getReturnType(),
              FunctionProtoArg->getReturnType(), Info, Deduced, 0))
        return Result;

      // Check parameter types.
      if (auto Result = DeduceTemplateArguments(
              S, TemplateParams, FunctionProtoParam->param_type_begin(),
              FunctionProtoParam->getNumParams(),
              FunctionProtoArg->param_type_begin(),
              FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF))
        return Result;

      if (TDF & TDF_AllowCompatibleFunctionType)
        return Sema::TDK_Success;

      // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
      // deducing through the noexcept-specifier if it's part of the canonical
      // type. libstdc++ relies on this.
      Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr();
      if (NonTypeTemplateParmDecl *NTTP =
          NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
                       : nullptr) {
        assert(NTTP->getDepth() == Info.getDeducedDepth() &&
               "saw non-type template parameter with wrong depth");

        llvm::APSInt Noexcept(1);
        switch (FunctionProtoArg->canThrow()) {
        case CT_Cannot:
          Noexcept = 1;
          LLVM_FALLTHROUGH;

        case CT_Can:
          // We give E in noexcept(E) the "deduced from array bound" treatment.
          // FIXME: Should we?
          return DeduceNonTypeTemplateArgument(
              S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
              /*ArrayBound*/true, Info, Deduced);

        case CT_Dependent:
          if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr())
            return DeduceNonTypeTemplateArgument(
                S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced);
          // Can't deduce anything from throw(T...).
          break;
        }
      }
      // FIXME: Detect non-deduced exception specification mismatches?
      //
      // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
      // top-level differences in noexcept-specifications.

      return Sema::TDK_Success;
    }

    case Type::InjectedClassName:
      // Treat a template's injected-class-name as if the template
      // specialization type had been used.
      Param = cast<InjectedClassNameType>(Param)
        ->getInjectedSpecializationType();
      assert(isa<TemplateSpecializationType>(Param) &&
             "injected class name is not a template specialization type");
      LLVM_FALLTHROUGH;

    //     template-name<T> (where template-name refers to a class template)
    //     template-name<i>
    //     TT<T>
    //     TT<i>
    //     TT<>
    case Type::TemplateSpecialization: {
      const TemplateSpecializationType *SpecParam =
          cast<TemplateSpecializationType>(Param);

      // When Arg cannot be a derived class, we can just try to deduce template
      // arguments from the template-id.
      const RecordType *RecordT = Arg->getAs<RecordType>();
      if (!(TDF & TDF_DerivedClass) || !RecordT)
        return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info,
                                       Deduced);

      SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
                                                          Deduced.end());

      Sema::TemplateDeductionResult Result = DeduceTemplateArguments(
          S, TemplateParams, SpecParam, Arg, Info, Deduced);

      if (Result == Sema::TDK_Success)
        return Result;

      // We cannot inspect base classes as part of deduction when the type
      // is incomplete, so either instantiate any templates necessary to
      // complete the type, or skip over it if it cannot be completed.
      if (!S.isCompleteType(Info.getLocation(), Arg))
        return Result;

      // C++14 [temp.deduct.call] p4b3:
      //   If P is a class and P has the form simple-template-id, then the
      //   transformed A can be a derived class of the deduced A. Likewise if
      //   P is a pointer to a class of the form simple-template-id, the
      //   transformed A can be a pointer to a derived class pointed to by the
      //   deduced A.
      //
      //   These alternatives are considered only if type deduction would
      //   otherwise fail. If they yield more than one possible deduced A, the
      //   type deduction fails.

      // Reset the incorrectly deduced argument from above.
      Deduced = DeducedOrig;

      // Use data recursion to crawl through the list of base classes.
      // Visited contains the set of nodes we have already visited, while
      // ToVisit is our stack of records that we still need to visit.
      llvm::SmallPtrSet<const RecordType *, 8> Visited;
      SmallVector<const RecordType *, 8> ToVisit;
      ToVisit.push_back(RecordT);
      bool Successful = false;
      SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced;
      while (!ToVisit.empty()) {
        // Retrieve the next class in the inheritance hierarchy.
        const RecordType *NextT = ToVisit.pop_back_val();

        // If we have already seen this type, skip it.
        if (!Visited.insert(NextT).second)
          continue;

        // If this is a base class, try to perform template argument
        // deduction from it.
        if (NextT != RecordT) {
          TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info);
          Sema::TemplateDeductionResult BaseResult =
              DeduceTemplateArguments(S, TemplateParams, SpecParam,
                                      QualType(NextT, 0), BaseInfo, Deduced);

          // If template argument deduction for this base was successful,
          // note that we had some success. Otherwise, ignore any deductions
          // from this base class.
          if (BaseResult == Sema::TDK_Success) {
            // If we've already seen some success, then deduction fails due to
            // an ambiguity (temp.deduct.call p5).
            if (Successful)
              return Sema::TDK_MiscellaneousDeductionFailure;

            Successful = true;
            std::swap(SuccessfulDeduced, Deduced);

            Info.Param = BaseInfo.Param;
            Info.FirstArg = BaseInfo.FirstArg;
            Info.SecondArg = BaseInfo.SecondArg;
          }

          Deduced = DeducedOrig;
        }

        // Visit base classes
        CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
        for (const auto &Base : Next->bases()) {
          assert(Base.getType()->isRecordType() &&
                 "Base class that isn't a record?");
          ToVisit.push_back(Base.getType()->getAs<RecordType>());
        }
      }

      if (Successful) {
        std::swap(SuccessfulDeduced, Deduced);
        return Sema::TDK_Success;
      }

      return Result;
    }

    //     T type::*
    //     T T::*
    //     T (type::*)()
    //     type (T::*)()
    //     type (type::*)(T)
    //     type (T::*)(T)
    //     T (type::*)(T)
    //     T (T::*)()
    //     T (T::*)(T)
    case Type::MemberPointer: {
      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
      if (!MemPtrArg)
        return Sema::TDK_NonDeducedMismatch;

      QualType ParamPointeeType = MemPtrParam->getPointeeType();
      if (ParamPointeeType->isFunctionType())
        S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
                                 /*IsCtorOrDtor=*/false, Info.getLocation());
      QualType ArgPointeeType = MemPtrArg->getPointeeType();
      if (ArgPointeeType->isFunctionType())
        S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
                                 /*IsCtorOrDtor=*/false, Info.getLocation());

      if (Sema::TemplateDeductionResult Result
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                                 ParamPointeeType,
                                                 ArgPointeeType,
                                                 Info, Deduced,
                                                 TDF & TDF_IgnoreQualifiers))
        return Result;

      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                           QualType(MemPtrParam->getClass(), 0),
                                           QualType(MemPtrArg->getClass(), 0),
                                           Info, Deduced,
                                           TDF & TDF_IgnoreQualifiers);
    }

    //     (clang extension)
    //
    //     type(^)(T)
    //     T(^)()
    //     T(^)(T)
    case Type::BlockPointer: {
      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);

      if (!BlockPtrArg)
        return Sema::TDK_NonDeducedMismatch;

      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                                BlockPtrParam->getPointeeType(),
                                                BlockPtrArg->getPointeeType(),
                                                Info, Deduced, 0);
    }

    //     (clang extension)
    //
    //     T __attribute__(((ext_vector_type(<integral constant>))))
    case Type::ExtVector: {
      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
        // Make sure that the vectors have the same number of elements.
        if (VectorParam->getNumElements() != VectorArg->getNumElements())
          return Sema::TDK_NonDeducedMismatch;

        // Perform deduction on the element types.
        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                                  VectorParam->getElementType(),
                                                  VectorArg->getElementType(),
                                                  Info, Deduced, TDF);
      }

      if (const DependentSizedExtVectorType *VectorArg
                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
        // We can't check the number of elements, since the argument has a
        // dependent number of elements. This can only occur during partial
        // ordering.

        // Perform deduction on the element types.
        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                                  VectorParam->getElementType(),
                                                  VectorArg->getElementType(),
                                                  Info, Deduced, TDF);
      }

      return Sema::TDK_NonDeducedMismatch;
    }

    case Type::DependentVector: {
      const auto *VectorParam = cast<DependentVectorType>(Param);

      if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) {
        // Perform deduction on the element types.
        if (Sema::TemplateDeductionResult Result =
                DeduceTemplateArgumentsByTypeMatch(
                    S, TemplateParams, VectorParam->getElementType(),
                    VectorArg->getElementType(), Info, Deduced, TDF))
          return Result;

        // Perform deduction on the vector size, if we can.
        NonTypeTemplateParmDecl *NTTP =
            getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
        if (!NTTP)
          return Sema::TDK_Success;

        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
        ArgSize = VectorArg->getNumElements();
        // Note that we use the "array bound" rules here; just like in that
        // case, we don't have any particular type for the vector size, but
        // we can provide one if necessary.
        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
                                             S.Context.UnsignedIntTy, true,
                                             Info, Deduced);
      }

      if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) {
        // Perform deduction on the element types.
        if (Sema::TemplateDeductionResult Result =
                DeduceTemplateArgumentsByTypeMatch(
                    S, TemplateParams, VectorParam->getElementType(),
                    VectorArg->getElementType(), Info, Deduced, TDF))
          return Result;

        // Perform deduction on the vector size, if we can.
        NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
            Info, VectorParam->getSizeExpr());
        if (!NTTP)
          return Sema::TDK_Success;

        return DeduceNonTypeTemplateArgument(
            S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced);
      }

      return Sema::TDK_NonDeducedMismatch;
    }

    //     (clang extension)
    //
    //     T __attribute__(((ext_vector_type(N))))
    case Type::DependentSizedExtVector: {
      const DependentSizedExtVectorType *VectorParam
        = cast<DependentSizedExtVectorType>(Param);

      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
        // Perform deduction on the element types.
        if (Sema::TemplateDeductionResult Result
              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                                  VectorParam->getElementType(),
                                                   VectorArg->getElementType(),
                                                   Info, Deduced, TDF))
          return Result;

        // Perform deduction on the vector size, if we can.
        NonTypeTemplateParmDecl *NTTP
          = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
        if (!NTTP)
          return Sema::TDK_Success;

        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
        ArgSize = VectorArg->getNumElements();
        // Note that we use the "array bound" rules here; just like in that
        // case, we don't have any particular type for the vector size, but
        // we can provide one if necessary.
        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
                                             S.Context.IntTy, true, Info,
                                             Deduced);
      }

      if (const DependentSizedExtVectorType *VectorArg
                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
        // Perform deduction on the element types.
        if (Sema::TemplateDeductionResult Result
            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                                 VectorParam->getElementType(),
                                                 VectorArg->getElementType(),
                                                 Info, Deduced, TDF))
          return Result;

        // Perform deduction on the vector size, if we can.
        NonTypeTemplateParmDecl *NTTP
          = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
        if (!NTTP)
          return Sema::TDK_Success;

        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
                                             VectorArg->getSizeExpr(),
                                             Info, Deduced);
      }

      return Sema::TDK_NonDeducedMismatch;
    }

    //     (clang extension)
    //
    //     T __attribute__(((address_space(N))))
    case Type::DependentAddressSpace: {
      const DependentAddressSpaceType *AddressSpaceParam =
          cast<DependentAddressSpaceType>(Param);

      if (const DependentAddressSpaceType *AddressSpaceArg =
              dyn_cast<DependentAddressSpaceType>(Arg)) {
        // Perform deduction on the pointer type.
        if (Sema::TemplateDeductionResult Result =
                DeduceTemplateArgumentsByTypeMatch(
                    S, TemplateParams, AddressSpaceParam->getPointeeType(),
                    AddressSpaceArg->getPointeeType(), Info, Deduced, TDF))
          return Result;

        // Perform deduction on the address space, if we can.
        NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
            Info, AddressSpaceParam->getAddrSpaceExpr());
        if (!NTTP)
          return Sema::TDK_Success;

        return DeduceNonTypeTemplateArgument(
            S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info,
            Deduced);
      }

      if (isTargetAddressSpace(Arg.getAddressSpace())) {
        llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
                                     false);
        ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace());

        // Perform deduction on the pointer types.
        if (Sema::TemplateDeductionResult Result =
                DeduceTemplateArgumentsByTypeMatch(
                    S, TemplateParams, AddressSpaceParam->getPointeeType(),
                    S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF))
          return Result;

        // Perform deduction on the address space, if we can.
        NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
            Info, AddressSpaceParam->getAddrSpaceExpr());
        if (!NTTP)
          return Sema::TDK_Success;

        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
                                             ArgAddressSpace, S.Context.IntTy,
                                             true, Info, Deduced);
      }

      return Sema::TDK_NonDeducedMismatch;
    }

    case Type::TypeOfExpr:
    case Type::TypeOf:
    case Type::DependentName:
    case Type::UnresolvedUsing:
    case Type::Decltype:
    case Type::UnaryTransform:
    case Type::Auto:
    case Type::DeducedTemplateSpecialization:
    case Type::DependentTemplateSpecialization:
    case Type::PackExpansion:
    case Type::Pipe:
      // No template argument deduction for these types
      return Sema::TDK_Success;
  }

  llvm_unreachable("Invalid Type Class!");
}

static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
                        TemplateParameterList *TemplateParams,
                        const TemplateArgument &Param,
                        TemplateArgument Arg,
                        TemplateDeductionInfo &Info,
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  // If the template argument is a pack expansion, perform template argument
  // deduction against the pattern of that expansion. This only occurs during
  // partial ordering.
  if (Arg.isPackExpansion())
    Arg = Arg.getPackExpansionPattern();

  switch (Param.getKind()) {
  case TemplateArgument::Null:
    llvm_unreachable("Null template argument in parameter list");

  case TemplateArgument::Type:
    if (Arg.getKind() == TemplateArgument::Type)
      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                                Param.getAsType(),
                                                Arg.getAsType(),
                                                Info, Deduced, 0);
    Info.FirstArg = Param;
    Info.SecondArg = Arg;
    return Sema::TDK_NonDeducedMismatch;

  case TemplateArgument::Template:
    if (Arg.getKind() == TemplateArgument::Template)
      return DeduceTemplateArguments(S, TemplateParams,
                                     Param.getAsTemplate(),
                                     Arg.getAsTemplate(), Info, Deduced);
    Info.FirstArg = Param;
    Info.SecondArg = Arg;
    return Sema::TDK_NonDeducedMismatch;

  case TemplateArgument::TemplateExpansion:
    llvm_unreachable("caller should handle pack expansions");

  case TemplateArgument::Declaration:
    if (Arg.getKind() == TemplateArgument::Declaration &&
        isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
      return Sema::TDK_Success;

    Info.FirstArg = Param;
    Info.SecondArg = Arg;
    return Sema::TDK_NonDeducedMismatch;

  case TemplateArgument::NullPtr:
    if (Arg.getKind() == TemplateArgument::NullPtr &&
        S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
      return Sema::TDK_Success;

    Info.FirstArg = Param;
    Info.SecondArg = Arg;
    return Sema::TDK_NonDeducedMismatch;

  case TemplateArgument::Integral:
    if (Arg.getKind() == TemplateArgument::Integral) {
      if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
        return Sema::TDK_Success;

      Info.FirstArg = Param;
      Info.SecondArg = Arg;
      return Sema::TDK_NonDeducedMismatch;
    }

    if (Arg.getKind() == TemplateArgument::Expression) {
      Info.FirstArg = Param;
      Info.SecondArg = Arg;
      return Sema::TDK_NonDeducedMismatch;
    }

    Info.FirstArg = Param;
    Info.SecondArg = Arg;
    return Sema::TDK_NonDeducedMismatch;

  case TemplateArgument::Expression:
    if (NonTypeTemplateParmDecl *NTTP
          = getDeducedParameterFromExpr(Info, Param.getAsExpr())) {
      if (Arg.getKind() == TemplateArgument::Integral)
        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
                                             Arg.getAsIntegral(),
                                             Arg.getIntegralType(),
                                             /*ArrayBound=*/false,
                                             Info, Deduced);
      if (Arg.getKind() == TemplateArgument::NullPtr)
        return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP,
                                             Arg.getNullPtrType(),
                                             Info, Deduced);
      if (Arg.getKind() == TemplateArgument::Expression)
        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
                                             Arg.getAsExpr(), Info, Deduced);
      if (Arg.getKind() == TemplateArgument::Declaration)
        return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
                                             Arg.getAsDecl(),
                                             Arg.getParamTypeForDecl(),
                                             Info, Deduced);

      Info.FirstArg = Param;
      Info.SecondArg = Arg;
      return Sema::TDK_NonDeducedMismatch;
    }

    // Can't deduce anything, but that's okay.
    return Sema::TDK_Success;

  case TemplateArgument::Pack:
    llvm_unreachable("Argument packs should be expanded by the caller!");
  }

  llvm_unreachable("Invalid TemplateArgument Kind!");
}

/// Determine whether there is a template argument to be used for
/// deduction.
///
/// This routine "expands" argument packs in-place, overriding its input
/// parameters so that \c Args[ArgIdx] will be the available template argument.
///
/// \returns true if there is another template argument (which will be at
/// \c Args[ArgIdx]), false otherwise.
static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
                                            unsigned &ArgIdx) {
  if (ArgIdx == Args.size())
    return false;

  const TemplateArgument &Arg = Args[ArgIdx];
  if (Arg.getKind() != TemplateArgument::Pack)
    return true;

  assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
  Args = Arg.pack_elements();
  ArgIdx = 0;
  return ArgIdx < Args.size();
}

/// Determine whether the given set of template arguments has a pack
/// expansion that is not the last template argument.
static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
  bool FoundPackExpansion = false;
  for (const auto &A : Args) {
    if (FoundPackExpansion)
      return true;

    if (A.getKind() == TemplateArgument::Pack)
      return hasPackExpansionBeforeEnd(A.pack_elements());

    // FIXME: If this is a fixed-arity pack expansion from an outer level of
    // templates, it should not be treated as a pack expansion.
    if (A.isPackExpansion())
      FoundPackExpansion = true;
  }

  return false;
}

static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
                        ArrayRef<TemplateArgument> Params,
                        ArrayRef<TemplateArgument> Args,
                        TemplateDeductionInfo &Info,
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
                        bool NumberOfArgumentsMustMatch) {
  // C++0x [temp.deduct.type]p9:
  //   If the template argument list of P contains a pack expansion that is not
  //   the last template argument, the entire template argument list is a
  //   non-deduced context.
  if (hasPackExpansionBeforeEnd(Params))
    return Sema::TDK_Success;

  // C++0x [temp.deduct.type]p9:
  //   If P has a form that contains <T> or <i>, then each argument Pi of the
  //   respective template argument list P is compared with the corresponding
  //   argument Ai of the corresponding template argument list of A.
  unsigned ArgIdx = 0, ParamIdx = 0;
  for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) {
    if (!Params[ParamIdx].isPackExpansion()) {
      // The simple case: deduce template arguments by matching Pi and Ai.

      // Check whether we have enough arguments.
      if (!hasTemplateArgumentForDeduction(Args, ArgIdx))
        return NumberOfArgumentsMustMatch
                   ? Sema::TDK_MiscellaneousDeductionFailure
                   : Sema::TDK_Success;

      // C++1z [temp.deduct.type]p9:
      //   During partial ordering, if Ai was originally a pack expansion [and]
      //   Pi is not a pack expansion, template argument deduction fails.
      if (Args[ArgIdx].isPackExpansion())
        return Sema::TDK_MiscellaneousDeductionFailure;

      // Perform deduction for this Pi/Ai pair.
      if (Sema::TemplateDeductionResult Result
            = DeduceTemplateArguments(S, TemplateParams,
                                      Params[ParamIdx], Args[ArgIdx],
                                      Info, Deduced))
        return Result;

      // Move to the next argument.
      ++ArgIdx;
      continue;
    }

    // The parameter is a pack expansion.

    // C++0x [temp.deduct.type]p9:
    //   If Pi is a pack expansion, then the pattern of Pi is compared with
    //   each remaining argument in the template argument list of A. Each
    //   comparison deduces template arguments for subsequent positions in the
    //   template parameter packs expanded by Pi.
    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();

    // Prepare to deduce the packs within the pattern.
    PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);

    // Keep track of the deduced template arguments for each parameter pack
    // expanded by this pack expansion (the outer index) and for each
    // template argument (the inner SmallVectors).
    for (; hasTemplateArgumentForDeduction(Args, ArgIdx) &&
           PackScope.hasNextElement();
         ++ArgIdx) {
      // Deduce template arguments from the pattern.
      if (Sema::TemplateDeductionResult Result
            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
                                      Info, Deduced))
        return Result;

      PackScope.nextPackElement();
    }

    // Build argument packs for each of the parameter packs expanded by this
    // pack expansion.
    if (auto Result = PackScope.finish())
      return Result;
  }

  return Sema::TDK_Success;
}

static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema &S,
                        TemplateParameterList *TemplateParams,
                        const TemplateArgumentList &ParamList,
                        const TemplateArgumentList &ArgList,
                        TemplateDeductionInfo &Info,
                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
  return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(),
                                 ArgList.asArray(), Info, Deduced,
                                 /*NumberOfArgumentsMustMatch*/false);
}

/// Determine whether two template arguments are the same.
static bool isSameTemplateArg(ASTContext &Context,
                              TemplateArgument X,
                              const TemplateArgument &Y,
                              bool PackExpansionMatchesPack = false) {
  // If we're checking deduced arguments (X) against original arguments (Y),
  // we will have flattened packs to non-expansions in X.
  if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
    X = X.getPackExpansionPattern();

  if (X.getKind() != Y.getKind())
    return false;

  switch (X.getKind()) {
    case TemplateArgument::Null:
      llvm_unreachable("Comparing NULL template argument");

    case TemplateArgument::Type:
      return Context.getCanonicalType(X.getAsType()) ==
             Context.getCanonicalType(Y.getAsType());

    case TemplateArgument::Declaration:
      return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());

    case TemplateArgument::NullPtr:
      return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());

    case TemplateArgument::Template:
    case TemplateArgument::TemplateExpansion:
      return Context.getCanonicalTemplateName(
                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
             Context.getCanonicalTemplateName(
                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();

    case TemplateArgument::Integral:
      return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());

    case TemplateArgument::Expression: {
      llvm::FoldingSetNodeID XID, YID;
      X.getAsExpr()->Profile(XID, Context, true);
      Y.getAsExpr()->Profile(YID, Context, true);
      return XID == YID;
    }

    case TemplateArgument::Pack:
      if (X.pack_size() != Y.pack_size())
        return false;

      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
                                        XPEnd = X.pack_end(),
                                           YP = Y.pack_begin();
           XP != XPEnd; ++XP, ++YP)
        if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack))
          return false;

      return true;
  }

  llvm_unreachable("Invalid TemplateArgument Kind!");
}

/// Allocate a TemplateArgumentLoc where all locations have
/// been initialized to the given location.
///
/// \param Arg The template argument we are producing template argument
/// location information for.
///
/// \param NTTPType For a declaration template argument, the type of
/// the non-type template parameter that corresponds to this template
/// argument. Can be null if no type sugar is available to add to the
/// type from the template argument.
///
/// \param Loc The source location to use for the resulting template
/// argument.
TemplateArgumentLoc
Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
                                    QualType NTTPType, SourceLocation Loc) {
  switch (Arg.getKind()) {
  case TemplateArgument::Null:
    llvm_unreachable("Can't get a NULL template argument here");

  case TemplateArgument::Type:
    return TemplateArgumentLoc(
        Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));

  case TemplateArgument::Declaration: {
    if (NTTPType.isNull())
      NTTPType = Arg.getParamTypeForDecl();
    Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
                  .getAs<Expr>();
    return TemplateArgumentLoc(TemplateArgument(E), E);
  }

  case TemplateArgument::NullPtr: {
    if (NTTPType.isNull())
      NTTPType = Arg.getNullPtrType();
    Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
                  .getAs<Expr>();
    return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
                               E);
  }

  case TemplateArgument::Integral: {
    Expr *E =
        BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
    return TemplateArgumentLoc(TemplateArgument(E), E);
  }

    case TemplateArgument::Template:
    case TemplateArgument::TemplateExpansion: {
      NestedNameSpecifierLocBuilder Builder;
      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
        Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
      else if (QualifiedTemplateName *QTN =
                   Template.getAsQualifiedTemplateName())
        Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);

      if (Arg.getKind() == TemplateArgument::Template)
        return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
                                   Loc);

      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
                                 Loc, Loc);
    }

  case TemplateArgument::Expression:
    return TemplateArgumentLoc(Arg, Arg.getAsExpr());

  case TemplateArgument::Pack:
    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
  }

  llvm_unreachable("Invalid TemplateArgument Kind!");
}

TemplateArgumentLoc
Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm,
                                     SourceLocation Location) {
  return getTrivialTemplateArgumentLoc(
      Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
}

/// Convert the given deduced template argument and add it to the set of
/// fully-converted template arguments.
static bool
ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
                               DeducedTemplateArgument Arg,
                               NamedDecl *Template,
                               TemplateDeductionInfo &Info,
                               bool IsDeduced,
                               SmallVectorImpl<TemplateArgument> &Output) {
  auto ConvertArg = [&](DeducedTemplateArgument Arg,
                        unsigned ArgumentPackIndex) {
    // Convert the deduced template argument into a template
    // argument that we can check, almost as if the user had written
    // the template argument explicitly.
    TemplateArgumentLoc ArgLoc =
        S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation());

    // Check the template argument, converting it as necessary.
    return S.CheckTemplateArgument(
        Param, ArgLoc, Template, Template->getLocation(),
        Template->getSourceRange().getEnd(), ArgumentPackIndex, Output,
        IsDeduced
            ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
                                              : Sema::CTAK_Deduced)
            : Sema::CTAK_Specified);
  };

  if (Arg.getKind() == TemplateArgument::Pack) {
    // This is a template argument pack, so check each of its arguments against
    // the template parameter.
    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
    for (const auto &P : Arg.pack_elements()) {
      // When converting the deduced template argument, append it to the
      // general output list. We need to do this so that the template argument
      // checking logic has all of the prior template arguments available.
      DeducedTemplateArgument InnerArg(P);
      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
      assert(InnerArg.getKind() != TemplateArgument::Pack &&
             "deduced nested pack");
      if (P.isNull()) {
        // We deduced arguments for some elements of this pack, but not for
        // all of them. This happens if we get a conditionally-non-deduced
        // context in a pack expansion (such as an overload set in one of the
        // arguments).
        S.Diag(Param->getLocation(),
               diag::err_template_arg_deduced_incomplete_pack)
          << Arg << Param;
        return true;
      }
      if (ConvertArg(InnerArg, PackedArgsBuilder.size()))
        return true;

      // Move the converted template argument into our argument pack.
      PackedArgsBuilder.push_back(Output.pop_back_val());
    }

    // If the pack is empty, we still need to substitute into the parameter
    // itself, in case that substitution fails.
    if (PackedArgsBuilder.empty()) {
      LocalInstantiationScope Scope(S);
      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output);
      MultiLevelTemplateArgumentList Args(TemplateArgs);

      if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
        Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
                                         NTTP, Output,
                                         Template->getSourceRange());
        if (Inst.isInvalid() ||
            S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
                        NTTP->getDeclName()).isNull())
          return true;
      } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
        Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
                                         TTP, Output,
                                         Template->getSourceRange());
        if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
          return true;
      }
      // For type parameters, no substitution is ever required.
    }

    // Create the resulting argument pack.
    Output.push_back(
        TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
    return false;
  }

  return ConvertArg(Arg, 0);
}

// FIXME: This should not be a template, but
// ClassTemplatePartialSpecializationDecl sadly does not derive from
// TemplateDecl.
template<typename TemplateDeclT>
static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments(
    Sema &S, TemplateDeclT *Template, bool IsDeduced,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder,
    LocalInstantiationScope *CurrentInstantiationScope = nullptr,
    unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) {
  TemplateParameterList *TemplateParams = Template->getTemplateParameters();

  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
    NamedDecl *Param = TemplateParams->getParam(I);

    // C++0x [temp.arg.explicit]p3:
    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
    //    be deduced to an empty sequence of template arguments.
    // FIXME: Where did the word "trailing" come from?
    if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
      if (auto Result =
              PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish())
        return Result;
    }

    if (!Deduced[I].isNull()) {
      if (I < NumAlreadyConverted) {
        // We may have had explicitly-specified template arguments for a
        // template parameter pack (that may or may not have been extended
        // via additional deduced arguments).
        if (Param->isParameterPack() && CurrentInstantiationScope &&
            CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
          // Forget the partially-substituted pack; its substitution is now
          // complete.
          CurrentInstantiationScope->ResetPartiallySubstitutedPack();
          // We still need to check the argument in case it was extended by
          // deduction.
        } else {
          // We have already fully type-checked and converted this
          // argument, because it was explicitly-specified. Just record the
          // presence of this argument.
          Builder.push_back(Deduced[I]);
          continue;
        }
      }

      // We may have deduced this argument, so it still needs to be
      // checked and converted.
      if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
                                         IsDeduced, Builder)) {
        Info.Param = makeTemplateParameter(Param);
        // FIXME: These template arguments are temporary. Free them!
        Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
        return Sema::TDK_SubstitutionFailure;
      }

      continue;
    }

    // Substitute into the default template argument, if available.
    bool HasDefaultArg = false;
    TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
    if (!TD) {
      assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
             isa<VarTemplatePartialSpecializationDecl>(Template));
      return Sema::TDK_Incomplete;
    }

    TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
        TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder,
        HasDefaultArg);

    // If there was no default argument, deduction is incomplete.
    if (DefArg.getArgument().isNull()) {
      Info.Param = makeTemplateParameter(
          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
      if (PartialOverloading) break;

      return HasDefaultArg ? Sema::TDK_SubstitutionFailure
                           : Sema::TDK_Incomplete;
    }

    // Check whether we can actually use the default argument.
    if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(),
                                TD->getSourceRange().getEnd(), 0, Builder,
                                Sema::CTAK_Specified)) {
      Info.Param = makeTemplateParameter(
                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
      // FIXME: These template arguments are temporary. Free them!
      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
      return Sema::TDK_SubstitutionFailure;
    }

    // If we get here, we successfully used the default template argument.
  }

  return Sema::TDK_Success;
}

static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
  if (auto *DC = dyn_cast<DeclContext>(D))
    return DC;
  return D->getDeclContext();
}

template<typename T> struct IsPartialSpecialization {
  static constexpr bool value = false;
};
template<>
struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
  static constexpr bool value = true;
};
template<>
struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
  static constexpr bool value = true;
};

template<typename TemplateDeclT>
static Sema::TemplateDeductionResult
CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template,
                                ArrayRef<TemplateArgument> DeducedArgs,
                                TemplateDeductionInfo& Info) {
  llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
  Template->getAssociatedConstraints(AssociatedConstraints);
  if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints,
                                    DeducedArgs, Info.getLocation(),
                                    Info.AssociatedConstraintsSatisfaction) ||
      !Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
    Info.reset(TemplateArgumentList::CreateCopy(S.Context, DeducedArgs));
    return Sema::TDK_ConstraintsNotSatisfied;
  }
  return Sema::TDK_Success;
}

/// Complete template argument deduction for a partial specialization.
template <typename T>
static typename std::enable_if<IsPartialSpecialization<T>::value,
                               Sema::TemplateDeductionResult>::type
FinishTemplateArgumentDeduction(
    Sema &S, T *Partial, bool IsPartialOrdering,
    const TemplateArgumentList &TemplateArgs,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    TemplateDeductionInfo &Info) {
  // Unevaluated SFINAE context.
  EnterExpressionEvaluationContext Unevaluated(
      S, Sema::ExpressionEvaluationContext::Unevaluated);
  Sema::SFINAETrap Trap(S);

  Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));

  // C++ [temp.deduct.type]p2:
  //   [...] or if any template argument remains neither deduced nor
  //   explicitly specified, template argument deduction fails.
  SmallVector<TemplateArgument, 4> Builder;
  if (auto Result = ConvertDeducedTemplateArguments(
          S, Partial, IsPartialOrdering, Deduced, Info, Builder))
    return Result;

  // Form the template argument list from the deduced template arguments.
  TemplateArgumentList *DeducedArgumentList
    = TemplateArgumentList::CreateCopy(S.Context, Builder);

  Info.reset(DeducedArgumentList);

  // Substitute the deduced template arguments into the template
  // arguments of the class template partial specialization, and
  // verify that the instantiated template arguments are both valid
  // and are equivalent to the template arguments originally provided
  // to the class template.
  LocalInstantiationScope InstScope(S);
  auto *Template = Partial->getSpecializedTemplate();
  const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
      Partial->getTemplateArgsAsWritten();
  const TemplateArgumentLoc *PartialTemplateArgs =
      PartialTemplArgInfo->getTemplateArgs();

  TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
                                    PartialTemplArgInfo->RAngleLoc);

  if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
    if (ParamIdx >= Partial->getTemplateParameters()->size())
      ParamIdx = Partial->getTemplateParameters()->size() - 1;

    Decl *Param = const_cast<NamedDecl *>(
        Partial->getTemplateParameters()->getParam(ParamIdx));
    Info.Param = makeTemplateParameter(Param);
    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
    return Sema::TDK_SubstitutionFailure;
  }

  bool ConstraintsNotSatisfied;
  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
  if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs,
                                  false, ConvertedInstArgs,
                                  /*UpdateArgsWithConversions=*/true,
                                  &ConstraintsNotSatisfied))
    return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied :
                                     Sema::TDK_SubstitutionFailure;

  TemplateParameterList *TemplateParams = Template->getTemplateParameters();
  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
      Info.FirstArg = TemplateArgs[I];
      Info.SecondArg = InstArg;
      return Sema::TDK_NonDeducedMismatch;
    }
  }

  if (Trap.hasErrorOccurred())
    return Sema::TDK_SubstitutionFailure;

  if (auto Result = CheckDeducedArgumentConstraints(S, Partial, Builder, Info))
    return Result;

  return Sema::TDK_Success;
}

/// Complete template argument deduction for a class or variable template,
/// when partial ordering against a partial specialization.
// FIXME: Factor out duplication with partial specialization version above.
static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
    Sema &S, TemplateDecl *Template, bool PartialOrdering,
    const TemplateArgumentList &TemplateArgs,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    TemplateDeductionInfo &Info) {
  // Unevaluated SFINAE context.
  EnterExpressionEvaluationContext Unevaluated(
      S, Sema::ExpressionEvaluationContext::Unevaluated);
  Sema::SFINAETrap Trap(S);

  Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));

  // C++ [temp.deduct.type]p2:
  //   [...] or if any template argument remains neither deduced nor
  //   explicitly specified, template argument deduction fails.
  SmallVector<TemplateArgument, 4> Builder;
  if (auto Result = ConvertDeducedTemplateArguments(
          S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder))
    return Result;

  // Check that we produced the correct argument list.
  TemplateParameterList *TemplateParams = Template->getTemplateParameters();
  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
    TemplateArgument InstArg = Builder[I];
    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
                           /*PackExpansionMatchesPack*/true)) {
      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
      Info.FirstArg = TemplateArgs[I];
      Info.SecondArg = InstArg;
      return Sema::TDK_NonDeducedMismatch;
    }
  }

  if (Trap.hasErrorOccurred())
    return Sema::TDK_SubstitutionFailure;

  if (auto Result = CheckDeducedArgumentConstraints(S, Template, Builder,
                                                    Info))
    return Result;

  return Sema::TDK_Success;
}

/// Perform template argument deduction to determine whether
/// the given template arguments match the given class template
/// partial specialization per C++ [temp.class.spec.match].
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
                              const TemplateArgumentList &TemplateArgs,
                              TemplateDeductionInfo &Info) {
  if (Partial->isInvalidDecl())
    return TDK_Invalid;

  // C++ [temp.class.spec.match]p2:
  //   A partial specialization matches a given actual template
  //   argument list if the template arguments of the partial
  //   specialization can be deduced from the actual template argument
  //   list (14.8.2).

  // Unevaluated SFINAE context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);
  SFINAETrap Trap(*this);

  SmallVector<DeducedTemplateArgument, 4> Deduced;
  Deduced.resize(Partial->getTemplateParameters()->size());
  if (TemplateDeductionResult Result
        = ::DeduceTemplateArguments(*this,
                                    Partial->getTemplateParameters(),
                                    Partial->getTemplateArgs(),
                                    TemplateArgs, Info, Deduced))
    return Result;

  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
  InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
                             Info);
  if (Inst.isInvalid())
    return TDK_InstantiationDepth;

  if (Trap.hasErrorOccurred())
    return Sema::TDK_SubstitutionFailure;

  return ::FinishTemplateArgumentDeduction(
      *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
}

/// Perform template argument deduction to determine whether
/// the given template arguments match the given variable template
/// partial specialization per C++ [temp.class.spec.match].
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
                              const TemplateArgumentList &TemplateArgs,
                              TemplateDeductionInfo &Info) {
  if (Partial->isInvalidDecl())
    return TDK_Invalid;

  // C++ [temp.class.spec.match]p2:
  //   A partial specialization matches a given actual template
  //   argument list if the template arguments of the partial
  //   specialization can be deduced from the actual template argument
  //   list (14.8.2).

  // Unevaluated SFINAE context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);
  SFINAETrap Trap(*this);

  SmallVector<DeducedTemplateArgument, 4> Deduced;
  Deduced.resize(Partial->getTemplateParameters()->size());
  if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
          *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
          TemplateArgs, Info, Deduced))
    return Result;

  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
  InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
                             Info);
  if (Inst.isInvalid())
    return TDK_InstantiationDepth;

  if (Trap.hasErrorOccurred())
    return Sema::TDK_SubstitutionFailure;

  return ::FinishTemplateArgumentDeduction(
      *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
}

/// Determine whether the given type T is a simple-template-id type.
static bool isSimpleTemplateIdType(QualType T) {
  if (const TemplateSpecializationType *Spec
        = T->getAs<TemplateSpecializationType>())
    return Spec->getTemplateName().getAsTemplateDecl() != nullptr;

  // C++17 [temp.local]p2:
  //   the injected-class-name [...] is equivalent to the template-name followed
  //   by the template-arguments of the class template specialization or partial
  //   specialization enclosed in <>
  // ... which means it's equivalent to a simple-template-id.
  //
  // This only arises during class template argument deduction for a copy
  // deduction candidate, where it permits slicing.
  if (T->getAs<InjectedClassNameType>())
    return true;

  return false;
}

/// Substitute the explicitly-provided template arguments into the
/// given function template according to C++ [temp.arg.explicit].
///
/// \param FunctionTemplate the function template into which the explicit
/// template arguments will be substituted.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param Deduced the deduced template arguments, which will be populated
/// with the converted and checked explicit template arguments.
///
/// \param ParamTypes will be populated with the instantiated function
/// parameters.
///
/// \param FunctionType if non-NULL, the result type of the function template
/// will also be instantiated and the pointed-to value will be updated with
/// the instantiated function type.
///
/// \param Info if substitution fails for any reason, this object will be
/// populated with more information about the failure.
///
/// \returns TDK_Success if substitution was successful, or some failure
/// condition.
Sema::TemplateDeductionResult
Sema::SubstituteExplicitTemplateArguments(
                                      FunctionTemplateDecl *FunctionTemplate,
                               TemplateArgumentListInfo &ExplicitTemplateArgs,
                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
                                 SmallVectorImpl<QualType> &ParamTypes,
                                          QualType *FunctionType,
                                          TemplateDeductionInfo &Info) {
  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
  TemplateParameterList *TemplateParams
    = FunctionTemplate->getTemplateParameters();

  if (ExplicitTemplateArgs.size() == 0) {
    // No arguments to substitute; just copy over the parameter types and
    // fill in the function type.
    for (auto P : Function->parameters())
      ParamTypes.push_back(P->getType());

    if (FunctionType)
      *FunctionType = Function->getType();
    return TDK_Success;
  }

  // Unevaluated SFINAE context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);
  SFINAETrap Trap(*this);

  // C++ [temp.arg.explicit]p3:
  //   Template arguments that are present shall be specified in the
  //   declaration order of their corresponding template-parameters. The
  //   template argument list shall not specify more template-arguments than
  //   there are corresponding template-parameters.
  SmallVector<TemplateArgument, 4> Builder;

  // Enter a new template instantiation context where we check the
  // explicitly-specified template arguments against this function template,
  // and then substitute them into the function parameter types.
  SmallVector<TemplateArgument, 4> DeducedArgs;
  InstantiatingTemplate Inst(
      *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
      CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
  if (Inst.isInvalid())
    return TDK_InstantiationDepth;

  if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
                                ExplicitTemplateArgs, true, Builder, false) ||
      Trap.hasErrorOccurred()) {
    unsigned Index = Builder.size();
    if (Index >= TemplateParams->size())
      return TDK_SubstitutionFailure;
    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
    return TDK_InvalidExplicitArguments;
  }

  // Form the template argument list from the explicitly-specified
  // template arguments.
  TemplateArgumentList *ExplicitArgumentList
    = TemplateArgumentList::CreateCopy(Context, Builder);
  Info.setExplicitArgs(ExplicitArgumentList);

  // Template argument deduction and the final substitution should be
  // done in the context of the templated declaration.  Explicit
  // argument substitution, on the other hand, needs to happen in the
  // calling context.
  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());

  // If we deduced template arguments for a template parameter pack,
  // note that the template argument pack is partially substituted and record
  // the explicit template arguments. They'll be used as part of deduction
  // for this template parameter pack.
  unsigned PartiallySubstitutedPackIndex = -1u;
  if (!Builder.empty()) {
    const TemplateArgument &Arg = Builder.back();
    if (Arg.getKind() == TemplateArgument::Pack) {
      auto *Param = TemplateParams->getParam(Builder.size() - 1);
      // If this is a fully-saturated fixed-size pack, it should be
      // fully-substituted, not partially-substituted.
      Optional<unsigned> Expansions = getExpandedPackSize(Param);
      if (!Expansions || Arg.pack_size() < *Expansions) {
        PartiallySubstitutedPackIndex = Builder.size() - 1;
        CurrentInstantiationScope->SetPartiallySubstitutedPack(
            Param, Arg.pack_begin(), Arg.pack_size());
      }
    }
  }

  const FunctionProtoType *Proto
    = Function->getType()->getAs<FunctionProtoType>();
  assert(Proto && "Function template does not have a prototype?");

  // Isolate our substituted parameters from our caller.
  LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);

  ExtParameterInfoBuilder ExtParamInfos;

  // Instantiate the types of each of the function parameters given the
  // explicitly-specified template arguments. If the function has a trailing
  // return type, substitute it after the arguments to ensure we substitute
  // in lexical order.
  if (Proto->hasTrailingReturn()) {
    if (SubstParmTypes(Function->getLocation(), Function->parameters(),
                       Proto->getExtParameterInfosOrNull(),
                       MultiLevelTemplateArgumentList(*ExplicitArgumentList),
                       ParamTypes, /*params*/ nullptr, ExtParamInfos))
      return TDK_SubstitutionFailure;
  }

  // Instantiate the return type.
  QualType ResultType;
  {
    // C++11 [expr.prim.general]p3:
    //   If a declaration declares a member function or member function
    //   template of a class X, the expression this is a prvalue of type
    //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
    //   and the end of the function-definition, member-declarator, or
    //   declarator.
    Qualifiers ThisTypeQuals;
    CXXRecordDecl *ThisContext = nullptr;
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
      ThisContext = Method->getParent();
      ThisTypeQuals = Method->getMethodQualifiers();
    }

    CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
                               getLangOpts().CPlusPlus11);

    ResultType =
        SubstType(Proto->getReturnType(),
                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
                  Function->getTypeSpecStartLoc(), Function->getDeclName());
    if (ResultType.isNull() || Trap.hasErrorOccurred())
      return TDK_SubstitutionFailure;
    // CUDA: Kernel function must have 'void' return type.
    if (getLangOpts().CUDA)
      if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
        Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
            << Function->getType() << Function->getSourceRange();
        return TDK_SubstitutionFailure;
      }
  }

  // Instantiate the types of each of the function parameters given the
  // explicitly-specified template arguments if we didn't do so earlier.
  if (!Proto->hasTrailingReturn() &&
      SubstParmTypes(Function->getLocation(), Function->parameters(),
                     Proto->getExtParameterInfosOrNull(),
                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
                     ParamTypes, /*params*/ nullptr, ExtParamInfos))
    return TDK_SubstitutionFailure;

  if (FunctionType) {
    auto EPI = Proto->getExtProtoInfo();
    EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());

    // In C++1z onwards, exception specifications are part of the function type,
    // so substitution into the type must also substitute into the exception
    // specification.
    SmallVector<QualType, 4> ExceptionStorage;
    if (getLangOpts().CPlusPlus17 &&
        SubstExceptionSpec(
            Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage,
            MultiLevelTemplateArgumentList(*ExplicitArgumentList)))
      return TDK_SubstitutionFailure;

    *FunctionType = BuildFunctionType(ResultType, ParamTypes,
                                      Function->getLocation(),
                                      Function->getDeclName(),
                                      EPI);
    if (FunctionType->isNull() || Trap.hasErrorOccurred())
      return TDK_SubstitutionFailure;
  }

  // C++ [temp.arg.explicit]p2:
  //   Trailing template arguments that can be deduced (14.8.2) may be
  //   omitted from the list of explicit template-arguments. If all of the
  //   template arguments can be deduced, they may all be omitted; in this
  //   case, the empty template argument list <> itself may also be omitted.
  //
  // Take all of the explicitly-specified arguments and put them into
  // the set of deduced template arguments. The partially-substituted
  // parameter pack, however, will be set to NULL since the deduction
  // mechanism handles the partially-substituted argument pack directly.
  Deduced.reserve(TemplateParams->size());
  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
    if (I == PartiallySubstitutedPackIndex)
      Deduced.push_back(DeducedTemplateArgument());
    else
      Deduced.push_back(Arg);
  }

  return TDK_Success;
}

/// Check whether the deduced argument type for a call to a function
/// template matches the actual argument type per C++ [temp.deduct.call]p4.
static Sema::TemplateDeductionResult
CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
                              Sema::OriginalCallArg OriginalArg,
                              QualType DeducedA) {
  ASTContext &Context = S.Context;

  auto Failed = [&]() -> Sema::TemplateDeductionResult {
    Info.FirstArg = TemplateArgument(DeducedA);
    Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
    Info.CallArgIndex = OriginalArg.ArgIdx;
    return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested
                                       : Sema::TDK_DeducedMismatch;
  };

  QualType A = OriginalArg.OriginalArgType;
  QualType OriginalParamType = OriginalArg.OriginalParamType;

  // Check for type equality (top-level cv-qualifiers are ignored).
  if (Context.hasSameUnqualifiedType(A, DeducedA))
    return Sema::TDK_Success;

  // Strip off references on the argument types; they aren't needed for
  // the following checks.
  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
    DeducedA = DeducedARef->getPointeeType();
  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
    A = ARef->getPointeeType();

  // C++ [temp.deduct.call]p4:
  //   [...] However, there are three cases that allow a difference:
  //     - If the original P is a reference type, the deduced A (i.e., the
  //       type referred to by the reference) can be more cv-qualified than
  //       the transformed A.
  if (const ReferenceType *OriginalParamRef
      = OriginalParamType->getAs<ReferenceType>()) {
    // We don't want to keep the reference around any more.
    OriginalParamType = OriginalParamRef->getPointeeType();

    // FIXME: Resolve core issue (no number yet): if the original P is a
    // reference type and the transformed A is function type "noexcept F",
    // the deduced A can be F.
    QualType Tmp;
    if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
      return Sema::TDK_Success;

    Qualifiers AQuals = A.getQualifiers();
    Qualifiers DeducedAQuals = DeducedA.getQualifiers();

    // Under Objective-C++ ARC, the deduced type may have implicitly
    // been given strong or (when dealing with a const reference)
    // unsafe_unretained lifetime. If so, update the original
    // qualifiers to include this lifetime.
    if (S.getLangOpts().ObjCAutoRefCount &&
        ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
          AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
         (DeducedAQuals.hasConst() &&
          DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
      AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
    }

    if (AQuals == DeducedAQuals) {
      // Qualifiers match; there's nothing to do.
    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
      return Failed();
    } else {
      // Qualifiers are compatible, so have the argument type adopt the
      // deduced argument type's qualifiers as if we had performed the
      // qualification conversion.
      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
    }
  }

  //    - The transformed A can be another pointer or pointer to member
  //      type that can be converted to the deduced A via a function pointer
  //      conversion and/or a qualification conversion.
  //
  // Also allow conversions which merely strip __attribute__((noreturn)) from
  // function types (recursively).
  bool ObjCLifetimeConversion = false;
  QualType ResultTy;
  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
      (S.IsQualificationConversion(A, DeducedA, false,
                                   ObjCLifetimeConversion) ||
       S.IsFunctionConversion(A, DeducedA, ResultTy)))
    return Sema::TDK_Success;

  //    - If P is a class and P has the form simple-template-id, then the
  //      transformed A can be a derived class of the deduced A. [...]
  //     [...] Likewise, if P is a pointer to a class of the form
  //      simple-template-id, the transformed A can be a pointer to a
  //      derived class pointed to by the deduced A.
  if (const PointerType *OriginalParamPtr
      = OriginalParamType->getAs<PointerType>()) {
    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
      if (const PointerType *APtr = A->getAs<PointerType>()) {
        if (A->getPointeeType()->isRecordType()) {
          OriginalParamType = OriginalParamPtr->getPointeeType();
          DeducedA = DeducedAPtr->getPointeeType();
          A = APtr->getPointeeType();
        }
      }
    }
  }

  if (Context.hasSameUnqualifiedType(A, DeducedA))
    return Sema::TDK_Success;

  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
      S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
    return Sema::TDK_Success;

  return Failed();
}

/// Find the pack index for a particular parameter index in an instantiation of
/// a function template with specific arguments.
///
/// \return The pack index for whichever pack produced this parameter, or -1
///         if this was not produced by a parameter. Intended to be used as the
///         ArgumentPackSubstitutionIndex for further substitutions.
// FIXME: We should track this in OriginalCallArgs so we don't need to
// reconstruct it here.
static unsigned getPackIndexForParam(Sema &S,
                                     FunctionTemplateDecl *FunctionTemplate,
                                     const MultiLevelTemplateArgumentList &Args,
                                     unsigned ParamIdx) {
  unsigned Idx = 0;
  for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
    if (PD->isParameterPack()) {
      unsigned NumExpansions =
          S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1);
      if (Idx + NumExpansions > ParamIdx)
        return ParamIdx - Idx;
      Idx += NumExpansions;
    } else {
      if (Idx == ParamIdx)
        return -1; // Not a pack expansion
      ++Idx;
    }
  }

  llvm_unreachable("parameter index would not be produced from template");
}

/// Finish template argument deduction for a function template,
/// checking the deduced template arguments for completeness and forming
/// the function template specialization.
///
/// \param OriginalCallArgs If non-NULL, the original call arguments against
/// which the deduced argument types should be compared.
Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
    FunctionTemplateDecl *FunctionTemplate,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
    TemplateDeductionInfo &Info,
    SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
    bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) {
  // Unevaluated SFINAE context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);
  SFINAETrap Trap(*this);

  // Enter a new template instantiation context while we instantiate the
  // actual function declaration.
  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
  InstantiatingTemplate Inst(
      *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
      CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
  if (Inst.isInvalid())
    return TDK_InstantiationDepth;

  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());

  // C++ [temp.deduct.type]p2:
  //   [...] or if any template argument remains neither deduced nor
  //   explicitly specified, template argument deduction fails.
  SmallVector<TemplateArgument, 4> Builder;
  if (auto Result = ConvertDeducedTemplateArguments(
          *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder,
          CurrentInstantiationScope, NumExplicitlySpecified,
          PartialOverloading))
    return Result;

  // C++ [temp.deduct.call]p10: [DR1391]
  //   If deduction succeeds for all parameters that contain
  //   template-parameters that participate in template argument deduction,
  //   and all template arguments are explicitly specified, deduced, or
  //   obtained from default template arguments, remaining parameters are then
  //   compared with the corresponding arguments. For each remaining parameter
  //   P with a type that was non-dependent before substitution of any
  //   explicitly-specified template arguments, if the corresponding argument
  //   A cannot be implicitly converted to P, deduction fails.
  if (CheckNonDependent())
    return TDK_NonDependentConversionFailure;

  // Form the template argument list from the deduced template arguments.
  TemplateArgumentList *DeducedArgumentList
    = TemplateArgumentList::CreateCopy(Context, Builder);
  Info.reset(DeducedArgumentList);

  // Substitute the deduced template arguments into the function template
  // declaration to produce the function template specialization.
  DeclContext *Owner = FunctionTemplate->getDeclContext();
  if (FunctionTemplate->getFriendObjectKind())
    Owner = FunctionTemplate->getLexicalDeclContext();
  MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList);
  Specialization = cast_or_null<FunctionDecl>(
      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs));
  if (!Specialization || Specialization->isInvalidDecl())
    return TDK_SubstitutionFailure;

  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
         FunctionTemplate->getCanonicalDecl());

  // If the template argument list is owned by the function template
  // specialization, release it.
  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
      !Trap.hasErrorOccurred())
    Info.take();

  // There may have been an error that did not prevent us from constructing a
  // declaration. Mark the declaration invalid and return with a substitution
  // failure.
  if (Trap.hasErrorOccurred()) {
    Specialization->setInvalidDecl(true);
    return TDK_SubstitutionFailure;
  }

  // C++2a [temp.deduct]p5
  //   [...] When all template arguments have been deduced [...] all uses of
  //   template parameters [...] are replaced with the corresponding deduced
  //   or default argument values.
  //   [...] If the function template has associated constraints
  //   ([temp.constr.decl]), those constraints are checked for satisfaction
  //   ([temp.constr.constr]). If the constraints are not satisfied, type
  //   deduction fails.
  if (!PartialOverloading ||
      (Builder.size() == FunctionTemplate->getTemplateParameters()->size())) {
    if (CheckInstantiatedFunctionTemplateConstraints(Info.getLocation(),
            Specialization, Builder, Info.AssociatedConstraintsSatisfaction))
      return TDK_MiscellaneousDeductionFailure;

    if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder));
      return TDK_ConstraintsNotSatisfied;
    }
  }

  if (OriginalCallArgs) {
    // C++ [temp.deduct.call]p4:
    //   In general, the deduction process attempts to find template argument
    //   values that will make the deduced A identical to A (after the type A
    //   is transformed as described above). [...]
    llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];

      auto ParamIdx = OriginalArg.ArgIdx;
      if (ParamIdx >= Specialization->getNumParams())
        // FIXME: This presumably means a pack ended up smaller than we
        // expected while deducing. Should this not result in deduction
        // failure? Can it even happen?
        continue;

      QualType DeducedA;
      if (!OriginalArg.DecomposedParam) {
        // P is one of the function parameters, just look up its substituted
        // type.
        DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
      } else {
        // P is a decomposed element of a parameter corresponding to a
        // braced-init-list argument. Substitute back into P to find the
        // deduced A.
        QualType &CacheEntry =
            DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
        if (CacheEntry.isNull()) {
          ArgumentPackSubstitutionIndexRAII PackIndex(
              *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
                                          ParamIdx));
          CacheEntry =
              SubstType(OriginalArg.OriginalParamType, SubstArgs,
                        Specialization->getTypeSpecStartLoc(),
                        Specialization->getDeclName());
        }
        DeducedA = CacheEntry;
      }

      if (auto TDK =
              CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA))
        return TDK;
    }
  }

  // If we suppressed any diagnostics while performing template argument
  // deduction, and if we haven't already instantiated this declaration,
  // keep track of these diagnostics. They'll be emitted if this specialization
  // is actually used.
  if (Info.diag_begin() != Info.diag_end()) {
    SuppressedDiagnosticsMap::iterator
      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
    if (Pos == SuppressedDiagnostics.end())
        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
          .append(Info.diag_begin(), Info.diag_end());
  }

  return TDK_Success;
}

/// Gets the type of a function for template-argument-deducton
/// purposes when it's considered as part of an overload set.
static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
                                  FunctionDecl *Fn) {
  // We may need to deduce the return type of the function now.
  if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
      S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
    return {};

  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
    if (Method->isInstance()) {
      // An instance method that's referenced in a form that doesn't
      // look like a member pointer is just invalid.
      if (!R.HasFormOfMemberPointer)
        return {};

      return S.Context.getMemberPointerType(Fn->getType(),
               S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
    }

  if (!R.IsAddressOfOperand) return Fn->getType();
  return S.Context.getPointerType(Fn->getType());
}

/// Apply the deduction rules for overload sets.
///
/// \return the null type if this argument should be treated as an
/// undeduced context
static QualType
ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
                            Expr *Arg, QualType ParamType,
                            bool ParamWasReference) {

  OverloadExpr::FindResult R = OverloadExpr::find(Arg);

  OverloadExpr *Ovl = R.Expression;

  // C++0x [temp.deduct.call]p4
  unsigned TDF = 0;
  if (ParamWasReference)
    TDF |= TDF_ParamWithReferenceType;
  if (R.IsAddressOfOperand)
    TDF |= TDF_IgnoreQualifiers;

  // C++0x [temp.deduct.call]p6:
  //   When P is a function type, pointer to function type, or pointer
  //   to member function type:

  if (!ParamType->isFunctionType() &&
      !ParamType->isFunctionPointerType() &&
      !ParamType->isMemberFunctionPointerType()) {
    if (Ovl->hasExplicitTemplateArgs()) {
      // But we can still look for an explicit specialization.
      if (FunctionDecl *ExplicitSpec
            = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
        return GetTypeOfFunction(S, R, ExplicitSpec);
    }

    DeclAccessPair DAP;
    if (FunctionDecl *Viable =
            S.resolveAddressOfSingleOverloadCandidate(Arg, DAP))
      return GetTypeOfFunction(S, R, Viable);

    return {};
  }

  // Gather the explicit template arguments, if any.
  TemplateArgumentListInfo ExplicitTemplateArgs;
  if (Ovl->hasExplicitTemplateArgs())
    Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
  QualType Match;
  for (UnresolvedSetIterator I = Ovl->decls_begin(),
         E = Ovl->decls_end(); I != E; ++I) {
    NamedDecl *D = (*I)->getUnderlyingDecl();

    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
      //   - If the argument is an overload set containing one or more
      //     function templates, the parameter is treated as a
      //     non-deduced context.
      if (!Ovl->hasExplicitTemplateArgs())
        return {};

      // Otherwise, see if we can resolve a function type
      FunctionDecl *Specialization = nullptr;
      TemplateDeductionInfo Info(Ovl->getNameLoc());
      if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
                                    Specialization, Info))
        continue;

      D = Specialization;
    }

    FunctionDecl *Fn = cast<FunctionDecl>(D);
    QualType ArgType = GetTypeOfFunction(S, R, Fn);
    if (ArgType.isNull()) continue;

    // Function-to-pointer conversion.
    if (!ParamWasReference && ParamType->isPointerType() &&
        ArgType->isFunctionType())
      ArgType = S.Context.getPointerType(ArgType);

    //   - If the argument is an overload set (not containing function
    //     templates), trial argument deduction is attempted using each
    //     of the members of the set. If deduction succeeds for only one
    //     of the overload set members, that member is used as the
    //     argument value for the deduction. If deduction succeeds for
    //     more than one member of the overload set the parameter is
    //     treated as a non-deduced context.

    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
    //   Type deduction is done independently for each P/A pair, and
    //   the deduced template argument values are then combined.
    // So we do not reject deductions which were made elsewhere.
    SmallVector<DeducedTemplateArgument, 8>
      Deduced(TemplateParams->size());
    TemplateDeductionInfo Info(Ovl->getNameLoc());
    Sema::TemplateDeductionResult Result
      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
                                           ArgType, Info, Deduced, TDF);
    if (Result) continue;
    if (!Match.isNull())
      return {};
    Match = ArgType;
  }

  return Match;
}

/// Perform the adjustments to the parameter and argument types
/// described in C++ [temp.deduct.call].
///
/// \returns true if the caller should not attempt to perform any template
/// argument deduction based on this P/A pair because the argument is an
/// overloaded function set that could not be resolved.
static bool AdjustFunctionParmAndArgTypesForDeduction(
    Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
    QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) {
  // C++0x [temp.deduct.call]p3:
  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
  //   are ignored for type deduction.
  if (ParamType.hasQualifiers())
    ParamType = ParamType.getUnqualifiedType();

  //   [...] If P is a reference type, the type referred to by P is
  //   used for type deduction.
  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
  if (ParamRefType)
    ParamType = ParamRefType->getPointeeType();

  // Overload sets usually make this parameter an undeduced context,
  // but there are sometimes special circumstances.  Typically
  // involving a template-id-expr.
  if (ArgType == S.Context.OverloadTy) {
    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
                                          Arg, ParamType,
                                          ParamRefType != nullptr);
    if (ArgType.isNull())
      return true;
  }

  if (ParamRefType) {
    // If the argument has incomplete array type, try to complete its type.
    if (ArgType->isIncompleteArrayType()) {
      S.completeExprArrayBound(Arg);
      ArgType = Arg->getType();
    }

    // C++1z [temp.deduct.call]p3:
    //   If P is a forwarding reference and the argument is an lvalue, the type
    //   "lvalue reference to A" is used in place of A for type deduction.
    if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
        Arg->isLValue())
      ArgType = S.Context.getLValueReferenceType(ArgType);
  } else {
    // C++ [temp.deduct.call]p2:
    //   If P is not a reference type:
    //   - If A is an array type, the pointer type produced by the
    //     array-to-pointer standard conversion (4.2) is used in place of
    //     A for type deduction; otherwise,
    if (ArgType->isArrayType())
      ArgType = S.Context.getArrayDecayedType(ArgType);
    //   - If A is a function type, the pointer type produced by the
    //     function-to-pointer standard conversion (4.3) is used in place
    //     of A for type deduction; otherwise,
    else if (ArgType->isFunctionType())
      ArgType = S.Context.getPointerType(ArgType);
    else {
      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
      //   type are ignored for type deduction.
      ArgType = ArgType.getUnqualifiedType();
    }
  }

  // C++0x [temp.deduct.call]p4:
  //   In general, the deduction process attempts to find template argument
  //   values that will make the deduced A identical to A (after the type A
  //   is transformed as described above). [...]
  TDF = TDF_SkipNonDependent;

  //     - If the original P is a reference type, the deduced A (i.e., the
  //       type referred to by the reference) can be more cv-qualified than
  //       the transformed A.
  if (ParamRefType)
    TDF |= TDF_ParamWithReferenceType;
  //     - The transformed A can be another pointer or pointer to member
  //       type that can be converted to the deduced A via a qualification
  //       conversion (4.4).
  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
      ArgType->isObjCObjectPointerType())
    TDF |= TDF_IgnoreQualifiers;
  //     - If P is a class and P has the form simple-template-id, then the
  //       transformed A can be a derived class of the deduced A. Likewise,
  //       if P is a pointer to a class of the form simple-template-id, the
  //       transformed A can be a pointer to a derived class pointed to by
  //       the deduced A.
  if (isSimpleTemplateIdType(ParamType) ||
      (isa<PointerType>(ParamType) &&
       isSimpleTemplateIdType(
                              ParamType->getAs<PointerType>()->getPointeeType())))
    TDF |= TDF_DerivedClass;

  return false;
}

static bool
hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
                               QualType T);

static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
    Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
    QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
    bool DecomposedParam, unsigned ArgIdx, unsigned TDF);

/// Attempt template argument deduction from an initializer list
///        deemed to be an argument in a function call.
static Sema::TemplateDeductionResult DeduceFromInitializerList(
    Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
    InitListExpr *ILE, TemplateDeductionInfo &Info,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
    unsigned TDF) {
  // C++ [temp.deduct.call]p1: (CWG 1591)
  //   If removing references and cv-qualifiers from P gives
  //   std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
  //   a non-empty initializer list, then deduction is performed instead for
  //   each element of the initializer list, taking P0 as a function template
  //   parameter type and the initializer element as its argument
  //
  // We've already removed references and cv-qualifiers here.
  if (!ILE->getNumInits())
    return Sema::TDK_Success;

  QualType ElTy;
  auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
  if (ArrTy)
    ElTy = ArrTy->getElementType();
  else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
    //   Otherwise, an initializer list argument causes the parameter to be
    //   considered a non-deduced context
    return Sema::TDK_Success;
  }

  // Resolving a core issue: a braced-init-list containing any designators is
  // a non-deduced context.
  for (Expr *E : ILE->inits())
    if (isa<DesignatedInitExpr>(E))
      return Sema::TDK_Success;

  // Deduction only needs to be done for dependent types.
  if (ElTy->isDependentType()) {
    for (Expr *E : ILE->inits()) {
      if (auto Result = DeduceTemplateArgumentsFromCallArgument(
              S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true,
              ArgIdx, TDF))
        return Result;
    }
  }

  //   in the P0[N] case, if N is a non-type template parameter, N is deduced
  //   from the length of the initializer list.
  if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
    // Determine the array bound is something we can deduce.
    if (NonTypeTemplateParmDecl *NTTP =
            getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
      // We can perform template argument deduction for the given non-type
      // template parameter.
      // C++ [temp.deduct.type]p13:
      //   The type of N in the type T[N] is std::size_t.
      QualType T = S.Context.getSizeType();
      llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits());
      if (auto Result = DeduceNonTypeTemplateArgument(
              S, TemplateParams, NTTP, llvm::APSInt(Size), T,
              /*ArrayBound=*/true, Info, Deduced))
        return Result;
    }
  }

  return Sema::TDK_Success;
}

/// Perform template argument deduction per [temp.deduct.call] for a
///        single parameter / argument pair.
static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
    Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
    QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
    bool DecomposedParam, unsigned ArgIdx, unsigned TDF) {
  QualType ArgType = Arg->getType();
  QualType OrigParamType = ParamType;

  //   If P is a reference type [...]
  //   If P is a cv-qualified type [...]
  if (AdjustFunctionParmAndArgTypesForDeduction(
          S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF))
    return Sema::TDK_Success;

  //   If [...] the argument is a non-empty initializer list [...]
  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg))
    return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
                                     Deduced, OriginalCallArgs, ArgIdx, TDF);

  //   [...] the deduction process attempts to find template argument values
  //   that will make the deduced A identical to A
  //
  // Keep track of the argument type and corresponding parameter index,
  // so we can check for compatibility between the deduced A and A.
  OriginalCallArgs.push_back(
      Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
  return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
                                            ArgType, Info, Deduced, TDF);
}

/// Perform template argument deduction from a function call
/// (C++ [temp.deduct.call]).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicit template arguments provided
/// for this call.
///
/// \param Args the function call arguments
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \param CheckNonDependent A callback to invoke to check conversions for
/// non-dependent parameters, between deduction and substitution, per DR1391.
/// If this returns true, substitution will be skipped and we return
/// TDK_NonDependentConversionFailure. The callback is passed the parameter
/// types (after substituting explicit template arguments).
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
    FunctionTemplateDecl *FunctionTemplate,
    TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
    FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
    bool PartialOverloading,
    llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
  if (FunctionTemplate->isInvalidDecl())
    return TDK_Invalid;

  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
  unsigned NumParams = Function->getNumParams();

  unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);

  // C++ [temp.deduct.call]p1:
  //   Template argument deduction is done by comparing each function template
  //   parameter type (call it P) with the type of the corresponding argument
  //   of the call (call it A) as described below.
  if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
    return TDK_TooFewArguments;
  else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
    const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
    if (Proto->isTemplateVariadic())
      /* Do nothing */;
    else if (!Proto->isVariadic())
      return TDK_TooManyArguments;
  }

  // The types of the parameters from which we will perform template argument
  // deduction.
  LocalInstantiationScope InstScope(*this);
  TemplateParameterList *TemplateParams
    = FunctionTemplate->getTemplateParameters();
  SmallVector<DeducedTemplateArgument, 4> Deduced;
  SmallVector<QualType, 8> ParamTypes;
  unsigned NumExplicitlySpecified = 0;
  if (ExplicitTemplateArgs) {
    TemplateDeductionResult Result =
      SubstituteExplicitTemplateArguments(FunctionTemplate,
                                          *ExplicitTemplateArgs,
                                          Deduced,
                                          ParamTypes,
                                          nullptr,
                                          Info);
    if (Result)
      return Result;

    NumExplicitlySpecified = Deduced.size();
  } else {
    // Just fill in the parameter types from the function declaration.
    for (unsigned I = 0; I != NumParams; ++I)
      ParamTypes.push_back(Function->getParamDecl(I)->getType());
  }

  SmallVector<OriginalCallArg, 8> OriginalCallArgs;

  // Deduce an argument of type ParamType from an expression with index ArgIdx.
  auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) {
    // C++ [demp.deduct.call]p1: (DR1391)
    //   Template argument deduction is done by comparing each function template
    //   parameter that contains template-parameters that participate in
    //   template argument deduction ...
    if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
      return Sema::TDK_Success;

    //   ... with the type of the corresponding argument
    return DeduceTemplateArgumentsFromCallArgument(
        *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced,
        OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0);
  };

  // Deduce template arguments from the function parameters.
  Deduced.resize(TemplateParams->size());
  SmallVector<QualType, 8> ParamTypesForArgChecking;
  for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
       ParamIdx != NumParamTypes; ++ParamIdx) {
    QualType ParamType = ParamTypes[ParamIdx];

    const PackExpansionType *ParamExpansion =
        dyn_cast<PackExpansionType>(ParamType);
    if (!ParamExpansion) {
      // Simple case: matching a function parameter to a function argument.
      if (ArgIdx >= Args.size())
        break;

      ParamTypesForArgChecking.push_back(ParamType);
      if (auto Result = DeduceCallArgument(ParamType, ArgIdx++))
        return Result;

      continue;
    }

    QualType ParamPattern = ParamExpansion->getPattern();
    PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
                                 ParamPattern);

    // C++0x [temp.deduct.call]p1:
    //   For a function parameter pack that occurs at the end of the
    //   parameter-declaration-list, the type A of each remaining argument of
    //   the call is compared with the type P of the declarator-id of the
    //   function parameter pack. Each comparison deduces template arguments
    //   for subsequent positions in the template parameter packs expanded by
    //   the function parameter pack. When a function parameter pack appears
    //   in a non-deduced context [not at the end of the list], the type of
    //   that parameter pack is never deduced.
    //
    // FIXME: The above rule allows the size of the parameter pack to change
    // after we skip it (in the non-deduced case). That makes no sense, so
    // we instead notionally deduce the pack against N arguments, where N is
    // the length of the explicitly-specified pack if it's expanded by the
    // parameter pack and 0 otherwise, and we treat each deduction as a
    // non-deduced context.
    if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) {
      for (; ArgIdx < Args.size() && PackScope.hasNextElement();
           PackScope.nextPackElement(), ++ArgIdx) {
        ParamTypesForArgChecking.push_back(ParamPattern);
        if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx))
          return Result;
      }
    } else {
      // If the parameter type contains an explicitly-specified pack that we
      // could not expand, skip the number of parameters notionally created
      // by the expansion.
      Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions();
      if (NumExpansions && !PackScope.isPartiallyExpanded()) {
        for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
             ++I, ++ArgIdx) {
          ParamTypesForArgChecking.push_back(ParamPattern);
          // FIXME: Should we add OriginalCallArgs for these? What if the
          // corresponding argument is a list?
          PackScope.nextPackElement();
        }
      }
    }

    // Build argument packs for each of the parameter packs expanded by this
    // pack expansion.
    if (auto Result = PackScope.finish())
      return Result;
  }

  // Capture the context in which the function call is made. This is the context
  // that is needed when the accessibility of template arguments is checked.
  DeclContext *CallingCtx = CurContext;

  return FinishTemplateArgumentDeduction(
      FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
      &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() {
        ContextRAII SavedContext(*this, CallingCtx);
        return CheckNonDependent(ParamTypesForArgChecking);
      });
}

QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
                                   QualType FunctionType,
                                   bool AdjustExceptionSpec) {
  if (ArgFunctionType.isNull())
    return ArgFunctionType;

  const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
  const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
  FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
  bool Rebuild = false;

  CallingConv CC = FunctionTypeP->getCallConv();
  if (EPI.ExtInfo.getCC() != CC) {
    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
    Rebuild = true;
  }

  bool NoReturn = FunctionTypeP->getNoReturnAttr();
  if (EPI.ExtInfo.getNoReturn() != NoReturn) {
    EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
    Rebuild = true;
  }

  if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
                              ArgFunctionTypeP->hasExceptionSpec())) {
    EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
    Rebuild = true;
  }

  if (!Rebuild)
    return ArgFunctionType;

  return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
                                 ArgFunctionTypeP->getParamTypes(), EPI);
}

/// Deduce template arguments when taking the address of a function
/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
/// a template.
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param ArgFunctionType the function type that will be used as the
/// "argument" type (A) when performing template argument deduction from the
/// function template's function type. This type may be NULL, if there is no
/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
/// the address of a function template per [temp.deduct.funcaddr] and
/// [over.over]. If \c false, we are looking up a function template
/// specialization based on its signature, per [temp.deduct.decl].
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
    FunctionTemplateDecl *FunctionTemplate,
    TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
    FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
    bool IsAddressOfFunction) {
  if (FunctionTemplate->isInvalidDecl())
    return TDK_Invalid;

  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
  TemplateParameterList *TemplateParams
    = FunctionTemplate->getTemplateParameters();
  QualType FunctionType = Function->getType();

  // Substitute any explicit template arguments.
  LocalInstantiationScope InstScope(*this);
  SmallVector<DeducedTemplateArgument, 4> Deduced;
  unsigned NumExplicitlySpecified = 0;
  SmallVector<QualType, 4> ParamTypes;
  if (ExplicitTemplateArgs) {
    if (TemplateDeductionResult Result
          = SubstituteExplicitTemplateArguments(FunctionTemplate,
                                                *ExplicitTemplateArgs,
                                                Deduced, ParamTypes,
                                                &FunctionType, Info))
      return Result;

    NumExplicitlySpecified = Deduced.size();
  }

  // When taking the address of a function, we require convertibility of
  // the resulting function type. Otherwise, we allow arbitrary mismatches
  // of calling convention and noreturn.
  if (!IsAddressOfFunction)
    ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
                                          /*AdjustExceptionSpec*/false);

  // Unevaluated SFINAE context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);
  SFINAETrap Trap(*this);

  Deduced.resize(TemplateParams->size());

  // If the function has a deduced return type, substitute it for a dependent
  // type so that we treat it as a non-deduced context in what follows. If we
  // are looking up by signature, the signature type should also have a deduced
  // return type, which we instead expect to exactly match.
  bool HasDeducedReturnType = false;
  if (getLangOpts().CPlusPlus14 && IsAddressOfFunction &&
      Function->getReturnType()->getContainedAutoType()) {
    FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
    HasDeducedReturnType = true;
  }

  if (!ArgFunctionType.isNull()) {
    unsigned TDF =
        TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
    // Deduce template arguments from the function type.
    if (TemplateDeductionResult Result
          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
                                               FunctionType, ArgFunctionType,
                                               Info, Deduced, TDF))
      return Result;
  }

  if (TemplateDeductionResult Result
        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
                                          NumExplicitlySpecified,
                                          Specialization, Info))
    return Result;

  // If the function has a deduced return type, deduce it now, so we can check
  // that the deduced function type matches the requested type.
  if (HasDeducedReturnType &&
      Specialization->getReturnType()->isUndeducedType() &&
      DeduceReturnType(Specialization, Info.getLocation(), false))
    return TDK_MiscellaneousDeductionFailure;

  // If the function has a dependent exception specification, resolve it now,
  // so we can check that the exception specification matches.
  auto *SpecializationFPT =
      Specialization->getType()->castAs<FunctionProtoType>();
  if (getLangOpts().CPlusPlus17 &&
      isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
      !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT))
    return TDK_MiscellaneousDeductionFailure;

  // Adjust the exception specification of the argument to match the
  // substituted and resolved type we just formed. (Calling convention and
  // noreturn can't be dependent, so we don't actually need this for them
  // right now.)
  QualType SpecializationType = Specialization->getType();
  if (!IsAddressOfFunction)
    ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
                                          /*AdjustExceptionSpec*/true);

  // If the requested function type does not match the actual type of the
  // specialization with respect to arguments of compatible pointer to function
  // types, template argument deduction fails.
  if (!ArgFunctionType.isNull()) {
    if (IsAddressOfFunction &&
        !isSameOrCompatibleFunctionType(
            Context.getCanonicalType(SpecializationType),
            Context.getCanonicalType(ArgFunctionType)))
      return TDK_MiscellaneousDeductionFailure;

    if (!IsAddressOfFunction &&
        !Context.hasSameType(SpecializationType, ArgFunctionType))
      return TDK_MiscellaneousDeductionFailure;
  }

  return TDK_Success;
}

/// Deduce template arguments for a templated conversion
/// function (C++ [temp.deduct.conv]) and, if successful, produce a
/// conversion function template specialization.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
                              QualType ToType,
                              CXXConversionDecl *&Specialization,
                              TemplateDeductionInfo &Info) {
  if (ConversionTemplate->isInvalidDecl())
    return TDK_Invalid;

  CXXConversionDecl *ConversionGeneric
    = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());

  QualType FromType = ConversionGeneric->getConversionType();

  // Canonicalize the types for deduction.
  QualType P = Context.getCanonicalType(FromType);
  QualType A = Context.getCanonicalType(ToType);

  // C++0x [temp.deduct.conv]p2:
  //   If P is a reference type, the type referred to by P is used for
  //   type deduction.
  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
    P = PRef->getPointeeType();

  // C++0x [temp.deduct.conv]p4:
  //   [...] If A is a reference type, the type referred to by A is used
  //   for type deduction.
  if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
    A = ARef->getPointeeType();
    // We work around a defect in the standard here: cv-qualifiers are also
    // removed from P and A in this case, unless P was a reference type. This
    // seems to mostly match what other compilers are doing.
    if (!FromType->getAs<ReferenceType>()) {
      A = A.getUnqualifiedType();
      P = P.getUnqualifiedType();
    }

  // C++ [temp.deduct.conv]p3:
  //
  //   If A is not a reference type:
  } else {
    assert(!A->isReferenceType() && "Reference types were handled above");

    //   - If P is an array type, the pointer type produced by the
    //     array-to-pointer standard conversion (4.2) is used in place
    //     of P for type deduction; otherwise,
    if (P->isArrayType())
      P = Context.getArrayDecayedType(P);
    //   - If P is a function type, the pointer type produced by the
    //     function-to-pointer standard conversion (4.3) is used in
    //     place of P for type deduction; otherwise,
    else if (P->isFunctionType())
      P = Context.getPointerType(P);
    //   - If P is a cv-qualified type, the top level cv-qualifiers of
    //     P's type are ignored for type deduction.
    else
      P = P.getUnqualifiedType();

    // C++0x [temp.deduct.conv]p4:
    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
    //   type are ignored for type deduction. If A is a reference type, the type
    //   referred to by A is used for type deduction.
    A = A.getUnqualifiedType();
  }

  // Unevaluated SFINAE context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);
  SFINAETrap Trap(*this);

  // C++ [temp.deduct.conv]p1:
  //   Template argument deduction is done by comparing the return
  //   type of the template conversion function (call it P) with the
  //   type that is required as the result of the conversion (call it
  //   A) as described in 14.8.2.4.
  TemplateParameterList *TemplateParams
    = ConversionTemplate->getTemplateParameters();
  SmallVector<DeducedTemplateArgument, 4> Deduced;
  Deduced.resize(TemplateParams->size());

  // C++0x [temp.deduct.conv]p4:
  //   In general, the deduction process attempts to find template
  //   argument values that will make the deduced A identical to
  //   A. However, there are two cases that allow a difference:
  unsigned TDF = 0;
  //     - If the original A is a reference type, A can be more
  //       cv-qualified than the deduced A (i.e., the type referred to
  //       by the reference)
  if (ToType->isReferenceType())
    TDF |= TDF_ArgWithReferenceType;
  //     - The deduced A can be another pointer or pointer to member
  //       type that can be converted to A via a qualification
  //       conversion.
  //
  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
  // both P and A are pointers or member pointers. In this case, we
  // just ignore cv-qualifiers completely).
  if ((P->isPointerType() && A->isPointerType()) ||
      (P->isMemberPointerType() && A->isMemberPointerType()))
    TDF |= TDF_IgnoreQualifiers;
  if (TemplateDeductionResult Result
        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
                                             P, A, Info, Deduced, TDF))
    return Result;

  // Create an Instantiation Scope for finalizing the operator.
  LocalInstantiationScope InstScope(*this);
  // Finish template argument deduction.
  FunctionDecl *ConversionSpecialized = nullptr;
  TemplateDeductionResult Result
      = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
                                        ConversionSpecialized, Info);
  Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
  return Result;
}

/// Deduce template arguments for a function template when there is
/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param ExplicitTemplateArgs the explicitly-specified template
/// arguments.
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
/// the address of a function template in a context where we do not have a
/// target type, per [over.over]. If \c false, we are looking up a function
/// template specialization based on its signature, which only happens when
/// deducing a function parameter type from an argument that is a template-id
/// naming a function template specialization.
///
/// \returns the result of template argument deduction.
Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
    FunctionTemplateDecl *FunctionTemplate,
    TemplateArgumentListInfo *ExplicitTemplateArgs,
    FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
    bool IsAddressOfFunction) {
  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
                                 QualType(), Specialization, Info,
                                 IsAddressOfFunction);
}

namespace {
  struct DependentAuto { bool IsPack; };

  /// Substitute the 'auto' specifier or deduced template specialization type
  /// specifier within a type for a given replacement type.
  class SubstituteDeducedTypeTransform :
      public TreeTransform<SubstituteDeducedTypeTransform> {
    QualType Replacement;
    bool ReplacementIsPack;
    bool UseTypeSugar;

  public:
    SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
        : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(),
          ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}

    SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
                                   bool UseTypeSugar = true)
        : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
          Replacement(Replacement), ReplacementIsPack(false),
          UseTypeSugar(UseTypeSugar) {}

    QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
      assert(isa<TemplateTypeParmType>(Replacement) &&
             "unexpected unsugared replacement kind");
      QualType Result = Replacement;
      TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
      NewTL.setNameLoc(TL.getNameLoc());
      return Result;
    }

    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
      // If we're building the type pattern to deduce against, don't wrap the
      // substituted type in an AutoType. Certain template deduction rules
      // apply only when a template type parameter appears directly (and not if
      // the parameter is found through desugaring). For instance:
      //   auto &&lref = lvalue;
      // must transform into "rvalue reference to T" not "rvalue reference to
      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
      //
      // FIXME: Is this still necessary?
      if (!UseTypeSugar)
        return TransformDesugared(TLB, TL);

      QualType Result = SemaRef.Context.getAutoType(
          Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
          ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
          TL.getTypePtr()->getTypeConstraintArguments());
      auto NewTL = TLB.push<AutoTypeLoc>(Result);
      NewTL.copy(TL);
      return Result;
    }

    QualType TransformDeducedTemplateSpecializationType(
        TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
      if (!UseTypeSugar)
        return TransformDesugared(TLB, TL);

      QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
          TL.getTypePtr()->getTemplateName(),
          Replacement, Replacement.isNull());
      auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
      NewTL.setNameLoc(TL.getNameLoc());
      return Result;
    }

    ExprResult TransformLambdaExpr(LambdaExpr *E) {
      // Lambdas never need to be transformed.
      return E;
    }

    QualType Apply(TypeLoc TL) {
      // Create some scratch storage for the transformed type locations.
      // FIXME: We're just going to throw this information away. Don't build it.
      TypeLocBuilder TLB;
      TLB.reserve(TL.getFullDataSize());
      return TransformType(TLB, TL);
    }
  };

} // namespace

Sema::DeduceAutoResult
Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result,
                     Optional<unsigned> DependentDeductionDepth,
                     bool IgnoreConstraints) {
  return DeduceAutoType(Type->getTypeLoc(), Init, Result,
                        DependentDeductionDepth, IgnoreConstraints);
}

/// Attempt to produce an informative diagostic explaining why auto deduction
/// failed.
/// \return \c true if diagnosed, \c false if not.
static bool diagnoseAutoDeductionFailure(Sema &S,
                                         Sema::TemplateDeductionResult TDK,
                                         TemplateDeductionInfo &Info,
                                         ArrayRef<SourceRange> Ranges) {
  switch (TDK) {
  case Sema::TDK_Inconsistent: {
    // Inconsistent deduction means we were deducing from an initializer list.
    auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction);
    D << Info.FirstArg << Info.SecondArg;
    for (auto R : Ranges)
      D << R;
    return true;
  }

  // FIXME: Are there other cases for which a custom diagnostic is more useful
  // than the basic "types don't match" diagnostic?

  default:
    return false;
  }
}

static Sema::DeduceAutoResult
CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
                                   AutoTypeLoc TypeLoc, QualType Deduced) {
  ConstraintSatisfaction Satisfaction;
  ConceptDecl *Concept = Type.getTypeConstraintConcept();
  TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
                                        TypeLoc.getRAngleLoc());
  TemplateArgs.addArgument(
      TemplateArgumentLoc(TemplateArgument(Deduced),
                          S.Context.getTrivialTypeSourceInfo(
                              Deduced, TypeLoc.getNameLoc())));
  for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
    TemplateArgs.addArgument(TypeLoc.getArgLoc(I));

  llvm::SmallVector<TemplateArgument, 4> Converted;
  if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs,
                                  /*PartialTemplateArgs=*/false, Converted))
    return Sema::DAR_FailedAlreadyDiagnosed;
  if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()},
                                    Converted, TypeLoc.getLocalSourceRange(),
                                    Satisfaction))
    return Sema::DAR_FailedAlreadyDiagnosed;
  if (!Satisfaction.IsSatisfied) {
    std::string Buf;
    llvm::raw_string_ostream OS(Buf);
    OS << "'" << Concept->getName();
    if (TypeLoc.hasExplicitTemplateArgs()) {
      OS << "<";
      for (const auto &Arg : Type.getTypeConstraintArguments())
        Arg.print(S.getPrintingPolicy(), OS);
      OS << ">";
    }
    OS << "'";
    OS.flush();
    S.Diag(TypeLoc.getConceptNameLoc(),
           diag::err_placeholder_constraints_not_satisfied)
         << Deduced << Buf << TypeLoc.getLocalSourceRange();
    S.DiagnoseUnsatisfiedConstraint(Satisfaction);
    return Sema::DAR_FailedAlreadyDiagnosed;
  }
  return Sema::DAR_Succeeded;
}

/// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
///
/// Note that this is done even if the initializer is dependent. (This is
/// necessary to support partial ordering of templates using 'auto'.)
/// A dependent type will be produced when deducing from a dependent type.
///
/// \param Type the type pattern using the auto type-specifier.
/// \param Init the initializer for the variable whose type is to be deduced.
/// \param Result if type deduction was successful, this will be set to the
///        deduced type.
/// \param DependentDeductionDepth Set if we should permit deduction in
///        dependent cases. This is necessary for template partial ordering with
///        'auto' template parameters. The value specified is the template
///        parameter depth at which we should perform 'auto' deduction.
/// \param IgnoreConstraints Set if we should not fail if the deduced type does
///                          not satisfy the type-constraint in the auto type.
Sema::DeduceAutoResult
Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result,
                     Optional<unsigned> DependentDeductionDepth,
                     bool IgnoreConstraints) {
  if (Init->getType()->isNonOverloadPlaceholderType()) {
    ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
    if (NonPlaceholder.isInvalid())
      return DAR_FailedAlreadyDiagnosed;
    Init = NonPlaceholder.get();
  }

  DependentAuto DependentResult = {
      /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};

  if (!DependentDeductionDepth &&
      (Type.getType()->isDependentType() || Init->isTypeDependent() ||
       Init->containsUnexpandedParameterPack())) {
    Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
    assert(!Result.isNull() && "substituting DependentTy can't fail");
    return DAR_Succeeded;
  }

  // Find the depth of template parameter to synthesize.
  unsigned Depth = DependentDeductionDepth.getValueOr(0);

  // If this is a 'decltype(auto)' specifier, do the decltype dance.
  // Since 'decltype(auto)' can only occur at the top of the type, we
  // don't need to go digging for it.
  if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
    if (AT->isDecltypeAuto()) {
      if (isa<InitListExpr>(Init)) {
        Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
        return DAR_FailedAlreadyDiagnosed;
      }

      ExprResult ER = CheckPlaceholderExpr(Init);
      if (ER.isInvalid())
        return DAR_FailedAlreadyDiagnosed;
      Init = ER.get();
      QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false);
      if (Deduced.isNull())
        return DAR_FailedAlreadyDiagnosed;
      // FIXME: Support a non-canonical deduced type for 'auto'.
      Deduced = Context.getCanonicalType(Deduced);
      if (AT->isConstrained() && !IgnoreConstraints) {
        auto ConstraintsResult =
            CheckDeducedPlaceholderConstraints(*this, *AT,
                                               Type.getContainedAutoTypeLoc(),
                                               Deduced);
        if (ConstraintsResult != DAR_Succeeded)
          return ConstraintsResult;
      }
      Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type);
      if (Result.isNull())
        return DAR_FailedAlreadyDiagnosed;
      return DAR_Succeeded;
    } else if (!getLangOpts().CPlusPlus) {
      if (isa<InitListExpr>(Init)) {
        Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c);
        return DAR_FailedAlreadyDiagnosed;
      }
    }
  }

  SourceLocation Loc = Init->getExprLoc();

  LocalInstantiationScope InstScope(*this);

  // Build template<class TemplParam> void Func(FuncParam);
  TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
      Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false,
      false);
  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
  NamedDecl *TemplParamPtr = TemplParam;
  FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
      Context, Loc, Loc, TemplParamPtr, Loc, nullptr);

  QualType FuncParam =
      SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false)
          .Apply(Type);
  assert(!FuncParam.isNull() &&
         "substituting template parameter for 'auto' failed");

  // Deduce type of TemplParam in Func(Init)
  SmallVector<DeducedTemplateArgument, 1> Deduced;
  Deduced.resize(1);

  TemplateDeductionInfo Info(Loc, Depth);

  // If deduction failed, don't diagnose if the initializer is dependent; it
  // might acquire a matching type in the instantiation.
  auto DeductionFailed = [&](TemplateDeductionResult TDK,
                             ArrayRef<SourceRange> Ranges) -> DeduceAutoResult {
    if (Init->isTypeDependent()) {
      Result =
          SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
      assert(!Result.isNull() && "substituting DependentTy can't fail");
      return DAR_Succeeded;
    }
    if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges))
      return DAR_FailedAlreadyDiagnosed;
    return DAR_Failed;
  };

  SmallVector<OriginalCallArg, 4> OriginalCallArgs;

  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
  if (InitList) {
    // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce
    // against that. Such deduction only succeeds if removing cv-qualifiers and
    // references results in std::initializer_list<T>.
    if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
      return DAR_Failed;

    // Resolving a core issue: a braced-init-list containing any designators is
    // a non-deduced context.
    for (Expr *E : InitList->inits())
      if (isa<DesignatedInitExpr>(E))
        return DAR_Failed;

    SourceRange DeducedFromInitRange;
    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
      Expr *Init = InitList->getInit(i);

      if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
              *this, TemplateParamsSt.get(), 0, TemplArg, Init,
              Info, Deduced, OriginalCallArgs, /*Decomposed*/ true,
              /*ArgIdx*/ 0, /*TDF*/ 0))
        return DeductionFailed(TDK, {DeducedFromInitRange,
                                     Init->getSourceRange()});

      if (DeducedFromInitRange.isInvalid() &&
          Deduced[0].getKind() != TemplateArgument::Null)
        DeducedFromInitRange = Init->getSourceRange();
    }
  } else {
    if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
      Diag(Loc, diag::err_auto_bitfield);
      return DAR_FailedAlreadyDiagnosed;
    }

    if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
            *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced,
            OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0))
      return DeductionFailed(TDK, {});
  }

  // Could be null if somehow 'auto' appears in a non-deduced context.
  if (Deduced[0].getKind() != TemplateArgument::Type)
    return DeductionFailed(TDK_Incomplete, {});

  QualType DeducedType = Deduced[0].getAsType();

  if (InitList) {
    DeducedType = BuildStdInitializerList(DeducedType, Loc);
    if (DeducedType.isNull())
      return DAR_FailedAlreadyDiagnosed;
  }

  if (const auto *AT = Type.getType()->getAs<AutoType>()) {
    if (AT->isConstrained() && !IgnoreConstraints) {
      auto ConstraintsResult =
          CheckDeducedPlaceholderConstraints(*this, *AT,
                                             Type.getContainedAutoTypeLoc(),
                                             DeducedType);
      if (ConstraintsResult != DAR_Succeeded)
        return ConstraintsResult;
    }
  }

  Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
  if (Result.isNull())
    return DAR_FailedAlreadyDiagnosed;

  // Check that the deduced argument type is compatible with the original
  // argument type per C++ [temp.deduct.call]p4.
  QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
  for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
    assert((bool)InitList == OriginalArg.DecomposedParam &&
           "decomposed non-init-list in auto deduction?");
    if (auto TDK =
            CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) {
      Result = QualType();
      return DeductionFailed(TDK, {});
    }
  }

  return DAR_Succeeded;
}

QualType Sema::SubstAutoType(QualType TypeWithAuto,
                             QualType TypeToReplaceAuto) {
  if (TypeToReplaceAuto->isDependentType())
    return SubstituteDeducedTypeTransform(
               *this, DependentAuto{
                          TypeToReplaceAuto->containsUnexpandedParameterPack()})
        .TransformType(TypeWithAuto);
  return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
      .TransformType(TypeWithAuto);
}

TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
                                              QualType TypeToReplaceAuto) {
  if (TypeToReplaceAuto->isDependentType())
    return SubstituteDeducedTypeTransform(
               *this,
               DependentAuto{
                   TypeToReplaceAuto->containsUnexpandedParameterPack()})
        .TransformType(TypeWithAuto);
  return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
      .TransformType(TypeWithAuto);
}

QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
                               QualType TypeToReplaceAuto) {
  return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
                                        /*UseTypeSugar*/ false)
      .TransformType(TypeWithAuto);
}

void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
  if (isa<InitListExpr>(Init))
    Diag(VDecl->getLocation(),
         VDecl->isInitCapture()
             ? diag::err_init_capture_deduction_failure_from_init_list
             : diag::err_auto_var_deduction_failure_from_init_list)
      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
  else
    Diag(VDecl->getLocation(),
         VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
                                : diag::err_auto_var_deduction_failure)
      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
      << Init->getSourceRange();
}

bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
                            bool Diagnose) {
  assert(FD->getReturnType()->isUndeducedType());

  // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
  // within the return type from the call operator's type.
  if (isLambdaConversionOperator(FD)) {
    CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
    FunctionDecl *CallOp = Lambda->getLambdaCallOperator();

    // For a generic lambda, instantiate the call operator if needed.
    if (auto *Args = FD->getTemplateSpecializationArgs()) {
      CallOp = InstantiateFunctionDeclaration(
          CallOp->getDescribedFunctionTemplate(), Args, Loc);
      if (!CallOp || CallOp->isInvalidDecl())
        return true;

      // We might need to deduce the return type by instantiating the definition
      // of the operator() function.
      if (CallOp->getReturnType()->isUndeducedType()) {
        runWithSufficientStackSpace(Loc, [&] {
          InstantiateFunctionDefinition(Loc, CallOp);
        });
      }
    }

    if (CallOp->isInvalidDecl())
      return true;
    assert(!CallOp->getReturnType()->isUndeducedType() &&
           "failed to deduce lambda return type");

    // Build the new return type from scratch.
    QualType RetType = getLambdaConversionFunctionResultType(
        CallOp->getType()->castAs<FunctionProtoType>());
    if (FD->getReturnType()->getAs<PointerType>())
      RetType = Context.getPointerType(RetType);
    else {
      assert(FD->getReturnType()->getAs<BlockPointerType>());
      RetType = Context.getBlockPointerType(RetType);
    }
    Context.adjustDeducedFunctionResultType(FD, RetType);
    return false;
  }

  if (FD->getTemplateInstantiationPattern()) {
    runWithSufficientStackSpace(Loc, [&] {
      InstantiateFunctionDefinition(Loc, FD);
    });
  }

  bool StillUndeduced = FD->getReturnType()->isUndeducedType();
  if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
    Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
    Diag(FD->getLocation(), diag::note_callee_decl) << FD;
  }

  return StillUndeduced;
}

/// If this is a non-static member function,
static void
AddImplicitObjectParameterType(ASTContext &Context,
                               CXXMethodDecl *Method,
                               SmallVectorImpl<QualType> &ArgTypes) {
  // C++11 [temp.func.order]p3:
  //   [...] The new parameter is of type "reference to cv A," where cv are
  //   the cv-qualifiers of the function template (if any) and A is
  //   the class of which the function template is a member.
  //
  // The standard doesn't say explicitly, but we pick the appropriate kind of
  // reference type based on [over.match.funcs]p4.
  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
  ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers());
  if (Method->getRefQualifier() == RQ_RValue)
    ArgTy = Context.getRValueReferenceType(ArgTy);
  else
    ArgTy = Context.getLValueReferenceType(ArgTy);
  ArgTypes.push_back(ArgTy);
}

/// Determine whether the function template \p FT1 is at least as
/// specialized as \p FT2.
static bool isAtLeastAsSpecializedAs(Sema &S,
                                     SourceLocation Loc,
                                     FunctionTemplateDecl *FT1,
                                     FunctionTemplateDecl *FT2,
                                     TemplatePartialOrderingContext TPOC,
                                     unsigned NumCallArguments1) {
  FunctionDecl *FD1 = FT1->getTemplatedDecl();
  FunctionDecl *FD2 = FT2->getTemplatedDecl();
  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();

  assert(Proto1 && Proto2 && "Function templates must have prototypes");
  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
  SmallVector<DeducedTemplateArgument, 4> Deduced;
  Deduced.resize(TemplateParams->size());

  // C++0x [temp.deduct.partial]p3:
  //   The types used to determine the ordering depend on the context in which
  //   the partial ordering is done:
  TemplateDeductionInfo Info(Loc);
  SmallVector<QualType, 4> Args2;
  switch (TPOC) {
  case TPOC_Call: {
    //   - In the context of a function call, the function parameter types are
    //     used.
    CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
    CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);

    // C++11 [temp.func.order]p3:
    //   [...] If only one of the function templates is a non-static
    //   member, that function template is considered to have a new
    //   first parameter inserted in its function parameter list. The
    //   new parameter is of type "reference to cv A," where cv are
    //   the cv-qualifiers of the function template (if any) and A is
    //   the class of which the function template is a member.
    //
    // Note that we interpret this to mean "if one of the function
    // templates is a non-static member and the other is a non-member";
    // otherwise, the ordering rules for static functions against non-static
    // functions don't make any sense.
    //
    // C++98/03 doesn't have this provision but we've extended DR532 to cover
    // it as wording was broken prior to it.
    SmallVector<QualType, 4> Args1;

    unsigned NumComparedArguments = NumCallArguments1;

    if (!Method2 && Method1 && !Method1->isStatic()) {
      // Compare 'this' from Method1 against first parameter from Method2.
      AddImplicitObjectParameterType(S.Context, Method1, Args1);
      ++NumComparedArguments;
    } else if (!Method1 && Method2 && !Method2->isStatic()) {
      // Compare 'this' from Method2 against first parameter from Method1.
      AddImplicitObjectParameterType(S.Context, Method2, Args2);
    }

    Args1.insert(Args1.end(), Proto1->param_type_begin(),
                 Proto1->param_type_end());
    Args2.insert(Args2.end(), Proto2->param_type_begin(),
                 Proto2->param_type_end());

    // C++ [temp.func.order]p5:
    //   The presence of unused ellipsis and default arguments has no effect on
    //   the partial ordering of function templates.
    if (Args1.size() > NumComparedArguments)
      Args1.resize(NumComparedArguments);
    if (Args2.size() > NumComparedArguments)
      Args2.resize(NumComparedArguments);
    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
                                Args1.data(), Args1.size(), Info, Deduced,
                                TDF_None, /*PartialOrdering=*/true))
      return false;

    break;
  }

  case TPOC_Conversion:
    //   - In the context of a call to a conversion operator, the return types
    //     of the conversion function templates are used.
    if (DeduceTemplateArgumentsByTypeMatch(
            S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
            Info, Deduced, TDF_None,
            /*PartialOrdering=*/true))
      return false;
    break;

  case TPOC_Other:
    //   - In other contexts (14.6.6.2) the function template's function type
    //     is used.
    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
                                           FD2->getType(), FD1->getType(),
                                           Info, Deduced, TDF_None,
                                           /*PartialOrdering=*/true))
      return false;
    break;
  }

  // C++0x [temp.deduct.partial]p11:
  //   In most cases, all template parameters must have values in order for
  //   deduction to succeed, but for partial ordering purposes a template
  //   parameter may remain without a value provided it is not used in the
  //   types being used for partial ordering. [ Note: a template parameter used
  //   in a non-deduced context is considered used. -end note]
  unsigned ArgIdx = 0, NumArgs = Deduced.size();
  for (; ArgIdx != NumArgs; ++ArgIdx)
    if (Deduced[ArgIdx].isNull())
      break;

  // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need
  // to substitute the deduced arguments back into the template and check that
  // we get the right type.

  if (ArgIdx == NumArgs) {
    // All template arguments were deduced. FT1 is at least as specialized
    // as FT2.
    return true;
  }

  // Figure out which template parameters were used.
  llvm::SmallBitVector UsedParameters(TemplateParams->size());
  switch (TPOC) {
  case TPOC_Call:
    for (unsigned I = 0, N = Args2.size(); I != N; ++I)
      ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
                                   TemplateParams->getDepth(),
                                   UsedParameters);
    break;

  case TPOC_Conversion:
    ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
                                 TemplateParams->getDepth(), UsedParameters);
    break;

  case TPOC_Other:
    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
                                 TemplateParams->getDepth(),
                                 UsedParameters);
    break;
  }

  for (; ArgIdx != NumArgs; ++ArgIdx)
    // If this argument had no value deduced but was used in one of the types
    // used for partial ordering, then deduction fails.
    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
      return false;

  return true;
}

/// Determine whether this a function template whose parameter-type-list
/// ends with a function parameter pack.
static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
  unsigned NumParams = Function->getNumParams();
  if (NumParams == 0)
    return false;

  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
  if (!Last->isParameterPack())
    return false;

  // Make sure that no previous parameter is a parameter pack.
  while (--NumParams > 0) {
    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
      return false;
  }

  return true;
}

/// Returns the more specialized function template according
/// to the rules of function template partial ordering (C++ [temp.func.order]).
///
/// \param FT1 the first function template
///
/// \param FT2 the second function template
///
/// \param TPOC the context in which we are performing partial ordering of
/// function templates.
///
/// \param NumCallArguments1 The number of arguments in the call to FT1, used
/// only when \c TPOC is \c TPOC_Call.
///
/// \param NumCallArguments2 The number of arguments in the call to FT2, used
/// only when \c TPOC is \c TPOC_Call.
///
/// \returns the more specialized function template. If neither
/// template is more specialized, returns NULL.
FunctionTemplateDecl *
Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
                                 FunctionTemplateDecl *FT2,
                                 SourceLocation Loc,
                                 TemplatePartialOrderingContext TPOC,
                                 unsigned NumCallArguments1,
                                 unsigned NumCallArguments2) {

  auto JudgeByConstraints = [&] () -> FunctionTemplateDecl * {
    llvm::SmallVector<const Expr *, 3> AC1, AC2;
    FT1->getAssociatedConstraints(AC1);
    FT2->getAssociatedConstraints(AC2);
    bool AtLeastAsConstrained1, AtLeastAsConstrained2;
    if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
      return nullptr;
    if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
      return nullptr;
    if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
      return nullptr;
    return AtLeastAsConstrained1 ? FT1 : FT2;
  };

  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
                                          NumCallArguments1);
  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
                                          NumCallArguments2);

  if (Better1 != Better2) // We have a clear winner
    return Better1 ? FT1 : FT2;

  if (!Better1 && !Better2) // Neither is better than the other
    return JudgeByConstraints();

  // FIXME: This mimics what GCC implements, but doesn't match up with the
  // proposed resolution for core issue 692. This area needs to be sorted out,
  // but for now we attempt to maintain compatibility.
  bool Variadic1 = isVariadicFunctionTemplate(FT1);
  bool Variadic2 = isVariadicFunctionTemplate(FT2);
  if (Variadic1 != Variadic2)
    return Variadic1? FT2 : FT1;

  return JudgeByConstraints();
}

/// Determine if the two templates are equivalent.
static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
  if (T1 == T2)
    return true;

  if (!T1 || !T2)
    return false;

  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
}

/// Retrieve the most specialized of the given function template
/// specializations.
///
/// \param SpecBegin the start iterator of the function template
/// specializations that we will be comparing.
///
/// \param SpecEnd the end iterator of the function template
/// specializations, paired with \p SpecBegin.
///
/// \param Loc the location where the ambiguity or no-specializations
/// diagnostic should occur.
///
/// \param NoneDiag partial diagnostic used to diagnose cases where there are
/// no matching candidates.
///
/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
/// occurs.
///
/// \param CandidateDiag partial diagnostic used for each function template
/// specialization that is a candidate in the ambiguous ordering. One parameter
/// in this diagnostic should be unbound, which will correspond to the string
/// describing the template arguments for the function template specialization.
///
/// \returns the most specialized function template specialization, if
/// found. Otherwise, returns SpecEnd.
UnresolvedSetIterator Sema::getMostSpecialized(
    UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
    TemplateSpecCandidateSet &FailedCandidates,
    SourceLocation Loc, const PartialDiagnostic &NoneDiag,
    const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
    bool Complain, QualType TargetType) {
  if (SpecBegin == SpecEnd) {
    if (Complain) {
      Diag(Loc, NoneDiag);
      FailedCandidates.NoteCandidates(*this, Loc);
    }
    return SpecEnd;
  }

  if (SpecBegin + 1 == SpecEnd)
    return SpecBegin;

  // Find the function template that is better than all of the templates it
  // has been compared to.
  UnresolvedSetIterator Best = SpecBegin;
  FunctionTemplateDecl *BestTemplate
    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
  assert(BestTemplate && "Not a function template specialization?");
  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
    FunctionTemplateDecl *Challenger
      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
    assert(Challenger && "Not a function template specialization?");
    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
                                                  Loc, TPOC_Other, 0, 0),
                       Challenger)) {
      Best = I;
      BestTemplate = Challenger;
    }
  }

  // Make sure that the "best" function template is more specialized than all
  // of the others.
  bool Ambiguous = false;
  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
    FunctionTemplateDecl *Challenger
      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
    if (I != Best &&
        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
                                                   Loc, TPOC_Other, 0, 0),
                        BestTemplate)) {
      Ambiguous = true;
      break;
    }
  }

  if (!Ambiguous) {
    // We found an answer. Return it.
    return Best;
  }

  // Diagnose the ambiguity.
  if (Complain) {
    Diag(Loc, AmbigDiag);

    // FIXME: Can we order the candidates in some sane way?
    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
      PartialDiagnostic PD = CandidateDiag;
      const auto *FD = cast<FunctionDecl>(*I);
      PD << FD << getTemplateArgumentBindingsText(
                      FD->getPrimaryTemplate()->getTemplateParameters(),
                      *FD->getTemplateSpecializationArgs());
      if (!TargetType.isNull())
        HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
      Diag((*I)->getLocation(), PD);
    }
  }

  return SpecEnd;
}

/// Determine whether one partial specialization, P1, is at least as
/// specialized than another, P2.
///
/// \tparam TemplateLikeDecl The kind of P2, which must be a
/// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
/// \param T1 The injected-class-name of P1 (faked for a variable template).
/// \param T2 The injected-class-name of P2 (faked for a variable template).
template<typename TemplateLikeDecl>
static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
                                     TemplateLikeDecl *P2,
                                     TemplateDeductionInfo &Info) {
  // C++ [temp.class.order]p1:
  //   For two class template partial specializations, the first is at least as
  //   specialized as the second if, given the following rewrite to two
  //   function templates, the first function template is at least as
  //   specialized as the second according to the ordering rules for function
  //   templates (14.6.6.2):
  //     - the first function template has the same template parameters as the
  //       first partial specialization and has a single function parameter
  //       whose type is a class template specialization with the template
  //       arguments of the first partial specialization, and
  //     - the second function template has the same template parameters as the
  //       second partial specialization and has a single function parameter
  //       whose type is a class template specialization with the template
  //       arguments of the second partial specialization.
  //
  // Rather than synthesize function templates, we merely perform the
  // equivalent partial ordering by performing deduction directly on
  // the template arguments of the class template partial
  // specializations. This computation is slightly simpler than the
  // general problem of function template partial ordering, because
  // class template partial specializations are more constrained. We
  // know that every template parameter is deducible from the class
  // template partial specialization's template arguments, for
  // example.
  SmallVector<DeducedTemplateArgument, 4> Deduced;

  // Determine whether P1 is at least as specialized as P2.
  Deduced.resize(P2->getTemplateParameters()->size());
  if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(),
                                         T2, T1, Info, Deduced, TDF_None,
                                         /*PartialOrdering=*/true))
    return false;

  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
                                               Deduced.end());
  Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
                                   Info);
  auto *TST1 = T1->castAs<TemplateSpecializationType>();
  if (FinishTemplateArgumentDeduction(
          S, P2, /*IsPartialOrdering=*/true,
          TemplateArgumentList(TemplateArgumentList::OnStack,
                               TST1->template_arguments()),
          Deduced, Info))
    return false;

  return true;
}

/// Returns the more specialized class template partial specialization
/// according to the rules of partial ordering of class template partial
/// specializations (C++ [temp.class.order]).
///
/// \param PS1 the first class template partial specialization
///
/// \param PS2 the second class template partial specialization
///
/// \returns the more specialized class template partial specialization. If
/// neither partial specialization is more specialized, returns NULL.
ClassTemplatePartialSpecializationDecl *
Sema::getMoreSpecializedPartialSpecialization(
                                  ClassTemplatePartialSpecializationDecl *PS1,
                                  ClassTemplatePartialSpecializationDecl *PS2,
                                              SourceLocation Loc) {
  QualType PT1 = PS1->getInjectedSpecializationType();
  QualType PT2 = PS2->getInjectedSpecializationType();

  TemplateDeductionInfo Info(Loc);
  bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
  bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);

  if (!Better1 && !Better2)
      return nullptr;
  if (Better1 && Better2) {
    llvm::SmallVector<const Expr *, 3> AC1, AC2;
    PS1->getAssociatedConstraints(AC1);
    PS2->getAssociatedConstraints(AC2);
    bool AtLeastAsConstrained1, AtLeastAsConstrained2;
    if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
      return nullptr;
    if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
      return nullptr;
    if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
      return nullptr;
    return AtLeastAsConstrained1 ? PS1 : PS2;
  }

  return Better1 ? PS1 : PS2;
}

bool Sema::isMoreSpecializedThanPrimary(
    ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
  ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
  QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
  QualType PartialT = Spec->getInjectedSpecializationType();
  if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
    return false;
  if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
    return true;
  Info.clearSFINAEDiagnostic();
  llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
  Primary->getAssociatedConstraints(PrimaryAC);
  Spec->getAssociatedConstraints(SpecAC);
  bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
  if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
                             AtLeastAsConstrainedSpec))
    return false;
  if (!AtLeastAsConstrainedSpec)
    return false;
  if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
                             AtLeastAsConstrainedPrimary))
    return false;
  return !AtLeastAsConstrainedPrimary;
}

VarTemplatePartialSpecializationDecl *
Sema::getMoreSpecializedPartialSpecialization(
    VarTemplatePartialSpecializationDecl *PS1,
    VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
  // Pretend the variable template specializations are class template
  // specializations and form a fake injected class name type for comparison.
  assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
         "the partial specializations being compared should specialize"
         " the same template.");
  TemplateName Name(PS1->getSpecializedTemplate());
  TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
  QualType PT1 = Context.getTemplateSpecializationType(
      CanonTemplate, PS1->getTemplateArgs().asArray());
  QualType PT2 = Context.getTemplateSpecializationType(
      CanonTemplate, PS2->getTemplateArgs().asArray());

  TemplateDeductionInfo Info(Loc);
  bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
  bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);

  if (!Better1 && !Better2)
    return nullptr;
  if (Better1 && Better2) {
    llvm::SmallVector<const Expr *, 3> AC1, AC2;
    PS1->getAssociatedConstraints(AC1);
    PS2->getAssociatedConstraints(AC2);
    bool AtLeastAsConstrained1, AtLeastAsConstrained2;
    if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
      return nullptr;
    if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
      return nullptr;
    if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
      return nullptr;
    return AtLeastAsConstrained1 ? PS1 : PS2;
  }

  return Better1 ? PS1 : PS2;
}

bool Sema::isMoreSpecializedThanPrimary(
    VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
  TemplateDecl *Primary = Spec->getSpecializedTemplate();
  // FIXME: Cache the injected template arguments rather than recomputing
  // them for each partial specialization.
  SmallVector<TemplateArgument, 8> PrimaryArgs;
  Context.getInjectedTemplateArgs(Primary->getTemplateParameters(),
                                  PrimaryArgs);

  TemplateName CanonTemplate =
      Context.getCanonicalTemplateName(TemplateName(Primary));
  QualType PrimaryT = Context.getTemplateSpecializationType(
      CanonTemplate, PrimaryArgs);
  QualType PartialT = Context.getTemplateSpecializationType(
      CanonTemplate, Spec->getTemplateArgs().asArray());

  if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
    return false;
  if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
    return true;
  Info.clearSFINAEDiagnostic();
  llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
  Primary->getAssociatedConstraints(PrimaryAC);
  Spec->getAssociatedConstraints(SpecAC);
  bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
  if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
                             AtLeastAsConstrainedSpec))
    return false;
  if (!AtLeastAsConstrainedSpec)
    return false;
  if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
                             AtLeastAsConstrainedPrimary))
    return false;
  return !AtLeastAsConstrainedPrimary;
}

bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
     TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) {
  // C++1z [temp.arg.template]p4: (DR 150)
  //   A template template-parameter P is at least as specialized as a
  //   template template-argument A if, given the following rewrite to two
  //   function templates...

  // Rather than synthesize function templates, we merely perform the
  // equivalent partial ordering by performing deduction directly on
  // the template parameter lists of the template template parameters.
  //
  //   Given an invented class template X with the template parameter list of
  //   A (including default arguments):
  TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg));
  TemplateParameterList *A = AArg->getTemplateParameters();

  //    - Each function template has a single function parameter whose type is
  //      a specialization of X with template arguments corresponding to the
  //      template parameters from the respective function template
  SmallVector<TemplateArgument, 8> AArgs;
  Context.getInjectedTemplateArgs(A, AArgs);

  // Check P's arguments against A's parameter list. This will fill in default
  // template arguments as needed. AArgs are already correct by construction.
  // We can't just use CheckTemplateIdType because that will expand alias
  // templates.
  SmallVector<TemplateArgument, 4> PArgs;
  {
    SFINAETrap Trap(*this);

    Context.getInjectedTemplateArgs(P, PArgs);
    TemplateArgumentListInfo PArgList(P->getLAngleLoc(),
                                      P->getRAngleLoc());
    for (unsigned I = 0, N = P->size(); I != N; ++I) {
      // Unwrap packs that getInjectedTemplateArgs wrapped around pack
      // expansions, to form an "as written" argument list.
      TemplateArgument Arg = PArgs[I];
      if (Arg.getKind() == TemplateArgument::Pack) {
        assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
        Arg = *Arg.pack_begin();
      }
      PArgList.addArgument(getTrivialTemplateArgumentLoc(
          Arg, QualType(), P->getParam(I)->getLocation()));
    }
    PArgs.clear();

    // C++1z [temp.arg.template]p3:
    //   If the rewrite produces an invalid type, then P is not at least as
    //   specialized as A.
    if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) ||
        Trap.hasErrorOccurred())
      return false;
  }

  QualType AType = Context.getTemplateSpecializationType(X, AArgs);
  QualType PType = Context.getTemplateSpecializationType(X, PArgs);

  //   ... the function template corresponding to P is at least as specialized
  //   as the function template corresponding to A according to the partial
  //   ordering rules for function templates.
  TemplateDeductionInfo Info(Loc, A->getDepth());
  return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info);
}

namespace {
struct MarkUsedTemplateParameterVisitor :
    RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> {
  llvm::SmallBitVector &Used;
  unsigned Depth;

  MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
                                   unsigned Depth)
      : Used(Used), Depth(Depth) { }

  bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
    if (T->getDepth() == Depth)
      Used[T->getIndex()] = true;
    return true;
  }

  bool TraverseTemplateName(TemplateName Template) {
    if (auto *TTP =
            dyn_cast<TemplateTemplateParmDecl>(Template.getAsTemplateDecl()))
      if (TTP->getDepth() == Depth)
        Used[TTP->getIndex()] = true;
    RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>::
        TraverseTemplateName(Template);
    return true;
  }

  bool VisitDeclRefExpr(DeclRefExpr *E) {
    if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
      if (NTTP->getDepth() == Depth)
        Used[NTTP->getIndex()] = true;
    return true;
  }
};
}

/// Mark the template parameters that are used by the given
/// expression.
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
                           const Expr *E,
                           bool OnlyDeduced,
                           unsigned Depth,
                           llvm::SmallBitVector &Used) {
  if (!OnlyDeduced) {
    MarkUsedTemplateParameterVisitor(Used, Depth)
        .TraverseStmt(const_cast<Expr *>(E));
    return;
  }

  // We can deduce from a pack expansion.
  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
    E = Expansion->getPattern();

  // Skip through any implicit casts we added while type-checking, and any
  // substitutions performed by template alias expansion.
  while (true) {
    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
      E = ICE->getSubExpr();
    else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
      E = CE->getSubExpr();
    else if (const SubstNonTypeTemplateParmExpr *Subst =
               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
      E = Subst->getReplacement();
    else
      break;
  }

  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
  if (!DRE)
    return;

  const NonTypeTemplateParmDecl *NTTP
    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
  if (!NTTP)
    return;

  if (NTTP->getDepth() == Depth)
    Used[NTTP->getIndex()] = true;

  // In C++17 mode, additional arguments may be deduced from the type of a
  // non-type argument.
  if (Ctx.getLangOpts().CPlusPlus17)
    MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
}

/// Mark the template parameters that are used by the given
/// nested name specifier.
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
                           NestedNameSpecifier *NNS,
                           bool OnlyDeduced,
                           unsigned Depth,
                           llvm::SmallBitVector &Used) {
  if (!NNS)
    return;

  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
                             Used);
  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
                             OnlyDeduced, Depth, Used);
}

/// Mark the template parameters that are used by the given
/// template name.
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
                           TemplateName Name,
                           bool OnlyDeduced,
                           unsigned Depth,
                           llvm::SmallBitVector &Used) {
  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
    if (TemplateTemplateParmDecl *TTP
          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
      if (TTP->getDepth() == Depth)
        Used[TTP->getIndex()] = true;
    }
    return;
  }

  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
                               Depth, Used);
  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
                               Depth, Used);
}

/// Mark the template parameters that are used by the given
/// type.
static void
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
                           bool OnlyDeduced,
                           unsigned Depth,
                           llvm::SmallBitVector &Used) {
  if (T.isNull())
    return;

  // Non-dependent types have nothing deducible
  if (!T->isDependentType())
    return;

  T = Ctx.getCanonicalType(T);
  switch (T->getTypeClass()) {
  case Type::Pointer:
    MarkUsedTemplateParameters(Ctx,
                               cast<PointerType>(T)->getPointeeType(),
                               OnlyDeduced,
                               Depth,
                               Used);
    break;

  case Type::BlockPointer:
    MarkUsedTemplateParameters(Ctx,
                               cast<BlockPointerType>(T)->getPointeeType(),
                               OnlyDeduced,
                               Depth,
                               Used);
    break;

  case Type::LValueReference:
  case Type::RValueReference:
    MarkUsedTemplateParameters(Ctx,
                               cast<ReferenceType>(T)->getPointeeType(),
                               OnlyDeduced,
                               Depth,
                               Used);
    break;

  case Type::MemberPointer: {
    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
                               Depth, Used);
    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
                               OnlyDeduced, Depth, Used);
    break;
  }

  case Type::DependentSizedArray:
    MarkUsedTemplateParameters(Ctx,
                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
                               OnlyDeduced, Depth, Used);
    // Fall through to check the element type
    LLVM_FALLTHROUGH;

  case Type::ConstantArray:
  case Type::IncompleteArray:
    MarkUsedTemplateParameters(Ctx,
                               cast<ArrayType>(T)->getElementType(),
                               OnlyDeduced, Depth, Used);
    break;

  case Type::Vector:
  case Type::ExtVector:
    MarkUsedTemplateParameters(Ctx,
                               cast<VectorType>(T)->getElementType(),
                               OnlyDeduced, Depth, Used);
    break;

  case Type::DependentVector: {
    const auto *VecType = cast<DependentVectorType>(T);
    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
                               Depth, Used);
    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
                               Used);
    break;
  }
  case Type::DependentSizedExtVector: {
    const DependentSizedExtVectorType *VecType
      = cast<DependentSizedExtVectorType>(T);
    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
                               Depth, Used);
    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
                               Depth, Used);
    break;
  }

  case Type::DependentAddressSpace: {
    const DependentAddressSpaceType *DependentASType =
        cast<DependentAddressSpaceType>(T);
    MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
                               OnlyDeduced, Depth, Used);
    MarkUsedTemplateParameters(Ctx,
                               DependentASType->getAddrSpaceExpr(),
                               OnlyDeduced, Depth, Used);
    break;
  }

  case Type::FunctionProto: {
    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
    MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
                               Used);
    for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
      // C++17 [temp.deduct.type]p5:
      //   The non-deduced contexts are: [...]
      //   -- A function parameter pack that does not occur at the end of the
      //      parameter-declaration-list.
      if (!OnlyDeduced || I + 1 == N ||
          !Proto->getParamType(I)->getAs<PackExpansionType>()) {
        MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
                                   Depth, Used);
      } else {
        // FIXME: C++17 [temp.deduct.call]p1:
        //   When a function parameter pack appears in a non-deduced context,
        //   the type of that pack is never deduced.
        //
        // We should also track a set of "never deduced" parameters, and
        // subtract that from the list of deduced parameters after marking.
      }
    }
    if (auto *E = Proto->getNoexceptExpr())
      MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
    break;
  }

  case Type::TemplateTypeParm: {
    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
    if (TTP->getDepth() == Depth)
      Used[TTP->getIndex()] = true;
    break;
  }

  case Type::SubstTemplateTypeParmPack: {
    const SubstTemplateTypeParmPackType *Subst
      = cast<SubstTemplateTypeParmPackType>(T);
    MarkUsedTemplateParameters(Ctx,
                               QualType(Subst->getReplacedParameter(), 0),
                               OnlyDeduced, Depth, Used);
    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
                               OnlyDeduced, Depth, Used);
    break;
  }

  case Type::InjectedClassName:
    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
    LLVM_FALLTHROUGH;

  case Type::TemplateSpecialization: {
    const TemplateSpecializationType *Spec
      = cast<TemplateSpecializationType>(T);
    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
                               Depth, Used);

    // C++0x [temp.deduct.type]p9:
    //   If the template argument list of P contains a pack expansion that is
    //   not the last template argument, the entire template argument list is a
    //   non-deduced context.
    if (OnlyDeduced &&
        hasPackExpansionBeforeEnd(Spec->template_arguments()))
      break;

    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
                                 Used);
    break;
  }

  case Type::Complex:
    if (!OnlyDeduced)
      MarkUsedTemplateParameters(Ctx,
                                 cast<ComplexType>(T)->getElementType(),
                                 OnlyDeduced, Depth, Used);
    break;

  case Type::Atomic:
    if (!OnlyDeduced)
      MarkUsedTemplateParameters(Ctx,
                                 cast<AtomicType>(T)->getValueType(),
                                 OnlyDeduced, Depth, Used);
    break;

  case Type::DependentName:
    if (!OnlyDeduced)
      MarkUsedTemplateParameters(Ctx,
                                 cast<DependentNameType>(T)->getQualifier(),
                                 OnlyDeduced, Depth, Used);
    break;

  case Type::DependentTemplateSpecialization: {
    // C++14 [temp.deduct.type]p5:
    //   The non-deduced contexts are:
    //     -- The nested-name-specifier of a type that was specified using a
    //        qualified-id
    //
    // C++14 [temp.deduct.type]p6:
    //   When a type name is specified in a way that includes a non-deduced
    //   context, all of the types that comprise that type name are also
    //   non-deduced.
    if (OnlyDeduced)
      break;

    const DependentTemplateSpecializationType *Spec
      = cast<DependentTemplateSpecializationType>(T);

    MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
                               OnlyDeduced, Depth, Used);

    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
                                 Used);
    break;
  }

  case Type::TypeOf:
    if (!OnlyDeduced)
      MarkUsedTemplateParameters(Ctx,
                                 cast<TypeOfType>(T)->getUnderlyingType(),
                                 OnlyDeduced, Depth, Used);
    break;

  case Type::TypeOfExpr:
    if (!OnlyDeduced)
      MarkUsedTemplateParameters(Ctx,
                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
                                 OnlyDeduced, Depth, Used);
    break;

  case Type::Decltype:
    if (!OnlyDeduced)
      MarkUsedTemplateParameters(Ctx,
                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
                                 OnlyDeduced, Depth, Used);
    break;

  case Type::UnaryTransform:
    if (!OnlyDeduced)
      MarkUsedTemplateParameters(Ctx,
                                 cast<UnaryTransformType>(T)->getUnderlyingType(),
                                 OnlyDeduced, Depth, Used);
    break;

  case Type::PackExpansion:
    MarkUsedTemplateParameters(Ctx,
                               cast<PackExpansionType>(T)->getPattern(),
                               OnlyDeduced, Depth, Used);
    break;

  case Type::Auto:
  case Type::DeducedTemplateSpecialization:
    MarkUsedTemplateParameters(Ctx,
                               cast<DeducedType>(T)->getDeducedType(),
                               OnlyDeduced, Depth, Used);
    break;

  // None of these types have any template parameters in them.
  case Type::Builtin:
  case Type::VariableArray:
  case Type::FunctionNoProto:
  case Type::Record:
  case Type::Enum:
  case Type::ObjCInterface:
  case Type::ObjCObject:
  case Type::ObjCObjectPointer:
  case Type::UnresolvedUsing:
  case Type::Pipe:
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.inc"
    break;
  }
}

/// Mark the template parameters that are used by this
/// template argument.
static void
MarkUsedTemplateParameters(ASTContext &Ctx,
                           const TemplateArgument &TemplateArg,
                           bool OnlyDeduced,
                           unsigned Depth,
                           llvm::SmallBitVector &Used) {
  switch (TemplateArg.getKind()) {
  case TemplateArgument::Null:
  case TemplateArgument::Integral:
  case TemplateArgument::Declaration:
    break;

  case TemplateArgument::NullPtr:
    MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
                               Depth, Used);
    break;

  case TemplateArgument::Type:
    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
                               Depth, Used);
    break;

  case TemplateArgument::Template:
  case TemplateArgument::TemplateExpansion:
    MarkUsedTemplateParameters(Ctx,
                               TemplateArg.getAsTemplateOrTemplatePattern(),
                               OnlyDeduced, Depth, Used);
    break;

  case TemplateArgument::Expression:
    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
                               Depth, Used);
    break;

  case TemplateArgument::Pack:
    for (const auto &P : TemplateArg.pack_elements())
      MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
    break;
  }
}

/// Mark which template parameters are used in a given expression.
///
/// \param E the expression from which template parameters will be deduced.
///
/// \param Used a bit vector whose elements will be set to \c true
/// to indicate when the corresponding template parameter will be
/// deduced.
void
Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
                                 unsigned Depth,
                                 llvm::SmallBitVector &Used) {
  ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
}

/// Mark which template parameters can be deduced from a given
/// template argument list.
///
/// \param TemplateArgs the template argument list from which template
/// parameters will be deduced.
///
/// \param Used a bit vector whose elements will be set to \c true
/// to indicate when the corresponding template parameter will be
/// deduced.
void
Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
                                 bool OnlyDeduced, unsigned Depth,
                                 llvm::SmallBitVector &Used) {
  // C++0x [temp.deduct.type]p9:
  //   If the template argument list of P contains a pack expansion that is not
  //   the last template argument, the entire template argument list is a
  //   non-deduced context.
  if (OnlyDeduced &&
      hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
    return;

  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
                                 Depth, Used);
}

/// Marks all of the template parameters that will be deduced by a
/// call to the given function template.
void Sema::MarkDeducedTemplateParameters(
    ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
    llvm::SmallBitVector &Deduced) {
  TemplateParameterList *TemplateParams
    = FunctionTemplate->getTemplateParameters();
  Deduced.clear();
  Deduced.resize(TemplateParams->size());

  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
                                 true, TemplateParams->getDepth(), Deduced);
}

bool hasDeducibleTemplateParameters(Sema &S,
                                    FunctionTemplateDecl *FunctionTemplate,
                                    QualType T) {
  if (!T->isDependentType())
    return false;

  TemplateParameterList *TemplateParams
    = FunctionTemplate->getTemplateParameters();
  llvm::SmallBitVector Deduced(TemplateParams->size());
  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
                               Deduced);

  return Deduced.any();
}