SemaStmt.cpp 166 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for statements.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/Ownership.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"

using namespace clang;
using namespace sema;

StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
  if (FE.isInvalid())
    return StmtError();

  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
  if (FE.isInvalid())
    return StmtError();

  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
  // void expression for its side effects.  Conversion to void allows any
  // operand, even incomplete types.

  // Same thing in for stmt first clause (when expr) and third clause.
  return StmtResult(FE.getAs<Stmt>());
}


StmtResult Sema::ActOnExprStmtError() {
  DiscardCleanupsInEvaluationContext();
  return StmtError();
}

StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
                               bool HasLeadingEmptyMacro) {
  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
}

StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
                               SourceLocation EndLoc) {
  DeclGroupRef DG = dg.get();

  // If we have an invalid decl, just return an error.
  if (DG.isNull()) return StmtError();

  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
}

void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
  DeclGroupRef DG = dg.get();

  // If we don't have a declaration, or we have an invalid declaration,
  // just return.
  if (DG.isNull() || !DG.isSingleDecl())
    return;

  Decl *decl = DG.getSingleDecl();
  if (!decl || decl->isInvalidDecl())
    return;

  // Only variable declarations are permitted.
  VarDecl *var = dyn_cast<VarDecl>(decl);
  if (!var) {
    Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
    decl->setInvalidDecl();
    return;
  }

  // foreach variables are never actually initialized in the way that
  // the parser came up with.
  var->setInit(nullptr);

  // In ARC, we don't need to retain the iteration variable of a fast
  // enumeration loop.  Rather than actually trying to catch that
  // during declaration processing, we remove the consequences here.
  if (getLangOpts().ObjCAutoRefCount) {
    QualType type = var->getType();

    // Only do this if we inferred the lifetime.  Inferred lifetime
    // will show up as a local qualifier because explicit lifetime
    // should have shown up as an AttributedType instead.
    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
      // Add 'const' and mark the variable as pseudo-strong.
      var->setType(type.withConst());
      var->setARCPseudoStrong(true);
    }
  }
}

/// Diagnose unused comparisons, both builtin and overloaded operators.
/// For '==' and '!=', suggest fixits for '=' or '|='.
///
/// Adding a cast to void (or other expression wrappers) will prevent the
/// warning from firing.
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
  SourceLocation Loc;
  bool CanAssign;
  enum { Equality, Inequality, Relational, ThreeWay } Kind;

  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
    if (!Op->isComparisonOp())
      return false;

    if (Op->getOpcode() == BO_EQ)
      Kind = Equality;
    else if (Op->getOpcode() == BO_NE)
      Kind = Inequality;
    else if (Op->getOpcode() == BO_Cmp)
      Kind = ThreeWay;
    else {
      assert(Op->isRelationalOp());
      Kind = Relational;
    }
    Loc = Op->getOperatorLoc();
    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
    switch (Op->getOperator()) {
    case OO_EqualEqual:
      Kind = Equality;
      break;
    case OO_ExclaimEqual:
      Kind = Inequality;
      break;
    case OO_Less:
    case OO_Greater:
    case OO_GreaterEqual:
    case OO_LessEqual:
      Kind = Relational;
      break;
    case OO_Spaceship:
      Kind = ThreeWay;
      break;
    default:
      return false;
    }

    Loc = Op->getOperatorLoc();
    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
  } else {
    // Not a typo-prone comparison.
    return false;
  }

  // Suppress warnings when the operator, suspicious as it may be, comes from
  // a macro expansion.
  if (S.SourceMgr.isMacroBodyExpansion(Loc))
    return false;

  S.Diag(Loc, diag::warn_unused_comparison)
    << (unsigned)Kind << E->getSourceRange();

  // If the LHS is a plausible entity to assign to, provide a fixit hint to
  // correct common typos.
  if (CanAssign) {
    if (Kind == Inequality)
      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
        << FixItHint::CreateReplacement(Loc, "|=");
    else if (Kind == Equality)
      S.Diag(Loc, diag::note_equality_comparison_to_assign)
        << FixItHint::CreateReplacement(Loc, "=");
  }

  return true;
}

static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
                              SourceLocation Loc, SourceRange R1,
                              SourceRange R2, bool IsCtor) {
  if (!A)
    return false;
  StringRef Msg = A->getMessage();

  if (Msg.empty()) {
    if (IsCtor)
      return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
    return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
  }

  if (IsCtor)
    return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
                                                          << R2;
  return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
}

void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
    return DiagnoseUnusedExprResult(Label->getSubStmt());

  const Expr *E = dyn_cast_or_null<Expr>(S);
  if (!E)
    return;

  // If we are in an unevaluated expression context, then there can be no unused
  // results because the results aren't expected to be used in the first place.
  if (isUnevaluatedContext())
    return;

  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
  // In most cases, we don't want to warn if the expression is written in a
  // macro body, or if the macro comes from a system header. If the offending
  // expression is a call to a function with the warn_unused_result attribute,
  // we warn no matter the location. Because of the order in which the various
  // checks need to happen, we factor out the macro-related test here.
  bool ShouldSuppress =
      SourceMgr.isMacroBodyExpansion(ExprLoc) ||
      SourceMgr.isInSystemMacro(ExprLoc);

  const Expr *WarnExpr;
  SourceLocation Loc;
  SourceRange R1, R2;
  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
    return;

  // If this is a GNU statement expression expanded from a macro, it is probably
  // unused because it is a function-like macro that can be used as either an
  // expression or statement.  Don't warn, because it is almost certainly a
  // false positive.
  if (isa<StmtExpr>(E) && Loc.isMacroID())
    return;

  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
  // That macro is frequently used to suppress "unused parameter" warnings,
  // but its implementation makes clang's -Wunused-value fire.  Prevent this.
  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
    SourceLocation SpellLoc = Loc;
    if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
      return;
  }

  // Okay, we have an unused result.  Depending on what the base expression is,
  // we might want to make a more specific diagnostic.  Check for one of these
  // cases now.
  unsigned DiagID = diag::warn_unused_expr;
  if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
    E = Temps->getSubExpr();
  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
    E = TempExpr->getSubExpr();

  if (DiagnoseUnusedComparison(*this, E))
    return;

  E = WarnExpr;
  if (const auto *Cast = dyn_cast<CastExpr>(E))
    if (Cast->getCastKind() == CK_NoOp ||
        Cast->getCastKind() == CK_ConstructorConversion)
      E = Cast->getSubExpr()->IgnoreImpCasts();

  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    if (E->getType()->isVoidType())
      return;

    if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
                                     CE->getUnusedResultAttr(Context)),
                          Loc, R1, R2, /*isCtor=*/false))
      return;

    // If the callee has attribute pure, const, or warn_unused_result, warn with
    // a more specific message to make it clear what is happening. If the call
    // is written in a macro body, only warn if it has the warn_unused_result
    // attribute.
    if (const Decl *FD = CE->getCalleeDecl()) {
      if (ShouldSuppress)
        return;
      if (FD->hasAttr<PureAttr>()) {
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
        return;
      }
      if (FD->hasAttr<ConstAttr>()) {
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
        return;
      }
    }
  } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
    if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
      const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
      A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
      if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
        return;
    }
  } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
    if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {

      if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
                            R2, /*isCtor=*/false))
        return;
    }
  } else if (ShouldSuppress)
    return;

  E = WarnExpr;
  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
      Diag(Loc, diag::err_arc_unused_init_message) << R1;
      return;
    }
    const ObjCMethodDecl *MD = ME->getMethodDecl();
    if (MD) {
      if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
                            R2, /*isCtor=*/false))
        return;
    }
  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
    const Expr *Source = POE->getSyntacticForm();
    if (isa<ObjCSubscriptRefExpr>(Source))
      DiagID = diag::warn_unused_container_subscript_expr;
    else
      DiagID = diag::warn_unused_property_expr;
  } else if (const CXXFunctionalCastExpr *FC
                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
    const Expr *E = FC->getSubExpr();
    if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
      E = TE->getSubExpr();
    if (isa<CXXTemporaryObjectExpr>(E))
      return;
    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
      if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
        if (!RD->getAttr<WarnUnusedAttr>())
          return;
  }
  // Diagnose "(void*) blah" as a typo for "(void) blah".
  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
    QualType T = TI->getType();

    // We really do want to use the non-canonical type here.
    if (T == Context.VoidPtrTy) {
      PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();

      Diag(Loc, diag::warn_unused_voidptr)
        << FixItHint::CreateRemoval(TL.getStarLoc());
      return;
    }
  }

  if (E->isGLValue() && E->getType().isVolatileQualified()) {
    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
    return;
  }

  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
}

void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
  PushCompoundScope(IsStmtExpr);
}

void Sema::ActOnFinishOfCompoundStmt() {
  PopCompoundScope();
}

sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
  return getCurFunction()->CompoundScopes.back();
}

StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
                                   ArrayRef<Stmt *> Elts, bool isStmtExpr) {
  const unsigned NumElts = Elts.size();

  // If we're in C89 mode, check that we don't have any decls after stmts.  If
  // so, emit an extension diagnostic.
  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
    // Note that __extension__ can be around a decl.
    unsigned i = 0;
    // Skip over all declarations.
    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
      /*empty*/;

    // We found the end of the list or a statement.  Scan for another declstmt.
    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
      /*empty*/;

    if (i != NumElts) {
      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
      Diag(D->getLocation(), diag::ext_mixed_decls_code);
    }
  }

  // Check for suspicious empty body (null statement) in `for' and `while'
  // statements.  Don't do anything for template instantiations, this just adds
  // noise.
  if (NumElts != 0 && !CurrentInstantiationScope &&
      getCurCompoundScope().HasEmptyLoopBodies) {
    for (unsigned i = 0; i != NumElts - 1; ++i)
      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
  }

  return CompoundStmt::Create(Context, Elts, L, R);
}

ExprResult
Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
  if (!Val.get())
    return Val;

  if (DiagnoseUnexpandedParameterPack(Val.get()))
    return ExprError();

  // If we're not inside a switch, let the 'case' statement handling diagnose
  // this. Just clean up after the expression as best we can.
  if (getCurFunction()->SwitchStack.empty())
    return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
                               getLangOpts().CPlusPlus11);

  Expr *CondExpr =
      getCurFunction()->SwitchStack.back().getPointer()->getCond();
  if (!CondExpr)
    return ExprError();
  QualType CondType = CondExpr->getType();

  auto CheckAndFinish = [&](Expr *E) {
    if (CondType->isDependentType() || E->isTypeDependent())
      return ExprResult(E);

    if (getLangOpts().CPlusPlus11) {
      // C++11 [stmt.switch]p2: the constant-expression shall be a converted
      // constant expression of the promoted type of the switch condition.
      llvm::APSInt TempVal;
      return CheckConvertedConstantExpression(E, CondType, TempVal,
                                              CCEK_CaseValue);
    }

    ExprResult ER = E;
    if (!E->isValueDependent())
      ER = VerifyIntegerConstantExpression(E);
    if (!ER.isInvalid())
      ER = DefaultLvalueConversion(ER.get());
    if (!ER.isInvalid())
      ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
    if (!ER.isInvalid())
      ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
    return ER;
  };

  ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish);
  if (Converted.get() == Val.get())
    Converted = CheckAndFinish(Val.get());
  return Converted;
}

StmtResult
Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
                    SourceLocation DotDotDotLoc, ExprResult RHSVal,
                    SourceLocation ColonLoc) {
  assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
  assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
                                   : RHSVal.isInvalid() || RHSVal.get()) &&
         "missing RHS value");

  if (getCurFunction()->SwitchStack.empty()) {
    Diag(CaseLoc, diag::err_case_not_in_switch);
    return StmtError();
  }

  if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
    getCurFunction()->SwitchStack.back().setInt(true);
    return StmtError();
  }

  auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
                              CaseLoc, DotDotDotLoc, ColonLoc);
  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
  return CS;
}

/// ActOnCaseStmtBody - This installs a statement as the body of a case.
void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
  cast<CaseStmt>(S)->setSubStmt(SubStmt);
}

StmtResult
Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
                       Stmt *SubStmt, Scope *CurScope) {
  if (getCurFunction()->SwitchStack.empty()) {
    Diag(DefaultLoc, diag::err_default_not_in_switch);
    return SubStmt;
  }

  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
  return DS;
}

StmtResult
Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
                     SourceLocation ColonLoc, Stmt *SubStmt) {
  // If the label was multiply defined, reject it now.
  if (TheDecl->getStmt()) {
    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
    Diag(TheDecl->getLocation(), diag::note_previous_definition);
    return SubStmt;
  }

  // Otherwise, things are good.  Fill in the declaration and return it.
  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
  TheDecl->setStmt(LS);
  if (!TheDecl->isGnuLocal()) {
    TheDecl->setLocStart(IdentLoc);
    if (!TheDecl->isMSAsmLabel()) {
      // Don't update the location of MS ASM labels.  These will result in
      // a diagnostic, and changing the location here will mess that up.
      TheDecl->setLocation(IdentLoc);
    }
  }
  return LS;
}

StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
                                     ArrayRef<const Attr*> Attrs,
                                     Stmt *SubStmt) {
  // Fill in the declaration and return it.
  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
  return LS;
}

namespace {
class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
  typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
  Sema &SemaRef;
public:
  CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
  void VisitBinaryOperator(BinaryOperator *E) {
    if (E->getOpcode() == BO_Comma)
      SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
    EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
  }
};
}

StmtResult
Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
                  ConditionResult Cond,
                  Stmt *thenStmt, SourceLocation ElseLoc,
                  Stmt *elseStmt) {
  if (Cond.isInvalid())
    Cond = ConditionResult(
        *this, nullptr,
        MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
                                                   Context.BoolTy, VK_RValue),
                     IfLoc),
        false);

  Expr *CondExpr = Cond.get().second;
  // Only call the CommaVisitor when not C89 due to differences in scope flags.
  if ((getLangOpts().C99 || getLangOpts().CPlusPlus) &&
      !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
    CommaVisitor(*this).Visit(CondExpr);

  if (!elseStmt)
    DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
                          diag::warn_empty_if_body);

  return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
                     elseStmt);
}

StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
                             Stmt *InitStmt, ConditionResult Cond,
                             Stmt *thenStmt, SourceLocation ElseLoc,
                             Stmt *elseStmt) {
  if (Cond.isInvalid())
    return StmtError();

  if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
    setFunctionHasBranchProtectedScope();

  return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
                        Cond.get().second, thenStmt, ElseLoc, elseStmt);
}

namespace {
  struct CaseCompareFunctor {
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
                    const llvm::APSInt &RHS) {
      return LHS.first < RHS;
    }
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
      return LHS.first < RHS.first;
    }
    bool operator()(const llvm::APSInt &LHS,
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
      return LHS < RHS.first;
    }
  };
}

/// CmpCaseVals - Comparison predicate for sorting case values.
///
static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
  if (lhs.first < rhs.first)
    return true;

  if (lhs.first == rhs.first &&
      lhs.second->getCaseLoc().getRawEncoding()
       < rhs.second->getCaseLoc().getRawEncoding())
    return true;
  return false;
}

/// CmpEnumVals - Comparison predicate for sorting enumeration values.
///
static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
{
  return lhs.first < rhs.first;
}

/// EqEnumVals - Comparison preficate for uniqing enumeration values.
///
static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
{
  return lhs.first == rhs.first;
}

/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
/// potentially integral-promoted expression @p expr.
static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
  if (const auto *FE = dyn_cast<FullExpr>(E))
    E = FE->getSubExpr();
  while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
    if (ImpCast->getCastKind() != CK_IntegralCast) break;
    E = ImpCast->getSubExpr();
  }
  return E->getType();
}

ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
    Expr *Cond;

  public:
    SwitchConvertDiagnoser(Expr *Cond)
        : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
          Cond(Cond) {}

    SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
                                         QualType T) override {
      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
    }

    SemaDiagnosticBuilder diagnoseIncomplete(
        Sema &S, SourceLocation Loc, QualType T) override {
      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
               << T << Cond->getSourceRange();
    }

    SemaDiagnosticBuilder diagnoseExplicitConv(
        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
    }

    SemaDiagnosticBuilder noteExplicitConv(
        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
        << ConvTy->isEnumeralType() << ConvTy;
    }

    SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
                                            QualType T) override {
      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
    }

    SemaDiagnosticBuilder noteAmbiguous(
        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
      << ConvTy->isEnumeralType() << ConvTy;
    }

    SemaDiagnosticBuilder diagnoseConversion(
        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
      llvm_unreachable("conversion functions are permitted");
    }
  } SwitchDiagnoser(Cond);

  ExprResult CondResult =
      PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
  if (CondResult.isInvalid())
    return ExprError();

  // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
  // failed and produced a diagnostic.
  Cond = CondResult.get();
  if (!Cond->isTypeDependent() &&
      !Cond->getType()->isIntegralOrEnumerationType())
    return ExprError();

  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
  return UsualUnaryConversions(Cond);
}

StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
                                        Stmt *InitStmt, ConditionResult Cond) {
  Expr *CondExpr = Cond.get().second;
  assert((Cond.isInvalid() || CondExpr) && "switch with no condition");

  if (CondExpr && !CondExpr->isTypeDependent()) {
    // We have already converted the expression to an integral or enumeration
    // type, when we parsed the switch condition. If we don't have an
    // appropriate type now, enter the switch scope but remember that it's
    // invalid.
    assert(CondExpr->getType()->isIntegralOrEnumerationType() &&
           "invalid condition type");
    if (CondExpr->isKnownToHaveBooleanValue()) {
      // switch(bool_expr) {...} is often a programmer error, e.g.
      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
      // One can always use an if statement instead of switch(bool_expr).
      Diag(SwitchLoc, diag::warn_bool_switch_condition)
          << CondExpr->getSourceRange();
    }
  }

  setFunctionHasBranchIntoScope();

  auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr);
  getCurFunction()->SwitchStack.push_back(
      FunctionScopeInfo::SwitchInfo(SS, false));
  return SS;
}

static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
  Val = Val.extOrTrunc(BitWidth);
  Val.setIsSigned(IsSigned);
}

/// Check the specified case value is in range for the given unpromoted switch
/// type.
static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
                           unsigned UnpromotedWidth, bool UnpromotedSign) {
  // In C++11 onwards, this is checked by the language rules.
  if (S.getLangOpts().CPlusPlus11)
    return;

  // If the case value was signed and negative and the switch expression is
  // unsigned, don't bother to warn: this is implementation-defined behavior.
  // FIXME: Introduce a second, default-ignored warning for this case?
  if (UnpromotedWidth < Val.getBitWidth()) {
    llvm::APSInt ConvVal(Val);
    AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
    AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
    // FIXME: Use different diagnostics for overflow  in conversion to promoted
    // type versus "switch expression cannot have this value". Use proper
    // IntRange checking rather than just looking at the unpromoted type here.
    if (ConvVal != Val)
      S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
                                                  << ConvVal.toString(10);
  }
}

typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;

/// Returns true if we should emit a diagnostic about this case expression not
/// being a part of the enum used in the switch controlling expression.
static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
                                              const EnumDecl *ED,
                                              const Expr *CaseExpr,
                                              EnumValsTy::iterator &EI,
                                              EnumValsTy::iterator &EIEnd,
                                              const llvm::APSInt &Val) {
  if (!ED->isClosed())
    return false;

  if (const DeclRefExpr *DRE =
          dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
      QualType VarType = VD->getType();
      QualType EnumType = S.Context.getTypeDeclType(ED);
      if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
          S.Context.hasSameUnqualifiedType(EnumType, VarType))
        return false;
    }
  }

  if (ED->hasAttr<FlagEnumAttr>())
    return !S.IsValueInFlagEnum(ED, Val, false);

  while (EI != EIEnd && EI->first < Val)
    EI++;

  if (EI != EIEnd && EI->first == Val)
    return false;

  return true;
}

static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
                                       const Expr *Case) {
  QualType CondType = Cond->getType();
  QualType CaseType = Case->getType();

  const EnumType *CondEnumType = CondType->getAs<EnumType>();
  const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
  if (!CondEnumType || !CaseEnumType)
    return;

  // Ignore anonymous enums.
  if (!CondEnumType->getDecl()->getIdentifier() &&
      !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
    return;
  if (!CaseEnumType->getDecl()->getIdentifier() &&
      !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
    return;

  if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
    return;

  S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
      << CondType << CaseType << Cond->getSourceRange()
      << Case->getSourceRange();
}

StmtResult
Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
                            Stmt *BodyStmt) {
  SwitchStmt *SS = cast<SwitchStmt>(Switch);
  bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
  assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
         "switch stack missing push/pop!");

  getCurFunction()->SwitchStack.pop_back();

  if (!BodyStmt) return StmtError();
  SS->setBody(BodyStmt, SwitchLoc);

  Expr *CondExpr = SS->getCond();
  if (!CondExpr) return StmtError();

  QualType CondType = CondExpr->getType();

  // C++ 6.4.2.p2:
  // Integral promotions are performed (on the switch condition).
  //
  // A case value unrepresentable by the original switch condition
  // type (before the promotion) doesn't make sense, even when it can
  // be represented by the promoted type.  Therefore we need to find
  // the pre-promotion type of the switch condition.
  const Expr *CondExprBeforePromotion = CondExpr;
  QualType CondTypeBeforePromotion =
      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);

  // Get the bitwidth of the switched-on value after promotions. We must
  // convert the integer case values to this width before comparison.
  bool HasDependentValue
    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();

  // Get the width and signedness that the condition might actually have, for
  // warning purposes.
  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
  // type.
  unsigned CondWidthBeforePromotion
    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
  bool CondIsSignedBeforePromotion
    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();

  // Accumulate all of the case values in a vector so that we can sort them
  // and detect duplicates.  This vector contains the APInt for the case after
  // it has been converted to the condition type.
  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
  CaseValsTy CaseVals;

  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
  CaseRangesTy CaseRanges;

  DefaultStmt *TheDefaultStmt = nullptr;

  bool CaseListIsErroneous = false;

  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
       SC = SC->getNextSwitchCase()) {

    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
      if (TheDefaultStmt) {
        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);

        // FIXME: Remove the default statement from the switch block so that
        // we'll return a valid AST.  This requires recursing down the AST and
        // finding it, not something we are set up to do right now.  For now,
        // just lop the entire switch stmt out of the AST.
        CaseListIsErroneous = true;
      }
      TheDefaultStmt = DS;

    } else {
      CaseStmt *CS = cast<CaseStmt>(SC);

      Expr *Lo = CS->getLHS();

      if (Lo->isValueDependent()) {
        HasDependentValue = true;
        break;
      }

      // We already verified that the expression has a constant value;
      // get that value (prior to conversions).
      const Expr *LoBeforePromotion = Lo;
      GetTypeBeforeIntegralPromotion(LoBeforePromotion);
      llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);

      // Check the unconverted value is within the range of possible values of
      // the switch expression.
      checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
                     CondIsSignedBeforePromotion);

      // FIXME: This duplicates the check performed for warn_not_in_enum below.
      checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
                                 LoBeforePromotion);

      // Convert the value to the same width/sign as the condition.
      AdjustAPSInt(LoVal, CondWidth, CondIsSigned);

      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
      if (CS->getRHS()) {
        if (CS->getRHS()->isValueDependent()) {
          HasDependentValue = true;
          break;
        }
        CaseRanges.push_back(std::make_pair(LoVal, CS));
      } else
        CaseVals.push_back(std::make_pair(LoVal, CS));
    }
  }

  if (!HasDependentValue) {
    // If we don't have a default statement, check whether the
    // condition is constant.
    llvm::APSInt ConstantCondValue;
    bool HasConstantCond = false;
    if (!TheDefaultStmt) {
      Expr::EvalResult Result;
      HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
                                                Expr::SE_AllowSideEffects);
      if (Result.Val.isInt())
        ConstantCondValue = Result.Val.getInt();
      assert(!HasConstantCond ||
             (ConstantCondValue.getBitWidth() == CondWidth &&
              ConstantCondValue.isSigned() == CondIsSigned));
    }
    bool ShouldCheckConstantCond = HasConstantCond;

    // Sort all the scalar case values so we can easily detect duplicates.
    llvm::stable_sort(CaseVals, CmpCaseVals);

    if (!CaseVals.empty()) {
      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
        if (ShouldCheckConstantCond &&
            CaseVals[i].first == ConstantCondValue)
          ShouldCheckConstantCond = false;

        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
          // If we have a duplicate, report it.
          // First, determine if either case value has a name
          StringRef PrevString, CurrString;
          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
            PrevString = DeclRef->getDecl()->getName();
          }
          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
            CurrString = DeclRef->getDecl()->getName();
          }
          SmallString<16> CaseValStr;
          CaseVals[i-1].first.toString(CaseValStr);

          if (PrevString == CurrString)
            Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
                 diag::err_duplicate_case)
                << (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
          else
            Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
                 diag::err_duplicate_case_differing_expr)
                << (PrevString.empty() ? StringRef(CaseValStr) : PrevString)
                << (CurrString.empty() ? StringRef(CaseValStr) : CurrString)
                << CaseValStr;

          Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
               diag::note_duplicate_case_prev);
          // FIXME: We really want to remove the bogus case stmt from the
          // substmt, but we have no way to do this right now.
          CaseListIsErroneous = true;
        }
      }
    }

    // Detect duplicate case ranges, which usually don't exist at all in
    // the first place.
    if (!CaseRanges.empty()) {
      // Sort all the case ranges by their low value so we can easily detect
      // overlaps between ranges.
      llvm::stable_sort(CaseRanges);

      // Scan the ranges, computing the high values and removing empty ranges.
      std::vector<llvm::APSInt> HiVals;
      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
        llvm::APSInt &LoVal = CaseRanges[i].first;
        CaseStmt *CR = CaseRanges[i].second;
        Expr *Hi = CR->getRHS();

        const Expr *HiBeforePromotion = Hi;
        GetTypeBeforeIntegralPromotion(HiBeforePromotion);
        llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);

        // Check the unconverted value is within the range of possible values of
        // the switch expression.
        checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
                       CondWidthBeforePromotion, CondIsSignedBeforePromotion);

        // Convert the value to the same width/sign as the condition.
        AdjustAPSInt(HiVal, CondWidth, CondIsSigned);

        // If the low value is bigger than the high value, the case is empty.
        if (LoVal > HiVal) {
          Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
              << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
          CaseRanges.erase(CaseRanges.begin()+i);
          --i;
          --e;
          continue;
        }

        if (ShouldCheckConstantCond &&
            LoVal <= ConstantCondValue &&
            ConstantCondValue <= HiVal)
          ShouldCheckConstantCond = false;

        HiVals.push_back(HiVal);
      }

      // Rescan the ranges, looking for overlap with singleton values and other
      // ranges.  Since the range list is sorted, we only need to compare case
      // ranges with their neighbors.
      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
        llvm::APSInt &CRLo = CaseRanges[i].first;
        llvm::APSInt &CRHi = HiVals[i];
        CaseStmt *CR = CaseRanges[i].second;

        // Check to see whether the case range overlaps with any
        // singleton cases.
        CaseStmt *OverlapStmt = nullptr;
        llvm::APSInt OverlapVal(32);

        // Find the smallest value >= the lower bound.  If I is in the
        // case range, then we have overlap.
        CaseValsTy::iterator I =
            llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
        if (I != CaseVals.end() && I->first < CRHi) {
          OverlapVal  = I->first;   // Found overlap with scalar.
          OverlapStmt = I->second;
        }

        // Find the smallest value bigger than the upper bound.
        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
          OverlapStmt = (I-1)->second;
        }

        // Check to see if this case stmt overlaps with the subsequent
        // case range.
        if (i && CRLo <= HiVals[i-1]) {
          OverlapVal  = HiVals[i-1];       // Found overlap with range.
          OverlapStmt = CaseRanges[i-1].second;
        }

        if (OverlapStmt) {
          // If we have a duplicate, report it.
          Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
              << OverlapVal.toString(10);
          Diag(OverlapStmt->getLHS()->getBeginLoc(),
               diag::note_duplicate_case_prev);
          // FIXME: We really want to remove the bogus case stmt from the
          // substmt, but we have no way to do this right now.
          CaseListIsErroneous = true;
        }
      }
    }

    // Complain if we have a constant condition and we didn't find a match.
    if (!CaseListIsErroneous && !CaseListIsIncomplete &&
        ShouldCheckConstantCond) {
      // TODO: it would be nice if we printed enums as enums, chars as
      // chars, etc.
      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
        << ConstantCondValue.toString(10)
        << CondExpr->getSourceRange();
    }

    // Check to see if switch is over an Enum and handles all of its
    // values.  We only issue a warning if there is not 'default:', but
    // we still do the analysis to preserve this information in the AST
    // (which can be used by flow-based analyes).
    //
    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();

    // If switch has default case, then ignore it.
    if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
        ET && ET->getDecl()->isCompleteDefinition()) {
      const EnumDecl *ED = ET->getDecl();
      EnumValsTy EnumVals;

      // Gather all enum values, set their type and sort them,
      // allowing easier comparison with CaseVals.
      for (auto *EDI : ED->enumerators()) {
        llvm::APSInt Val = EDI->getInitVal();
        AdjustAPSInt(Val, CondWidth, CondIsSigned);
        EnumVals.push_back(std::make_pair(Val, EDI));
      }
      llvm::stable_sort(EnumVals, CmpEnumVals);
      auto EI = EnumVals.begin(), EIEnd =
        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);

      // See which case values aren't in enum.
      for (CaseValsTy::const_iterator CI = CaseVals.begin();
          CI != CaseVals.end(); CI++) {
        Expr *CaseExpr = CI->second->getLHS();
        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
                                              CI->first))
          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
            << CondTypeBeforePromotion;
      }

      // See which of case ranges aren't in enum
      EI = EnumVals.begin();
      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
          RI != CaseRanges.end(); RI++) {
        Expr *CaseExpr = RI->second->getLHS();
        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
                                              RI->first))
          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
            << CondTypeBeforePromotion;

        llvm::APSInt Hi =
          RI->second->getRHS()->EvaluateKnownConstInt(Context);
        AdjustAPSInt(Hi, CondWidth, CondIsSigned);

        CaseExpr = RI->second->getRHS();
        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
                                              Hi))
          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
            << CondTypeBeforePromotion;
      }

      // Check which enum vals aren't in switch
      auto CI = CaseVals.begin();
      auto RI = CaseRanges.begin();
      bool hasCasesNotInSwitch = false;

      SmallVector<DeclarationName,8> UnhandledNames;

      for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
        // Don't warn about omitted unavailable EnumConstantDecls.
        switch (EI->second->getAvailability()) {
        case AR_Deprecated:
          // Omitting a deprecated constant is ok; it should never materialize.
        case AR_Unavailable:
          continue;

        case AR_NotYetIntroduced:
          // Partially available enum constants should be present. Note that we
          // suppress -Wunguarded-availability diagnostics for such uses.
        case AR_Available:
          break;
        }

        if (EI->second->hasAttr<UnusedAttr>())
          continue;

        // Drop unneeded case values
        while (CI != CaseVals.end() && CI->first < EI->first)
          CI++;

        if (CI != CaseVals.end() && CI->first == EI->first)
          continue;

        // Drop unneeded case ranges
        for (; RI != CaseRanges.end(); RI++) {
          llvm::APSInt Hi =
            RI->second->getRHS()->EvaluateKnownConstInt(Context);
          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
          if (EI->first <= Hi)
            break;
        }

        if (RI == CaseRanges.end() || EI->first < RI->first) {
          hasCasesNotInSwitch = true;
          UnhandledNames.push_back(EI->second->getDeclName());
        }
      }

      if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);

      // Produce a nice diagnostic if multiple values aren't handled.
      if (!UnhandledNames.empty()) {
        DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
                                    TheDefaultStmt ? diag::warn_def_missing_case
                                                   : diag::warn_missing_case)
                               << (int)UnhandledNames.size();

        for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
             I != E; ++I)
          DB << UnhandledNames[I];
      }

      if (!hasCasesNotInSwitch)
        SS->setAllEnumCasesCovered();
    }
  }

  if (BodyStmt)
    DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
                          diag::warn_empty_switch_body);

  // FIXME: If the case list was broken is some way, we don't have a good system
  // to patch it up.  Instead, just return the whole substmt as broken.
  if (CaseListIsErroneous)
    return StmtError();

  return SS;
}

void
Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
                             Expr *SrcExpr) {
  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
    return;

  if (const EnumType *ET = DstType->getAs<EnumType>())
    if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
        SrcType->isIntegerType()) {
      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
          SrcExpr->isIntegerConstantExpr(Context)) {
        // Get the bitwidth of the enum value before promotions.
        unsigned DstWidth = Context.getIntWidth(DstType);
        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();

        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
        AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
        const EnumDecl *ED = ET->getDecl();

        if (!ED->isClosed())
          return;

        if (ED->hasAttr<FlagEnumAttr>()) {
          if (!IsValueInFlagEnum(ED, RhsVal, true))
            Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
              << DstType.getUnqualifiedType();
        } else {
          typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
              EnumValsTy;
          EnumValsTy EnumVals;

          // Gather all enum values, set their type and sort them,
          // allowing easier comparison with rhs constant.
          for (auto *EDI : ED->enumerators()) {
            llvm::APSInt Val = EDI->getInitVal();
            AdjustAPSInt(Val, DstWidth, DstIsSigned);
            EnumVals.push_back(std::make_pair(Val, EDI));
          }
          if (EnumVals.empty())
            return;
          llvm::stable_sort(EnumVals, CmpEnumVals);
          EnumValsTy::iterator EIend =
              std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);

          // See which values aren't in the enum.
          EnumValsTy::const_iterator EI = EnumVals.begin();
          while (EI != EIend && EI->first < RhsVal)
            EI++;
          if (EI == EIend || EI->first != RhsVal) {
            Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
                << DstType.getUnqualifiedType();
          }
        }
      }
    }
}

StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond,
                                Stmt *Body) {
  if (Cond.isInvalid())
    return StmtError();

  auto CondVal = Cond.get();
  CheckBreakContinueBinding(CondVal.second);

  if (CondVal.second &&
      !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
    CommaVisitor(*this).Visit(CondVal.second);

  if (isa<NullStmt>(Body))
    getCurCompoundScope().setHasEmptyLoopBodies();

  return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
                           WhileLoc);
}

StmtResult
Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
                  SourceLocation WhileLoc, SourceLocation CondLParen,
                  Expr *Cond, SourceLocation CondRParen) {
  assert(Cond && "ActOnDoStmt(): missing expression");

  CheckBreakContinueBinding(Cond);
  ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
  if (CondResult.isInvalid())
    return StmtError();
  Cond = CondResult.get();

  CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
  if (CondResult.isInvalid())
    return StmtError();
  Cond = CondResult.get();

  // Only call the CommaVisitor for C89 due to differences in scope flags.
  if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
      !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
    CommaVisitor(*this).Visit(Cond);

  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
}

namespace {
  // Use SetVector since the diagnostic cares about the ordering of the Decl's.
  using DeclSetVector =
      llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
                      llvm::SmallPtrSet<VarDecl *, 8>>;

  // This visitor will traverse a conditional statement and store all
  // the evaluated decls into a vector.  Simple is set to true if none
  // of the excluded constructs are used.
  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
    DeclSetVector &Decls;
    SmallVectorImpl<SourceRange> &Ranges;
    bool Simple;
  public:
    typedef EvaluatedExprVisitor<DeclExtractor> Inherited;

    DeclExtractor(Sema &S, DeclSetVector &Decls,
                  SmallVectorImpl<SourceRange> &Ranges) :
        Inherited(S.Context),
        Decls(Decls),
        Ranges(Ranges),
        Simple(true) {}

    bool isSimple() { return Simple; }

    // Replaces the method in EvaluatedExprVisitor.
    void VisitMemberExpr(MemberExpr* E) {
      Simple = false;
    }

    // Any Stmt not whitelisted will cause the condition to be marked complex.
    void VisitStmt(Stmt *S) {
      Simple = false;
    }

    void VisitBinaryOperator(BinaryOperator *E) {
      Visit(E->getLHS());
      Visit(E->getRHS());
    }

    void VisitCastExpr(CastExpr *E) {
      Visit(E->getSubExpr());
    }

    void VisitUnaryOperator(UnaryOperator *E) {
      // Skip checking conditionals with derefernces.
      if (E->getOpcode() == UO_Deref)
        Simple = false;
      else
        Visit(E->getSubExpr());
    }

    void VisitConditionalOperator(ConditionalOperator *E) {
      Visit(E->getCond());
      Visit(E->getTrueExpr());
      Visit(E->getFalseExpr());
    }

    void VisitParenExpr(ParenExpr *E) {
      Visit(E->getSubExpr());
    }

    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
      Visit(E->getOpaqueValue()->getSourceExpr());
      Visit(E->getFalseExpr());
    }

    void VisitIntegerLiteral(IntegerLiteral *E) { }
    void VisitFloatingLiteral(FloatingLiteral *E) { }
    void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
    void VisitCharacterLiteral(CharacterLiteral *E) { }
    void VisitGNUNullExpr(GNUNullExpr *E) { }
    void VisitImaginaryLiteral(ImaginaryLiteral *E) { }

    void VisitDeclRefExpr(DeclRefExpr *E) {
      VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
      if (!VD) {
        // Don't allow unhandled Decl types.
        Simple = false;
        return;
      }

      Ranges.push_back(E->getSourceRange());

      Decls.insert(VD);
    }

  }; // end class DeclExtractor

  // DeclMatcher checks to see if the decls are used in a non-evaluated
  // context.
  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
    DeclSetVector &Decls;
    bool FoundDecl;

  public:
    typedef EvaluatedExprVisitor<DeclMatcher> Inherited;

    DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
        Inherited(S.Context), Decls(Decls), FoundDecl(false) {
      if (!Statement) return;

      Visit(Statement);
    }

    void VisitReturnStmt(ReturnStmt *S) {
      FoundDecl = true;
    }

    void VisitBreakStmt(BreakStmt *S) {
      FoundDecl = true;
    }

    void VisitGotoStmt(GotoStmt *S) {
      FoundDecl = true;
    }

    void VisitCastExpr(CastExpr *E) {
      if (E->getCastKind() == CK_LValueToRValue)
        CheckLValueToRValueCast(E->getSubExpr());
      else
        Visit(E->getSubExpr());
    }

    void CheckLValueToRValueCast(Expr *E) {
      E = E->IgnoreParenImpCasts();

      if (isa<DeclRefExpr>(E)) {
        return;
      }

      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
        Visit(CO->getCond());
        CheckLValueToRValueCast(CO->getTrueExpr());
        CheckLValueToRValueCast(CO->getFalseExpr());
        return;
      }

      if (BinaryConditionalOperator *BCO =
              dyn_cast<BinaryConditionalOperator>(E)) {
        CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
        CheckLValueToRValueCast(BCO->getFalseExpr());
        return;
      }

      Visit(E);
    }

    void VisitDeclRefExpr(DeclRefExpr *E) {
      if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
        if (Decls.count(VD))
          FoundDecl = true;
    }

    void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
      // Only need to visit the semantics for POE.
      // SyntaticForm doesn't really use the Decal.
      for (auto *S : POE->semantics()) {
        if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
          // Look past the OVE into the expression it binds.
          Visit(OVE->getSourceExpr());
        else
          Visit(S);
      }
    }

    bool FoundDeclInUse() { return FoundDecl; }

  };  // end class DeclMatcher

  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
                                        Expr *Third, Stmt *Body) {
    // Condition is empty
    if (!Second) return;

    if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
                          Second->getBeginLoc()))
      return;

    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
    DeclSetVector Decls;
    SmallVector<SourceRange, 10> Ranges;
    DeclExtractor DE(S, Decls, Ranges);
    DE.Visit(Second);

    // Don't analyze complex conditionals.
    if (!DE.isSimple()) return;

    // No decls found.
    if (Decls.size() == 0) return;

    // Don't warn on volatile, static, or global variables.
    for (auto *VD : Decls)
      if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
        return;

    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
        DeclMatcher(S, Decls, Body).FoundDeclInUse())
      return;

    // Load decl names into diagnostic.
    if (Decls.size() > 4) {
      PDiag << 0;
    } else {
      PDiag << (unsigned)Decls.size();
      for (auto *VD : Decls)
        PDiag << VD->getDeclName();
    }

    for (auto Range : Ranges)
      PDiag << Range;

    S.Diag(Ranges.begin()->getBegin(), PDiag);
  }

  // If Statement is an incemement or decrement, return true and sets the
  // variables Increment and DRE.
  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
                            DeclRefExpr *&DRE) {
    if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
      if (!Cleanups->cleanupsHaveSideEffects())
        Statement = Cleanups->getSubExpr();

    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
      switch (UO->getOpcode()) {
        default: return false;
        case UO_PostInc:
        case UO_PreInc:
          Increment = true;
          break;
        case UO_PostDec:
        case UO_PreDec:
          Increment = false;
          break;
      }
      DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
      return DRE;
    }

    if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
      FunctionDecl *FD = Call->getDirectCallee();
      if (!FD || !FD->isOverloadedOperator()) return false;
      switch (FD->getOverloadedOperator()) {
        default: return false;
        case OO_PlusPlus:
          Increment = true;
          break;
        case OO_MinusMinus:
          Increment = false;
          break;
      }
      DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
      return DRE;
    }

    return false;
  }

  // A visitor to determine if a continue or break statement is a
  // subexpression.
  class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
    SourceLocation BreakLoc;
    SourceLocation ContinueLoc;
    bool InSwitch = false;

  public:
    BreakContinueFinder(Sema &S, const Stmt* Body) :
        Inherited(S.Context) {
      Visit(Body);
    }

    typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;

    void VisitContinueStmt(const ContinueStmt* E) {
      ContinueLoc = E->getContinueLoc();
    }

    void VisitBreakStmt(const BreakStmt* E) {
      if (!InSwitch)
        BreakLoc = E->getBreakLoc();
    }

    void VisitSwitchStmt(const SwitchStmt* S) {
      if (const Stmt *Init = S->getInit())
        Visit(Init);
      if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
        Visit(CondVar);
      if (const Stmt *Cond = S->getCond())
        Visit(Cond);

      // Don't return break statements from the body of a switch.
      InSwitch = true;
      if (const Stmt *Body = S->getBody())
        Visit(Body);
      InSwitch = false;
    }

    void VisitForStmt(const ForStmt *S) {
      // Only visit the init statement of a for loop; the body
      // has a different break/continue scope.
      if (const Stmt *Init = S->getInit())
        Visit(Init);
    }

    void VisitWhileStmt(const WhileStmt *) {
      // Do nothing; the children of a while loop have a different
      // break/continue scope.
    }

    void VisitDoStmt(const DoStmt *) {
      // Do nothing; the children of a while loop have a different
      // break/continue scope.
    }

    void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
      // Only visit the initialization of a for loop; the body
      // has a different break/continue scope.
      if (const Stmt *Init = S->getInit())
        Visit(Init);
      if (const Stmt *Range = S->getRangeStmt())
        Visit(Range);
      if (const Stmt *Begin = S->getBeginStmt())
        Visit(Begin);
      if (const Stmt *End = S->getEndStmt())
        Visit(End);
    }

    void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
      // Only visit the initialization of a for loop; the body
      // has a different break/continue scope.
      if (const Stmt *Element = S->getElement())
        Visit(Element);
      if (const Stmt *Collection = S->getCollection())
        Visit(Collection);
    }

    bool ContinueFound() { return ContinueLoc.isValid(); }
    bool BreakFound() { return BreakLoc.isValid(); }
    SourceLocation GetContinueLoc() { return ContinueLoc; }
    SourceLocation GetBreakLoc() { return BreakLoc; }

  };  // end class BreakContinueFinder

  // Emit a warning when a loop increment/decrement appears twice per loop
  // iteration.  The conditions which trigger this warning are:
  // 1) The last statement in the loop body and the third expression in the
  //    for loop are both increment or both decrement of the same variable
  // 2) No continue statements in the loop body.
  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
    // Return when there is nothing to check.
    if (!Body || !Third) return;

    if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
                          Third->getBeginLoc()))
      return;

    // Get the last statement from the loop body.
    CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
    if (!CS || CS->body_empty()) return;
    Stmt *LastStmt = CS->body_back();
    if (!LastStmt) return;

    bool LoopIncrement, LastIncrement;
    DeclRefExpr *LoopDRE, *LastDRE;

    if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
    if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;

    // Check that the two statements are both increments or both decrements
    // on the same variable.
    if (LoopIncrement != LastIncrement ||
        LoopDRE->getDecl() != LastDRE->getDecl()) return;

    if (BreakContinueFinder(S, Body).ContinueFound()) return;

    S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
         << LastDRE->getDecl() << LastIncrement;
    S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
         << LoopIncrement;
  }

} // end namespace


void Sema::CheckBreakContinueBinding(Expr *E) {
  if (!E || getLangOpts().CPlusPlus)
    return;
  BreakContinueFinder BCFinder(*this, E);
  Scope *BreakParent = CurScope->getBreakParent();
  if (BCFinder.BreakFound() && BreakParent) {
    if (BreakParent->getFlags() & Scope::SwitchScope) {
      Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
    } else {
      Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
          << "break";
    }
  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
    Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
        << "continue";
  }
}

StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
                              Stmt *First, ConditionResult Second,
                              FullExprArg third, SourceLocation RParenLoc,
                              Stmt *Body) {
  if (Second.isInvalid())
    return StmtError();

  if (!getLangOpts().CPlusPlus) {
    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
      // declare identifiers for objects having storage class 'auto' or
      // 'register'.
      for (auto *DI : DS->decls()) {
        VarDecl *VD = dyn_cast<VarDecl>(DI);
        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
          VD = nullptr;
        if (!VD) {
          Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
          DI->setInvalidDecl();
        }
      }
    }
  }

  CheckBreakContinueBinding(Second.get().second);
  CheckBreakContinueBinding(third.get());

  if (!Second.get().first)
    CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
                                     Body);
  CheckForRedundantIteration(*this, third.get(), Body);

  if (Second.get().second &&
      !Diags.isIgnored(diag::warn_comma_operator,
                       Second.get().second->getExprLoc()))
    CommaVisitor(*this).Visit(Second.get().second);

  Expr *Third  = third.release().getAs<Expr>();
  if (isa<NullStmt>(Body))
    getCurCompoundScope().setHasEmptyLoopBodies();

  return new (Context)
      ForStmt(Context, First, Second.get().second, Second.get().first, Third,
              Body, ForLoc, LParenLoc, RParenLoc);
}

/// In an Objective C collection iteration statement:
///   for (x in y)
/// x can be an arbitrary l-value expression.  Bind it up as a
/// full-expression.
StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
  // Reduce placeholder expressions here.  Note that this rejects the
  // use of pseudo-object l-values in this position.
  ExprResult result = CheckPlaceholderExpr(E);
  if (result.isInvalid()) return StmtError();
  E = result.get();

  ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
  if (FullExpr.isInvalid())
    return StmtError();
  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
}

ExprResult
Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
  if (!collection)
    return ExprError();

  ExprResult result = CorrectDelayedTyposInExpr(collection);
  if (!result.isUsable())
    return ExprError();
  collection = result.get();

  // Bail out early if we've got a type-dependent expression.
  if (collection->isTypeDependent()) return collection;

  // Perform normal l-value conversion.
  result = DefaultFunctionArrayLvalueConversion(collection);
  if (result.isInvalid())
    return ExprError();
  collection = result.get();

  // The operand needs to have object-pointer type.
  // TODO: should we do a contextual conversion?
  const ObjCObjectPointerType *pointerType =
    collection->getType()->getAs<ObjCObjectPointerType>();
  if (!pointerType)
    return Diag(forLoc, diag::err_collection_expr_type)
             << collection->getType() << collection->getSourceRange();

  // Check that the operand provides
  //   - countByEnumeratingWithState:objects:count:
  const ObjCObjectType *objectType = pointerType->getObjectType();
  ObjCInterfaceDecl *iface = objectType->getInterface();

  // If we have a forward-declared type, we can't do this check.
  // Under ARC, it is an error not to have a forward-declared class.
  if (iface &&
      (getLangOpts().ObjCAutoRefCount
           ? RequireCompleteType(forLoc, QualType(objectType, 0),
                                 diag::err_arc_collection_forward, collection)
           : !isCompleteType(forLoc, QualType(objectType, 0)))) {
    // Otherwise, if we have any useful type information, check that
    // the type declares the appropriate method.
  } else if (iface || !objectType->qual_empty()) {
    IdentifierInfo *selectorIdents[] = {
      &Context.Idents.get("countByEnumeratingWithState"),
      &Context.Idents.get("objects"),
      &Context.Idents.get("count")
    };
    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);

    ObjCMethodDecl *method = nullptr;

    // If there's an interface, look in both the public and private APIs.
    if (iface) {
      method = iface->lookupInstanceMethod(selector);
      if (!method) method = iface->lookupPrivateMethod(selector);
    }

    // Also check protocol qualifiers.
    if (!method)
      method = LookupMethodInQualifiedType(selector, pointerType,
                                           /*instance*/ true);

    // If we didn't find it anywhere, give up.
    if (!method) {
      Diag(forLoc, diag::warn_collection_expr_type)
        << collection->getType() << selector << collection->getSourceRange();
    }

    // TODO: check for an incompatible signature?
  }

  // Wrap up any cleanups in the expression.
  return collection;
}

StmtResult
Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
                                 Stmt *First, Expr *collection,
                                 SourceLocation RParenLoc) {
  setFunctionHasBranchProtectedScope();

  ExprResult CollectionExprResult =
    CheckObjCForCollectionOperand(ForLoc, collection);

  if (First) {
    QualType FirstType;
    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
      if (!DS->isSingleDecl())
        return StmtError(Diag((*DS->decl_begin())->getLocation(),
                         diag::err_toomany_element_decls));

      VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
      if (!D || D->isInvalidDecl())
        return StmtError();

      FirstType = D->getType();
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
      // declare identifiers for objects having storage class 'auto' or
      // 'register'.
      if (!D->hasLocalStorage())
        return StmtError(Diag(D->getLocation(),
                              diag::err_non_local_variable_decl_in_for));

      // If the type contained 'auto', deduce the 'auto' to 'id'.
      if (FirstType->getContainedAutoType()) {
        OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
                                 VK_RValue);
        Expr *DeducedInit = &OpaqueId;
        if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
                DAR_Failed)
          DiagnoseAutoDeductionFailure(D, DeducedInit);
        if (FirstType.isNull()) {
          D->setInvalidDecl();
          return StmtError();
        }

        D->setType(FirstType);

        if (!inTemplateInstantiation()) {
          SourceLocation Loc =
              D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
          Diag(Loc, diag::warn_auto_var_is_id)
            << D->getDeclName();
        }
      }

    } else {
      Expr *FirstE = cast<Expr>(First);
      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
        return StmtError(
            Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
            << First->getSourceRange());

      FirstType = static_cast<Expr*>(First)->getType();
      if (FirstType.isConstQualified())
        Diag(ForLoc, diag::err_selector_element_const_type)
          << FirstType << First->getSourceRange();
    }
    if (!FirstType->isDependentType() &&
        !FirstType->isObjCObjectPointerType() &&
        !FirstType->isBlockPointerType())
        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
                           << FirstType << First->getSourceRange());
  }

  if (CollectionExprResult.isInvalid())
    return StmtError();

  CollectionExprResult =
      ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
  if (CollectionExprResult.isInvalid())
    return StmtError();

  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
                                             nullptr, ForLoc, RParenLoc);
}

/// Finish building a variable declaration for a for-range statement.
/// \return true if an error occurs.
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
                                  SourceLocation Loc, int DiagID) {
  if (Decl->getType()->isUndeducedType()) {
    ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
    if (!Res.isUsable()) {
      Decl->setInvalidDecl();
      return true;
    }
    Init = Res.get();
  }

  // Deduce the type for the iterator variable now rather than leaving it to
  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
  QualType InitType;
  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
          Sema::DAR_Failed)
    SemaRef.Diag(Loc, DiagID) << Init->getType();
  if (InitType.isNull()) {
    Decl->setInvalidDecl();
    return true;
  }
  Decl->setType(InitType);

  // In ARC, infer lifetime.
  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
  // we're doing the equivalent of fast iteration.
  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
      SemaRef.inferObjCARCLifetime(Decl))
    Decl->setInvalidDecl();

  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
  SemaRef.FinalizeDeclaration(Decl);
  SemaRef.CurContext->addHiddenDecl(Decl);
  return false;
}

namespace {
// An enum to represent whether something is dealing with a call to begin()
// or a call to end() in a range-based for loop.
enum BeginEndFunction {
  BEF_begin,
  BEF_end
};

/// Produce a note indicating which begin/end function was implicitly called
/// by a C++11 for-range statement. This is often not obvious from the code,
/// nor from the diagnostics produced when analysing the implicit expressions
/// required in a for-range statement.
void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
                                  BeginEndFunction BEF) {
  CallExpr *CE = dyn_cast<CallExpr>(E);
  if (!CE)
    return;
  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
  if (!D)
    return;
  SourceLocation Loc = D->getLocation();

  std::string Description;
  bool IsTemplate = false;
  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
    Description = SemaRef.getTemplateArgumentBindingsText(
      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
    IsTemplate = true;
  }

  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
    << BEF << IsTemplate << Description << E->getType();
}

/// Build a variable declaration for a for-range statement.
VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
                              QualType Type, StringRef Name) {
  DeclContext *DC = SemaRef.CurContext;
  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
                                  TInfo, SC_None);
  Decl->setImplicit();
  return Decl;
}

}

static bool ObjCEnumerationCollection(Expr *Collection) {
  return !Collection->isTypeDependent()
          && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
}

/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
///
/// C++11 [stmt.ranged]:
///   A range-based for statement is equivalent to
///
///   {
///     auto && __range = range-init;
///     for ( auto __begin = begin-expr,
///           __end = end-expr;
///           __begin != __end;
///           ++__begin ) {
///       for-range-declaration = *__begin;
///       statement
///     }
///   }
///
/// The body of the loop is not available yet, since it cannot be analysed until
/// we have determined the type of the for-range-declaration.
StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
                                      SourceLocation CoawaitLoc, Stmt *InitStmt,
                                      Stmt *First, SourceLocation ColonLoc,
                                      Expr *Range, SourceLocation RParenLoc,
                                      BuildForRangeKind Kind) {
  if (!First)
    return StmtError();

  if (Range && ObjCEnumerationCollection(Range)) {
    // FIXME: Support init-statements in Objective-C++20 ranged for statement.
    if (InitStmt)
      return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
                 << InitStmt->getSourceRange();
    return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
  }

  DeclStmt *DS = dyn_cast<DeclStmt>(First);
  assert(DS && "first part of for range not a decl stmt");

  if (!DS->isSingleDecl()) {
    Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
    return StmtError();
  }

  Decl *LoopVar = DS->getSingleDecl();
  if (LoopVar->isInvalidDecl() || !Range ||
      DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
    LoopVar->setInvalidDecl();
    return StmtError();
  }

  // Build the coroutine state immediately and not later during template
  // instantiation
  if (!CoawaitLoc.isInvalid()) {
    if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await"))
      return StmtError();
  }

  // Build  auto && __range = range-init
  // Divide by 2, since the variables are in the inner scope (loop body).
  const auto DepthStr = std::to_string(S->getDepth() / 2);
  SourceLocation RangeLoc = Range->getBeginLoc();
  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
                                           Context.getAutoRRefDeductType(),
                                           std::string("__range") + DepthStr);
  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
                            diag::err_for_range_deduction_failure)) {
    LoopVar->setInvalidDecl();
    return StmtError();
  }

  // Claim the type doesn't contain auto: we've already done the checking.
  DeclGroupPtrTy RangeGroup =
      BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
  if (RangeDecl.isInvalid()) {
    LoopVar->setInvalidDecl();
    return StmtError();
  }

  return BuildCXXForRangeStmt(
      ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
      /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
      /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
}

/// Create the initialization, compare, and increment steps for
/// the range-based for loop expression.
/// This function does not handle array-based for loops,
/// which are created in Sema::BuildCXXForRangeStmt.
///
/// \returns a ForRangeStatus indicating success or what kind of error occurred.
/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
/// CandidateSet and BEF are set and some non-success value is returned on
/// failure.
static Sema::ForRangeStatus
BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
                      QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
                      SourceLocation ColonLoc, SourceLocation CoawaitLoc,
                      OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
                      ExprResult *EndExpr, BeginEndFunction *BEF) {
  DeclarationNameInfo BeginNameInfo(
      &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
                                  ColonLoc);

  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
                                 Sema::LookupMemberName);
  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);

  auto BuildBegin = [&] {
    *BEF = BEF_begin;
    Sema::ForRangeStatus RangeStatus =
        SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
                                          BeginMemberLookup, CandidateSet,
                                          BeginRange, BeginExpr);

    if (RangeStatus != Sema::FRS_Success) {
      if (RangeStatus == Sema::FRS_DiagnosticIssued)
        SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
            << ColonLoc << BEF_begin << BeginRange->getType();
      return RangeStatus;
    }
    if (!CoawaitLoc.isInvalid()) {
      // FIXME: getCurScope() should not be used during template instantiation.
      // We should pick up the set of unqualified lookup results for operator
      // co_await during the initial parse.
      *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
                                            BeginExpr->get());
      if (BeginExpr->isInvalid())
        return Sema::FRS_DiagnosticIssued;
    }
    if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
                              diag::err_for_range_iter_deduction_failure)) {
      NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
      return Sema::FRS_DiagnosticIssued;
    }
    return Sema::FRS_Success;
  };

  auto BuildEnd = [&] {
    *BEF = BEF_end;
    Sema::ForRangeStatus RangeStatus =
        SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
                                          EndMemberLookup, CandidateSet,
                                          EndRange, EndExpr);
    if (RangeStatus != Sema::FRS_Success) {
      if (RangeStatus == Sema::FRS_DiagnosticIssued)
        SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
            << ColonLoc << BEF_end << EndRange->getType();
      return RangeStatus;
    }
    if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
                              diag::err_for_range_iter_deduction_failure)) {
      NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
      return Sema::FRS_DiagnosticIssued;
    }
    return Sema::FRS_Success;
  };

  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
    // - if _RangeT is a class type, the unqualified-ids begin and end are
    //   looked up in the scope of class _RangeT as if by class member access
    //   lookup (3.4.5), and if either (or both) finds at least one
    //   declaration, begin-expr and end-expr are __range.begin() and
    //   __range.end(), respectively;
    SemaRef.LookupQualifiedName(BeginMemberLookup, D);
    if (BeginMemberLookup.isAmbiguous())
      return Sema::FRS_DiagnosticIssued;

    SemaRef.LookupQualifiedName(EndMemberLookup, D);
    if (EndMemberLookup.isAmbiguous())
      return Sema::FRS_DiagnosticIssued;

    if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
      // Look up the non-member form of the member we didn't find, first.
      // This way we prefer a "no viable 'end'" diagnostic over a "i found
      // a 'begin' but ignored it because there was no member 'end'"
      // diagnostic.
      auto BuildNonmember = [&](
          BeginEndFunction BEFFound, LookupResult &Found,
          llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
          llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
        LookupResult OldFound = std::move(Found);
        Found.clear();

        if (Sema::ForRangeStatus Result = BuildNotFound())
          return Result;

        switch (BuildFound()) {
        case Sema::FRS_Success:
          return Sema::FRS_Success;

        case Sema::FRS_NoViableFunction:
          CandidateSet->NoteCandidates(
              PartialDiagnosticAt(BeginRange->getBeginLoc(),
                                  SemaRef.PDiag(diag::err_for_range_invalid)
                                      << BeginRange->getType() << BEFFound),
              SemaRef, OCD_AllCandidates, BeginRange);
          LLVM_FALLTHROUGH;

        case Sema::FRS_DiagnosticIssued:
          for (NamedDecl *D : OldFound) {
            SemaRef.Diag(D->getLocation(),
                         diag::note_for_range_member_begin_end_ignored)
                << BeginRange->getType() << BEFFound;
          }
          return Sema::FRS_DiagnosticIssued;
        }
        llvm_unreachable("unexpected ForRangeStatus");
      };
      if (BeginMemberLookup.empty())
        return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
      return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
    }
  } else {
    // - otherwise, begin-expr and end-expr are begin(__range) and
    //   end(__range), respectively, where begin and end are looked up with
    //   argument-dependent lookup (3.4.2). For the purposes of this name
    //   lookup, namespace std is an associated namespace.
  }

  if (Sema::ForRangeStatus Result = BuildBegin())
    return Result;
  return BuildEnd();
}

/// Speculatively attempt to dereference an invalid range expression.
/// If the attempt fails, this function will return a valid, null StmtResult
/// and emit no diagnostics.
static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
                                                 SourceLocation ForLoc,
                                                 SourceLocation CoawaitLoc,
                                                 Stmt *InitStmt,
                                                 Stmt *LoopVarDecl,
                                                 SourceLocation ColonLoc,
                                                 Expr *Range,
                                                 SourceLocation RangeLoc,
                                                 SourceLocation RParenLoc) {
  // Determine whether we can rebuild the for-range statement with a
  // dereferenced range expression.
  ExprResult AdjustedRange;
  {
    Sema::SFINAETrap Trap(SemaRef);

    AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
    if (AdjustedRange.isInvalid())
      return StmtResult();

    StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
        S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
        AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
    if (SR.isInvalid())
      return StmtResult();
  }

  // The attempt to dereference worked well enough that it could produce a valid
  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
  // case there are any other (non-fatal) problems with it.
  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
    << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
  return SemaRef.ActOnCXXForRangeStmt(
      S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
      AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
}

namespace {
/// RAII object to automatically invalidate a declaration if an error occurs.
struct InvalidateOnErrorScope {
  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
      : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
  ~InvalidateOnErrorScope() {
    if (Enabled && Trap.hasErrorOccurred())
      D->setInvalidDecl();
  }

  DiagnosticErrorTrap Trap;
  Decl *D;
  bool Enabled;
};
}

/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
                                      SourceLocation CoawaitLoc, Stmt *InitStmt,
                                      SourceLocation ColonLoc, Stmt *RangeDecl,
                                      Stmt *Begin, Stmt *End, Expr *Cond,
                                      Expr *Inc, Stmt *LoopVarDecl,
                                      SourceLocation RParenLoc,
                                      BuildForRangeKind Kind) {
  // FIXME: This should not be used during template instantiation. We should
  // pick up the set of unqualified lookup results for the != and + operators
  // in the initial parse.
  //
  // Testcase (accepts-invalid):
  //   template<typename T> void f() { for (auto x : T()) {} }
  //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
  //   bool operator!=(N::X, N::X); void operator++(N::X);
  //   void g() { f<N::X>(); }
  Scope *S = getCurScope();

  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
  QualType RangeVarType = RangeVar->getType();

  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());

  // If we hit any errors, mark the loop variable as invalid if its type
  // contains 'auto'.
  InvalidateOnErrorScope Invalidate(*this, LoopVar,
                                    LoopVar->getType()->isUndeducedType());

  StmtResult BeginDeclStmt = Begin;
  StmtResult EndDeclStmt = End;
  ExprResult NotEqExpr = Cond, IncrExpr = Inc;

  if (RangeVarType->isDependentType()) {
    // The range is implicitly used as a placeholder when it is dependent.
    RangeVar->markUsed(Context);

    // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
    // them in properly when we instantiate the loop.
    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
      if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
        for (auto *Binding : DD->bindings())
          Binding->setType(Context.DependentTy);
      LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
    }
  } else if (!BeginDeclStmt.get()) {
    SourceLocation RangeLoc = RangeVar->getLocation();

    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();

    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
                                                VK_LValue, ColonLoc);
    if (BeginRangeRef.isInvalid())
      return StmtError();

    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
                                              VK_LValue, ColonLoc);
    if (EndRangeRef.isInvalid())
      return StmtError();

    QualType AutoType = Context.getAutoDeductType();
    Expr *Range = RangeVar->getInit();
    if (!Range)
      return StmtError();
    QualType RangeType = Range->getType();

    if (RequireCompleteType(RangeLoc, RangeType,
                            diag::err_for_range_incomplete_type))
      return StmtError();

    // Build auto __begin = begin-expr, __end = end-expr.
    // Divide by 2, since the variables are in the inner scope (loop body).
    const auto DepthStr = std::to_string(S->getDepth() / 2);
    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
                                             std::string("__begin") + DepthStr);
    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
                                           std::string("__end") + DepthStr);

    // Build begin-expr and end-expr and attach to __begin and __end variables.
    ExprResult BeginExpr, EndExpr;
    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
      // - if _RangeT is an array type, begin-expr and end-expr are __range and
      //   __range + __bound, respectively, where __bound is the array bound. If
      //   _RangeT is an array of unknown size or an array of incomplete type,
      //   the program is ill-formed;

      // begin-expr is __range.
      BeginExpr = BeginRangeRef;
      if (!CoawaitLoc.isInvalid()) {
        BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
        if (BeginExpr.isInvalid())
          return StmtError();
      }
      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
                                diag::err_for_range_iter_deduction_failure)) {
        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
        return StmtError();
      }

      // Find the array bound.
      ExprResult BoundExpr;
      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
        BoundExpr = IntegerLiteral::Create(
            Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
      else if (const VariableArrayType *VAT =
               dyn_cast<VariableArrayType>(UnqAT)) {
        // For a variably modified type we can't just use the expression within
        // the array bounds, since we don't want that to be re-evaluated here.
        // Rather, we need to determine what it was when the array was first
        // created - so we resort to using sizeof(vla)/sizeof(element).
        // For e.g.
        //  void f(int b) {
        //    int vla[b];
        //    b = -1;   <-- This should not affect the num of iterations below
        //    for (int &c : vla) { .. }
        //  }

        // FIXME: This results in codegen generating IR that recalculates the
        // run-time number of elements (as opposed to just using the IR Value
        // that corresponds to the run-time value of each bound that was
        // generated when the array was created.) If this proves too embarrassing
        // even for unoptimized IR, consider passing a magic-value/cookie to
        // codegen that then knows to simply use that initial llvm::Value (that
        // corresponds to the bound at time of array creation) within
        // getelementptr.  But be prepared to pay the price of increasing a
        // customized form of coupling between the two components - which  could
        // be hard to maintain as the codebase evolves.

        ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
            EndVar->getLocation(), UETT_SizeOf,
            /*IsType=*/true,
            CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
                                                 VAT->desugar(), RangeLoc))
                .getAsOpaquePtr(),
            EndVar->getSourceRange());
        if (SizeOfVLAExprR.isInvalid())
          return StmtError();

        ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
            EndVar->getLocation(), UETT_SizeOf,
            /*IsType=*/true,
            CreateParsedType(VAT->desugar(),
                             Context.getTrivialTypeSourceInfo(
                                 VAT->getElementType(), RangeLoc))
                .getAsOpaquePtr(),
            EndVar->getSourceRange());
        if (SizeOfEachElementExprR.isInvalid())
          return StmtError();

        BoundExpr =
            ActOnBinOp(S, EndVar->getLocation(), tok::slash,
                       SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
        if (BoundExpr.isInvalid())
          return StmtError();

      } else {
        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
        // UnqAT is not incomplete and Range is not type-dependent.
        llvm_unreachable("Unexpected array type in for-range");
      }

      // end-expr is __range + __bound.
      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
                           BoundExpr.get());
      if (EndExpr.isInvalid())
        return StmtError();
      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
                                diag::err_for_range_iter_deduction_failure)) {
        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
        return StmtError();
      }
    } else {
      OverloadCandidateSet CandidateSet(RangeLoc,
                                        OverloadCandidateSet::CSK_Normal);
      BeginEndFunction BEFFailure;
      ForRangeStatus RangeStatus = BuildNonArrayForRange(
          *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
          EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
          &BEFFailure);

      if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
          BEFFailure == BEF_begin) {
        // If the range is being built from an array parameter, emit a
        // a diagnostic that it is being treated as a pointer.
        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
          if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
            QualType ArrayTy = PVD->getOriginalType();
            QualType PointerTy = PVD->getType();
            if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
              Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
                  << RangeLoc << PVD << ArrayTy << PointerTy;
              Diag(PVD->getLocation(), diag::note_declared_at);
              return StmtError();
            }
          }
        }

        // If building the range failed, try dereferencing the range expression
        // unless a diagnostic was issued or the end function is problematic.
        StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
                                                       CoawaitLoc, InitStmt,
                                                       LoopVarDecl, ColonLoc,
                                                       Range, RangeLoc,
                                                       RParenLoc);
        if (SR.isInvalid() || SR.isUsable())
          return SR;
      }

      // Otherwise, emit diagnostics if we haven't already.
      if (RangeStatus == FRS_NoViableFunction) {
        Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
        CandidateSet.NoteCandidates(
            PartialDiagnosticAt(Range->getBeginLoc(),
                                PDiag(diag::err_for_range_invalid)
                                    << RangeLoc << Range->getType()
                                    << BEFFailure),
            *this, OCD_AllCandidates, Range);
      }
      // Return an error if no fix was discovered.
      if (RangeStatus != FRS_Success)
        return StmtError();
    }

    assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
           "invalid range expression in for loop");

    // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
    // C++1z removes this restriction.
    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
    if (!Context.hasSameType(BeginType, EndType)) {
      Diag(RangeLoc, getLangOpts().CPlusPlus17
                         ? diag::warn_for_range_begin_end_types_differ
                         : diag::ext_for_range_begin_end_types_differ)
          << BeginType << EndType;
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
    }

    BeginDeclStmt =
        ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
    EndDeclStmt =
        ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);

    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
                                           VK_LValue, ColonLoc);
    if (BeginRef.isInvalid())
      return StmtError();

    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
                                         VK_LValue, ColonLoc);
    if (EndRef.isInvalid())
      return StmtError();

    // Build and check __begin != __end expression.
    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
                           BeginRef.get(), EndRef.get());
    if (!NotEqExpr.isInvalid())
      NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
    if (!NotEqExpr.isInvalid())
      NotEqExpr =
          ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
    if (NotEqExpr.isInvalid()) {
      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
        << RangeLoc << 0 << BeginRangeRef.get()->getType();
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
      if (!Context.hasSameType(BeginType, EndType))
        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
      return StmtError();
    }

    // Build and check ++__begin expression.
    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
                                VK_LValue, ColonLoc);
    if (BeginRef.isInvalid())
      return StmtError();

    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
    if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
      // FIXME: getCurScope() should not be used during template instantiation.
      // We should pick up the set of unqualified lookup results for operator
      // co_await during the initial parse.
      IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
    if (!IncrExpr.isInvalid())
      IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
    if (IncrExpr.isInvalid()) {
      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
        << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
      return StmtError();
    }

    // Build and check *__begin  expression.
    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
                                VK_LValue, ColonLoc);
    if (BeginRef.isInvalid())
      return StmtError();

    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
    if (DerefExpr.isInvalid()) {
      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
        << RangeLoc << 1 << BeginRangeRef.get()->getType();
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
      return StmtError();
    }

    // Attach  *__begin  as initializer for VD. Don't touch it if we're just
    // trying to determine whether this would be a valid range.
    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
      if (LoopVar->isInvalidDecl())
        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
    }
  }

  // Don't bother to actually allocate the result if we're just trying to
  // determine whether it would be valid.
  if (Kind == BFRK_Check)
    return StmtResult();

  // In OpenMP loop region loop control variable must be private. Perform
  // analysis of first part (if any).
  if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
    ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());

  return new (Context) CXXForRangeStmt(
      InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
      cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
      IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
      ColonLoc, RParenLoc);
}

/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
/// statement.
StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
  if (!S || !B)
    return StmtError();
  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);

  ForStmt->setBody(B);
  return S;
}

// Warn when the loop variable is a const reference that creates a copy.
// Suggest using the non-reference type for copies.  If a copy can be prevented
// suggest the const reference type that would do so.
// For instance, given "for (const &Foo : Range)", suggest
// "for (const Foo : Range)" to denote a copy is made for the loop.  If
// possible, also suggest "for (const &Bar : Range)" if this type prevents
// the copy altogether.
static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
                                                    const VarDecl *VD,
                                                    QualType RangeInitType) {
  const Expr *InitExpr = VD->getInit();
  if (!InitExpr)
    return;

  QualType VariableType = VD->getType();

  if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
    if (!Cleanups->cleanupsHaveSideEffects())
      InitExpr = Cleanups->getSubExpr();

  const MaterializeTemporaryExpr *MTE =
      dyn_cast<MaterializeTemporaryExpr>(InitExpr);

  // No copy made.
  if (!MTE)
    return;

  const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();

  // Searching for either UnaryOperator for dereference of a pointer or
  // CXXOperatorCallExpr for handling iterators.
  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
      E = CCE->getArg(0);
    } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
      const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
      E = ME->getBase();
    } else {
      const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
      E = MTE->getSubExpr();
    }
    E = E->IgnoreImpCasts();
  }

  bool ReturnsReference = false;
  if (isa<UnaryOperator>(E)) {
    ReturnsReference = true;
  } else {
    const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
    const FunctionDecl *FD = Call->getDirectCallee();
    QualType ReturnType = FD->getReturnType();
    ReturnsReference = ReturnType->isReferenceType();
  }

  if (ReturnsReference) {
    // Loop variable creates a temporary.  Suggest either to go with
    // non-reference loop variable to indicate a copy is made, or
    // the correct time to bind a const reference.
    SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
        << VD << VariableType << E->getType();
    QualType NonReferenceType = VariableType.getNonReferenceType();
    NonReferenceType.removeLocalConst();
    QualType NewReferenceType =
        SemaRef.Context.getLValueReferenceType(E->getType().withConst());
    SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
        << NonReferenceType << NewReferenceType << VD->getSourceRange()
        << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
  } else if (!VariableType->isRValueReferenceType()) {
    // The range always returns a copy, so a temporary is always created.
    // Suggest removing the reference from the loop variable.
    // If the type is a rvalue reference do not warn since that changes the
    // semantic of the code.
    SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
        << VD << RangeInitType;
    QualType NonReferenceType = VariableType.getNonReferenceType();
    NonReferenceType.removeLocalConst();
    SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
        << NonReferenceType << VD->getSourceRange()
        << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
  }
}

/// Determines whether the @p VariableType's declaration is a record with the
/// clang::trivial_abi attribute.
static bool hasTrivialABIAttr(QualType VariableType) {
  if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
    return RD->hasAttr<TrivialABIAttr>();

  return false;
}

// Warns when the loop variable can be changed to a reference type to
// prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
// "for (const Foo &x : Range)" if this form does not make a copy.
static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
                                                const VarDecl *VD) {
  const Expr *InitExpr = VD->getInit();
  if (!InitExpr)
    return;

  QualType VariableType = VD->getType();

  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
    if (!CE->getConstructor()->isCopyConstructor())
      return;
  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
    if (CE->getCastKind() != CK_LValueToRValue)
      return;
  } else {
    return;
  }

  // Small trivially copyable types are cheap to copy. Do not emit the
  // diagnostic for these instances. 64 bytes is a common size of a cache line.
  // (The function `getTypeSize` returns the size in bits.)
  ASTContext &Ctx = SemaRef.Context;
  if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
      (VariableType.isTriviallyCopyableType(Ctx) ||
       hasTrivialABIAttr(VariableType)))
    return;

  // Suggest changing from a const variable to a const reference variable
  // if doing so will prevent a copy.
  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
      << VD << VariableType << InitExpr->getType();
  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
      << SemaRef.Context.getLValueReferenceType(VariableType)
      << VD->getSourceRange()
      << FixItHint::CreateInsertion(VD->getLocation(), "&");
}

/// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
/// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
///    using "const foo x" to show that a copy is made
/// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
///    Suggest either "const bar x" to keep the copying or "const foo& x" to
///    prevent the copy.
/// 3) for (const foo x : foos) where x is constructed from a reference foo.
///    Suggest "const foo &x" to prevent the copy.
static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
                                           const CXXForRangeStmt *ForStmt) {
  if (SemaRef.inTemplateInstantiation())
    return;

  if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
                              ForStmt->getBeginLoc()) &&
      SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
                              ForStmt->getBeginLoc()) &&
      SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
                              ForStmt->getBeginLoc())) {
    return;
  }

  const VarDecl *VD = ForStmt->getLoopVariable();
  if (!VD)
    return;

  QualType VariableType = VD->getType();

  if (VariableType->isIncompleteType())
    return;

  const Expr *InitExpr = VD->getInit();
  if (!InitExpr)
    return;

  if (InitExpr->getExprLoc().isMacroID())
    return;

  if (VariableType->isReferenceType()) {
    DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
                                            ForStmt->getRangeInit()->getType());
  } else if (VariableType.isConstQualified()) {
    DiagnoseForRangeConstVariableCopies(SemaRef, VD);
  }
}

/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
/// body cannot be performed until after the type of the range variable is
/// determined.
StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
  if (!S || !B)
    return StmtError();

  if (isa<ObjCForCollectionStmt>(S))
    return FinishObjCForCollectionStmt(S, B);

  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
  ForStmt->setBody(B);

  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
                        diag::warn_empty_range_based_for_body);

  DiagnoseForRangeVariableCopies(*this, ForStmt);

  return S;
}

StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
                               SourceLocation LabelLoc,
                               LabelDecl *TheDecl) {
  setFunctionHasBranchIntoScope();
  TheDecl->markUsed(Context);
  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
}

StmtResult
Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
                            Expr *E) {
  // Convert operand to void*
  if (!E->isTypeDependent()) {
    QualType ETy = E->getType();
    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
    ExprResult ExprRes = E;
    AssignConvertType ConvTy =
      CheckSingleAssignmentConstraints(DestTy, ExprRes);
    if (ExprRes.isInvalid())
      return StmtError();
    E = ExprRes.get();
    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
      return StmtError();
  }

  ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
  if (ExprRes.isInvalid())
    return StmtError();
  E = ExprRes.get();

  setFunctionHasIndirectGoto();

  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
}

static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
                                     const Scope &DestScope) {
  if (!S.CurrentSEHFinally.empty() &&
      DestScope.Contains(*S.CurrentSEHFinally.back())) {
    S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
  }
}

StmtResult
Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
  Scope *S = CurScope->getContinueParent();
  if (!S) {
    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
  }
  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);

  return new (Context) ContinueStmt(ContinueLoc);
}

StmtResult
Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
  Scope *S = CurScope->getBreakParent();
  if (!S) {
    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
  }
  if (S->isOpenMPLoopScope())
    return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
                     << "break");
  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);

  return new (Context) BreakStmt(BreakLoc);
}

/// Determine whether the given expression is a candidate for
/// copy elision in either a return statement or a throw expression.
///
/// \param ReturnType If we're determining the copy elision candidate for
/// a return statement, this is the return type of the function. If we're
/// determining the copy elision candidate for a throw expression, this will
/// be a NULL type.
///
/// \param E The expression being returned from the function or block, or
/// being thrown.
///
/// \param CESK Whether we allow function parameters or
/// id-expressions that could be moved out of the function to be considered NRVO
/// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
/// determine whether we should try to move as part of a return or throw (which
/// does allow function parameters).
///
/// \returns The NRVO candidate variable, if the return statement may use the
/// NRVO, or NULL if there is no such candidate.
VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E,
                                       CopyElisionSemanticsKind CESK) {
  // - in a return statement in a function [where] ...
  // ... the expression is the name of a non-volatile automatic object ...
  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
  if (!DR || DR->refersToEnclosingVariableOrCapture())
    return nullptr;
  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
  if (!VD)
    return nullptr;

  if (isCopyElisionCandidate(ReturnType, VD, CESK))
    return VD;
  return nullptr;
}

bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
                                  CopyElisionSemanticsKind CESK) {
  QualType VDType = VD->getType();
  // - in a return statement in a function with ...
  // ... a class return type ...
  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
    if (!ReturnType->isRecordType())
      return false;
    // ... the same cv-unqualified type as the function return type ...
    // When considering moving this expression out, allow dissimilar types.
    if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
        !Context.hasSameUnqualifiedType(ReturnType, VDType))
      return false;
  }

  // ...object (other than a function or catch-clause parameter)...
  if (VD->getKind() != Decl::Var &&
      !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
    return false;
  if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
    return false;

  // ...automatic...
  if (!VD->hasLocalStorage()) return false;

  // Return false if VD is a __block variable. We don't want to implicitly move
  // out of a __block variable during a return because we cannot assume the
  // variable will no longer be used.
  if (VD->hasAttr<BlocksAttr>()) return false;

  if (CESK & CES_AllowDifferentTypes)
    return true;

  // ...non-volatile...
  if (VD->getType().isVolatileQualified()) return false;

  // Variables with higher required alignment than their type's ABI
  // alignment cannot use NRVO.
  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
    return false;

  return true;
}

/// Try to perform the initialization of a potentially-movable value,
/// which is the operand to a return or throw statement.
///
/// This routine implements C++14 [class.copy]p32, which attempts to treat
/// returned lvalues as rvalues in certain cases (to prefer move construction),
/// then falls back to treating them as lvalues if that failed.
///
/// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
/// resolutions that find non-constructors, such as derived-to-base conversions
/// or `operator T()&&` member functions. If false, do consider such
/// conversion sequences.
///
/// \param Res We will fill this in if move-initialization was possible.
/// If move-initialization is not possible, such that we must fall back to
/// treating the operand as an lvalue, we will leave Res in its original
/// invalid state.
static void TryMoveInitialization(Sema& S,
                                  const InitializedEntity &Entity,
                                  const VarDecl *NRVOCandidate,
                                  QualType ResultType,
                                  Expr *&Value,
                                  bool ConvertingConstructorsOnly,
                                  ExprResult &Res) {
  ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
                            CK_NoOp, Value, VK_XValue);

  Expr *InitExpr = &AsRvalue;

  InitializationKind Kind = InitializationKind::CreateCopy(
      Value->getBeginLoc(), Value->getBeginLoc());

  InitializationSequence Seq(S, Entity, Kind, InitExpr);

  if (!Seq)
    return;

  for (const InitializationSequence::Step &Step : Seq.steps()) {
    if (Step.Kind != InitializationSequence::SK_ConstructorInitialization &&
        Step.Kind != InitializationSequence::SK_UserConversion)
      continue;

    FunctionDecl *FD = Step.Function.Function;
    if (ConvertingConstructorsOnly) {
      if (isa<CXXConstructorDecl>(FD)) {
        // C++14 [class.copy]p32:
        // [...] If the first overload resolution fails or was not performed,
        // or if the type of the first parameter of the selected constructor
        // is not an rvalue reference to the object's type (possibly
        // cv-qualified), overload resolution is performed again, considering
        // the object as an lvalue.
        const RValueReferenceType *RRefType =
            FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>();
        if (!RRefType)
          break;
        if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
                                              NRVOCandidate->getType()))
          break;
      } else {
        continue;
      }
    } else {
      if (isa<CXXConstructorDecl>(FD)) {
        // Check that overload resolution selected a constructor taking an
        // rvalue reference. If it selected an lvalue reference, then we
        // didn't need to cast this thing to an rvalue in the first place.
        if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
          break;
      } else if (isa<CXXMethodDecl>(FD)) {
        // Check that overload resolution selected a conversion operator
        // taking an rvalue reference.
        if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
          break;
      } else {
        continue;
      }
    }

    // Promote "AsRvalue" to the heap, since we now need this
    // expression node to persist.
    Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp,
                                     Value, nullptr, VK_XValue);

    // Complete type-checking the initialization of the return type
    // using the constructor we found.
    Res = Seq.Perform(S, Entity, Kind, Value);
  }
}

/// Perform the initialization of a potentially-movable value, which
/// is the result of return value.
///
/// This routine implements C++14 [class.copy]p32, which attempts to treat
/// returned lvalues as rvalues in certain cases (to prefer move construction),
/// then falls back to treating them as lvalues if that failed.
ExprResult
Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
                                      const VarDecl *NRVOCandidate,
                                      QualType ResultType,
                                      Expr *Value,
                                      bool AllowNRVO) {
  // C++14 [class.copy]p32:
  // When the criteria for elision of a copy/move operation are met, but not for
  // an exception-declaration, and the object to be copied is designated by an
  // lvalue, or when the expression in a return statement is a (possibly
  // parenthesized) id-expression that names an object with automatic storage
  // duration declared in the body or parameter-declaration-clause of the
  // innermost enclosing function or lambda-expression, overload resolution to
  // select the constructor for the copy is first performed as if the object
  // were designated by an rvalue.
  ExprResult Res = ExprError();

  if (AllowNRVO) {
    bool AffectedByCWG1579 = false;

    if (!NRVOCandidate) {
      NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
      if (NRVOCandidate &&
          !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
                                      Value->getExprLoc())) {
        const VarDecl *NRVOCandidateInCXX11 =
            getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
        AffectedByCWG1579 = (!NRVOCandidateInCXX11);
      }
    }

    if (NRVOCandidate) {
      TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
                            true, Res);
    }

    if (!Res.isInvalid() && AffectedByCWG1579) {
      QualType QT = NRVOCandidate->getType();
      if (QT.getNonReferenceType()
                     .getUnqualifiedType()
                     .isTriviallyCopyableType(Context)) {
        // Adding 'std::move' around a trivially copyable variable is probably
        // pointless. Don't suggest it.
      } else {
        // Common cases for this are returning unique_ptr<Derived> from a
        // function of return type unique_ptr<Base>, or returning T from a
        // function of return type Expected<T>. This is totally fine in a
        // post-CWG1579 world, but was not fine before.
        assert(!ResultType.isNull());
        SmallString<32> Str;
        Str += "std::move(";
        Str += NRVOCandidate->getDeclName().getAsString();
        Str += ")";
        Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
            << Value->getSourceRange()
            << NRVOCandidate->getDeclName() << ResultType << QT;
        Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
            << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
      }
    } else if (Res.isInvalid() &&
               !getDiagnostics().isIgnored(diag::warn_return_std_move,
                                           Value->getExprLoc())) {
      const VarDecl *FakeNRVOCandidate =
          getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
      if (FakeNRVOCandidate) {
        QualType QT = FakeNRVOCandidate->getType();
        if (QT->isLValueReferenceType()) {
          // Adding 'std::move' around an lvalue reference variable's name is
          // dangerous. Don't suggest it.
        } else if (QT.getNonReferenceType()
                       .getUnqualifiedType()
                       .isTriviallyCopyableType(Context)) {
          // Adding 'std::move' around a trivially copyable variable is probably
          // pointless. Don't suggest it.
        } else {
          ExprResult FakeRes = ExprError();
          Expr *FakeValue = Value;
          TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
                                FakeValue, false, FakeRes);
          if (!FakeRes.isInvalid()) {
            bool IsThrow =
                (Entity.getKind() == InitializedEntity::EK_Exception);
            SmallString<32> Str;
            Str += "std::move(";
            Str += FakeNRVOCandidate->getDeclName().getAsString();
            Str += ")";
            Diag(Value->getExprLoc(), diag::warn_return_std_move)
                << Value->getSourceRange()
                << FakeNRVOCandidate->getDeclName() << IsThrow;
            Diag(Value->getExprLoc(), diag::note_add_std_move)
                << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
          }
        }
      }
    }
  }

  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
  // above, or overload resolution failed. Either way, we need to try
  // (again) now with the return value expression as written.
  if (Res.isInvalid())
    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);

  return Res;
}

/// Determine whether the declared return type of the specified function
/// contains 'auto'.
static bool hasDeducedReturnType(FunctionDecl *FD) {
  const FunctionProtoType *FPT =
      FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
  return FPT->getReturnType()->isUndeducedType();
}

/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
/// for capturing scopes.
///
StmtResult
Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
  // If this is the first return we've seen, infer the return type.
  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
  QualType FnRetType = CurCap->ReturnType;
  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
  bool HasDeducedReturnType =
      CurLambda && hasDeducedReturnType(CurLambda->CallOperator);

  if (ExprEvalContexts.back().Context ==
          ExpressionEvaluationContext::DiscardedStatement &&
      (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
    if (RetValExp) {
      ExprResult ER =
          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
      if (ER.isInvalid())
        return StmtError();
      RetValExp = ER.get();
    }
    return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
                              /* NRVOCandidate=*/nullptr);
  }

  if (HasDeducedReturnType) {
    // In C++1y, the return type may involve 'auto'.
    // FIXME: Blocks might have a return type of 'auto' explicitly specified.
    FunctionDecl *FD = CurLambda->CallOperator;
    if (CurCap->ReturnType.isNull())
      CurCap->ReturnType = FD->getReturnType();

    AutoType *AT = CurCap->ReturnType->getContainedAutoType();
    assert(AT && "lost auto type from lambda return type");
    if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
      FD->setInvalidDecl();
      return StmtError();
    }
    CurCap->ReturnType = FnRetType = FD->getReturnType();
  } else if (CurCap->HasImplicitReturnType) {
    // For blocks/lambdas with implicit return types, we check each return
    // statement individually, and deduce the common return type when the block
    // or lambda is completed.
    // FIXME: Fold this into the 'auto' codepath above.
    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
      if (Result.isInvalid())
        return StmtError();
      RetValExp = Result.get();

      // DR1048: even prior to C++14, we should use the 'auto' deduction rules
      // when deducing a return type for a lambda-expression (or by extension
      // for a block). These rules differ from the stated C++11 rules only in
      // that they remove top-level cv-qualifiers.
      if (!CurContext->isDependentContext())
        FnRetType = RetValExp->getType().getUnqualifiedType();
      else
        FnRetType = CurCap->ReturnType = Context.DependentTy;
    } else {
      if (RetValExp) {
        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
        // initializer list, because it is not an expression (even
        // though we represent it as one). We still deduce 'void'.
        Diag(ReturnLoc, diag::err_lambda_return_init_list)
          << RetValExp->getSourceRange();
      }

      FnRetType = Context.VoidTy;
    }

    // Although we'll properly infer the type of the block once it's completed,
    // make sure we provide a return type now for better error recovery.
    if (CurCap->ReturnType.isNull())
      CurCap->ReturnType = FnRetType;
  }
  assert(!FnRetType.isNull());

  if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
    if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
      return StmtError();
    }
  } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
    Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
    return StmtError();
  } else {
    assert(CurLambda && "unknown kind of captured scope");
    if (CurLambda->CallOperator->getType()
            ->castAs<FunctionType>()
            ->getNoReturnAttr()) {
      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
      return StmtError();
    }
  }

  // Otherwise, verify that this result type matches the previous one.  We are
  // pickier with blocks than for normal functions because we don't have GCC
  // compatibility to worry about here.
  const VarDecl *NRVOCandidate = nullptr;
  if (FnRetType->isDependentType()) {
    // Delay processing for now.  TODO: there are lots of dependent
    // types we can conclusively prove aren't void.
  } else if (FnRetType->isVoidType()) {
    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
        !(getLangOpts().CPlusPlus &&
          (RetValExp->isTypeDependent() ||
           RetValExp->getType()->isVoidType()))) {
      if (!getLangOpts().CPlusPlus &&
          RetValExp->getType()->isVoidType())
        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
      else {
        Diag(ReturnLoc, diag::err_return_block_has_expr);
        RetValExp = nullptr;
      }
    }
  } else if (!RetValExp) {
    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
  } else if (!RetValExp->isTypeDependent()) {
    // we have a non-void block with an expression, continue checking

    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
    // function return.

    // In C++ the return statement is handled via a copy initialization.
    // the C version of which boils down to CheckSingleAssignmentConstraints.
    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
                                                                   FnRetType,
                                                      NRVOCandidate != nullptr);
    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
                                                     FnRetType, RetValExp);
    if (Res.isInvalid()) {
      // FIXME: Cleanup temporaries here, anyway?
      return StmtError();
    }
    RetValExp = Res.get();
    CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
  } else {
    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
  }

  if (RetValExp) {
    ExprResult ER =
        ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
    if (ER.isInvalid())
      return StmtError();
    RetValExp = ER.get();
  }
  auto *Result =
      ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);

  // If we need to check for the named return value optimization,
  // or if we need to infer the return type,
  // save the return statement in our scope for later processing.
  if (CurCap->HasImplicitReturnType || NRVOCandidate)
    FunctionScopes.back()->Returns.push_back(Result);

  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
    FunctionScopes.back()->FirstReturnLoc = ReturnLoc;

  return Result;
}

namespace {
/// Marks all typedefs in all local classes in a type referenced.
///
/// In a function like
/// auto f() {
///   struct S { typedef int a; };
///   return S();
/// }
///
/// the local type escapes and could be referenced in some TUs but not in
/// others. Pretend that all local typedefs are always referenced, to not warn
/// on this. This isn't necessary if f has internal linkage, or the typedef
/// is private.
class LocalTypedefNameReferencer
    : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
public:
  LocalTypedefNameReferencer(Sema &S) : S(S) {}
  bool VisitRecordType(const RecordType *RT);
private:
  Sema &S;
};
bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
      R->isDependentType())
    return true;
  for (auto *TmpD : R->decls())
    if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
      if (T->getAccess() != AS_private || R->hasFriends())
        S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
  return true;
}
}

TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
  return FD->getTypeSourceInfo()
      ->getTypeLoc()
      .getAsAdjusted<FunctionProtoTypeLoc>()
      .getReturnLoc();
}

/// Deduce the return type for a function from a returned expression, per
/// C++1y [dcl.spec.auto]p6.
bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
                                            SourceLocation ReturnLoc,
                                            Expr *&RetExpr,
                                            AutoType *AT) {
  // If this is the conversion function for a lambda, we choose to deduce it
  // type from the corresponding call operator, not from the synthesized return
  // statement within it. See Sema::DeduceReturnType.
  if (isLambdaConversionOperator(FD))
    return false;

  TypeLoc OrigResultType = getReturnTypeLoc(FD);
  QualType Deduced;

  if (RetExpr && isa<InitListExpr>(RetExpr)) {
    //  If the deduction is for a return statement and the initializer is
    //  a braced-init-list, the program is ill-formed.
    Diag(RetExpr->getExprLoc(),
         getCurLambda() ? diag::err_lambda_return_init_list
                        : diag::err_auto_fn_return_init_list)
        << RetExpr->getSourceRange();
    return true;
  }

  if (FD->isDependentContext()) {
    // C++1y [dcl.spec.auto]p12:
    //   Return type deduction [...] occurs when the definition is
    //   instantiated even if the function body contains a return
    //   statement with a non-type-dependent operand.
    assert(AT->isDeduced() && "should have deduced to dependent type");
    return false;
  }

  if (RetExpr) {
    //  Otherwise, [...] deduce a value for U using the rules of template
    //  argument deduction.
    DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);

    if (DAR == DAR_Failed && !FD->isInvalidDecl())
      Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
        << OrigResultType.getType() << RetExpr->getType();

    if (DAR != DAR_Succeeded)
      return true;

    // If a local type is part of the returned type, mark its fields as
    // referenced.
    LocalTypedefNameReferencer Referencer(*this);
    Referencer.TraverseType(RetExpr->getType());
  } else {
    //  In the case of a return with no operand, the initializer is considered
    //  to be void().
    //
    // Deduction here can only succeed if the return type is exactly 'cv auto'
    // or 'decltype(auto)', so just check for that case directly.
    if (!OrigResultType.getType()->getAs<AutoType>()) {
      Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
        << OrigResultType.getType();
      return true;
    }
    // We always deduce U = void in this case.
    Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
    if (Deduced.isNull())
      return true;
  }

  // CUDA: Kernel function must have 'void' return type.
  if (getLangOpts().CUDA)
    if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) {
      Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
          << FD->getType() << FD->getSourceRange();
      return true;
    }

  //  If a function with a declared return type that contains a placeholder type
  //  has multiple return statements, the return type is deduced for each return
  //  statement. [...] if the type deduced is not the same in each deduction,
  //  the program is ill-formed.
  QualType DeducedT = AT->getDeducedType();
  if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
    AutoType *NewAT = Deduced->getContainedAutoType();
    // It is possible that NewAT->getDeducedType() is null. When that happens,
    // we should not crash, instead we ignore this deduction.
    if (NewAT->getDeducedType().isNull())
      return false;

    CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
                                   DeducedT);
    CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
                                   NewAT->getDeducedType());
    if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
      const LambdaScopeInfo *LambdaSI = getCurLambda();
      if (LambdaSI && LambdaSI->HasImplicitReturnType) {
        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
          << NewAT->getDeducedType() << DeducedT
          << true /*IsLambda*/;
      } else {
        Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
          << (AT->isDecltypeAuto() ? 1 : 0)
          << NewAT->getDeducedType() << DeducedT;
      }
      return true;
    }
  } else if (!FD->isInvalidDecl()) {
    // Update all declarations of the function to have the deduced return type.
    Context.adjustDeducedFunctionResultType(FD, Deduced);
  }

  return false;
}

StmtResult
Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
                      Scope *CurScope) {
  // Correct typos, in case the containing function returns 'auto' and
  // RetValExp should determine the deduced type.
  ExprResult RetVal = CorrectDelayedTyposInExpr(RetValExp);
  if (RetVal.isInvalid())
    return StmtError();
  StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get());
  if (R.isInvalid() || ExprEvalContexts.back().Context ==
                           ExpressionEvaluationContext::DiscardedStatement)
    return R;

  if (VarDecl *VD =
      const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
    CurScope->addNRVOCandidate(VD);
  } else {
    CurScope->setNoNRVO();
  }

  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());

  return R;
}

StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
  // Check for unexpanded parameter packs.
  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
    return StmtError();

  if (isa<CapturingScopeInfo>(getCurFunction()))
    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);

  QualType FnRetType;
  QualType RelatedRetType;
  const AttrVec *Attrs = nullptr;
  bool isObjCMethod = false;

  if (const FunctionDecl *FD = getCurFunctionDecl()) {
    FnRetType = FD->getReturnType();
    if (FD->hasAttrs())
      Attrs = &FD->getAttrs();
    if (FD->isNoReturn())
      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
        << FD->getDeclName();
    if (FD->isMain() && RetValExp)
      if (isa<CXXBoolLiteralExpr>(RetValExp))
        Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
          << RetValExp->getSourceRange();
  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
    FnRetType = MD->getReturnType();
    isObjCMethod = true;
    if (MD->hasAttrs())
      Attrs = &MD->getAttrs();
    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
      // In the implementation of a method with a related return type, the
      // type used to type-check the validity of return statements within the
      // method body is a pointer to the type of the class being implemented.
      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
    }
  } else // If we don't have a function/method context, bail.
    return StmtError();

  // C++1z: discarded return statements are not considered when deducing a
  // return type.
  if (ExprEvalContexts.back().Context ==
          ExpressionEvaluationContext::DiscardedStatement &&
      FnRetType->getContainedAutoType()) {
    if (RetValExp) {
      ExprResult ER =
          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
      if (ER.isInvalid())
        return StmtError();
      RetValExp = ER.get();
    }
    return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
                              /* NRVOCandidate=*/nullptr);
  }

  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
  // deduction.
  if (getLangOpts().CPlusPlus14) {
    if (AutoType *AT = FnRetType->getContainedAutoType()) {
      FunctionDecl *FD = cast<FunctionDecl>(CurContext);
      if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
        FD->setInvalidDecl();
        return StmtError();
      } else {
        FnRetType = FD->getReturnType();
      }
    }
  }

  bool HasDependentReturnType = FnRetType->isDependentType();

  ReturnStmt *Result = nullptr;
  if (FnRetType->isVoidType()) {
    if (RetValExp) {
      if (isa<InitListExpr>(RetValExp)) {
        // We simply never allow init lists as the return value of void
        // functions. This is compatible because this was never allowed before,
        // so there's no legacy code to deal with.
        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
        int FunctionKind = 0;
        if (isa<ObjCMethodDecl>(CurDecl))
          FunctionKind = 1;
        else if (isa<CXXConstructorDecl>(CurDecl))
          FunctionKind = 2;
        else if (isa<CXXDestructorDecl>(CurDecl))
          FunctionKind = 3;

        Diag(ReturnLoc, diag::err_return_init_list)
          << CurDecl->getDeclName() << FunctionKind
          << RetValExp->getSourceRange();

        // Drop the expression.
        RetValExp = nullptr;
      } else if (!RetValExp->isTypeDependent()) {
        // C99 6.8.6.4p1 (ext_ since GCC warns)
        unsigned D = diag::ext_return_has_expr;
        if (RetValExp->getType()->isVoidType()) {
          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
          if (isa<CXXConstructorDecl>(CurDecl) ||
              isa<CXXDestructorDecl>(CurDecl))
            D = diag::err_ctor_dtor_returns_void;
          else
            D = diag::ext_return_has_void_expr;
        }
        else {
          ExprResult Result = RetValExp;
          Result = IgnoredValueConversions(Result.get());
          if (Result.isInvalid())
            return StmtError();
          RetValExp = Result.get();
          RetValExp = ImpCastExprToType(RetValExp,
                                        Context.VoidTy, CK_ToVoid).get();
        }
        // return of void in constructor/destructor is illegal in C++.
        if (D == diag::err_ctor_dtor_returns_void) {
          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
          Diag(ReturnLoc, D)
            << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
            << RetValExp->getSourceRange();
        }
        // return (some void expression); is legal in C++.
        else if (D != diag::ext_return_has_void_expr ||
                 !getLangOpts().CPlusPlus) {
          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();

          int FunctionKind = 0;
          if (isa<ObjCMethodDecl>(CurDecl))
            FunctionKind = 1;
          else if (isa<CXXConstructorDecl>(CurDecl))
            FunctionKind = 2;
          else if (isa<CXXDestructorDecl>(CurDecl))
            FunctionKind = 3;

          Diag(ReturnLoc, D)
            << CurDecl->getDeclName() << FunctionKind
            << RetValExp->getSourceRange();
        }
      }

      if (RetValExp) {
        ExprResult ER =
            ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
        if (ER.isInvalid())
          return StmtError();
        RetValExp = ER.get();
      }
    }

    Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
                                /* NRVOCandidate=*/nullptr);
  } else if (!RetValExp && !HasDependentReturnType) {
    FunctionDecl *FD = getCurFunctionDecl();

    unsigned DiagID;
    if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
      // C++11 [stmt.return]p2
      DiagID = diag::err_constexpr_return_missing_expr;
      FD->setInvalidDecl();
    } else if (getLangOpts().C99) {
      // C99 6.8.6.4p1 (ext_ since GCC warns)
      DiagID = diag::ext_return_missing_expr;
    } else {
      // C90 6.6.6.4p4
      DiagID = diag::warn_return_missing_expr;
    }

    if (FD)
      Diag(ReturnLoc, DiagID)
          << FD->getIdentifier() << 0 /*fn*/ << FD->isConsteval();
    else
      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;

    Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
                                /* NRVOCandidate=*/nullptr);
  } else {
    assert(RetValExp || HasDependentReturnType);
    const VarDecl *NRVOCandidate = nullptr;

    QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;

    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
    // function return.

    // In C++ the return statement is handled via a copy initialization,
    // the C version of which boils down to CheckSingleAssignmentConstraints.
    if (RetValExp)
      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
    if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
      // we have a non-void function with an expression, continue checking
      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
                                                                     RetType,
                                                      NRVOCandidate != nullptr);
      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
                                                       RetType, RetValExp);
      if (Res.isInvalid()) {
        // FIXME: Clean up temporaries here anyway?
        return StmtError();
      }
      RetValExp = Res.getAs<Expr>();

      // If we have a related result type, we need to implicitly
      // convert back to the formal result type.  We can't pretend to
      // initialize the result again --- we might end double-retaining
      // --- so instead we initialize a notional temporary.
      if (!RelatedRetType.isNull()) {
        Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
                                                            FnRetType);
        Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
        if (Res.isInvalid()) {
          // FIXME: Clean up temporaries here anyway?
          return StmtError();
        }
        RetValExp = Res.getAs<Expr>();
      }

      CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
                         getCurFunctionDecl());
    }

    if (RetValExp) {
      ExprResult ER =
          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
      if (ER.isInvalid())
        return StmtError();
      RetValExp = ER.get();
    }
    Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
  }

  // If we need to check for the named return value optimization, save the
  // return statement in our scope for later processing.
  if (Result->getNRVOCandidate())
    FunctionScopes.back()->Returns.push_back(Result);

  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
    FunctionScopes.back()->FirstReturnLoc = ReturnLoc;

  return Result;
}

StmtResult
Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
                           SourceLocation RParen, Decl *Parm,
                           Stmt *Body) {
  VarDecl *Var = cast_or_null<VarDecl>(Parm);
  if (Var && Var->isInvalidDecl())
    return StmtError();

  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
}

StmtResult
Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
}

StmtResult
Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
                         MultiStmtArg CatchStmts, Stmt *Finally) {
  if (!getLangOpts().ObjCExceptions)
    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";

  setFunctionHasBranchProtectedScope();
  unsigned NumCatchStmts = CatchStmts.size();
  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
                               NumCatchStmts, Finally);
}

StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
  if (Throw) {
    ExprResult Result = DefaultLvalueConversion(Throw);
    if (Result.isInvalid())
      return StmtError();

    Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
    if (Result.isInvalid())
      return StmtError();
    Throw = Result.get();

    QualType ThrowType = Throw->getType();
    // Make sure the expression type is an ObjC pointer or "void *".
    if (!ThrowType->isDependentType() &&
        !ThrowType->isObjCObjectPointerType()) {
      const PointerType *PT = ThrowType->getAs<PointerType>();
      if (!PT || !PT->getPointeeType()->isVoidType())
        return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
                         << Throw->getType() << Throw->getSourceRange());
    }
  }

  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
}

StmtResult
Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
                           Scope *CurScope) {
  if (!getLangOpts().ObjCExceptions)
    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";

  if (!Throw) {
    // @throw without an expression designates a rethrow (which must occur
    // in the context of an @catch clause).
    Scope *AtCatchParent = CurScope;
    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
      AtCatchParent = AtCatchParent->getParent();
    if (!AtCatchParent)
      return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
  }
  return BuildObjCAtThrowStmt(AtLoc, Throw);
}

ExprResult
Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
  ExprResult result = DefaultLvalueConversion(operand);
  if (result.isInvalid())
    return ExprError();
  operand = result.get();

  // Make sure the expression type is an ObjC pointer or "void *".
  QualType type = operand->getType();
  if (!type->isDependentType() &&
      !type->isObjCObjectPointerType()) {
    const PointerType *pointerType = type->getAs<PointerType>();
    if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
      if (getLangOpts().CPlusPlus) {
        if (RequireCompleteType(atLoc, type,
                                diag::err_incomplete_receiver_type))
          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
                   << type << operand->getSourceRange();

        ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
        if (result.isInvalid())
          return ExprError();
        if (!result.isUsable())
          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
                   << type << operand->getSourceRange();

        operand = result.get();
      } else {
          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
                   << type << operand->getSourceRange();
      }
    }
  }

  // The operand to @synchronized is a full-expression.
  return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
}

StmtResult
Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
                                  Stmt *SyncBody) {
  // We can't jump into or indirect-jump out of a @synchronized block.
  setFunctionHasBranchProtectedScope();
  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
}

/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
/// and creates a proper catch handler from them.
StmtResult
Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
                         Stmt *HandlerBlock) {
  // There's nothing to test that ActOnExceptionDecl didn't already test.
  return new (Context)
      CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
}

StmtResult
Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
  setFunctionHasBranchProtectedScope();
  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
}

namespace {
class CatchHandlerType {
  QualType QT;
  unsigned IsPointer : 1;

  // This is a special constructor to be used only with DenseMapInfo's
  // getEmptyKey() and getTombstoneKey() functions.
  friend struct llvm::DenseMapInfo<CatchHandlerType>;
  enum Unique { ForDenseMap };
  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}

public:
  /// Used when creating a CatchHandlerType from a handler type; will determine
  /// whether the type is a pointer or reference and will strip off the top
  /// level pointer and cv-qualifiers.
  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
    if (QT->isPointerType())
      IsPointer = true;

    if (IsPointer || QT->isReferenceType())
      QT = QT->getPointeeType();
    QT = QT.getUnqualifiedType();
  }

  /// Used when creating a CatchHandlerType from a base class type; pretends the
  /// type passed in had the pointer qualifier, does not need to get an
  /// unqualified type.
  CatchHandlerType(QualType QT, bool IsPointer)
      : QT(QT), IsPointer(IsPointer) {}

  QualType underlying() const { return QT; }
  bool isPointer() const { return IsPointer; }

  friend bool operator==(const CatchHandlerType &LHS,
                         const CatchHandlerType &RHS) {
    // If the pointer qualification does not match, we can return early.
    if (LHS.IsPointer != RHS.IsPointer)
      return false;
    // Otherwise, check the underlying type without cv-qualifiers.
    return LHS.QT == RHS.QT;
  }
};
} // namespace

namespace llvm {
template <> struct DenseMapInfo<CatchHandlerType> {
  static CatchHandlerType getEmptyKey() {
    return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
                       CatchHandlerType::ForDenseMap);
  }

  static CatchHandlerType getTombstoneKey() {
    return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
                       CatchHandlerType::ForDenseMap);
  }

  static unsigned getHashValue(const CatchHandlerType &Base) {
    return DenseMapInfo<QualType>::getHashValue(Base.underlying());
  }

  static bool isEqual(const CatchHandlerType &LHS,
                      const CatchHandlerType &RHS) {
    return LHS == RHS;
  }
};
}

namespace {
class CatchTypePublicBases {
  ASTContext &Ctx;
  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
  const bool CheckAgainstPointer;

  CXXCatchStmt *FoundHandler;
  CanQualType FoundHandlerType;

public:
  CatchTypePublicBases(
      ASTContext &Ctx,
      const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
      : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
        FoundHandler(nullptr) {}

  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
  CanQualType getFoundHandlerType() const { return FoundHandlerType; }

  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
    if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
      CatchHandlerType Check(S->getType(), CheckAgainstPointer);
      const auto &M = TypesToCheck;
      auto I = M.find(Check);
      if (I != M.end()) {
        FoundHandler = I->second;
        FoundHandlerType = Ctx.getCanonicalType(S->getType());
        return true;
      }
    }
    return false;
  }
};
}

/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
/// handlers and creates a try statement from them.
StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
                                  ArrayRef<Stmt *> Handlers) {
  // Don't report an error if 'try' is used in system headers.
  if (!getLangOpts().CXXExceptions &&
      !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
    // Delay error emission for the OpenMP device code.
    targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
  }

  // Exceptions aren't allowed in CUDA device code.
  if (getLangOpts().CUDA)
    CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
        << "try" << CurrentCUDATarget();

  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
    Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";

  sema::FunctionScopeInfo *FSI = getCurFunction();

  // C++ try is incompatible with SEH __try.
  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
    Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
    Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
  }

  const unsigned NumHandlers = Handlers.size();
  assert(!Handlers.empty() &&
         "The parser shouldn't call this if there are no handlers.");

  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
  for (unsigned i = 0; i < NumHandlers; ++i) {
    CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);

    // Diagnose when the handler is a catch-all handler, but it isn't the last
    // handler for the try block. [except.handle]p5. Also, skip exception
    // declarations that are invalid, since we can't usefully report on them.
    if (!H->getExceptionDecl()) {
      if (i < NumHandlers - 1)
        return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
      continue;
    } else if (H->getExceptionDecl()->isInvalidDecl())
      continue;

    // Walk the type hierarchy to diagnose when this type has already been
    // handled (duplication), or cannot be handled (derivation inversion). We
    // ignore top-level cv-qualifiers, per [except.handle]p3
    CatchHandlerType HandlerCHT =
        (QualType)Context.getCanonicalType(H->getCaughtType());

    // We can ignore whether the type is a reference or a pointer; we need the
    // underlying declaration type in order to get at the underlying record
    // decl, if there is one.
    QualType Underlying = HandlerCHT.underlying();
    if (auto *RD = Underlying->getAsCXXRecordDecl()) {
      if (!RD->hasDefinition())
        continue;
      // Check that none of the public, unambiguous base classes are in the
      // map ([except.handle]p1). Give the base classes the same pointer
      // qualification as the original type we are basing off of. This allows
      // comparison against the handler type using the same top-level pointer
      // as the original type.
      CXXBasePaths Paths;
      Paths.setOrigin(RD);
      CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
      if (RD->lookupInBases(CTPB, Paths)) {
        const CXXCatchStmt *Problem = CTPB.getFoundHandler();
        if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
          Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
               diag::warn_exception_caught_by_earlier_handler)
              << H->getCaughtType();
          Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
                diag::note_previous_exception_handler)
              << Problem->getCaughtType();
        }
      }
    }

    // Add the type the list of ones we have handled; diagnose if we've already
    // handled it.
    auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
    if (!R.second) {
      const CXXCatchStmt *Problem = R.first->second;
      Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
           diag::warn_exception_caught_by_earlier_handler)
          << H->getCaughtType();
      Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
           diag::note_previous_exception_handler)
          << Problem->getCaughtType();
    }
  }

  FSI->setHasCXXTry(TryLoc);

  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
}

StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
                                  Stmt *TryBlock, Stmt *Handler) {
  assert(TryBlock && Handler);

  sema::FunctionScopeInfo *FSI = getCurFunction();

  // SEH __try is incompatible with C++ try. Borland appears to support this,
  // however.
  if (!getLangOpts().Borland) {
    if (FSI->FirstCXXTryLoc.isValid()) {
      Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
      Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
    }
  }

  FSI->setHasSEHTry(TryLoc);

  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
  // track if they use SEH.
  DeclContext *DC = CurContext;
  while (DC && !DC->isFunctionOrMethod())
    DC = DC->getParent();
  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
  if (FD)
    FD->setUsesSEHTry(true);
  else
    Diag(TryLoc, diag::err_seh_try_outside_functions);

  // Reject __try on unsupported targets.
  if (!Context.getTargetInfo().isSEHTrySupported())
    Diag(TryLoc, diag::err_seh_try_unsupported);

  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
}

StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
                                     Stmt *Block) {
  assert(FilterExpr && Block);
  QualType FTy = FilterExpr->getType();
  if (!FTy->isIntegerType() && !FTy->isDependentType()) {
    return StmtError(
        Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
        << FTy);
  }
  return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
}

void Sema::ActOnStartSEHFinallyBlock() {
  CurrentSEHFinally.push_back(CurScope);
}

void Sema::ActOnAbortSEHFinallyBlock() {
  CurrentSEHFinally.pop_back();
}

StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
  assert(Block);
  CurrentSEHFinally.pop_back();
  return SEHFinallyStmt::Create(Context, Loc, Block);
}

StmtResult
Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
  Scope *SEHTryParent = CurScope;
  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
    SEHTryParent = SEHTryParent->getParent();
  if (!SEHTryParent)
    return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);

  return new (Context) SEHLeaveStmt(Loc);
}

StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
                                            bool IsIfExists,
                                            NestedNameSpecifierLoc QualifierLoc,
                                            DeclarationNameInfo NameInfo,
                                            Stmt *Nested)
{
  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
                                             QualifierLoc, NameInfo,
                                             cast<CompoundStmt>(Nested));
}


StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
                                            bool IsIfExists,
                                            CXXScopeSpec &SS,
                                            UnqualifiedId &Name,
                                            Stmt *Nested) {
  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
                                    SS.getWithLocInContext(Context),
                                    GetNameFromUnqualifiedId(Name),
                                    Nested);
}

RecordDecl*
Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
                                   unsigned NumParams) {
  DeclContext *DC = CurContext;
  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
    DC = DC->getParent();

  RecordDecl *RD = nullptr;
  if (getLangOpts().CPlusPlus)
    RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
                               /*Id=*/nullptr);
  else
    RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);

  RD->setCapturedRecord();
  DC->addDecl(RD);
  RD->setImplicit();
  RD->startDefinition();

  assert(NumParams > 0 && "CapturedStmt requires context parameter");
  CD = CapturedDecl::Create(Context, CurContext, NumParams);
  DC->addDecl(CD);
  return RD;
}

static bool
buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
                             SmallVectorImpl<CapturedStmt::Capture> &Captures,
                             SmallVectorImpl<Expr *> &CaptureInits) {
  for (const sema::Capture &Cap : RSI->Captures) {
    if (Cap.isInvalid())
      continue;

    // Form the initializer for the capture.
    ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
                                         RSI->CapRegionKind == CR_OpenMP);

    // FIXME: Bail out now if the capture is not used and the initializer has
    // no side-effects.

    // Create a field for this capture.
    FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);

    // Add the capture to our list of captures.
    if (Cap.isThisCapture()) {
      Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
                                               CapturedStmt::VCK_This));
    } else if (Cap.isVLATypeCapture()) {
      Captures.push_back(
          CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
    } else {
      assert(Cap.isVariableCapture() && "unknown kind of capture");

      if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
        S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);

      Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
                                               Cap.isReferenceCapture()
                                                   ? CapturedStmt::VCK_ByRef
                                                   : CapturedStmt::VCK_ByCopy,
                                               Cap.getVariable()));
    }
    CaptureInits.push_back(Init.get());
  }
  return false;
}

void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
                                    CapturedRegionKind Kind,
                                    unsigned NumParams) {
  CapturedDecl *CD = nullptr;
  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);

  // Build the context parameter
  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
  IdentifierInfo *ParamName = &Context.Idents.get("__context");
  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
  auto *Param =
      ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
                                ImplicitParamDecl::CapturedContext);
  DC->addDecl(Param);

  CD->setContextParam(0, Param);

  // Enter the capturing scope for this captured region.
  PushCapturedRegionScope(CurScope, CD, RD, Kind);

  if (CurScope)
    PushDeclContext(CurScope, CD);
  else
    CurContext = CD;

  PushExpressionEvaluationContext(
      ExpressionEvaluationContext::PotentiallyEvaluated);
}

void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
                                    CapturedRegionKind Kind,
                                    ArrayRef<CapturedParamNameType> Params,
                                    unsigned OpenMPCaptureLevel) {
  CapturedDecl *CD = nullptr;
  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());

  // Build the context parameter
  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
  bool ContextIsFound = false;
  unsigned ParamNum = 0;
  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
                                                 E = Params.end();
       I != E; ++I, ++ParamNum) {
    if (I->second.isNull()) {
      assert(!ContextIsFound &&
             "null type has been found already for '__context' parameter");
      IdentifierInfo *ParamName = &Context.Idents.get("__context");
      QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
                               .withConst()
                               .withRestrict();
      auto *Param =
          ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
                                    ImplicitParamDecl::CapturedContext);
      DC->addDecl(Param);
      CD->setContextParam(ParamNum, Param);
      ContextIsFound = true;
    } else {
      IdentifierInfo *ParamName = &Context.Idents.get(I->first);
      auto *Param =
          ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
                                    ImplicitParamDecl::CapturedContext);
      DC->addDecl(Param);
      CD->setParam(ParamNum, Param);
    }
  }
  assert(ContextIsFound && "no null type for '__context' parameter");
  if (!ContextIsFound) {
    // Add __context implicitly if it is not specified.
    IdentifierInfo *ParamName = &Context.Idents.get("__context");
    QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
    auto *Param =
        ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
                                  ImplicitParamDecl::CapturedContext);
    DC->addDecl(Param);
    CD->setContextParam(ParamNum, Param);
  }
  // Enter the capturing scope for this captured region.
  PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);

  if (CurScope)
    PushDeclContext(CurScope, CD);
  else
    CurContext = CD;

  PushExpressionEvaluationContext(
      ExpressionEvaluationContext::PotentiallyEvaluated);
}

void Sema::ActOnCapturedRegionError() {
  DiscardCleanupsInEvaluationContext();
  PopExpressionEvaluationContext();
  PopDeclContext();
  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
  CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());

  RecordDecl *Record = RSI->TheRecordDecl;
  Record->setInvalidDecl();

  SmallVector<Decl*, 4> Fields(Record->fields());
  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
              SourceLocation(), SourceLocation(), ParsedAttributesView());
}

StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
  // Leave the captured scope before we start creating captures in the
  // enclosing scope.
  DiscardCleanupsInEvaluationContext();
  PopExpressionEvaluationContext();
  PopDeclContext();
  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
  CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());

  SmallVector<CapturedStmt::Capture, 4> Captures;
  SmallVector<Expr *, 4> CaptureInits;
  if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
    return StmtError();

  CapturedDecl *CD = RSI->TheCapturedDecl;
  RecordDecl *RD = RSI->TheRecordDecl;

  CapturedStmt *Res = CapturedStmt::Create(
      getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
      Captures, CaptureInits, CD, RD);

  CD->setBody(Res->getCapturedStmt());
  RD->completeDefinition();

  return Res;
}