SemaLookup.cpp 206 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements name lookup for C, C++, Objective-C, and
//  Objective-C++.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclLookups.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/ModuleLoader.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/Sema/TypoCorrection.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/edit_distance.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <iterator>
#include <list>
#include <set>
#include <utility>
#include <vector>

#include "OpenCLBuiltins.inc"

using namespace clang;
using namespace sema;

namespace {
  class UnqualUsingEntry {
    const DeclContext *Nominated;
    const DeclContext *CommonAncestor;

  public:
    UnqualUsingEntry(const DeclContext *Nominated,
                     const DeclContext *CommonAncestor)
      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
    }

    const DeclContext *getCommonAncestor() const {
      return CommonAncestor;
    }

    const DeclContext *getNominatedNamespace() const {
      return Nominated;
    }

    // Sort by the pointer value of the common ancestor.
    struct Comparator {
      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
        return L.getCommonAncestor() < R.getCommonAncestor();
      }

      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
        return E.getCommonAncestor() < DC;
      }

      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
        return DC < E.getCommonAncestor();
      }
    };
  };

  /// A collection of using directives, as used by C++ unqualified
  /// lookup.
  class UnqualUsingDirectiveSet {
    Sema &SemaRef;

    typedef SmallVector<UnqualUsingEntry, 8> ListTy;

    ListTy list;
    llvm::SmallPtrSet<DeclContext*, 8> visited;

  public:
    UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}

    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
      // C++ [namespace.udir]p1:
      //   During unqualified name lookup, the names appear as if they
      //   were declared in the nearest enclosing namespace which contains
      //   both the using-directive and the nominated namespace.
      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
      assert(InnermostFileDC && InnermostFileDC->isFileContext());

      for (; S; S = S->getParent()) {
        // C++ [namespace.udir]p1:
        //   A using-directive shall not appear in class scope, but may
        //   appear in namespace scope or in block scope.
        DeclContext *Ctx = S->getEntity();
        if (Ctx && Ctx->isFileContext()) {
          visit(Ctx, Ctx);
        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
          for (auto *I : S->using_directives())
            if (SemaRef.isVisible(I))
              visit(I, InnermostFileDC);
        }
      }
    }

    // Visits a context and collect all of its using directives
    // recursively.  Treats all using directives as if they were
    // declared in the context.
    //
    // A given context is only every visited once, so it is important
    // that contexts be visited from the inside out in order to get
    // the effective DCs right.
    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
      if (!visited.insert(DC).second)
        return;

      addUsingDirectives(DC, EffectiveDC);
    }

    // Visits a using directive and collects all of its using
    // directives recursively.  Treats all using directives as if they
    // were declared in the effective DC.
    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
      DeclContext *NS = UD->getNominatedNamespace();
      if (!visited.insert(NS).second)
        return;

      addUsingDirective(UD, EffectiveDC);
      addUsingDirectives(NS, EffectiveDC);
    }

    // Adds all the using directives in a context (and those nominated
    // by its using directives, transitively) as if they appeared in
    // the given effective context.
    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
      SmallVector<DeclContext*, 4> queue;
      while (true) {
        for (auto UD : DC->using_directives()) {
          DeclContext *NS = UD->getNominatedNamespace();
          if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
            addUsingDirective(UD, EffectiveDC);
            queue.push_back(NS);
          }
        }

        if (queue.empty())
          return;

        DC = queue.pop_back_val();
      }
    }

    // Add a using directive as if it had been declared in the given
    // context.  This helps implement C++ [namespace.udir]p3:
    //   The using-directive is transitive: if a scope contains a
    //   using-directive that nominates a second namespace that itself
    //   contains using-directives, the effect is as if the
    //   using-directives from the second namespace also appeared in
    //   the first.
    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
      // Find the common ancestor between the effective context and
      // the nominated namespace.
      DeclContext *Common = UD->getNominatedNamespace();
      while (!Common->Encloses(EffectiveDC))
        Common = Common->getParent();
      Common = Common->getPrimaryContext();

      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
    }

    void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }

    typedef ListTy::const_iterator const_iterator;

    const_iterator begin() const { return list.begin(); }
    const_iterator end() const { return list.end(); }

    llvm::iterator_range<const_iterator>
    getNamespacesFor(DeclContext *DC) const {
      return llvm::make_range(std::equal_range(begin(), end(),
                                               DC->getPrimaryContext(),
                                               UnqualUsingEntry::Comparator()));
    }
  };
} // end anonymous namespace

// Retrieve the set of identifier namespaces that correspond to a
// specific kind of name lookup.
static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
                               bool CPlusPlus,
                               bool Redeclaration) {
  unsigned IDNS = 0;
  switch (NameKind) {
  case Sema::LookupObjCImplicitSelfParam:
  case Sema::LookupOrdinaryName:
  case Sema::LookupRedeclarationWithLinkage:
  case Sema::LookupLocalFriendName:
    IDNS = Decl::IDNS_Ordinary;
    if (CPlusPlus) {
      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
      if (Redeclaration)
        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
    }
    if (Redeclaration)
      IDNS |= Decl::IDNS_LocalExtern;
    break;

  case Sema::LookupOperatorName:
    // Operator lookup is its own crazy thing;  it is not the same
    // as (e.g.) looking up an operator name for redeclaration.
    assert(!Redeclaration && "cannot do redeclaration operator lookup");
    IDNS = Decl::IDNS_NonMemberOperator;
    break;

  case Sema::LookupTagName:
    if (CPlusPlus) {
      IDNS = Decl::IDNS_Type;

      // When looking for a redeclaration of a tag name, we add:
      // 1) TagFriend to find undeclared friend decls
      // 2) Namespace because they can't "overload" with tag decls.
      // 3) Tag because it includes class templates, which can't
      //    "overload" with tag decls.
      if (Redeclaration)
        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
    } else {
      IDNS = Decl::IDNS_Tag;
    }
    break;

  case Sema::LookupLabel:
    IDNS = Decl::IDNS_Label;
    break;

  case Sema::LookupMemberName:
    IDNS = Decl::IDNS_Member;
    if (CPlusPlus)
      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
    break;

  case Sema::LookupNestedNameSpecifierName:
    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
    break;

  case Sema::LookupNamespaceName:
    IDNS = Decl::IDNS_Namespace;
    break;

  case Sema::LookupUsingDeclName:
    assert(Redeclaration && "should only be used for redecl lookup");
    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
           Decl::IDNS_LocalExtern;
    break;

  case Sema::LookupObjCProtocolName:
    IDNS = Decl::IDNS_ObjCProtocol;
    break;

  case Sema::LookupOMPReductionName:
    IDNS = Decl::IDNS_OMPReduction;
    break;

  case Sema::LookupOMPMapperName:
    IDNS = Decl::IDNS_OMPMapper;
    break;

  case Sema::LookupAnyName:
    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
      | Decl::IDNS_Type;
    break;
  }
  return IDNS;
}

void LookupResult::configure() {
  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
                 isForRedeclaration());

  // If we're looking for one of the allocation or deallocation
  // operators, make sure that the implicitly-declared new and delete
  // operators can be found.
  switch (NameInfo.getName().getCXXOverloadedOperator()) {
  case OO_New:
  case OO_Delete:
  case OO_Array_New:
  case OO_Array_Delete:
    getSema().DeclareGlobalNewDelete();
    break;

  default:
    break;
  }

  // Compiler builtins are always visible, regardless of where they end
  // up being declared.
  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
    if (unsigned BuiltinID = Id->getBuiltinID()) {
      if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
        AllowHidden = true;
    }
  }
}

bool LookupResult::sanity() const {
  // This function is never called by NDEBUG builds.
  assert(ResultKind != NotFound || Decls.size() == 0);
  assert(ResultKind != Found || Decls.size() == 1);
  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
         (Decls.size() == 1 &&
          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
                                Ambiguity == AmbiguousBaseSubobjectTypes)));
  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
                                 Ambiguity == AmbiguousBaseSubobjects)));
  return true;
}

// Necessary because CXXBasePaths is not complete in Sema.h
void LookupResult::deletePaths(CXXBasePaths *Paths) {
  delete Paths;
}

/// Get a representative context for a declaration such that two declarations
/// will have the same context if they were found within the same scope.
static DeclContext *getContextForScopeMatching(Decl *D) {
  // For function-local declarations, use that function as the context. This
  // doesn't account for scopes within the function; the caller must deal with
  // those.
  DeclContext *DC = D->getLexicalDeclContext();
  if (DC->isFunctionOrMethod())
    return DC;

  // Otherwise, look at the semantic context of the declaration. The
  // declaration must have been found there.
  return D->getDeclContext()->getRedeclContext();
}

/// Determine whether \p D is a better lookup result than \p Existing,
/// given that they declare the same entity.
static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
                                    NamedDecl *D, NamedDecl *Existing) {
  // When looking up redeclarations of a using declaration, prefer a using
  // shadow declaration over any other declaration of the same entity.
  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
      !isa<UsingShadowDecl>(Existing))
    return true;

  auto *DUnderlying = D->getUnderlyingDecl();
  auto *EUnderlying = Existing->getUnderlyingDecl();

  // If they have different underlying declarations, prefer a typedef over the
  // original type (this happens when two type declarations denote the same
  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
  // might carry additional semantic information, such as an alignment override.
  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
  // declaration over a typedef.
  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
    assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
    bool HaveTag = isa<TagDecl>(EUnderlying);
    bool WantTag = Kind == Sema::LookupTagName;
    return HaveTag != WantTag;
  }

  // Pick the function with more default arguments.
  // FIXME: In the presence of ambiguous default arguments, we should keep both,
  //        so we can diagnose the ambiguity if the default argument is needed.
  //        See C++ [over.match.best]p3.
  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
    auto *EFD = cast<FunctionDecl>(EUnderlying);
    unsigned DMin = DFD->getMinRequiredArguments();
    unsigned EMin = EFD->getMinRequiredArguments();
    // If D has more default arguments, it is preferred.
    if (DMin != EMin)
      return DMin < EMin;
    // FIXME: When we track visibility for default function arguments, check
    // that we pick the declaration with more visible default arguments.
  }

  // Pick the template with more default template arguments.
  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
    auto *ETD = cast<TemplateDecl>(EUnderlying);
    unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
    unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
    // If D has more default arguments, it is preferred. Note that default
    // arguments (and their visibility) is monotonically increasing across the
    // redeclaration chain, so this is a quick proxy for "is more recent".
    if (DMin != EMin)
      return DMin < EMin;
    // If D has more *visible* default arguments, it is preferred. Note, an
    // earlier default argument being visible does not imply that a later
    // default argument is visible, so we can't just check the first one.
    for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
        I != N; ++I) {
      if (!S.hasVisibleDefaultArgument(
              ETD->getTemplateParameters()->getParam(I)) &&
          S.hasVisibleDefaultArgument(
              DTD->getTemplateParameters()->getParam(I)))
        return true;
    }
  }

  // VarDecl can have incomplete array types, prefer the one with more complete
  // array type.
  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
    VarDecl *EVD = cast<VarDecl>(EUnderlying);
    if (EVD->getType()->isIncompleteType() &&
        !DVD->getType()->isIncompleteType()) {
      // Prefer the decl with a more complete type if visible.
      return S.isVisible(DVD);
    }
    return false; // Avoid picking up a newer decl, just because it was newer.
  }

  // For most kinds of declaration, it doesn't really matter which one we pick.
  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
    // If the existing declaration is hidden, prefer the new one. Otherwise,
    // keep what we've got.
    return !S.isVisible(Existing);
  }

  // Pick the newer declaration; it might have a more precise type.
  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
       Prev = Prev->getPreviousDecl())
    if (Prev == EUnderlying)
      return true;
  return false;
}

/// Determine whether \p D can hide a tag declaration.
static bool canHideTag(NamedDecl *D) {
  // C++ [basic.scope.declarative]p4:
  //   Given a set of declarations in a single declarative region [...]
  //   exactly one declaration shall declare a class name or enumeration name
  //   that is not a typedef name and the other declarations shall all refer to
  //   the same variable, non-static data member, or enumerator, or all refer
  //   to functions and function templates; in this case the class name or
  //   enumeration name is hidden.
  // C++ [basic.scope.hiding]p2:
  //   A class name or enumeration name can be hidden by the name of a
  //   variable, data member, function, or enumerator declared in the same
  //   scope.
  // An UnresolvedUsingValueDecl always instantiates to one of these.
  D = D->getUnderlyingDecl();
  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
         isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
         isa<UnresolvedUsingValueDecl>(D);
}

/// Resolves the result kind of this lookup.
void LookupResult::resolveKind() {
  unsigned N = Decls.size();

  // Fast case: no possible ambiguity.
  if (N == 0) {
    assert(ResultKind == NotFound ||
           ResultKind == NotFoundInCurrentInstantiation);
    return;
  }

  // If there's a single decl, we need to examine it to decide what
  // kind of lookup this is.
  if (N == 1) {
    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
    if (isa<FunctionTemplateDecl>(D))
      ResultKind = FoundOverloaded;
    else if (isa<UnresolvedUsingValueDecl>(D))
      ResultKind = FoundUnresolvedValue;
    return;
  }

  // Don't do any extra resolution if we've already resolved as ambiguous.
  if (ResultKind == Ambiguous) return;

  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;

  bool Ambiguous = false;
  bool HasTag = false, HasFunction = false;
  bool HasFunctionTemplate = false, HasUnresolved = false;
  NamedDecl *HasNonFunction = nullptr;

  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;

  unsigned UniqueTagIndex = 0;

  unsigned I = 0;
  while (I < N) {
    NamedDecl *D = Decls[I]->getUnderlyingDecl();
    D = cast<NamedDecl>(D->getCanonicalDecl());

    // Ignore an invalid declaration unless it's the only one left.
    if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
      Decls[I] = Decls[--N];
      continue;
    }

    llvm::Optional<unsigned> ExistingI;

    // Redeclarations of types via typedef can occur both within a scope
    // and, through using declarations and directives, across scopes. There is
    // no ambiguity if they all refer to the same type, so unique based on the
    // canonical type.
    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
      QualType T = getSema().Context.getTypeDeclType(TD);
      auto UniqueResult = UniqueTypes.insert(
          std::make_pair(getSema().Context.getCanonicalType(T), I));
      if (!UniqueResult.second) {
        // The type is not unique.
        ExistingI = UniqueResult.first->second;
      }
    }

    // For non-type declarations, check for a prior lookup result naming this
    // canonical declaration.
    if (!ExistingI) {
      auto UniqueResult = Unique.insert(std::make_pair(D, I));
      if (!UniqueResult.second) {
        // We've seen this entity before.
        ExistingI = UniqueResult.first->second;
      }
    }

    if (ExistingI) {
      // This is not a unique lookup result. Pick one of the results and
      // discard the other.
      if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
                                  Decls[*ExistingI]))
        Decls[*ExistingI] = Decls[I];
      Decls[I] = Decls[--N];
      continue;
    }

    // Otherwise, do some decl type analysis and then continue.

    if (isa<UnresolvedUsingValueDecl>(D)) {
      HasUnresolved = true;
    } else if (isa<TagDecl>(D)) {
      if (HasTag)
        Ambiguous = true;
      UniqueTagIndex = I;
      HasTag = true;
    } else if (isa<FunctionTemplateDecl>(D)) {
      HasFunction = true;
      HasFunctionTemplate = true;
    } else if (isa<FunctionDecl>(D)) {
      HasFunction = true;
    } else {
      if (HasNonFunction) {
        // If we're about to create an ambiguity between two declarations that
        // are equivalent, but one is an internal linkage declaration from one
        // module and the other is an internal linkage declaration from another
        // module, just skip it.
        if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
                                                             D)) {
          EquivalentNonFunctions.push_back(D);
          Decls[I] = Decls[--N];
          continue;
        }

        Ambiguous = true;
      }
      HasNonFunction = D;
    }
    I++;
  }

  // C++ [basic.scope.hiding]p2:
  //   A class name or enumeration name can be hidden by the name of
  //   an object, function, or enumerator declared in the same
  //   scope. If a class or enumeration name and an object, function,
  //   or enumerator are declared in the same scope (in any order)
  //   with the same name, the class or enumeration name is hidden
  //   wherever the object, function, or enumerator name is visible.
  // But it's still an error if there are distinct tag types found,
  // even if they're not visible. (ref?)
  if (N > 1 && HideTags && HasTag && !Ambiguous &&
      (HasFunction || HasNonFunction || HasUnresolved)) {
    NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
    if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
        getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
            getContextForScopeMatching(OtherDecl)) &&
        canHideTag(OtherDecl))
      Decls[UniqueTagIndex] = Decls[--N];
    else
      Ambiguous = true;
  }

  // FIXME: This diagnostic should really be delayed until we're done with
  // the lookup result, in case the ambiguity is resolved by the caller.
  if (!EquivalentNonFunctions.empty() && !Ambiguous)
    getSema().diagnoseEquivalentInternalLinkageDeclarations(
        getNameLoc(), HasNonFunction, EquivalentNonFunctions);

  Decls.set_size(N);

  if (HasNonFunction && (HasFunction || HasUnresolved))
    Ambiguous = true;

  if (Ambiguous)
    setAmbiguous(LookupResult::AmbiguousReference);
  else if (HasUnresolved)
    ResultKind = LookupResult::FoundUnresolvedValue;
  else if (N > 1 || HasFunctionTemplate)
    ResultKind = LookupResult::FoundOverloaded;
  else
    ResultKind = LookupResult::Found;
}

void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
  CXXBasePaths::const_paths_iterator I, E;
  for (I = P.begin(), E = P.end(); I != E; ++I)
    for (DeclContext::lookup_iterator DI = I->Decls.begin(),
         DE = I->Decls.end(); DI != DE; ++DI)
      addDecl(*DI);
}

void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
  Paths = new CXXBasePaths;
  Paths->swap(P);
  addDeclsFromBasePaths(*Paths);
  resolveKind();
  setAmbiguous(AmbiguousBaseSubobjects);
}

void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
  Paths = new CXXBasePaths;
  Paths->swap(P);
  addDeclsFromBasePaths(*Paths);
  resolveKind();
  setAmbiguous(AmbiguousBaseSubobjectTypes);
}

void LookupResult::print(raw_ostream &Out) {
  Out << Decls.size() << " result(s)";
  if (isAmbiguous()) Out << ", ambiguous";
  if (Paths) Out << ", base paths present";

  for (iterator I = begin(), E = end(); I != E; ++I) {
    Out << "\n";
    (*I)->print(Out, 2);
  }
}

LLVM_DUMP_METHOD void LookupResult::dump() {
  llvm::errs() << "lookup results for " << getLookupName().getAsString()
               << ":\n";
  for (NamedDecl *D : *this)
    D->dump();
}

/// Get the QualType instances of the return type and arguments for an OpenCL
/// builtin function signature.
/// \param Context (in) The Context instance.
/// \param OpenCLBuiltin (in) The signature currently handled.
/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
///        type used as return type or as argument.
///        Only meaningful for generic types, otherwise equals 1.
/// \param RetTypes (out) List of the possible return types.
/// \param ArgTypes (out) List of the possible argument types.  For each
///        argument, ArgTypes contains QualTypes for the Cartesian product
///        of (vector sizes) x (types) .
static void GetQualTypesForOpenCLBuiltin(
    ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
    unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
  // Get the QualType instances of the return types.
  unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
  OCL2Qual(Context, TypeTable[Sig], RetTypes);
  GenTypeMaxCnt = RetTypes.size();

  // Get the QualType instances of the arguments.
  // First type is the return type, skip it.
  for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
    SmallVector<QualType, 1> Ty;
    OCL2Qual(Context,
        TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
    GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
    ArgTypes.push_back(std::move(Ty));
  }
}

/// Create a list of the candidate function overloads for an OpenCL builtin
/// function.
/// \param Context (in) The ASTContext instance.
/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
///        type used as return type or as argument.
///        Only meaningful for generic types, otherwise equals 1.
/// \param FunctionList (out) List of FunctionTypes.
/// \param RetTypes (in) List of the possible return types.
/// \param ArgTypes (in) List of the possible types for the arguments.
static void GetOpenCLBuiltinFctOverloads(
    ASTContext &Context, unsigned GenTypeMaxCnt,
    std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
  FunctionProtoType::ExtProtoInfo PI;
  PI.Variadic = false;

  // Create FunctionTypes for each (gen)type.
  for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
    SmallVector<QualType, 5> ArgList;

    for (unsigned A = 0; A < ArgTypes.size(); A++) {
      // Builtins such as "max" have an "sgentype" argument that represents
      // the corresponding scalar type of a gentype.  The number of gentypes
      // must be a multiple of the number of sgentypes.
      assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
             "argument type count not compatible with gentype type count");
      unsigned Idx = IGenType % ArgTypes[A].size();
      ArgList.push_back(ArgTypes[A][Idx]);
    }

    FunctionList.push_back(Context.getFunctionType(
        RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
  }
}

/// Add extensions to the function declaration.
/// \param S (in/out) The Sema instance.
/// \param BIDecl (in) Description of the builtin.
/// \param FDecl (in/out) FunctionDecl instance.
static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
                                FunctionDecl *FDecl) {
  // Fetch extension associated with a function prototype.
  StringRef E = FunctionExtensionTable[BIDecl.Extension];
  if (E != "")
    S.setOpenCLExtensionForDecl(FDecl, E);
}

/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
/// non-null <Index, Len> pair, then the name is referencing an OpenCL
/// builtin function.  Add all candidate signatures to the LookUpResult.
///
/// \param S (in) The Sema instance.
/// \param LR (inout) The LookupResult instance.
/// \param II (in) The identifier being resolved.
/// \param FctIndex (in) Starting index in the BuiltinTable.
/// \param Len (in) The signature list has Len elements.
static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
                                                  IdentifierInfo *II,
                                                  const unsigned FctIndex,
                                                  const unsigned Len) {
  // The builtin function declaration uses generic types (gentype).
  bool HasGenType = false;

  // Maximum number of types contained in a generic type used as return type or
  // as argument.  Only meaningful for generic types, otherwise equals 1.
  unsigned GenTypeMaxCnt;

  for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
    const OpenCLBuiltinStruct &OpenCLBuiltin =
        BuiltinTable[FctIndex + SignatureIndex];
    ASTContext &Context = S.Context;

    // Ignore this BIF if its version does not match the language options.
    unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
    if (Context.getLangOpts().OpenCLCPlusPlus)
      OpenCLVersion = 200;
    if (OpenCLVersion < OpenCLBuiltin.MinVersion)
      continue;
    if ((OpenCLBuiltin.MaxVersion != 0) &&
        (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
      continue;

    SmallVector<QualType, 1> RetTypes;
    SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;

    // Obtain QualType lists for the function signature.
    GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
                                 RetTypes, ArgTypes);
    if (GenTypeMaxCnt > 1) {
      HasGenType = true;
    }

    // Create function overload for each type combination.
    std::vector<QualType> FunctionList;
    GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
                                 ArgTypes);

    SourceLocation Loc = LR.getNameLoc();
    DeclContext *Parent = Context.getTranslationUnitDecl();
    FunctionDecl *NewOpenCLBuiltin;

    for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
      NewOpenCLBuiltin = FunctionDecl::Create(
          Context, Parent, Loc, Loc, II, FunctionList[Index],
          /*TInfo=*/nullptr, SC_Extern, false,
          FunctionList[Index]->isFunctionProtoType());
      NewOpenCLBuiltin->setImplicit();

      // Create Decl objects for each parameter, adding them to the
      // FunctionDecl.
      if (const FunctionProtoType *FP =
              dyn_cast<FunctionProtoType>(FunctionList[Index])) {
        SmallVector<ParmVarDecl *, 16> ParmList;
        for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
          ParmVarDecl *Parm = ParmVarDecl::Create(
              Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
              nullptr, FP->getParamType(IParm),
              /*TInfo=*/nullptr, SC_None, nullptr);
          Parm->setScopeInfo(0, IParm);
          ParmList.push_back(Parm);
        }
        NewOpenCLBuiltin->setParams(ParmList);
      }

      // Add function attributes.
      if (OpenCLBuiltin.IsPure)
        NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
      if (OpenCLBuiltin.IsConst)
        NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
      if (OpenCLBuiltin.IsConv)
        NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));

      if (!S.getLangOpts().OpenCLCPlusPlus)
        NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));

      AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);

      LR.addDecl(NewOpenCLBuiltin);
    }
  }

  // If we added overloads, need to resolve the lookup result.
  if (Len > 1 || HasGenType)
    LR.resolveKind();
}

/// Lookup a builtin function, when name lookup would otherwise
/// fail.
bool Sema::LookupBuiltin(LookupResult &R) {
  Sema::LookupNameKind NameKind = R.getLookupKind();

  // If we didn't find a use of this identifier, and if the identifier
  // corresponds to a compiler builtin, create the decl object for the builtin
  // now, injecting it into translation unit scope, and return it.
  if (NameKind == Sema::LookupOrdinaryName ||
      NameKind == Sema::LookupRedeclarationWithLinkage) {
    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
    if (II) {
      if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
        if (II == getASTContext().getMakeIntegerSeqName()) {
          R.addDecl(getASTContext().getMakeIntegerSeqDecl());
          return true;
        } else if (II == getASTContext().getTypePackElementName()) {
          R.addDecl(getASTContext().getTypePackElementDecl());
          return true;
        }
      }

      // Check if this is an OpenCL Builtin, and if so, insert its overloads.
      if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
        auto Index = isOpenCLBuiltin(II->getName());
        if (Index.first) {
          InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
                                                Index.second);
          return true;
        }
      }

      // If this is a builtin on this (or all) targets, create the decl.
      if (unsigned BuiltinID = II->getBuiltinID()) {
        // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
        // library functions like 'malloc'. Instead, we'll just error.
        if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
          return false;

        if (NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II,
                                               BuiltinID, TUScope,
                                               R.isForRedeclaration(),
                                               R.getNameLoc())) {
          R.addDecl(D);
          return true;
        }
      }
    }
  }

  return false;
}

/// Determine whether we can declare a special member function within
/// the class at this point.
static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
  // We need to have a definition for the class.
  if (!Class->getDefinition() || Class->isDependentContext())
    return false;

  // We can't be in the middle of defining the class.
  return !Class->isBeingDefined();
}

void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
  if (!CanDeclareSpecialMemberFunction(Class))
    return;

  // If the default constructor has not yet been declared, do so now.
  if (Class->needsImplicitDefaultConstructor())
    DeclareImplicitDefaultConstructor(Class);

  // If the copy constructor has not yet been declared, do so now.
  if (Class->needsImplicitCopyConstructor())
    DeclareImplicitCopyConstructor(Class);

  // If the copy assignment operator has not yet been declared, do so now.
  if (Class->needsImplicitCopyAssignment())
    DeclareImplicitCopyAssignment(Class);

  if (getLangOpts().CPlusPlus11) {
    // If the move constructor has not yet been declared, do so now.
    if (Class->needsImplicitMoveConstructor())
      DeclareImplicitMoveConstructor(Class);

    // If the move assignment operator has not yet been declared, do so now.
    if (Class->needsImplicitMoveAssignment())
      DeclareImplicitMoveAssignment(Class);
  }

  // If the destructor has not yet been declared, do so now.
  if (Class->needsImplicitDestructor())
    DeclareImplicitDestructor(Class);
}

/// Determine whether this is the name of an implicitly-declared
/// special member function.
static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
  switch (Name.getNameKind()) {
  case DeclarationName::CXXConstructorName:
  case DeclarationName::CXXDestructorName:
    return true;

  case DeclarationName::CXXOperatorName:
    return Name.getCXXOverloadedOperator() == OO_Equal;

  default:
    break;
  }

  return false;
}

/// If there are any implicit member functions with the given name
/// that need to be declared in the given declaration context, do so.
static void DeclareImplicitMemberFunctionsWithName(Sema &S,
                                                   DeclarationName Name,
                                                   SourceLocation Loc,
                                                   const DeclContext *DC) {
  if (!DC)
    return;

  switch (Name.getNameKind()) {
  case DeclarationName::CXXConstructorName:
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
        if (Record->needsImplicitDefaultConstructor())
          S.DeclareImplicitDefaultConstructor(Class);
        if (Record->needsImplicitCopyConstructor())
          S.DeclareImplicitCopyConstructor(Class);
        if (S.getLangOpts().CPlusPlus11 &&
            Record->needsImplicitMoveConstructor())
          S.DeclareImplicitMoveConstructor(Class);
      }
    break;

  case DeclarationName::CXXDestructorName:
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
          CanDeclareSpecialMemberFunction(Record))
        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
    break;

  case DeclarationName::CXXOperatorName:
    if (Name.getCXXOverloadedOperator() != OO_Equal)
      break;

    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
        if (Record->needsImplicitCopyAssignment())
          S.DeclareImplicitCopyAssignment(Class);
        if (S.getLangOpts().CPlusPlus11 &&
            Record->needsImplicitMoveAssignment())
          S.DeclareImplicitMoveAssignment(Class);
      }
    }
    break;

  case DeclarationName::CXXDeductionGuideName:
    S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
    break;

  default:
    break;
  }
}

// Adds all qualifying matches for a name within a decl context to the
// given lookup result.  Returns true if any matches were found.
static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
  bool Found = false;

  // Lazily declare C++ special member functions.
  if (S.getLangOpts().CPlusPlus)
    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
                                           DC);

  // Perform lookup into this declaration context.
  DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
  for (NamedDecl *D : DR) {
    if ((D = R.getAcceptableDecl(D))) {
      R.addDecl(D);
      Found = true;
    }
  }

  if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
    return true;

  if (R.getLookupName().getNameKind()
        != DeclarationName::CXXConversionFunctionName ||
      R.getLookupName().getCXXNameType()->isDependentType() ||
      !isa<CXXRecordDecl>(DC))
    return Found;

  // C++ [temp.mem]p6:
  //   A specialization of a conversion function template is not found by
  //   name lookup. Instead, any conversion function templates visible in the
  //   context of the use are considered. [...]
  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
  if (!Record->isCompleteDefinition())
    return Found;

  // For conversion operators, 'operator auto' should only match
  // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
  // as a candidate for template substitution.
  auto *ContainedDeducedType =
      R.getLookupName().getCXXNameType()->getContainedDeducedType();
  if (R.getLookupName().getNameKind() ==
          DeclarationName::CXXConversionFunctionName &&
      ContainedDeducedType && ContainedDeducedType->isUndeducedType())
    return Found;

  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
         UEnd = Record->conversion_end(); U != UEnd; ++U) {
    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
    if (!ConvTemplate)
      continue;

    // When we're performing lookup for the purposes of redeclaration, just
    // add the conversion function template. When we deduce template
    // arguments for specializations, we'll end up unifying the return
    // type of the new declaration with the type of the function template.
    if (R.isForRedeclaration()) {
      R.addDecl(ConvTemplate);
      Found = true;
      continue;
    }

    // C++ [temp.mem]p6:
    //   [...] For each such operator, if argument deduction succeeds
    //   (14.9.2.3), the resulting specialization is used as if found by
    //   name lookup.
    //
    // When referencing a conversion function for any purpose other than
    // a redeclaration (such that we'll be building an expression with the
    // result), perform template argument deduction and place the
    // specialization into the result set. We do this to avoid forcing all
    // callers to perform special deduction for conversion functions.
    TemplateDeductionInfo Info(R.getNameLoc());
    FunctionDecl *Specialization = nullptr;

    const FunctionProtoType *ConvProto
      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
    assert(ConvProto && "Nonsensical conversion function template type");

    // Compute the type of the function that we would expect the conversion
    // function to have, if it were to match the name given.
    // FIXME: Calling convention!
    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
    EPI.ExceptionSpec = EST_None;
    QualType ExpectedType
      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
                                            None, EPI);

    // Perform template argument deduction against the type that we would
    // expect the function to have.
    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
                                            Specialization, Info)
          == Sema::TDK_Success) {
      R.addDecl(Specialization);
      Found = true;
    }
  }

  return Found;
}

// Performs C++ unqualified lookup into the given file context.
static bool
CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {

  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");

  // Perform direct name lookup into the LookupCtx.
  bool Found = LookupDirect(S, R, NS);

  // Perform direct name lookup into the namespaces nominated by the
  // using directives whose common ancestor is this namespace.
  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
    if (LookupDirect(S, R, UUE.getNominatedNamespace()))
      Found = true;

  R.resolveKind();

  return Found;
}

static bool isNamespaceOrTranslationUnitScope(Scope *S) {
  if (DeclContext *Ctx = S->getEntity())
    return Ctx->isFileContext();
  return false;
}

// Find the next outer declaration context from this scope. This
// routine actually returns the semantic outer context, which may
// differ from the lexical context (encoded directly in the Scope
// stack) when we are parsing a member of a class template. In this
// case, the second element of the pair will be true, to indicate that
// name lookup should continue searching in this semantic context when
// it leaves the current template parameter scope.
static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
  DeclContext *DC = S->getEntity();
  DeclContext *Lexical = nullptr;
  for (Scope *OuterS = S->getParent(); OuterS;
       OuterS = OuterS->getParent()) {
    if (OuterS->getEntity()) {
      Lexical = OuterS->getEntity();
      break;
    }
  }

  // C++ [temp.local]p8:
  //   In the definition of a member of a class template that appears
  //   outside of the namespace containing the class template
  //   definition, the name of a template-parameter hides the name of
  //   a member of this namespace.
  //
  // Example:
  //
  //   namespace N {
  //     class C { };
  //
  //     template<class T> class B {
  //       void f(T);
  //     };
  //   }
  //
  //   template<class C> void N::B<C>::f(C) {
  //     C b;  // C is the template parameter, not N::C
  //   }
  //
  // In this example, the lexical context we return is the
  // TranslationUnit, while the semantic context is the namespace N.
  if (!Lexical || !DC || !S->getParent() ||
      !S->getParent()->isTemplateParamScope())
    return std::make_pair(Lexical, false);

  // Find the outermost template parameter scope.
  // For the example, this is the scope for the template parameters of
  // template<class C>.
  Scope *OutermostTemplateScope = S->getParent();
  while (OutermostTemplateScope->getParent() &&
         OutermostTemplateScope->getParent()->isTemplateParamScope())
    OutermostTemplateScope = OutermostTemplateScope->getParent();

  // Find the namespace context in which the original scope occurs. In
  // the example, this is namespace N.
  DeclContext *Semantic = DC;
  while (!Semantic->isFileContext())
    Semantic = Semantic->getParent();

  // Find the declaration context just outside of the template
  // parameter scope. This is the context in which the template is
  // being lexically declaration (a namespace context). In the
  // example, this is the global scope.
  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
      Lexical->Encloses(Semantic))
    return std::make_pair(Semantic, true);

  return std::make_pair(Lexical, false);
}

namespace {
/// An RAII object to specify that we want to find block scope extern
/// declarations.
struct FindLocalExternScope {
  FindLocalExternScope(LookupResult &R)
      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
                                 Decl::IDNS_LocalExtern) {
    R.setFindLocalExtern(R.getIdentifierNamespace() &
                         (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
  }
  void restore() {
    R.setFindLocalExtern(OldFindLocalExtern);
  }
  ~FindLocalExternScope() {
    restore();
  }
  LookupResult &R;
  bool OldFindLocalExtern;
};
} // end anonymous namespace

bool Sema::CppLookupName(LookupResult &R, Scope *S) {
  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");

  DeclarationName Name = R.getLookupName();
  Sema::LookupNameKind NameKind = R.getLookupKind();

  // If this is the name of an implicitly-declared special member function,
  // go through the scope stack to implicitly declare
  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
      if (DeclContext *DC = PreS->getEntity())
        DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
  }

  // Implicitly declare member functions with the name we're looking for, if in
  // fact we are in a scope where it matters.

  Scope *Initial = S;
  IdentifierResolver::iterator
    I = IdResolver.begin(Name),
    IEnd = IdResolver.end();

  // First we lookup local scope.
  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
  // ...During unqualified name lookup (3.4.1), the names appear as if
  // they were declared in the nearest enclosing namespace which contains
  // both the using-directive and the nominated namespace.
  // [Note: in this context, "contains" means "contains directly or
  // indirectly".
  //
  // For example:
  // namespace A { int i; }
  // void foo() {
  //   int i;
  //   {
  //     using namespace A;
  //     ++i; // finds local 'i', A::i appears at global scope
  //   }
  // }
  //
  UnqualUsingDirectiveSet UDirs(*this);
  bool VisitedUsingDirectives = false;
  bool LeftStartingScope = false;
  DeclContext *OutsideOfTemplateParamDC = nullptr;

  // When performing a scope lookup, we want to find local extern decls.
  FindLocalExternScope FindLocals(R);

  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
    DeclContext *Ctx = S->getEntity();
    bool SearchNamespaceScope = true;
    // Check whether the IdResolver has anything in this scope.
    for (; I != IEnd && S->isDeclScope(*I); ++I) {
      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
        if (NameKind == LookupRedeclarationWithLinkage &&
            !(*I)->isTemplateParameter()) {
          // If it's a template parameter, we still find it, so we can diagnose
          // the invalid redeclaration.

          // Determine whether this (or a previous) declaration is
          // out-of-scope.
          if (!LeftStartingScope && !Initial->isDeclScope(*I))
            LeftStartingScope = true;

          // If we found something outside of our starting scope that
          // does not have linkage, skip it.
          if (LeftStartingScope && !((*I)->hasLinkage())) {
            R.setShadowed();
            continue;
          }
        } else {
          // We found something in this scope, we should not look at the
          // namespace scope
          SearchNamespaceScope = false;
        }
        R.addDecl(ND);
      }
    }
    if (!SearchNamespaceScope) {
      R.resolveKind();
      if (S->isClassScope())
        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
          R.setNamingClass(Record);
      return true;
    }

    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
      // C++11 [class.friend]p11:
      //   If a friend declaration appears in a local class and the name
      //   specified is an unqualified name, a prior declaration is
      //   looked up without considering scopes that are outside the
      //   innermost enclosing non-class scope.
      return false;
    }

    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
        S->getParent() && !S->getParent()->isTemplateParamScope()) {
      // We've just searched the last template parameter scope and
      // found nothing, so look into the contexts between the
      // lexical and semantic declaration contexts returned by
      // findOuterContext(). This implements the name lookup behavior
      // of C++ [temp.local]p8.
      Ctx = OutsideOfTemplateParamDC;
      OutsideOfTemplateParamDC = nullptr;
    }

    if (Ctx) {
      DeclContext *OuterCtx;
      bool SearchAfterTemplateScope;
      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
      if (SearchAfterTemplateScope)
        OutsideOfTemplateParamDC = OuterCtx;

      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
        // We do not directly look into transparent contexts, since
        // those entities will be found in the nearest enclosing
        // non-transparent context.
        if (Ctx->isTransparentContext())
          continue;

        // We do not look directly into function or method contexts,
        // since all of the local variables and parameters of the
        // function/method are present within the Scope.
        if (Ctx->isFunctionOrMethod()) {
          // If we have an Objective-C instance method, look for ivars
          // in the corresponding interface.
          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
                ObjCInterfaceDecl *ClassDeclared;
                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
                                                 Name.getAsIdentifierInfo(),
                                                             ClassDeclared)) {
                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
                    R.addDecl(ND);
                    R.resolveKind();
                    return true;
                  }
                }
              }
          }

          continue;
        }

        // If this is a file context, we need to perform unqualified name
        // lookup considering using directives.
        if (Ctx->isFileContext()) {
          // If we haven't handled using directives yet, do so now.
          if (!VisitedUsingDirectives) {
            // Add using directives from this context up to the top level.
            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
              if (UCtx->isTransparentContext())
                continue;

              UDirs.visit(UCtx, UCtx);
            }

            // Find the innermost file scope, so we can add using directives
            // from local scopes.
            Scope *InnermostFileScope = S;
            while (InnermostFileScope &&
                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
              InnermostFileScope = InnermostFileScope->getParent();
            UDirs.visitScopeChain(Initial, InnermostFileScope);

            UDirs.done();

            VisitedUsingDirectives = true;
          }

          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
            R.resolveKind();
            return true;
          }

          continue;
        }

        // Perform qualified name lookup into this context.
        // FIXME: In some cases, we know that every name that could be found by
        // this qualified name lookup will also be on the identifier chain. For
        // example, inside a class without any base classes, we never need to
        // perform qualified lookup because all of the members are on top of the
        // identifier chain.
        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
          return true;
      }
    }
  }

  // Stop if we ran out of scopes.
  // FIXME:  This really, really shouldn't be happening.
  if (!S) return false;

  // If we are looking for members, no need to look into global/namespace scope.
  if (NameKind == LookupMemberName)
    return false;

  // Collect UsingDirectiveDecls in all scopes, and recursively all
  // nominated namespaces by those using-directives.
  //
  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
  // don't build it for each lookup!
  if (!VisitedUsingDirectives) {
    UDirs.visitScopeChain(Initial, S);
    UDirs.done();
  }

  // If we're not performing redeclaration lookup, do not look for local
  // extern declarations outside of a function scope.
  if (!R.isForRedeclaration())
    FindLocals.restore();

  // Lookup namespace scope, and global scope.
  // Unqualified name lookup in C++ requires looking into scopes
  // that aren't strictly lexical, and therefore we walk through the
  // context as well as walking through the scopes.
  for (; S; S = S->getParent()) {
    // Check whether the IdResolver has anything in this scope.
    bool Found = false;
    for (; I != IEnd && S->isDeclScope(*I); ++I) {
      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
        // We found something.  Look for anything else in our scope
        // with this same name and in an acceptable identifier
        // namespace, so that we can construct an overload set if we
        // need to.
        Found = true;
        R.addDecl(ND);
      }
    }

    if (Found && S->isTemplateParamScope()) {
      R.resolveKind();
      return true;
    }

    DeclContext *Ctx = S->getEntity();
    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
        S->getParent() && !S->getParent()->isTemplateParamScope()) {
      // We've just searched the last template parameter scope and
      // found nothing, so look into the contexts between the
      // lexical and semantic declaration contexts returned by
      // findOuterContext(). This implements the name lookup behavior
      // of C++ [temp.local]p8.
      Ctx = OutsideOfTemplateParamDC;
      OutsideOfTemplateParamDC = nullptr;
    }

    if (Ctx) {
      DeclContext *OuterCtx;
      bool SearchAfterTemplateScope;
      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
      if (SearchAfterTemplateScope)
        OutsideOfTemplateParamDC = OuterCtx;

      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
        // We do not directly look into transparent contexts, since
        // those entities will be found in the nearest enclosing
        // non-transparent context.
        if (Ctx->isTransparentContext())
          continue;

        // If we have a context, and it's not a context stashed in the
        // template parameter scope for an out-of-line definition, also
        // look into that context.
        if (!(Found && S->isTemplateParamScope())) {
          assert(Ctx->isFileContext() &&
              "We should have been looking only at file context here already.");

          // Look into context considering using-directives.
          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
            Found = true;
        }

        if (Found) {
          R.resolveKind();
          return true;
        }

        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
          return false;
      }
    }

    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
      return false;
  }

  return !R.empty();
}

void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
  if (auto *M = getCurrentModule())
    Context.mergeDefinitionIntoModule(ND, M);
  else
    // We're not building a module; just make the definition visible.
    ND->setVisibleDespiteOwningModule();

  // If ND is a template declaration, make the template parameters
  // visible too. They're not (necessarily) within a mergeable DeclContext.
  if (auto *TD = dyn_cast<TemplateDecl>(ND))
    for (auto *Param : *TD->getTemplateParameters())
      makeMergedDefinitionVisible(Param);
}

/// Find the module in which the given declaration was defined.
static Module *getDefiningModule(Sema &S, Decl *Entity) {
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
    // If this function was instantiated from a template, the defining module is
    // the module containing the pattern.
    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
      Entity = Pattern;
  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
    if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
      Entity = Pattern;
  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
    if (auto *Pattern = ED->getTemplateInstantiationPattern())
      Entity = Pattern;
  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
    if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
      Entity = Pattern;
  }

  // Walk up to the containing context. That might also have been instantiated
  // from a template.
  DeclContext *Context = Entity->getLexicalDeclContext();
  if (Context->isFileContext())
    return S.getOwningModule(Entity);
  return getDefiningModule(S, cast<Decl>(Context));
}

llvm::DenseSet<Module*> &Sema::getLookupModules() {
  unsigned N = CodeSynthesisContexts.size();
  for (unsigned I = CodeSynthesisContextLookupModules.size();
       I != N; ++I) {
    Module *M = CodeSynthesisContexts[I].Entity ?
                getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
                nullptr;
    if (M && !LookupModulesCache.insert(M).second)
      M = nullptr;
    CodeSynthesisContextLookupModules.push_back(M);
  }
  return LookupModulesCache;
}

/// Determine whether the module M is part of the current module from the
/// perspective of a module-private visibility check.
static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
  // If M is the global module fragment of a module that we've not yet finished
  // parsing, then it must be part of the current module.
  return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
         (M->Kind == Module::GlobalModuleFragment && !M->Parent);
}

bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
    if (isModuleVisible(Merged))
      return true;
  return false;
}

bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
    if (isInCurrentModule(Merged, getLangOpts()))
      return true;
  return false;
}

template<typename ParmDecl>
static bool
hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
                          llvm::SmallVectorImpl<Module *> *Modules) {
  if (!D->hasDefaultArgument())
    return false;

  while (D) {
    auto &DefaultArg = D->getDefaultArgStorage();
    if (!DefaultArg.isInherited() && S.isVisible(D))
      return true;

    if (!DefaultArg.isInherited() && Modules) {
      auto *NonConstD = const_cast<ParmDecl*>(D);
      Modules->push_back(S.getOwningModule(NonConstD));
    }

    // If there was a previous default argument, maybe its parameter is visible.
    D = DefaultArg.getInheritedFrom();
  }
  return false;
}

bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
                                     llvm::SmallVectorImpl<Module *> *Modules) {
  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
    return ::hasVisibleDefaultArgument(*this, P, Modules);
  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
    return ::hasVisibleDefaultArgument(*this, P, Modules);
  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
                                     Modules);
}

template<typename Filter>
static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
                                      llvm::SmallVectorImpl<Module *> *Modules,
                                      Filter F) {
  bool HasFilteredRedecls = false;

  for (auto *Redecl : D->redecls()) {
    auto *R = cast<NamedDecl>(Redecl);
    if (!F(R))
      continue;

    if (S.isVisible(R))
      return true;

    HasFilteredRedecls = true;

    if (Modules)
      Modules->push_back(R->getOwningModule());
  }

  // Only return false if there is at least one redecl that is not filtered out.
  if (HasFilteredRedecls)
    return false;

  return true;
}

bool Sema::hasVisibleExplicitSpecialization(
    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
    if (auto *RD = dyn_cast<CXXRecordDecl>(D))
      return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
    if (auto *FD = dyn_cast<FunctionDecl>(D))
      return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
    if (auto *VD = dyn_cast<VarDecl>(D))
      return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
    llvm_unreachable("unknown explicit specialization kind");
  });
}

bool Sema::hasVisibleMemberSpecialization(
    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
         "not a member specialization");
  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
    // If the specialization is declared at namespace scope, then it's a member
    // specialization declaration. If it's lexically inside the class
    // definition then it was instantiated.
    //
    // FIXME: This is a hack. There should be a better way to determine this.
    // FIXME: What about MS-style explicit specializations declared within a
    //        class definition?
    return D->getLexicalDeclContext()->isFileContext();
  });
}

/// Determine whether a declaration is visible to name lookup.
///
/// This routine determines whether the declaration D is visible in the current
/// lookup context, taking into account the current template instantiation
/// stack. During template instantiation, a declaration is visible if it is
/// visible from a module containing any entity on the template instantiation
/// path (by instantiating a template, you allow it to see the declarations that
/// your module can see, including those later on in your module).
bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
  assert(D->isHidden() && "should not call this: not in slow case");

  Module *DeclModule = SemaRef.getOwningModule(D);
  assert(DeclModule && "hidden decl has no owning module");

  // If the owning module is visible, the decl is visible.
  if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
    return true;

  // Determine whether a decl context is a file context for the purpose of
  // visibility. This looks through some (export and linkage spec) transparent
  // contexts, but not others (enums).
  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
    return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
           isa<ExportDecl>(DC);
  };

  // If this declaration is not at namespace scope
  // then it is visible if its lexical parent has a visible definition.
  DeclContext *DC = D->getLexicalDeclContext();
  if (DC && !IsEffectivelyFileContext(DC)) {
    // For a parameter, check whether our current template declaration's
    // lexical context is visible, not whether there's some other visible
    // definition of it, because parameters aren't "within" the definition.
    //
    // In C++ we need to check for a visible definition due to ODR merging,
    // and in C we must not because each declaration of a function gets its own
    // set of declarations for tags in prototype scope.
    bool VisibleWithinParent;
    if (D->isTemplateParameter()) {
      bool SearchDefinitions = true;
      if (const auto *DCD = dyn_cast<Decl>(DC)) {
        if (const auto *TD = DCD->getDescribedTemplate()) {
          TemplateParameterList *TPL = TD->getTemplateParameters();
          auto Index = getDepthAndIndex(D).second;
          SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
        }
      }
      if (SearchDefinitions)
        VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
      else
        VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
    } else if (isa<ParmVarDecl>(D) ||
               (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
      VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
    else if (D->isModulePrivate()) {
      // A module-private declaration is only visible if an enclosing lexical
      // parent was merged with another definition in the current module.
      VisibleWithinParent = false;
      do {
        if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
          VisibleWithinParent = true;
          break;
        }
        DC = DC->getLexicalParent();
      } while (!IsEffectivelyFileContext(DC));
    } else {
      VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
    }

    if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
        // FIXME: Do something better in this case.
        !SemaRef.getLangOpts().ModulesLocalVisibility) {
      // Cache the fact that this declaration is implicitly visible because
      // its parent has a visible definition.
      D->setVisibleDespiteOwningModule();
    }
    return VisibleWithinParent;
  }

  return false;
}

bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
  // The module might be ordinarily visible. For a module-private query, that
  // means it is part of the current module. For any other query, that means it
  // is in our visible module set.
  if (ModulePrivate) {
    if (isInCurrentModule(M, getLangOpts()))
      return true;
  } else {
    if (VisibleModules.isVisible(M))
      return true;
  }

  // Otherwise, it might be visible by virtue of the query being within a
  // template instantiation or similar that is permitted to look inside M.

  // Find the extra places where we need to look.
  const auto &LookupModules = getLookupModules();
  if (LookupModules.empty())
    return false;

  // If our lookup set contains the module, it's visible.
  if (LookupModules.count(M))
    return true;

  // For a module-private query, that's everywhere we get to look.
  if (ModulePrivate)
    return false;

  // Check whether M is transitively exported to an import of the lookup set.
  return llvm::any_of(LookupModules, [&](const Module *LookupM) {
    return LookupM->isModuleVisible(M);
  });
}

bool Sema::isVisibleSlow(const NamedDecl *D) {
  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
}

bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
  // FIXME: If there are both visible and hidden declarations, we need to take
  // into account whether redeclaration is possible. Example:
  //
  // Non-imported module:
  //   int f(T);        // #1
  // Some TU:
  //   static int f(U); // #2, not a redeclaration of #1
  //   int f(T);        // #3, finds both, should link with #1 if T != U, but
  //                    // with #2 if T == U; neither should be ambiguous.
  for (auto *D : R) {
    if (isVisible(D))
      return true;
    assert(D->isExternallyDeclarable() &&
           "should not have hidden, non-externally-declarable result here");
  }

  // This function is called once "New" is essentially complete, but before a
  // previous declaration is attached. We can't query the linkage of "New" in
  // general, because attaching the previous declaration can change the
  // linkage of New to match the previous declaration.
  //
  // However, because we've just determined that there is no *visible* prior
  // declaration, we can compute the linkage here. There are two possibilities:
  //
  //  * This is not a redeclaration; it's safe to compute the linkage now.
  //
  //  * This is a redeclaration of a prior declaration that is externally
  //    redeclarable. In that case, the linkage of the declaration is not
  //    changed by attaching the prior declaration, because both are externally
  //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
  //
  // FIXME: This is subtle and fragile.
  return New->isExternallyDeclarable();
}

/// Retrieve the visible declaration corresponding to D, if any.
///
/// This routine determines whether the declaration D is visible in the current
/// module, with the current imports. If not, it checks whether any
/// redeclaration of D is visible, and if so, returns that declaration.
///
/// \returns D, or a visible previous declaration of D, whichever is more recent
/// and visible. If no declaration of D is visible, returns null.
static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
                                     unsigned IDNS) {
  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");

  for (auto RD : D->redecls()) {
    // Don't bother with extra checks if we already know this one isn't visible.
    if (RD == D)
      continue;

    auto ND = cast<NamedDecl>(RD);
    // FIXME: This is wrong in the case where the previous declaration is not
    // visible in the same scope as D. This needs to be done much more
    // carefully.
    if (ND->isInIdentifierNamespace(IDNS) &&
        LookupResult::isVisible(SemaRef, ND))
      return ND;
  }

  return nullptr;
}

bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
                                     llvm::SmallVectorImpl<Module *> *Modules) {
  assert(!isVisible(D) && "not in slow case");
  return hasVisibleDeclarationImpl(*this, D, Modules,
                                   [](const NamedDecl *) { return true; });
}

NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
    // Namespaces are a bit of a special case: we expect there to be a lot of
    // redeclarations of some namespaces, all declarations of a namespace are
    // essentially interchangeable, all declarations are found by name lookup
    // if any is, and namespaces are never looked up during template
    // instantiation. So we benefit from caching the check in this case, and
    // it is correct to do so.
    auto *Key = ND->getCanonicalDecl();
    if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
      return Acceptable;
    auto *Acceptable = isVisible(getSema(), Key)
                           ? Key
                           : findAcceptableDecl(getSema(), Key, IDNS);
    if (Acceptable)
      getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
    return Acceptable;
  }

  return findAcceptableDecl(getSema(), D, IDNS);
}

/// Perform unqualified name lookup starting from a given
/// scope.
///
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
/// used to find names within the current scope. For example, 'x' in
/// @code
/// int x;
/// int f() {
///   return x; // unqualified name look finds 'x' in the global scope
/// }
/// @endcode
///
/// Different lookup criteria can find different names. For example, a
/// particular scope can have both a struct and a function of the same
/// name, and each can be found by certain lookup criteria. For more
/// information about lookup criteria, see the documentation for the
/// class LookupCriteria.
///
/// @param S        The scope from which unqualified name lookup will
/// begin. If the lookup criteria permits, name lookup may also search
/// in the parent scopes.
///
/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
/// look up and the lookup kind), and is updated with the results of lookup
/// including zero or more declarations and possibly additional information
/// used to diagnose ambiguities.
///
/// @returns \c true if lookup succeeded and false otherwise.
bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
  DeclarationName Name = R.getLookupName();
  if (!Name) return false;

  LookupNameKind NameKind = R.getLookupKind();

  if (!getLangOpts().CPlusPlus) {
    // Unqualified name lookup in C/Objective-C is purely lexical, so
    // search in the declarations attached to the name.
    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
      // Find the nearest non-transparent declaration scope.
      while (!(S->getFlags() & Scope::DeclScope) ||
             (S->getEntity() && S->getEntity()->isTransparentContext()))
        S = S->getParent();
    }

    // When performing a scope lookup, we want to find local extern decls.
    FindLocalExternScope FindLocals(R);

    // Scan up the scope chain looking for a decl that matches this
    // identifier that is in the appropriate namespace.  This search
    // should not take long, as shadowing of names is uncommon, and
    // deep shadowing is extremely uncommon.
    bool LeftStartingScope = false;

    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
                                   IEnd = IdResolver.end();
         I != IEnd; ++I)
      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
        if (NameKind == LookupRedeclarationWithLinkage) {
          // Determine whether this (or a previous) declaration is
          // out-of-scope.
          if (!LeftStartingScope && !S->isDeclScope(*I))
            LeftStartingScope = true;

          // If we found something outside of our starting scope that
          // does not have linkage, skip it.
          if (LeftStartingScope && !((*I)->hasLinkage())) {
            R.setShadowed();
            continue;
          }
        }
        else if (NameKind == LookupObjCImplicitSelfParam &&
                 !isa<ImplicitParamDecl>(*I))
          continue;

        R.addDecl(D);

        // Check whether there are any other declarations with the same name
        // and in the same scope.
        if (I != IEnd) {
          // Find the scope in which this declaration was declared (if it
          // actually exists in a Scope).
          while (S && !S->isDeclScope(D))
            S = S->getParent();

          // If the scope containing the declaration is the translation unit,
          // then we'll need to perform our checks based on the matching
          // DeclContexts rather than matching scopes.
          if (S && isNamespaceOrTranslationUnitScope(S))
            S = nullptr;

          // Compute the DeclContext, if we need it.
          DeclContext *DC = nullptr;
          if (!S)
            DC = (*I)->getDeclContext()->getRedeclContext();

          IdentifierResolver::iterator LastI = I;
          for (++LastI; LastI != IEnd; ++LastI) {
            if (S) {
              // Match based on scope.
              if (!S->isDeclScope(*LastI))
                break;
            } else {
              // Match based on DeclContext.
              DeclContext *LastDC
                = (*LastI)->getDeclContext()->getRedeclContext();
              if (!LastDC->Equals(DC))
                break;
            }

            // If the declaration is in the right namespace and visible, add it.
            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
              R.addDecl(LastD);
          }

          R.resolveKind();
        }

        return true;
      }
  } else {
    // Perform C++ unqualified name lookup.
    if (CppLookupName(R, S))
      return true;
  }

  // If we didn't find a use of this identifier, and if the identifier
  // corresponds to a compiler builtin, create the decl object for the builtin
  // now, injecting it into translation unit scope, and return it.
  if (AllowBuiltinCreation && LookupBuiltin(R))
    return true;

  // If we didn't find a use of this identifier, the ExternalSource
  // may be able to handle the situation.
  // Note: some lookup failures are expected!
  // See e.g. R.isForRedeclaration().
  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
}

/// Perform qualified name lookup in the namespaces nominated by
/// using directives by the given context.
///
/// C++98 [namespace.qual]p2:
///   Given X::m (where X is a user-declared namespace), or given \::m
///   (where X is the global namespace), let S be the set of all
///   declarations of m in X and in the transitive closure of all
///   namespaces nominated by using-directives in X and its used
///   namespaces, except that using-directives are ignored in any
///   namespace, including X, directly containing one or more
///   declarations of m. No namespace is searched more than once in
///   the lookup of a name. If S is the empty set, the program is
///   ill-formed. Otherwise, if S has exactly one member, or if the
///   context of the reference is a using-declaration
///   (namespace.udecl), S is the required set of declarations of
///   m. Otherwise if the use of m is not one that allows a unique
///   declaration to be chosen from S, the program is ill-formed.
///
/// C++98 [namespace.qual]p5:
///   During the lookup of a qualified namespace member name, if the
///   lookup finds more than one declaration of the member, and if one
///   declaration introduces a class name or enumeration name and the
///   other declarations either introduce the same object, the same
///   enumerator or a set of functions, the non-type name hides the
///   class or enumeration name if and only if the declarations are
///   from the same namespace; otherwise (the declarations are from
///   different namespaces), the program is ill-formed.
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
                                                 DeclContext *StartDC) {
  assert(StartDC->isFileContext() && "start context is not a file context");

  // We have not yet looked into these namespaces, much less added
  // their "using-children" to the queue.
  SmallVector<NamespaceDecl*, 8> Queue;

  // We have at least added all these contexts to the queue.
  llvm::SmallPtrSet<DeclContext*, 8> Visited;
  Visited.insert(StartDC);

  // We have already looked into the initial namespace; seed the queue
  // with its using-children.
  for (auto *I : StartDC->using_directives()) {
    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
    if (S.isVisible(I) && Visited.insert(ND).second)
      Queue.push_back(ND);
  }

  // The easiest way to implement the restriction in [namespace.qual]p5
  // is to check whether any of the individual results found a tag
  // and, if so, to declare an ambiguity if the final result is not
  // a tag.
  bool FoundTag = false;
  bool FoundNonTag = false;

  LookupResult LocalR(LookupResult::Temporary, R);

  bool Found = false;
  while (!Queue.empty()) {
    NamespaceDecl *ND = Queue.pop_back_val();

    // We go through some convolutions here to avoid copying results
    // between LookupResults.
    bool UseLocal = !R.empty();
    LookupResult &DirectR = UseLocal ? LocalR : R;
    bool FoundDirect = LookupDirect(S, DirectR, ND);

    if (FoundDirect) {
      // First do any local hiding.
      DirectR.resolveKind();

      // If the local result is a tag, remember that.
      if (DirectR.isSingleTagDecl())
        FoundTag = true;
      else
        FoundNonTag = true;

      // Append the local results to the total results if necessary.
      if (UseLocal) {
        R.addAllDecls(LocalR);
        LocalR.clear();
      }
    }

    // If we find names in this namespace, ignore its using directives.
    if (FoundDirect) {
      Found = true;
      continue;
    }

    for (auto I : ND->using_directives()) {
      NamespaceDecl *Nom = I->getNominatedNamespace();
      if (S.isVisible(I) && Visited.insert(Nom).second)
        Queue.push_back(Nom);
    }
  }

  if (Found) {
    if (FoundTag && FoundNonTag)
      R.setAmbiguousQualifiedTagHiding();
    else
      R.resolveKind();
  }

  return Found;
}

/// Callback that looks for any member of a class with the given name.
static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
                            CXXBasePath &Path, DeclarationName Name) {
  RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();

  Path.Decls = BaseRecord->lookup(Name);
  return !Path.Decls.empty();
}

/// Determine whether the given set of member declarations contains only
/// static members, nested types, and enumerators.
template<typename InputIterator>
static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
  Decl *D = (*First)->getUnderlyingDecl();
  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
    return true;

  if (isa<CXXMethodDecl>(D)) {
    // Determine whether all of the methods are static.
    bool AllMethodsAreStatic = true;
    for(; First != Last; ++First) {
      D = (*First)->getUnderlyingDecl();

      if (!isa<CXXMethodDecl>(D)) {
        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
        break;
      }

      if (!cast<CXXMethodDecl>(D)->isStatic()) {
        AllMethodsAreStatic = false;
        break;
      }
    }

    if (AllMethodsAreStatic)
      return true;
  }

  return false;
}

/// Perform qualified name lookup into a given context.
///
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
/// names when the context of those names is explicit specified, e.g.,
/// "std::vector" or "x->member", or as part of unqualified name lookup.
///
/// Different lookup criteria can find different names. For example, a
/// particular scope can have both a struct and a function of the same
/// name, and each can be found by certain lookup criteria. For more
/// information about lookup criteria, see the documentation for the
/// class LookupCriteria.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param LookupCtx The context in which qualified name lookup will
/// search. If the lookup criteria permits, name lookup may also search
/// in the parent contexts or (for C++ classes) base classes.
///
/// \param InUnqualifiedLookup true if this is qualified name lookup that
/// occurs as part of unqualified name lookup.
///
/// \returns true if lookup succeeded, false if it failed.
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
                               bool InUnqualifiedLookup) {
  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");

  if (!R.getLookupName())
    return false;

  // Make sure that the declaration context is complete.
  assert((!isa<TagDecl>(LookupCtx) ||
          LookupCtx->isDependentContext() ||
          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
         "Declaration context must already be complete!");

  struct QualifiedLookupInScope {
    bool oldVal;
    DeclContext *Context;
    // Set flag in DeclContext informing debugger that we're looking for qualified name
    QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
      oldVal = ctx->setUseQualifiedLookup();
    }
    ~QualifiedLookupInScope() {
      Context->setUseQualifiedLookup(oldVal);
    }
  } QL(LookupCtx);

  if (LookupDirect(*this, R, LookupCtx)) {
    R.resolveKind();
    if (isa<CXXRecordDecl>(LookupCtx))
      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
    return true;
  }

  // Don't descend into implied contexts for redeclarations.
  // C++98 [namespace.qual]p6:
  //   In a declaration for a namespace member in which the
  //   declarator-id is a qualified-id, given that the qualified-id
  //   for the namespace member has the form
  //     nested-name-specifier unqualified-id
  //   the unqualified-id shall name a member of the namespace
  //   designated by the nested-name-specifier.
  // See also [class.mfct]p5 and [class.static.data]p2.
  if (R.isForRedeclaration())
    return false;

  // If this is a namespace, look it up in the implied namespaces.
  if (LookupCtx->isFileContext())
    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);

  // If this isn't a C++ class, we aren't allowed to look into base
  // classes, we're done.
  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
  if (!LookupRec || !LookupRec->getDefinition())
    return false;

  // If we're performing qualified name lookup into a dependent class,
  // then we are actually looking into a current instantiation. If we have any
  // dependent base classes, then we either have to delay lookup until
  // template instantiation time (at which point all bases will be available)
  // or we have to fail.
  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
      LookupRec->hasAnyDependentBases()) {
    R.setNotFoundInCurrentInstantiation();
    return false;
  }

  // Perform lookup into our base classes.
  CXXBasePaths Paths;
  Paths.setOrigin(LookupRec);

  // Look for this member in our base classes
  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
                       DeclarationName Name) = nullptr;
  switch (R.getLookupKind()) {
    case LookupObjCImplicitSelfParam:
    case LookupOrdinaryName:
    case LookupMemberName:
    case LookupRedeclarationWithLinkage:
    case LookupLocalFriendName:
      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
      break;

    case LookupTagName:
      BaseCallback = &CXXRecordDecl::FindTagMember;
      break;

    case LookupAnyName:
      BaseCallback = &LookupAnyMember;
      break;

    case LookupOMPReductionName:
      BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
      break;

    case LookupOMPMapperName:
      BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
      break;

    case LookupUsingDeclName:
      // This lookup is for redeclarations only.

    case LookupOperatorName:
    case LookupNamespaceName:
    case LookupObjCProtocolName:
    case LookupLabel:
      // These lookups will never find a member in a C++ class (or base class).
      return false;

    case LookupNestedNameSpecifierName:
      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
      break;
  }

  DeclarationName Name = R.getLookupName();
  if (!LookupRec->lookupInBases(
          [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
            return BaseCallback(Specifier, Path, Name);
          },
          Paths))
    return false;

  R.setNamingClass(LookupRec);

  // C++ [class.member.lookup]p2:
  //   [...] If the resulting set of declarations are not all from
  //   sub-objects of the same type, or the set has a nonstatic member
  //   and includes members from distinct sub-objects, there is an
  //   ambiguity and the program is ill-formed. Otherwise that set is
  //   the result of the lookup.
  QualType SubobjectType;
  int SubobjectNumber = 0;
  AccessSpecifier SubobjectAccess = AS_none;

  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
       Path != PathEnd; ++Path) {
    const CXXBasePathElement &PathElement = Path->back();

    // Pick the best (i.e. most permissive i.e. numerically lowest) access
    // across all paths.
    SubobjectAccess = std::min(SubobjectAccess, Path->Access);

    // Determine whether we're looking at a distinct sub-object or not.
    if (SubobjectType.isNull()) {
      // This is the first subobject we've looked at. Record its type.
      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
      SubobjectNumber = PathElement.SubobjectNumber;
      continue;
    }

    if (SubobjectType
                 != Context.getCanonicalType(PathElement.Base->getType())) {
      // We found members of the given name in two subobjects of
      // different types. If the declaration sets aren't the same, this
      // lookup is ambiguous.
      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
        DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
        DeclContext::lookup_iterator CurrentD = Path->Decls.begin();

        // Get the decl that we should use for deduplicating this lookup.
        auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
          // C++ [temp.local]p3:
          //   A lookup that finds an injected-class-name (10.2) can result in
          //   an ambiguity in certain cases (for example, if it is found in
          //   more than one base class). If all of the injected-class-names
          //   that are found refer to specializations of the same class
          //   template, and if the name is used as a template-name, the
          //   reference refers to the class template itself and not a
          //   specialization thereof, and is not ambiguous.
          if (R.isTemplateNameLookup())
            if (auto *TD = getAsTemplateNameDecl(D))
              D = TD;
          return D->getUnderlyingDecl()->getCanonicalDecl();
        };

        while (FirstD != FirstPath->Decls.end() &&
               CurrentD != Path->Decls.end()) {
          if (GetRepresentativeDecl(*FirstD) !=
              GetRepresentativeDecl(*CurrentD))
            break;

          ++FirstD;
          ++CurrentD;
        }

        if (FirstD == FirstPath->Decls.end() &&
            CurrentD == Path->Decls.end())
          continue;
      }

      R.setAmbiguousBaseSubobjectTypes(Paths);
      return true;
    }

    if (SubobjectNumber != PathElement.SubobjectNumber) {
      // We have a different subobject of the same type.

      // C++ [class.member.lookup]p5:
      //   A static member, a nested type or an enumerator defined in
      //   a base class T can unambiguously be found even if an object
      //   has more than one base class subobject of type T.
      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
        continue;

      // We have found a nonstatic member name in multiple, distinct
      // subobjects. Name lookup is ambiguous.
      R.setAmbiguousBaseSubobjects(Paths);
      return true;
    }
  }

  // Lookup in a base class succeeded; return these results.

  for (auto *D : Paths.front().Decls) {
    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
                                                    D->getAccess());
    R.addDecl(D, AS);
  }
  R.resolveKind();
  return true;
}

/// Performs qualified name lookup or special type of lookup for
/// "__super::" scope specifier.
///
/// This routine is a convenience overload meant to be called from contexts
/// that need to perform a qualified name lookup with an optional C++ scope
/// specifier that might require special kind of lookup.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param LookupCtx The context in which qualified name lookup will
/// search.
///
/// \param SS An optional C++ scope-specifier.
///
/// \returns true if lookup succeeded, false if it failed.
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
                               CXXScopeSpec &SS) {
  auto *NNS = SS.getScopeRep();
  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
    return LookupInSuper(R, NNS->getAsRecordDecl());
  else

    return LookupQualifiedName(R, LookupCtx);
}

/// Performs name lookup for a name that was parsed in the
/// source code, and may contain a C++ scope specifier.
///
/// This routine is a convenience routine meant to be called from
/// contexts that receive a name and an optional C++ scope specifier
/// (e.g., "N::M::x"). It will then perform either qualified or
/// unqualified name lookup (with LookupQualifiedName or LookupName,
/// respectively) on the given name and return those results. It will
/// perform a special type of lookup for "__super::" scope specifier.
///
/// @param S        The scope from which unqualified name lookup will
/// begin.
///
/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
///
/// @param EnteringContext Indicates whether we are going to enter the
/// context of the scope-specifier SS (if present).
///
/// @returns True if any decls were found (but possibly ambiguous)
bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
                            bool AllowBuiltinCreation, bool EnteringContext) {
  if (SS && SS->isInvalid()) {
    // When the scope specifier is invalid, don't even look for
    // anything.
    return false;
  }

  if (SS && SS->isSet()) {
    NestedNameSpecifier *NNS = SS->getScopeRep();
    if (NNS->getKind() == NestedNameSpecifier::Super)
      return LookupInSuper(R, NNS->getAsRecordDecl());

    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
      // We have resolved the scope specifier to a particular declaration
      // contex, and will perform name lookup in that context.
      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
        return false;

      R.setContextRange(SS->getRange());
      return LookupQualifiedName(R, DC);
    }

    // We could not resolve the scope specified to a specific declaration
    // context, which means that SS refers to an unknown specialization.
    // Name lookup can't find anything in this case.
    R.setNotFoundInCurrentInstantiation();
    R.setContextRange(SS->getRange());
    return false;
  }

  // Perform unqualified name lookup starting in the given scope.
  return LookupName(R, S, AllowBuiltinCreation);
}

/// Perform qualified name lookup into all base classes of the given
/// class.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param Class The context in which qualified name lookup will
/// search. Name lookup will search in all base classes merging the results.
///
/// @returns True if any decls were found (but possibly ambiguous)
bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
  // The access-control rules we use here are essentially the rules for
  // doing a lookup in Class that just magically skipped the direct
  // members of Class itself.  That is, the naming class is Class, and the
  // access includes the access of the base.
  for (const auto &BaseSpec : Class->bases()) {
    CXXRecordDecl *RD = cast<CXXRecordDecl>(
        BaseSpec.getType()->castAs<RecordType>()->getDecl());
    LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
    Result.setBaseObjectType(Context.getRecordType(Class));
    LookupQualifiedName(Result, RD);

    // Copy the lookup results into the target, merging the base's access into
    // the path access.
    for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
      R.addDecl(I.getDecl(),
                CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
                                           I.getAccess()));
    }

    Result.suppressDiagnostics();
  }

  R.resolveKind();
  R.setNamingClass(Class);

  return !R.empty();
}

/// Produce a diagnostic describing the ambiguity that resulted
/// from name lookup.
///
/// \param Result The result of the ambiguous lookup to be diagnosed.
void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");

  DeclarationName Name = Result.getLookupName();
  SourceLocation NameLoc = Result.getNameLoc();
  SourceRange LookupRange = Result.getContextRange();

  switch (Result.getAmbiguityKind()) {
  case LookupResult::AmbiguousBaseSubobjects: {
    CXXBasePaths *Paths = Result.getBasePaths();
    QualType SubobjectType = Paths->front().back().Base->getType();
    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
      << LookupRange;

    DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
    while (isa<CXXMethodDecl>(*Found) &&
           cast<CXXMethodDecl>(*Found)->isStatic())
      ++Found;

    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
    break;
  }

  case LookupResult::AmbiguousBaseSubobjectTypes: {
    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
      << Name << LookupRange;

    CXXBasePaths *Paths = Result.getBasePaths();
    std::set<Decl *> DeclsPrinted;
    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
                                      PathEnd = Paths->end();
         Path != PathEnd; ++Path) {
      Decl *D = Path->Decls.front();
      if (DeclsPrinted.insert(D).second)
        Diag(D->getLocation(), diag::note_ambiguous_member_found);
    }
    break;
  }

  case LookupResult::AmbiguousTagHiding: {
    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;

    llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;

    for (auto *D : Result)
      if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
        TagDecls.insert(TD);
        Diag(TD->getLocation(), diag::note_hidden_tag);
      }

    for (auto *D : Result)
      if (!isa<TagDecl>(D))
        Diag(D->getLocation(), diag::note_hiding_object);

    // For recovery purposes, go ahead and implement the hiding.
    LookupResult::Filter F = Result.makeFilter();
    while (F.hasNext()) {
      if (TagDecls.count(F.next()))
        F.erase();
    }
    F.done();
    break;
  }

  case LookupResult::AmbiguousReference: {
    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;

    for (auto *D : Result)
      Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
    break;
  }
  }
}

namespace {
  struct AssociatedLookup {
    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
                     Sema::AssociatedNamespaceSet &Namespaces,
                     Sema::AssociatedClassSet &Classes)
      : S(S), Namespaces(Namespaces), Classes(Classes),
        InstantiationLoc(InstantiationLoc) {
    }

    bool addClassTransitive(CXXRecordDecl *RD) {
      Classes.insert(RD);
      return ClassesTransitive.insert(RD);
    }

    Sema &S;
    Sema::AssociatedNamespaceSet &Namespaces;
    Sema::AssociatedClassSet &Classes;
    SourceLocation InstantiationLoc;

  private:
    Sema::AssociatedClassSet ClassesTransitive;
  };
} // end anonymous namespace

static void
addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);

// Given the declaration context \param Ctx of a class, class template or
// enumeration, add the associated namespaces to \param Namespaces as described
// in [basic.lookup.argdep]p2.
static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
                                      DeclContext *Ctx) {
  // The exact wording has been changed in C++14 as a result of
  // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
  // to all language versions since it is possible to return a local type
  // from a lambda in C++11.
  //
  // C++14 [basic.lookup.argdep]p2:
  //   If T is a class type [...]. Its associated namespaces are the innermost
  //   enclosing namespaces of its associated classes. [...]
  //
  //   If T is an enumeration type, its associated namespace is the innermost
  //   enclosing namespace of its declaration. [...]

  // We additionally skip inline namespaces. The innermost non-inline namespace
  // contains all names of all its nested inline namespaces anyway, so we can
  // replace the entire inline namespace tree with its root.
  while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
    Ctx = Ctx->getParent();

  Namespaces.insert(Ctx->getPrimaryContext());
}

// Add the associated classes and namespaces for argument-dependent
// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
static void
addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
                                  const TemplateArgument &Arg) {
  // C++ [basic.lookup.argdep]p2, last bullet:
  //   -- [...] ;
  switch (Arg.getKind()) {
    case TemplateArgument::Null:
      break;

    case TemplateArgument::Type:
      // [...] the namespaces and classes associated with the types of the
      // template arguments provided for template type parameters (excluding
      // template template parameters)
      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
      break;

    case TemplateArgument::Template:
    case TemplateArgument::TemplateExpansion: {
      // [...] the namespaces in which any template template arguments are
      // defined; and the classes in which any member templates used as
      // template template arguments are defined.
      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
      if (ClassTemplateDecl *ClassTemplate
                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
        DeclContext *Ctx = ClassTemplate->getDeclContext();
        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
          Result.Classes.insert(EnclosingClass);
        // Add the associated namespace for this class.
        CollectEnclosingNamespace(Result.Namespaces, Ctx);
      }
      break;
    }

    case TemplateArgument::Declaration:
    case TemplateArgument::Integral:
    case TemplateArgument::Expression:
    case TemplateArgument::NullPtr:
      // [Note: non-type template arguments do not contribute to the set of
      //  associated namespaces. ]
      break;

    case TemplateArgument::Pack:
      for (const auto &P : Arg.pack_elements())
        addAssociatedClassesAndNamespaces(Result, P);
      break;
  }
}

// Add the associated classes and namespaces for argument-dependent lookup
// with an argument of class type (C++ [basic.lookup.argdep]p2).
static void
addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
                                  CXXRecordDecl *Class) {

  // Just silently ignore anything whose name is __va_list_tag.
  if (Class->getDeclName() == Result.S.VAListTagName)
    return;

  // C++ [basic.lookup.argdep]p2:
  //   [...]
  //     -- If T is a class type (including unions), its associated
  //        classes are: the class itself; the class of which it is a
  //        member, if any; and its direct and indirect base classes.
  //        Its associated namespaces are the innermost enclosing
  //        namespaces of its associated classes.

  // Add the class of which it is a member, if any.
  DeclContext *Ctx = Class->getDeclContext();
  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
    Result.Classes.insert(EnclosingClass);

  // Add the associated namespace for this class.
  CollectEnclosingNamespace(Result.Namespaces, Ctx);

  // -- If T is a template-id, its associated namespaces and classes are
  //    the namespace in which the template is defined; for member
  //    templates, the member template's class; the namespaces and classes
  //    associated with the types of the template arguments provided for
  //    template type parameters (excluding template template parameters); the
  //    namespaces in which any template template arguments are defined; and
  //    the classes in which any member templates used as template template
  //    arguments are defined. [Note: non-type template arguments do not
  //    contribute to the set of associated namespaces. ]
  if (ClassTemplateSpecializationDecl *Spec
        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
      Result.Classes.insert(EnclosingClass);
    // Add the associated namespace for this class.
    CollectEnclosingNamespace(Result.Namespaces, Ctx);

    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
  }

  // Add the class itself. If we've already transitively visited this class,
  // we don't need to visit base classes.
  if (!Result.addClassTransitive(Class))
    return;

  // Only recurse into base classes for complete types.
  if (!Result.S.isCompleteType(Result.InstantiationLoc,
                               Result.S.Context.getRecordType(Class)))
    return;

  // Add direct and indirect base classes along with their associated
  // namespaces.
  SmallVector<CXXRecordDecl *, 32> Bases;
  Bases.push_back(Class);
  while (!Bases.empty()) {
    // Pop this class off the stack.
    Class = Bases.pop_back_val();

    // Visit the base classes.
    for (const auto &Base : Class->bases()) {
      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
      // In dependent contexts, we do ADL twice, and the first time around,
      // the base type might be a dependent TemplateSpecializationType, or a
      // TemplateTypeParmType. If that happens, simply ignore it.
      // FIXME: If we want to support export, we probably need to add the
      // namespace of the template in a TemplateSpecializationType, or even
      // the classes and namespaces of known non-dependent arguments.
      if (!BaseType)
        continue;
      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
      if (Result.addClassTransitive(BaseDecl)) {
        // Find the associated namespace for this base class.
        DeclContext *BaseCtx = BaseDecl->getDeclContext();
        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);

        // Make sure we visit the bases of this base class.
        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
          Bases.push_back(BaseDecl);
      }
    }
  }
}

// Add the associated classes and namespaces for
// argument-dependent lookup with an argument of type T
// (C++ [basic.lookup.koenig]p2).
static void
addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
  // C++ [basic.lookup.koenig]p2:
  //
  //   For each argument type T in the function call, there is a set
  //   of zero or more associated namespaces and a set of zero or more
  //   associated classes to be considered. The sets of namespaces and
  //   classes is determined entirely by the types of the function
  //   arguments (and the namespace of any template template
  //   argument). Typedef names and using-declarations used to specify
  //   the types do not contribute to this set. The sets of namespaces
  //   and classes are determined in the following way:

  SmallVector<const Type *, 16> Queue;
  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();

  while (true) {
    switch (T->getTypeClass()) {

#define TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.inc"
      // T is canonical.  We can also ignore dependent types because
      // we don't need to do ADL at the definition point, but if we
      // wanted to implement template export (or if we find some other
      // use for associated classes and namespaces...) this would be
      // wrong.
      break;

    //    -- If T is a pointer to U or an array of U, its associated
    //       namespaces and classes are those associated with U.
    case Type::Pointer:
      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
      continue;
    case Type::ConstantArray:
    case Type::IncompleteArray:
    case Type::VariableArray:
      T = cast<ArrayType>(T)->getElementType().getTypePtr();
      continue;

    //     -- If T is a fundamental type, its associated sets of
    //        namespaces and classes are both empty.
    case Type::Builtin:
      break;

    //     -- If T is a class type (including unions), its associated
    //        classes are: the class itself; the class of which it is
    //        a member, if any; and its direct and indirect base classes.
    //        Its associated namespaces are the innermost enclosing
    //        namespaces of its associated classes.
    case Type::Record: {
      CXXRecordDecl *Class =
          cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
      addAssociatedClassesAndNamespaces(Result, Class);
      break;
    }

    //     -- If T is an enumeration type, its associated namespace
    //        is the innermost enclosing namespace of its declaration.
    //        If it is a class member, its associated class is the
    //        member’s class; else it has no associated class.
    case Type::Enum: {
      EnumDecl *Enum = cast<EnumType>(T)->getDecl();

      DeclContext *Ctx = Enum->getDeclContext();
      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
        Result.Classes.insert(EnclosingClass);

      // Add the associated namespace for this enumeration.
      CollectEnclosingNamespace(Result.Namespaces, Ctx);

      break;
    }

    //     -- If T is a function type, its associated namespaces and
    //        classes are those associated with the function parameter
    //        types and those associated with the return type.
    case Type::FunctionProto: {
      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
      for (const auto &Arg : Proto->param_types())
        Queue.push_back(Arg.getTypePtr());
      // fallthrough
      LLVM_FALLTHROUGH;
    }
    case Type::FunctionNoProto: {
      const FunctionType *FnType = cast<FunctionType>(T);
      T = FnType->getReturnType().getTypePtr();
      continue;
    }

    //     -- If T is a pointer to a member function of a class X, its
    //        associated namespaces and classes are those associated
    //        with the function parameter types and return type,
    //        together with those associated with X.
    //
    //     -- If T is a pointer to a data member of class X, its
    //        associated namespaces and classes are those associated
    //        with the member type together with those associated with
    //        X.
    case Type::MemberPointer: {
      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);

      // Queue up the class type into which this points.
      Queue.push_back(MemberPtr->getClass());

      // And directly continue with the pointee type.
      T = MemberPtr->getPointeeType().getTypePtr();
      continue;
    }

    // As an extension, treat this like a normal pointer.
    case Type::BlockPointer:
      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
      continue;

    // References aren't covered by the standard, but that's such an
    // obvious defect that we cover them anyway.
    case Type::LValueReference:
    case Type::RValueReference:
      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
      continue;

    // These are fundamental types.
    case Type::Vector:
    case Type::ExtVector:
    case Type::Complex:
      break;

    // Non-deduced auto types only get here for error cases.
    case Type::Auto:
    case Type::DeducedTemplateSpecialization:
      break;

    // If T is an Objective-C object or interface type, or a pointer to an
    // object or interface type, the associated namespace is the global
    // namespace.
    case Type::ObjCObject:
    case Type::ObjCInterface:
    case Type::ObjCObjectPointer:
      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
      break;

    // Atomic types are just wrappers; use the associations of the
    // contained type.
    case Type::Atomic:
      T = cast<AtomicType>(T)->getValueType().getTypePtr();
      continue;
    case Type::Pipe:
      T = cast<PipeType>(T)->getElementType().getTypePtr();
      continue;
    }

    if (Queue.empty())
      break;
    T = Queue.pop_back_val();
  }
}

/// Find the associated classes and namespaces for
/// argument-dependent lookup for a call with the given set of
/// arguments.
///
/// This routine computes the sets of associated classes and associated
/// namespaces searched by argument-dependent lookup
/// (C++ [basic.lookup.argdep]) for a given set of arguments.
void Sema::FindAssociatedClassesAndNamespaces(
    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
    AssociatedNamespaceSet &AssociatedNamespaces,
    AssociatedClassSet &AssociatedClasses) {
  AssociatedNamespaces.clear();
  AssociatedClasses.clear();

  AssociatedLookup Result(*this, InstantiationLoc,
                          AssociatedNamespaces, AssociatedClasses);

  // C++ [basic.lookup.koenig]p2:
  //   For each argument type T in the function call, there is a set
  //   of zero or more associated namespaces and a set of zero or more
  //   associated classes to be considered. The sets of namespaces and
  //   classes is determined entirely by the types of the function
  //   arguments (and the namespace of any template template
  //   argument).
  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
    Expr *Arg = Args[ArgIdx];

    if (Arg->getType() != Context.OverloadTy) {
      addAssociatedClassesAndNamespaces(Result, Arg->getType());
      continue;
    }

    // [...] In addition, if the argument is the name or address of a
    // set of overloaded functions and/or function templates, its
    // associated classes and namespaces are the union of those
    // associated with each of the members of the set: the namespace
    // in which the function or function template is defined and the
    // classes and namespaces associated with its (non-dependent)
    // parameter types and return type.
    OverloadExpr *OE = OverloadExpr::find(Arg).Expression;

    for (const NamedDecl *D : OE->decls()) {
      // Look through any using declarations to find the underlying function.
      const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();

      // Add the classes and namespaces associated with the parameter
      // types and return type of this function.
      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
    }
  }
}

NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
                                  SourceLocation Loc,
                                  LookupNameKind NameKind,
                                  RedeclarationKind Redecl) {
  LookupResult R(*this, Name, Loc, NameKind, Redecl);
  LookupName(R, S);
  return R.getAsSingle<NamedDecl>();
}

/// Find the protocol with the given name, if any.
ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
                                       SourceLocation IdLoc,
                                       RedeclarationKind Redecl) {
  Decl *D = LookupSingleName(TUScope, II, IdLoc,
                             LookupObjCProtocolName, Redecl);
  return cast_or_null<ObjCProtocolDecl>(D);
}

void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
                                        QualType T1, QualType T2,
                                        UnresolvedSetImpl &Functions) {
  // C++ [over.match.oper]p3:
  //     -- The set of non-member candidates is the result of the
  //        unqualified lookup of operator@ in the context of the
  //        expression according to the usual rules for name lookup in
  //        unqualified function calls (3.4.2) except that all member
  //        functions are ignored.
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
  LookupName(Operators, S);

  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
  Functions.append(Operators.begin(), Operators.end());
}

Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
                                                           CXXSpecialMember SM,
                                                           bool ConstArg,
                                                           bool VolatileArg,
                                                           bool RValueThis,
                                                           bool ConstThis,
                                                           bool VolatileThis) {
  assert(CanDeclareSpecialMemberFunction(RD) &&
         "doing special member lookup into record that isn't fully complete");
  RD = RD->getDefinition();
  if (RValueThis || ConstThis || VolatileThis)
    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
           "constructors and destructors always have unqualified lvalue this");
  if (ConstArg || VolatileArg)
    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
           "parameter-less special members can't have qualified arguments");

  // FIXME: Get the caller to pass in a location for the lookup.
  SourceLocation LookupLoc = RD->getLocation();

  llvm::FoldingSetNodeID ID;
  ID.AddPointer(RD);
  ID.AddInteger(SM);
  ID.AddInteger(ConstArg);
  ID.AddInteger(VolatileArg);
  ID.AddInteger(RValueThis);
  ID.AddInteger(ConstThis);
  ID.AddInteger(VolatileThis);

  void *InsertPoint;
  SpecialMemberOverloadResultEntry *Result =
    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);

  // This was already cached
  if (Result)
    return *Result;

  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
  SpecialMemberCache.InsertNode(Result, InsertPoint);

  if (SM == CXXDestructor) {
    if (RD->needsImplicitDestructor()) {
      runWithSufficientStackSpace(RD->getLocation(), [&] {
        DeclareImplicitDestructor(RD);
      });
    }
    CXXDestructorDecl *DD = RD->getDestructor();
    Result->setMethod(DD);
    Result->setKind(DD && !DD->isDeleted()
                        ? SpecialMemberOverloadResult::Success
                        : SpecialMemberOverloadResult::NoMemberOrDeleted);
    return *Result;
  }

  // Prepare for overload resolution. Here we construct a synthetic argument
  // if necessary and make sure that implicit functions are declared.
  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
  DeclarationName Name;
  Expr *Arg = nullptr;
  unsigned NumArgs;

  QualType ArgType = CanTy;
  ExprValueKind VK = VK_LValue;

  if (SM == CXXDefaultConstructor) {
    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
    NumArgs = 0;
    if (RD->needsImplicitDefaultConstructor()) {
      runWithSufficientStackSpace(RD->getLocation(), [&] {
        DeclareImplicitDefaultConstructor(RD);
      });
    }
  } else {
    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
      if (RD->needsImplicitCopyConstructor()) {
        runWithSufficientStackSpace(RD->getLocation(), [&] {
          DeclareImplicitCopyConstructor(RD);
        });
      }
      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
        runWithSufficientStackSpace(RD->getLocation(), [&] {
          DeclareImplicitMoveConstructor(RD);
        });
      }
    } else {
      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
      if (RD->needsImplicitCopyAssignment()) {
        runWithSufficientStackSpace(RD->getLocation(), [&] {
          DeclareImplicitCopyAssignment(RD);
        });
      }
      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
        runWithSufficientStackSpace(RD->getLocation(), [&] {
          DeclareImplicitMoveAssignment(RD);
        });
      }
    }

    if (ConstArg)
      ArgType.addConst();
    if (VolatileArg)
      ArgType.addVolatile();

    // This isn't /really/ specified by the standard, but it's implied
    // we should be working from an RValue in the case of move to ensure
    // that we prefer to bind to rvalue references, and an LValue in the
    // case of copy to ensure we don't bind to rvalue references.
    // Possibly an XValue is actually correct in the case of move, but
    // there is no semantic difference for class types in this restricted
    // case.
    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
      VK = VK_LValue;
    else
      VK = VK_RValue;
  }

  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);

  if (SM != CXXDefaultConstructor) {
    NumArgs = 1;
    Arg = &FakeArg;
  }

  // Create the object argument
  QualType ThisTy = CanTy;
  if (ConstThis)
    ThisTy.addConst();
  if (VolatileThis)
    ThisTy.addVolatile();
  Expr::Classification Classification =
    OpaqueValueExpr(LookupLoc, ThisTy,
                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);

  // Now we perform lookup on the name we computed earlier and do overload
  // resolution. Lookup is only performed directly into the class since there
  // will always be a (possibly implicit) declaration to shadow any others.
  OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
  DeclContext::lookup_result R = RD->lookup(Name);

  if (R.empty()) {
    // We might have no default constructor because we have a lambda's closure
    // type, rather than because there's some other declared constructor.
    // Every class has a copy/move constructor, copy/move assignment, and
    // destructor.
    assert(SM == CXXDefaultConstructor &&
           "lookup for a constructor or assignment operator was empty");
    Result->setMethod(nullptr);
    Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
    return *Result;
  }

  // Copy the candidates as our processing of them may load new declarations
  // from an external source and invalidate lookup_result.
  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());

  for (NamedDecl *CandDecl : Candidates) {
    if (CandDecl->isInvalidDecl())
      continue;

    DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
    auto CtorInfo = getConstructorInfo(Cand);
    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
        AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
                           llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
      else if (CtorInfo)
        AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
                             llvm::makeArrayRef(&Arg, NumArgs), OCS,
                             /*SuppressUserConversions*/ true);
      else
        AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
                             /*SuppressUserConversions*/ true);
    } else if (FunctionTemplateDecl *Tmpl =
                 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
        AddMethodTemplateCandidate(
            Tmpl, Cand, RD, nullptr, ThisTy, Classification,
            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
      else if (CtorInfo)
        AddTemplateOverloadCandidate(
            CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
      else
        AddTemplateOverloadCandidate(
            Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
    } else {
      assert(isa<UsingDecl>(Cand.getDecl()) &&
             "illegal Kind of operator = Decl");
    }
  }

  OverloadCandidateSet::iterator Best;
  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
    case OR_Success:
      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
      Result->setKind(SpecialMemberOverloadResult::Success);
      break;

    case OR_Deleted:
      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
      break;

    case OR_Ambiguous:
      Result->setMethod(nullptr);
      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
      break;

    case OR_No_Viable_Function:
      Result->setMethod(nullptr);
      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
      break;
  }

  return *Result;
}

/// Look up the default constructor for the given class.
CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
                        false, false);

  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
}

/// Look up the copying constructor for the given class.
CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
                                                   unsigned Quals) {
  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
         "non-const, non-volatile qualifiers for copy ctor arg");
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
                        Quals & Qualifiers::Volatile, false, false, false);

  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
}

/// Look up the moving constructor for the given class.
CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
                                                  unsigned Quals) {
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
                        Quals & Qualifiers::Volatile, false, false, false);

  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
}

/// Look up the constructors for the given class.
DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
  // If the implicit constructors have not yet been declared, do so now.
  if (CanDeclareSpecialMemberFunction(Class)) {
    runWithSufficientStackSpace(Class->getLocation(), [&] {
      if (Class->needsImplicitDefaultConstructor())
        DeclareImplicitDefaultConstructor(Class);
      if (Class->needsImplicitCopyConstructor())
        DeclareImplicitCopyConstructor(Class);
      if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
        DeclareImplicitMoveConstructor(Class);
    });
  }

  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
  return Class->lookup(Name);
}

/// Look up the copying assignment operator for the given class.
CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
                                             unsigned Quals, bool RValueThis,
                                             unsigned ThisQuals) {
  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
         "non-const, non-volatile qualifiers for copy assignment arg");
  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
         "non-const, non-volatile qualifiers for copy assignment this");
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
                        Quals & Qualifiers::Volatile, RValueThis,
                        ThisQuals & Qualifiers::Const,
                        ThisQuals & Qualifiers::Volatile);

  return Result.getMethod();
}

/// Look up the moving assignment operator for the given class.
CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
                                            unsigned Quals,
                                            bool RValueThis,
                                            unsigned ThisQuals) {
  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
         "non-const, non-volatile qualifiers for copy assignment this");
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
                        Quals & Qualifiers::Volatile, RValueThis,
                        ThisQuals & Qualifiers::Const,
                        ThisQuals & Qualifiers::Volatile);

  return Result.getMethod();
}

/// Look for the destructor of the given class.
///
/// During semantic analysis, this routine should be used in lieu of
/// CXXRecordDecl::getDestructor().
///
/// \returns The destructor for this class.
CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
                                                     false, false, false,
                                                     false, false).getMethod());
}

/// LookupLiteralOperator - Determine which literal operator should be used for
/// a user-defined literal, per C++11 [lex.ext].
///
/// Normal overload resolution is not used to select which literal operator to
/// call for a user-defined literal. Look up the provided literal operator name,
/// and filter the results to the appropriate set for the given argument types.
Sema::LiteralOperatorLookupResult
Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
                            ArrayRef<QualType> ArgTys,
                            bool AllowRaw, bool AllowTemplate,
                            bool AllowStringTemplate, bool DiagnoseMissing) {
  LookupName(R, S);
  assert(R.getResultKind() != LookupResult::Ambiguous &&
         "literal operator lookup can't be ambiguous");

  // Filter the lookup results appropriately.
  LookupResult::Filter F = R.makeFilter();

  bool FoundRaw = false;
  bool FoundTemplate = false;
  bool FoundStringTemplate = false;
  bool FoundExactMatch = false;

  while (F.hasNext()) {
    Decl *D = F.next();
    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
      D = USD->getTargetDecl();

    // If the declaration we found is invalid, skip it.
    if (D->isInvalidDecl()) {
      F.erase();
      continue;
    }

    bool IsRaw = false;
    bool IsTemplate = false;
    bool IsStringTemplate = false;
    bool IsExactMatch = false;

    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
      if (FD->getNumParams() == 1 &&
          FD->getParamDecl(0)->getType()->getAs<PointerType>())
        IsRaw = true;
      else if (FD->getNumParams() == ArgTys.size()) {
        IsExactMatch = true;
        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
            IsExactMatch = false;
            break;
          }
        }
      }
    }
    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
      TemplateParameterList *Params = FD->getTemplateParameters();
      if (Params->size() == 1)
        IsTemplate = true;
      else
        IsStringTemplate = true;
    }

    if (IsExactMatch) {
      FoundExactMatch = true;
      AllowRaw = false;
      AllowTemplate = false;
      AllowStringTemplate = false;
      if (FoundRaw || FoundTemplate || FoundStringTemplate) {
        // Go through again and remove the raw and template decls we've
        // already found.
        F.restart();
        FoundRaw = FoundTemplate = FoundStringTemplate = false;
      }
    } else if (AllowRaw && IsRaw) {
      FoundRaw = true;
    } else if (AllowTemplate && IsTemplate) {
      FoundTemplate = true;
    } else if (AllowStringTemplate && IsStringTemplate) {
      FoundStringTemplate = true;
    } else {
      F.erase();
    }
  }

  F.done();

  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
  // parameter type, that is used in preference to a raw literal operator
  // or literal operator template.
  if (FoundExactMatch)
    return LOLR_Cooked;

  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
  // operator template, but not both.
  if (FoundRaw && FoundTemplate) {
    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
      NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
    return LOLR_Error;
  }

  if (FoundRaw)
    return LOLR_Raw;

  if (FoundTemplate)
    return LOLR_Template;

  if (FoundStringTemplate)
    return LOLR_StringTemplate;

  // Didn't find anything we could use.
  if (DiagnoseMissing) {
    Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
        << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
        << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
        << (AllowTemplate || AllowStringTemplate);
    return LOLR_Error;
  }

  return LOLR_ErrorNoDiagnostic;
}

void ADLResult::insert(NamedDecl *New) {
  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];

  // If we haven't yet seen a decl for this key, or the last decl
  // was exactly this one, we're done.
  if (Old == nullptr || Old == New) {
    Old = New;
    return;
  }

  // Otherwise, decide which is a more recent redeclaration.
  FunctionDecl *OldFD = Old->getAsFunction();
  FunctionDecl *NewFD = New->getAsFunction();

  FunctionDecl *Cursor = NewFD;
  while (true) {
    Cursor = Cursor->getPreviousDecl();

    // If we got to the end without finding OldFD, OldFD is the newer
    // declaration;  leave things as they are.
    if (!Cursor) return;

    // If we do find OldFD, then NewFD is newer.
    if (Cursor == OldFD) break;

    // Otherwise, keep looking.
  }

  Old = New;
}

void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
                                   ArrayRef<Expr *> Args, ADLResult &Result) {
  // Find all of the associated namespaces and classes based on the
  // arguments we have.
  AssociatedNamespaceSet AssociatedNamespaces;
  AssociatedClassSet AssociatedClasses;
  FindAssociatedClassesAndNamespaces(Loc, Args,
                                     AssociatedNamespaces,
                                     AssociatedClasses);

  // C++ [basic.lookup.argdep]p3:
  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
  //   and let Y be the lookup set produced by argument dependent
  //   lookup (defined as follows). If X contains [...] then Y is
  //   empty. Otherwise Y is the set of declarations found in the
  //   namespaces associated with the argument types as described
  //   below. The set of declarations found by the lookup of the name
  //   is the union of X and Y.
  //
  // Here, we compute Y and add its members to the overloaded
  // candidate set.
  for (auto *NS : AssociatedNamespaces) {
    //   When considering an associated namespace, the lookup is the
    //   same as the lookup performed when the associated namespace is
    //   used as a qualifier (3.4.3.2) except that:
    //
    //     -- Any using-directives in the associated namespace are
    //        ignored.
    //
    //     -- Any namespace-scope friend functions declared in
    //        associated classes are visible within their respective
    //        namespaces even if they are not visible during an ordinary
    //        lookup (11.4).
    DeclContext::lookup_result R = NS->lookup(Name);
    for (auto *D : R) {
      auto *Underlying = D;
      if (auto *USD = dyn_cast<UsingShadowDecl>(D))
        Underlying = USD->getTargetDecl();

      if (!isa<FunctionDecl>(Underlying) &&
          !isa<FunctionTemplateDecl>(Underlying))
        continue;

      // The declaration is visible to argument-dependent lookup if either
      // it's ordinarily visible or declared as a friend in an associated
      // class.
      bool Visible = false;
      for (D = D->getMostRecentDecl(); D;
           D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
        if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
          if (isVisible(D)) {
            Visible = true;
            break;
          }
        } else if (D->getFriendObjectKind()) {
          auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
          if (AssociatedClasses.count(RD) && isVisible(D)) {
            Visible = true;
            break;
          }
        }
      }

      // FIXME: Preserve D as the FoundDecl.
      if (Visible)
        Result.insert(Underlying);
    }
  }
}

//----------------------------------------------------------------------------
// Search for all visible declarations.
//----------------------------------------------------------------------------
VisibleDeclConsumer::~VisibleDeclConsumer() { }

bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }

namespace {

class ShadowContextRAII;

class VisibleDeclsRecord {
public:
  /// An entry in the shadow map, which is optimized to store a
  /// single declaration (the common case) but can also store a list
  /// of declarations.
  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;

private:
  /// A mapping from declaration names to the declarations that have
  /// this name within a particular scope.
  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;

  /// A list of shadow maps, which is used to model name hiding.
  std::list<ShadowMap> ShadowMaps;

  /// The declaration contexts we have already visited.
  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;

  friend class ShadowContextRAII;

public:
  /// Determine whether we have already visited this context
  /// (and, if not, note that we are going to visit that context now).
  bool visitedContext(DeclContext *Ctx) {
    return !VisitedContexts.insert(Ctx).second;
  }

  bool alreadyVisitedContext(DeclContext *Ctx) {
    return VisitedContexts.count(Ctx);
  }

  /// Determine whether the given declaration is hidden in the
  /// current scope.
  ///
  /// \returns the declaration that hides the given declaration, or
  /// NULL if no such declaration exists.
  NamedDecl *checkHidden(NamedDecl *ND);

  /// Add a declaration to the current shadow map.
  void add(NamedDecl *ND) {
    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
  }
};

/// RAII object that records when we've entered a shadow context.
class ShadowContextRAII {
  VisibleDeclsRecord &Visible;

  typedef VisibleDeclsRecord::ShadowMap ShadowMap;

public:
  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
    Visible.ShadowMaps.emplace_back();
  }

  ~ShadowContextRAII() {
    Visible.ShadowMaps.pop_back();
  }
};

} // end anonymous namespace

NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
  unsigned IDNS = ND->getIdentifierNamespace();
  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
       SM != SMEnd; ++SM) {
    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
    if (Pos == SM->end())
      continue;

    for (auto *D : Pos->second) {
      // A tag declaration does not hide a non-tag declaration.
      if (D->hasTagIdentifierNamespace() &&
          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
                   Decl::IDNS_ObjCProtocol)))
        continue;

      // Protocols are in distinct namespaces from everything else.
      if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
          D->getIdentifierNamespace() != IDNS)
        continue;

      // Functions and function templates in the same scope overload
      // rather than hide.  FIXME: Look for hiding based on function
      // signatures!
      if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
          SM == ShadowMaps.rbegin())
        continue;

      // A shadow declaration that's created by a resolved using declaration
      // is not hidden by the same using declaration.
      if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
          cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
        continue;

      // We've found a declaration that hides this one.
      return D;
    }
  }

  return nullptr;
}

namespace {
class LookupVisibleHelper {
public:
  LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
                      bool LoadExternal)
      : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
        LoadExternal(LoadExternal) {}

  void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
                          bool IncludeGlobalScope) {
    // Determine the set of using directives available during
    // unqualified name lookup.
    Scope *Initial = S;
    UnqualUsingDirectiveSet UDirs(SemaRef);
    if (SemaRef.getLangOpts().CPlusPlus) {
      // Find the first namespace or translation-unit scope.
      while (S && !isNamespaceOrTranslationUnitScope(S))
        S = S->getParent();

      UDirs.visitScopeChain(Initial, S);
    }
    UDirs.done();

    // Look for visible declarations.
    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
    Result.setAllowHidden(Consumer.includeHiddenDecls());
    if (!IncludeGlobalScope)
      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
    ShadowContextRAII Shadow(Visited);
    lookupInScope(Initial, Result, UDirs);
  }

  void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
                          Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
    Result.setAllowHidden(Consumer.includeHiddenDecls());
    if (!IncludeGlobalScope)
      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());

    ShadowContextRAII Shadow(Visited);
    lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
                        /*InBaseClass=*/false);
  }

private:
  void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
                           bool QualifiedNameLookup, bool InBaseClass) {
    if (!Ctx)
      return;

    // Make sure we don't visit the same context twice.
    if (Visited.visitedContext(Ctx->getPrimaryContext()))
      return;

    Consumer.EnteredContext(Ctx);

    // Outside C++, lookup results for the TU live on identifiers.
    if (isa<TranslationUnitDecl>(Ctx) &&
        !Result.getSema().getLangOpts().CPlusPlus) {
      auto &S = Result.getSema();
      auto &Idents = S.Context.Idents;

      // Ensure all external identifiers are in the identifier table.
      if (LoadExternal)
        if (IdentifierInfoLookup *External =
                Idents.getExternalIdentifierLookup()) {
          std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
          for (StringRef Name = Iter->Next(); !Name.empty();
               Name = Iter->Next())
            Idents.get(Name);
        }

      // Walk all lookup results in the TU for each identifier.
      for (const auto &Ident : Idents) {
        for (auto I = S.IdResolver.begin(Ident.getValue()),
                  E = S.IdResolver.end();
             I != E; ++I) {
          if (S.IdResolver.isDeclInScope(*I, Ctx)) {
            if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
              Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
              Visited.add(ND);
            }
          }
        }
      }

      return;
    }

    if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
      Result.getSema().ForceDeclarationOfImplicitMembers(Class);

    // We sometimes skip loading namespace-level results (they tend to be huge).
    bool Load = LoadExternal ||
                !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
    // Enumerate all of the results in this context.
    for (DeclContextLookupResult R :
         Load ? Ctx->lookups()
              : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
      for (auto *D : R) {
        if (auto *ND = Result.getAcceptableDecl(D)) {
          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
          Visited.add(ND);
        }
      }
    }

    // Traverse using directives for qualified name lookup.
    if (QualifiedNameLookup) {
      ShadowContextRAII Shadow(Visited);
      for (auto I : Ctx->using_directives()) {
        if (!Result.getSema().isVisible(I))
          continue;
        lookupInDeclContext(I->getNominatedNamespace(), Result,
                            QualifiedNameLookup, InBaseClass);
      }
    }

    // Traverse the contexts of inherited C++ classes.
    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
      if (!Record->hasDefinition())
        return;

      for (const auto &B : Record->bases()) {
        QualType BaseType = B.getType();

        RecordDecl *RD;
        if (BaseType->isDependentType()) {
          if (!IncludeDependentBases) {
            // Don't look into dependent bases, because name lookup can't look
            // there anyway.
            continue;
          }
          const auto *TST = BaseType->getAs<TemplateSpecializationType>();
          if (!TST)
            continue;
          TemplateName TN = TST->getTemplateName();
          const auto *TD =
              dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
          if (!TD)
            continue;
          RD = TD->getTemplatedDecl();
        } else {
          const auto *Record = BaseType->getAs<RecordType>();
          if (!Record)
            continue;
          RD = Record->getDecl();
        }

        // FIXME: It would be nice to be able to determine whether referencing
        // a particular member would be ambiguous. For example, given
        //
        //   struct A { int member; };
        //   struct B { int member; };
        //   struct C : A, B { };
        //
        //   void f(C *c) { c->### }
        //
        // accessing 'member' would result in an ambiguity. However, we
        // could be smart enough to qualify the member with the base
        // class, e.g.,
        //
        //   c->B::member
        //
        // or
        //
        //   c->A::member

        // Find results in this base class (and its bases).
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(RD, Result, QualifiedNameLookup,
                            /*InBaseClass=*/true);
      }
    }

    // Traverse the contexts of Objective-C classes.
    if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
      // Traverse categories.
      for (auto *Cat : IFace->visible_categories()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(Cat, Result, QualifiedNameLookup,
                            /*InBaseClass=*/false);
      }

      // Traverse protocols.
      for (auto *I : IFace->all_referenced_protocols()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(I, Result, QualifiedNameLookup,
                            /*InBaseClass=*/false);
      }

      // Traverse the superclass.
      if (IFace->getSuperClass()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
                            /*InBaseClass=*/true);
      }

      // If there is an implementation, traverse it. We do this to find
      // synthesized ivars.
      if (IFace->getImplementation()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(IFace->getImplementation(), Result,
                            QualifiedNameLookup, InBaseClass);
      }
    } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
      for (auto *I : Protocol->protocols()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(I, Result, QualifiedNameLookup,
                            /*InBaseClass=*/false);
      }
    } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
      for (auto *I : Category->protocols()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(I, Result, QualifiedNameLookup,
                            /*InBaseClass=*/false);
      }

      // If there is an implementation, traverse it.
      if (Category->getImplementation()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(Category->getImplementation(), Result,
                            QualifiedNameLookup, /*InBaseClass=*/true);
      }
    }
  }

  void lookupInScope(Scope *S, LookupResult &Result,
                     UnqualUsingDirectiveSet &UDirs) {
    // No clients run in this mode and it's not supported. Please add tests and
    // remove the assertion if you start relying on it.
    assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");

    if (!S)
      return;

    if (!S->getEntity() ||
        (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
        (S->getEntity())->isFunctionOrMethod()) {
      FindLocalExternScope FindLocals(Result);
      // Walk through the declarations in this Scope. The consumer might add new
      // decls to the scope as part of deserialization, so make a copy first.
      SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
      for (Decl *D : ScopeDecls) {
        if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
          if ((ND = Result.getAcceptableDecl(ND))) {
            Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
            Visited.add(ND);
          }
      }
    }

    // FIXME: C++ [temp.local]p8
    DeclContext *Entity = nullptr;
    if (S->getEntity()) {
      // Look into this scope's declaration context, along with any of its
      // parent lookup contexts (e.g., enclosing classes), up to the point
      // where we hit the context stored in the next outer scope.
      Entity = S->getEntity();
      DeclContext *OuterCtx = findOuterContext(S).first; // FIXME

      for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
           Ctx = Ctx->getLookupParent()) {
        if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
          if (Method->isInstanceMethod()) {
            // For instance methods, look for ivars in the method's interface.
            LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
                                    Result.getNameLoc(),
                                    Sema::LookupMemberName);
            if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
              lookupInDeclContext(IFace, IvarResult,
                                  /*QualifiedNameLookup=*/false,
                                  /*InBaseClass=*/false);
            }
          }

          // We've already performed all of the name lookup that we need
          // to for Objective-C methods; the next context will be the
          // outer scope.
          break;
        }

        if (Ctx->isFunctionOrMethod())
          continue;

        lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
                            /*InBaseClass=*/false);
      }
    } else if (!S->getParent()) {
      // Look into the translation unit scope. We walk through the translation
      // unit's declaration context, because the Scope itself won't have all of
      // the declarations if we loaded a precompiled header.
      // FIXME: We would like the translation unit's Scope object to point to
      // the translation unit, so we don't need this special "if" branch.
      // However, doing so would force the normal C++ name-lookup code to look
      // into the translation unit decl when the IdentifierInfo chains would
      // suffice. Once we fix that problem (which is part of a more general
      // "don't look in DeclContexts unless we have to" optimization), we can
      // eliminate this.
      Entity = Result.getSema().Context.getTranslationUnitDecl();
      lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
                          /*InBaseClass=*/false);
    }

    if (Entity) {
      // Lookup visible declarations in any namespaces found by using
      // directives.
      for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
        lookupInDeclContext(
            const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
            /*QualifiedNameLookup=*/false,
            /*InBaseClass=*/false);
    }

    // Lookup names in the parent scope.
    ShadowContextRAII Shadow(Visited);
    lookupInScope(S->getParent(), Result, UDirs);
  }

private:
  VisibleDeclsRecord Visited;
  VisibleDeclConsumer &Consumer;
  bool IncludeDependentBases;
  bool LoadExternal;
};
} // namespace

void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
                              VisibleDeclConsumer &Consumer,
                              bool IncludeGlobalScope, bool LoadExternal) {
  LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
                        LoadExternal);
  H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
}

void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
                              VisibleDeclConsumer &Consumer,
                              bool IncludeGlobalScope,
                              bool IncludeDependentBases, bool LoadExternal) {
  LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
  H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
}

/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
/// If GnuLabelLoc is a valid source location, then this is a definition
/// of an __label__ label name, otherwise it is a normal label definition
/// or use.
LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
                                     SourceLocation GnuLabelLoc) {
  // Do a lookup to see if we have a label with this name already.
  NamedDecl *Res = nullptr;

  if (GnuLabelLoc.isValid()) {
    // Local label definitions always shadow existing labels.
    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
    Scope *S = CurScope;
    PushOnScopeChains(Res, S, true);
    return cast<LabelDecl>(Res);
  }

  // Not a GNU local label.
  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
  // If we found a label, check to see if it is in the same context as us.
  // When in a Block, we don't want to reuse a label in an enclosing function.
  if (Res && Res->getDeclContext() != CurContext)
    Res = nullptr;
  if (!Res) {
    // If not forward referenced or defined already, create the backing decl.
    Res = LabelDecl::Create(Context, CurContext, Loc, II);
    Scope *S = CurScope->getFnParent();
    assert(S && "Not in a function?");
    PushOnScopeChains(Res, S, true);
  }
  return cast<LabelDecl>(Res);
}

//===----------------------------------------------------------------------===//
// Typo correction
//===----------------------------------------------------------------------===//

static bool isCandidateViable(CorrectionCandidateCallback &CCC,
                              TypoCorrection &Candidate) {
  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
}

static void LookupPotentialTypoResult(Sema &SemaRef,
                                      LookupResult &Res,
                                      IdentifierInfo *Name,
                                      Scope *S, CXXScopeSpec *SS,
                                      DeclContext *MemberContext,
                                      bool EnteringContext,
                                      bool isObjCIvarLookup,
                                      bool FindHidden);

/// Check whether the declarations found for a typo correction are
/// visible. Set the correction's RequiresImport flag to true if none of the
/// declarations are visible, false otherwise.
static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();

  for (/**/; DI != DE; ++DI)
    if (!LookupResult::isVisible(SemaRef, *DI))
      break;
  // No filtering needed if all decls are visible.
  if (DI == DE) {
    TC.setRequiresImport(false);
    return;
  }

  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
  bool AnyVisibleDecls = !NewDecls.empty();

  for (/**/; DI != DE; ++DI) {
    if (LookupResult::isVisible(SemaRef, *DI)) {
      if (!AnyVisibleDecls) {
        // Found a visible decl, discard all hidden ones.
        AnyVisibleDecls = true;
        NewDecls.clear();
      }
      NewDecls.push_back(*DI);
    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
      NewDecls.push_back(*DI);
  }

  if (NewDecls.empty())
    TC = TypoCorrection();
  else {
    TC.setCorrectionDecls(NewDecls);
    TC.setRequiresImport(!AnyVisibleDecls);
  }
}

// Fill the supplied vector with the IdentifierInfo pointers for each piece of
// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
static void getNestedNameSpecifierIdentifiers(
    NestedNameSpecifier *NNS,
    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
  else
    Identifiers.clear();

  const IdentifierInfo *II = nullptr;

  switch (NNS->getKind()) {
  case NestedNameSpecifier::Identifier:
    II = NNS->getAsIdentifier();
    break;

  case NestedNameSpecifier::Namespace:
    if (NNS->getAsNamespace()->isAnonymousNamespace())
      return;
    II = NNS->getAsNamespace()->getIdentifier();
    break;

  case NestedNameSpecifier::NamespaceAlias:
    II = NNS->getAsNamespaceAlias()->getIdentifier();
    break;

  case NestedNameSpecifier::TypeSpecWithTemplate:
  case NestedNameSpecifier::TypeSpec:
    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
    break;

  case NestedNameSpecifier::Global:
  case NestedNameSpecifier::Super:
    return;
  }

  if (II)
    Identifiers.push_back(II);
}

void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
                                       DeclContext *Ctx, bool InBaseClass) {
  // Don't consider hidden names for typo correction.
  if (Hiding)
    return;

  // Only consider entities with identifiers for names, ignoring
  // special names (constructors, overloaded operators, selectors,
  // etc.).
  IdentifierInfo *Name = ND->getIdentifier();
  if (!Name)
    return;

  // Only consider visible declarations and declarations from modules with
  // names that exactly match.
  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
    return;

  FoundName(Name->getName());
}

void TypoCorrectionConsumer::FoundName(StringRef Name) {
  // Compute the edit distance between the typo and the name of this
  // entity, and add the identifier to the list of results.
  addName(Name, nullptr);
}

void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
  // Compute the edit distance between the typo and this keyword,
  // and add the keyword to the list of results.
  addName(Keyword, nullptr, nullptr, true);
}

void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
                                     NestedNameSpecifier *NNS, bool isKeyword) {
  // Use a simple length-based heuristic to determine the minimum possible
  // edit distance. If the minimum isn't good enough, bail out early.
  StringRef TypoStr = Typo->getName();
  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
  if (MinED && TypoStr.size() / MinED < 3)
    return;

  // Compute an upper bound on the allowable edit distance, so that the
  // edit-distance algorithm can short-circuit.
  unsigned UpperBound = (TypoStr.size() + 2) / 3;
  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
  if (ED > UpperBound) return;

  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
  if (isKeyword) TC.makeKeyword();
  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
  addCorrection(TC);
}

static const unsigned MaxTypoDistanceResultSets = 5;

void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
  StringRef TypoStr = Typo->getName();
  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();

  // For very short typos, ignore potential corrections that have a different
  // base identifier from the typo or which have a normalized edit distance
  // longer than the typo itself.
  if (TypoStr.size() < 3 &&
      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
    return;

  // If the correction is resolved but is not viable, ignore it.
  if (Correction.isResolved()) {
    checkCorrectionVisibility(SemaRef, Correction);
    if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
      return;
  }

  TypoResultList &CList =
      CorrectionResults[Correction.getEditDistance(false)][Name];

  if (!CList.empty() && !CList.back().isResolved())
    CList.pop_back();
  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
         RI != RIEnd; ++RI) {
      // If the Correction refers to a decl already in the result list,
      // replace the existing result if the string representation of Correction
      // comes before the current result alphabetically, then stop as there is
      // nothing more to be done to add Correction to the candidate set.
      if (RI->getCorrectionDecl() == NewND) {
        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
          *RI = Correction;
        return;
      }
    }
  }
  if (CList.empty() || Correction.isResolved())
    CList.push_back(Correction);

  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
    CorrectionResults.erase(std::prev(CorrectionResults.end()));
}

void TypoCorrectionConsumer::addNamespaces(
    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
  SearchNamespaces = true;

  for (auto KNPair : KnownNamespaces)
    Namespaces.addNameSpecifier(KNPair.first);

  bool SSIsTemplate = false;
  if (NestedNameSpecifier *NNS =
          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
    if (const Type *T = NNS->getAsType())
      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
  }
  // Do not transform this into an iterator-based loop. The loop body can
  // trigger the creation of further types (through lazy deserialization) and
  // invalid iterators into this list.
  auto &Types = SemaRef.getASTContext().getTypes();
  for (unsigned I = 0; I != Types.size(); ++I) {
    const auto *TI = Types[I];
    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
      CD = CD->getCanonicalDecl();
      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
          !CD->isUnion() && CD->getIdentifier() &&
          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
          (CD->isBeingDefined() || CD->isCompleteDefinition()))
        Namespaces.addNameSpecifier(CD);
    }
  }
}

const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
  if (++CurrentTCIndex < ValidatedCorrections.size())
    return ValidatedCorrections[CurrentTCIndex];

  CurrentTCIndex = ValidatedCorrections.size();
  while (!CorrectionResults.empty()) {
    auto DI = CorrectionResults.begin();
    if (DI->second.empty()) {
      CorrectionResults.erase(DI);
      continue;
    }

    auto RI = DI->second.begin();
    if (RI->second.empty()) {
      DI->second.erase(RI);
      performQualifiedLookups();
      continue;
    }

    TypoCorrection TC = RI->second.pop_back_val();
    if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
      ValidatedCorrections.push_back(TC);
      return ValidatedCorrections[CurrentTCIndex];
    }
  }
  return ValidatedCorrections[0];  // The empty correction.
}

bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
  DeclContext *TempMemberContext = MemberContext;
  CXXScopeSpec *TempSS = SS.get();
retry_lookup:
  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
                            EnteringContext,
                            CorrectionValidator->IsObjCIvarLookup,
                            Name == Typo && !Candidate.WillReplaceSpecifier());
  switch (Result.getResultKind()) {
  case LookupResult::NotFound:
  case LookupResult::NotFoundInCurrentInstantiation:
  case LookupResult::FoundUnresolvedValue:
    if (TempSS) {
      // Immediately retry the lookup without the given CXXScopeSpec
      TempSS = nullptr;
      Candidate.WillReplaceSpecifier(true);
      goto retry_lookup;
    }
    if (TempMemberContext) {
      if (SS && !TempSS)
        TempSS = SS.get();
      TempMemberContext = nullptr;
      goto retry_lookup;
    }
    if (SearchNamespaces)
      QualifiedResults.push_back(Candidate);
    break;

  case LookupResult::Ambiguous:
    // We don't deal with ambiguities.
    break;

  case LookupResult::Found:
  case LookupResult::FoundOverloaded:
    // Store all of the Decls for overloaded symbols
    for (auto *TRD : Result)
      Candidate.addCorrectionDecl(TRD);
    checkCorrectionVisibility(SemaRef, Candidate);
    if (!isCandidateViable(*CorrectionValidator, Candidate)) {
      if (SearchNamespaces)
        QualifiedResults.push_back(Candidate);
      break;
    }
    Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
    return true;
  }
  return false;
}

void TypoCorrectionConsumer::performQualifiedLookups() {
  unsigned TypoLen = Typo->getName().size();
  for (const TypoCorrection &QR : QualifiedResults) {
    for (const auto &NSI : Namespaces) {
      DeclContext *Ctx = NSI.DeclCtx;
      const Type *NSType = NSI.NameSpecifier->getAsType();

      // If the current NestedNameSpecifier refers to a class and the
      // current correction candidate is the name of that class, then skip
      // it as it is unlikely a qualified version of the class' constructor
      // is an appropriate correction.
      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
                                           nullptr) {
        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
          continue;
      }

      TypoCorrection TC(QR);
      TC.ClearCorrectionDecls();
      TC.setCorrectionSpecifier(NSI.NameSpecifier);
      TC.setQualifierDistance(NSI.EditDistance);
      TC.setCallbackDistance(0); // Reset the callback distance

      // If the current correction candidate and namespace combination are
      // too far away from the original typo based on the normalized edit
      // distance, then skip performing a qualified name lookup.
      unsigned TmpED = TC.getEditDistance(true);
      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
          TypoLen / TmpED < 3)
        continue;

      Result.clear();
      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
      if (!SemaRef.LookupQualifiedName(Result, Ctx))
        continue;

      // Any corrections added below will be validated in subsequent
      // iterations of the main while() loop over the Consumer's contents.
      switch (Result.getResultKind()) {
      case LookupResult::Found:
      case LookupResult::FoundOverloaded: {
        if (SS && SS->isValid()) {
          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
          std::string OldQualified;
          llvm::raw_string_ostream OldOStream(OldQualified);
          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
          OldOStream << Typo->getName();
          // If correction candidate would be an identical written qualified
          // identifier, then the existing CXXScopeSpec probably included a
          // typedef that didn't get accounted for properly.
          if (OldOStream.str() == NewQualified)
            break;
        }
        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
             TRD != TRDEnd; ++TRD) {
          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
                                        NSType ? NSType->getAsCXXRecordDecl()
                                               : nullptr,
                                        TRD.getPair()) == Sema::AR_accessible)
            TC.addCorrectionDecl(*TRD);
        }
        if (TC.isResolved()) {
          TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
          addCorrection(TC);
        }
        break;
      }
      case LookupResult::NotFound:
      case LookupResult::NotFoundInCurrentInstantiation:
      case LookupResult::Ambiguous:
      case LookupResult::FoundUnresolvedValue:
        break;
      }
    }
  }
  QualifiedResults.clear();
}

TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
    : Context(Context), CurContextChain(buildContextChain(CurContext)) {
  if (NestedNameSpecifier *NNS =
          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
    NNS->print(SpecifierOStream, Context.getPrintingPolicy());

    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
  }
  // Build the list of identifiers that would be used for an absolute
  // (from the global context) NestedNameSpecifier referring to the current
  // context.
  for (DeclContext *C : llvm::reverse(CurContextChain)) {
    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
      CurContextIdentifiers.push_back(ND->getIdentifier());
  }

  // Add the global context as a NestedNameSpecifier
  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
  DistanceMap[1].push_back(SI);
}

auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
    DeclContext *Start) -> DeclContextList {
  assert(Start && "Building a context chain from a null context");
  DeclContextList Chain;
  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
       DC = DC->getLookupParent()) {
    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
        !(ND && ND->isAnonymousNamespace()))
      Chain.push_back(DC->getPrimaryContext());
  }
  return Chain;
}

unsigned
TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
  unsigned NumSpecifiers = 0;
  for (DeclContext *C : llvm::reverse(DeclChain)) {
    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
      ++NumSpecifiers;
    } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
                                        RD->getTypeForDecl());
      ++NumSpecifiers;
    }
  }
  return NumSpecifiers;
}

void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
    DeclContext *Ctx) {
  NestedNameSpecifier *NNS = nullptr;
  unsigned NumSpecifiers = 0;
  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);

  // Eliminate common elements from the two DeclContext chains.
  for (DeclContext *C : llvm::reverse(CurContextChain)) {
    if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
      break;
    NamespaceDeclChain.pop_back();
  }

  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);

  // Add an explicit leading '::' specifier if needed.
  if (NamespaceDeclChain.empty()) {
    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
    NumSpecifiers =
        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
  } else if (NamedDecl *ND =
                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
    IdentifierInfo *Name = ND->getIdentifier();
    bool SameNameSpecifier = false;
    if (std::find(CurNameSpecifierIdentifiers.begin(),
                  CurNameSpecifierIdentifiers.end(),
                  Name) != CurNameSpecifierIdentifiers.end()) {
      std::string NewNameSpecifier;
      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
      SpecifierOStream.flush();
      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
    }
    if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
                                 CurContextIdentifiers.end()) {
      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
      NumSpecifiers =
          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
    }
  }

  // If the built NestedNameSpecifier would be replacing an existing
  // NestedNameSpecifier, use the number of component identifiers that
  // would need to be changed as the edit distance instead of the number
  // of components in the built NestedNameSpecifier.
  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
    NumSpecifiers = llvm::ComputeEditDistance(
        llvm::makeArrayRef(CurNameSpecifierIdentifiers),
        llvm::makeArrayRef(NewNameSpecifierIdentifiers));
  }

  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
  DistanceMap[NumSpecifiers].push_back(SI);
}

/// Perform name lookup for a possible result for typo correction.
static void LookupPotentialTypoResult(Sema &SemaRef,
                                      LookupResult &Res,
                                      IdentifierInfo *Name,
                                      Scope *S, CXXScopeSpec *SS,
                                      DeclContext *MemberContext,
                                      bool EnteringContext,
                                      bool isObjCIvarLookup,
                                      bool FindHidden) {
  Res.suppressDiagnostics();
  Res.clear();
  Res.setLookupName(Name);
  Res.setAllowHidden(FindHidden);
  if (MemberContext) {
    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
      if (isObjCIvarLookup) {
        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
          Res.addDecl(Ivar);
          Res.resolveKind();
          return;
        }
      }

      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
              Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
        Res.addDecl(Prop);
        Res.resolveKind();
        return;
      }
    }

    SemaRef.LookupQualifiedName(Res, MemberContext);
    return;
  }

  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
                           EnteringContext);

  // Fake ivar lookup; this should really be part of
  // LookupParsedName.
  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
    if (Method->isInstanceMethod() && Method->getClassInterface() &&
        (Res.empty() ||
         (Res.isSingleResult() &&
          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
       if (ObjCIvarDecl *IV
             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
         Res.addDecl(IV);
         Res.resolveKind();
       }
     }
  }
}

/// Add keywords to the consumer as possible typo corrections.
static void AddKeywordsToConsumer(Sema &SemaRef,
                                  TypoCorrectionConsumer &Consumer,
                                  Scope *S, CorrectionCandidateCallback &CCC,
                                  bool AfterNestedNameSpecifier) {
  if (AfterNestedNameSpecifier) {
    // For 'X::', we know exactly which keywords can appear next.
    Consumer.addKeywordResult("template");
    if (CCC.WantExpressionKeywords)
      Consumer.addKeywordResult("operator");
    return;
  }

  if (CCC.WantObjCSuper)
    Consumer.addKeywordResult("super");

  if (CCC.WantTypeSpecifiers) {
    // Add type-specifier keywords to the set of results.
    static const char *const CTypeSpecs[] = {
      "char", "const", "double", "enum", "float", "int", "long", "short",
      "signed", "struct", "union", "unsigned", "void", "volatile",
      "_Complex", "_Imaginary",
      // storage-specifiers as well
      "extern", "inline", "static", "typedef"
    };

    const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
      Consumer.addKeywordResult(CTypeSpecs[I]);

    if (SemaRef.getLangOpts().C99)
      Consumer.addKeywordResult("restrict");
    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
      Consumer.addKeywordResult("bool");
    else if (SemaRef.getLangOpts().C99)
      Consumer.addKeywordResult("_Bool");

    if (SemaRef.getLangOpts().CPlusPlus) {
      Consumer.addKeywordResult("class");
      Consumer.addKeywordResult("typename");
      Consumer.addKeywordResult("wchar_t");

      if (SemaRef.getLangOpts().CPlusPlus11) {
        Consumer.addKeywordResult("char16_t");
        Consumer.addKeywordResult("char32_t");
        Consumer.addKeywordResult("constexpr");
        Consumer.addKeywordResult("decltype");
        Consumer.addKeywordResult("thread_local");
      }
    }

    if (SemaRef.getLangOpts().GNUKeywords)
      Consumer.addKeywordResult("typeof");
  } else if (CCC.WantFunctionLikeCasts) {
    static const char *const CastableTypeSpecs[] = {
      "char", "double", "float", "int", "long", "short",
      "signed", "unsigned", "void"
    };
    for (auto *kw : CastableTypeSpecs)
      Consumer.addKeywordResult(kw);
  }

  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
    Consumer.addKeywordResult("const_cast");
    Consumer.addKeywordResult("dynamic_cast");
    Consumer.addKeywordResult("reinterpret_cast");
    Consumer.addKeywordResult("static_cast");
  }

  if (CCC.WantExpressionKeywords) {
    Consumer.addKeywordResult("sizeof");
    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
      Consumer.addKeywordResult("false");
      Consumer.addKeywordResult("true");
    }

    if (SemaRef.getLangOpts().CPlusPlus) {
      static const char *const CXXExprs[] = {
        "delete", "new", "operator", "throw", "typeid"
      };
      const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
      for (unsigned I = 0; I != NumCXXExprs; ++I)
        Consumer.addKeywordResult(CXXExprs[I]);

      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
        Consumer.addKeywordResult("this");

      if (SemaRef.getLangOpts().CPlusPlus11) {
        Consumer.addKeywordResult("alignof");
        Consumer.addKeywordResult("nullptr");
      }
    }

    if (SemaRef.getLangOpts().C11) {
      // FIXME: We should not suggest _Alignof if the alignof macro
      // is present.
      Consumer.addKeywordResult("_Alignof");
    }
  }

  if (CCC.WantRemainingKeywords) {
    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
      // Statements.
      static const char *const CStmts[] = {
        "do", "else", "for", "goto", "if", "return", "switch", "while" };
      const unsigned NumCStmts = llvm::array_lengthof(CStmts);
      for (unsigned I = 0; I != NumCStmts; ++I)
        Consumer.addKeywordResult(CStmts[I]);

      if (SemaRef.getLangOpts().CPlusPlus) {
        Consumer.addKeywordResult("catch");
        Consumer.addKeywordResult("try");
      }

      if (S && S->getBreakParent())
        Consumer.addKeywordResult("break");

      if (S && S->getContinueParent())
        Consumer.addKeywordResult("continue");

      if (SemaRef.getCurFunction() &&
          !SemaRef.getCurFunction()->SwitchStack.empty()) {
        Consumer.addKeywordResult("case");
        Consumer.addKeywordResult("default");
      }
    } else {
      if (SemaRef.getLangOpts().CPlusPlus) {
        Consumer.addKeywordResult("namespace");
        Consumer.addKeywordResult("template");
      }

      if (S && S->isClassScope()) {
        Consumer.addKeywordResult("explicit");
        Consumer.addKeywordResult("friend");
        Consumer.addKeywordResult("mutable");
        Consumer.addKeywordResult("private");
        Consumer.addKeywordResult("protected");
        Consumer.addKeywordResult("public");
        Consumer.addKeywordResult("virtual");
      }
    }

    if (SemaRef.getLangOpts().CPlusPlus) {
      Consumer.addKeywordResult("using");

      if (SemaRef.getLangOpts().CPlusPlus11)
        Consumer.addKeywordResult("static_assert");
    }
  }
}

std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
    DeclContext *MemberContext, bool EnteringContext,
    const ObjCObjectPointerType *OPT, bool ErrorRecovery) {

  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
      DisableTypoCorrection)
    return nullptr;

  // In Microsoft mode, don't perform typo correction in a template member
  // function dependent context because it interferes with the "lookup into
  // dependent bases of class templates" feature.
  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
      isa<CXXMethodDecl>(CurContext))
    return nullptr;

  // We only attempt to correct typos for identifiers.
  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
  if (!Typo)
    return nullptr;

  // If the scope specifier itself was invalid, don't try to correct
  // typos.
  if (SS && SS->isInvalid())
    return nullptr;

  // Never try to correct typos during any kind of code synthesis.
  if (!CodeSynthesisContexts.empty())
    return nullptr;

  // Don't try to correct 'super'.
  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
    return nullptr;

  // Abort if typo correction already failed for this specific typo.
  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
  if (locs != TypoCorrectionFailures.end() &&
      locs->second.count(TypoName.getLoc()))
    return nullptr;

  // Don't try to correct the identifier "vector" when in AltiVec mode.
  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
  // remove this workaround.
  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
    return nullptr;

  // Provide a stop gap for files that are just seriously broken.  Trying
  // to correct all typos can turn into a HUGE performance penalty, causing
  // some files to take minutes to get rejected by the parser.
  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
  if (Limit && TyposCorrected >= Limit)
    return nullptr;
  ++TyposCorrected;

  // If we're handling a missing symbol error, using modules, and the
  // special search all modules option is used, look for a missing import.
  if (ErrorRecovery && getLangOpts().Modules &&
      getLangOpts().ModulesSearchAll) {
    // The following has the side effect of loading the missing module.
    getModuleLoader().lookupMissingImports(Typo->getName(),
                                           TypoName.getBeginLoc());
  }

  // Extend the lifetime of the callback. We delayed this until here
  // to avoid allocations in the hot path (which is where no typo correction
  // occurs). Note that CorrectionCandidateCallback is polymorphic and
  // initially stack-allocated.
  std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
  auto Consumer = std::make_unique<TypoCorrectionConsumer>(
      *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
      EnteringContext);

  // Perform name lookup to find visible, similarly-named entities.
  bool IsUnqualifiedLookup = false;
  DeclContext *QualifiedDC = MemberContext;
  if (MemberContext) {
    LookupVisibleDecls(MemberContext, LookupKind, *Consumer);

    // Look in qualified interfaces.
    if (OPT) {
      for (auto *I : OPT->quals())
        LookupVisibleDecls(I, LookupKind, *Consumer);
    }
  } else if (SS && SS->isSet()) {
    QualifiedDC = computeDeclContext(*SS, EnteringContext);
    if (!QualifiedDC)
      return nullptr;

    LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
  } else {
    IsUnqualifiedLookup = true;
  }

  // Determine whether we are going to search in the various namespaces for
  // corrections.
  bool SearchNamespaces
    = getLangOpts().CPlusPlus &&
      (IsUnqualifiedLookup || (SS && SS->isSet()));

  if (IsUnqualifiedLookup || SearchNamespaces) {
    // For unqualified lookup, look through all of the names that we have
    // seen in this translation unit.
    // FIXME: Re-add the ability to skip very unlikely potential corrections.
    for (const auto &I : Context.Idents)
      Consumer->FoundName(I.getKey());

    // Walk through identifiers in external identifier sources.
    // FIXME: Re-add the ability to skip very unlikely potential corrections.
    if (IdentifierInfoLookup *External
                            = Context.Idents.getExternalIdentifierLookup()) {
      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
      do {
        StringRef Name = Iter->Next();
        if (Name.empty())
          break;

        Consumer->FoundName(Name);
      } while (true);
    }
  }

  AddKeywordsToConsumer(*this, *Consumer, S,
                        *Consumer->getCorrectionValidator(),
                        SS && SS->isNotEmpty());

  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
  // to search those namespaces.
  if (SearchNamespaces) {
    // Load any externally-known namespaces.
    if (ExternalSource && !LoadedExternalKnownNamespaces) {
      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
      LoadedExternalKnownNamespaces = true;
      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
      for (auto *N : ExternalKnownNamespaces)
        KnownNamespaces[N] = true;
    }

    Consumer->addNamespaces(KnownNamespaces);
  }

  return Consumer;
}

/// Try to "correct" a typo in the source code by finding
/// visible declarations whose names are similar to the name that was
/// present in the source code.
///
/// \param TypoName the \c DeclarationNameInfo structure that contains
/// the name that was present in the source code along with its location.
///
/// \param LookupKind the name-lookup criteria used to search for the name.
///
/// \param S the scope in which name lookup occurs.
///
/// \param SS the nested-name-specifier that precedes the name we're
/// looking for, if present.
///
/// \param CCC A CorrectionCandidateCallback object that provides further
/// validation of typo correction candidates. It also provides flags for
/// determining the set of keywords permitted.
///
/// \param MemberContext if non-NULL, the context in which to look for
/// a member access expression.
///
/// \param EnteringContext whether we're entering the context described by
/// the nested-name-specifier SS.
///
/// \param OPT when non-NULL, the search for visible declarations will
/// also walk the protocols in the qualified interfaces of \p OPT.
///
/// \returns a \c TypoCorrection containing the corrected name if the typo
/// along with information such as the \c NamedDecl where the corrected name
/// was declared, and any additional \c NestedNameSpecifier needed to access
/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
                                 Sema::LookupNameKind LookupKind,
                                 Scope *S, CXXScopeSpec *SS,
                                 CorrectionCandidateCallback &CCC,
                                 CorrectTypoKind Mode,
                                 DeclContext *MemberContext,
                                 bool EnteringContext,
                                 const ObjCObjectPointerType *OPT,
                                 bool RecordFailure) {
  // Always let the ExternalSource have the first chance at correction, even
  // if we would otherwise have given up.
  if (ExternalSource) {
    if (TypoCorrection Correction =
            ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
                                        MemberContext, EnteringContext, OPT))
      return Correction;
  }

  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
  // some instances of CTC_Unknown, while WantRemainingKeywords is true
  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
  bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;

  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
                                             MemberContext, EnteringContext,
                                             OPT, Mode == CTK_ErrorRecovery);

  if (!Consumer)
    return TypoCorrection();

  // If we haven't found anything, we're done.
  if (Consumer->empty())
    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

  // Make sure the best edit distance (prior to adding any namespace qualifiers)
  // is not more that about a third of the length of the typo's identifier.
  unsigned ED = Consumer->getBestEditDistance(true);
  unsigned TypoLen = Typo->getName().size();
  if (ED > 0 && TypoLen / ED < 3)
    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

  TypoCorrection BestTC = Consumer->getNextCorrection();
  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
  if (!BestTC)
    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

  ED = BestTC.getEditDistance();

  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
    // If this was an unqualified lookup and we believe the callback
    // object wouldn't have filtered out possible corrections, note
    // that no correction was found.
    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
  }

  // If only a single name remains, return that result.
  if (!SecondBestTC ||
      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
    const TypoCorrection &Result = BestTC;

    // Don't correct to a keyword that's the same as the typo; the keyword
    // wasn't actually in scope.
    if (ED == 0 && Result.isKeyword())
      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

    TypoCorrection TC = Result;
    TC.setCorrectionRange(SS, TypoName);
    checkCorrectionVisibility(*this, TC);
    return TC;
  } else if (SecondBestTC && ObjCMessageReceiver) {
    // Prefer 'super' when we're completing in a message-receiver
    // context.

    if (BestTC.getCorrection().getAsString() != "super") {
      if (SecondBestTC.getCorrection().getAsString() == "super")
        BestTC = SecondBestTC;
      else if ((*Consumer)["super"].front().isKeyword())
        BestTC = (*Consumer)["super"].front();
    }
    // Don't correct to a keyword that's the same as the typo; the keyword
    // wasn't actually in scope.
    if (BestTC.getEditDistance() == 0 ||
        BestTC.getCorrection().getAsString() != "super")
      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

    BestTC.setCorrectionRange(SS, TypoName);
    return BestTC;
  }

  // Record the failure's location if needed and return an empty correction. If
  // this was an unqualified lookup and we believe the callback object did not
  // filter out possible corrections, also cache the failure for the typo.
  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
}

/// Try to "correct" a typo in the source code by finding
/// visible declarations whose names are similar to the name that was
/// present in the source code.
///
/// \param TypoName the \c DeclarationNameInfo structure that contains
/// the name that was present in the source code along with its location.
///
/// \param LookupKind the name-lookup criteria used to search for the name.
///
/// \param S the scope in which name lookup occurs.
///
/// \param SS the nested-name-specifier that precedes the name we're
/// looking for, if present.
///
/// \param CCC A CorrectionCandidateCallback object that provides further
/// validation of typo correction candidates. It also provides flags for
/// determining the set of keywords permitted.
///
/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
/// diagnostics when the actual typo correction is attempted.
///
/// \param TRC A TypoRecoveryCallback functor that will be used to build an
/// Expr from a typo correction candidate.
///
/// \param MemberContext if non-NULL, the context in which to look for
/// a member access expression.
///
/// \param EnteringContext whether we're entering the context described by
/// the nested-name-specifier SS.
///
/// \param OPT when non-NULL, the search for visible declarations will
/// also walk the protocols in the qualified interfaces of \p OPT.
///
/// \returns a new \c TypoExpr that will later be replaced in the AST with an
/// Expr representing the result of performing typo correction, or nullptr if
/// typo correction is not possible. If nullptr is returned, no diagnostics will
/// be emitted and it is the responsibility of the caller to emit any that are
/// needed.
TypoExpr *Sema::CorrectTypoDelayed(
    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
    TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
    DeclContext *MemberContext, bool EnteringContext,
    const ObjCObjectPointerType *OPT) {
  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
                                             MemberContext, EnteringContext,
                                             OPT, Mode == CTK_ErrorRecovery);

  // Give the external sema source a chance to correct the typo.
  TypoCorrection ExternalTypo;
  if (ExternalSource && Consumer) {
    ExternalTypo = ExternalSource->CorrectTypo(
        TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
        MemberContext, EnteringContext, OPT);
    if (ExternalTypo)
      Consumer->addCorrection(ExternalTypo);
  }

  if (!Consumer || Consumer->empty())
    return nullptr;

  // Make sure the best edit distance (prior to adding any namespace qualifiers)
  // is not more that about a third of the length of the typo's identifier.
  unsigned ED = Consumer->getBestEditDistance(true);
  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
    return nullptr;

  ExprEvalContexts.back().NumTypos++;
  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
}

void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
  if (!CDecl) return;

  if (isKeyword())
    CorrectionDecls.clear();

  CorrectionDecls.push_back(CDecl);

  if (!CorrectionName)
    CorrectionName = CDecl->getDeclName();
}

std::string TypoCorrection::getAsString(const LangOptions &LO) const {
  if (CorrectionNameSpec) {
    std::string tmpBuffer;
    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
    PrefixOStream << CorrectionName;
    return PrefixOStream.str();
  }

  return CorrectionName.getAsString();
}

bool CorrectionCandidateCallback::ValidateCandidate(
    const TypoCorrection &candidate) {
  if (!candidate.isResolved())
    return true;

  if (candidate.isKeyword())
    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
           WantRemainingKeywords || WantObjCSuper;

  bool HasNonType = false;
  bool HasStaticMethod = false;
  bool HasNonStaticMethod = false;
  for (Decl *D : candidate) {
    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
      D = FTD->getTemplatedDecl();
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
      if (Method->isStatic())
        HasStaticMethod = true;
      else
        HasNonStaticMethod = true;
    }
    if (!isa<TypeDecl>(D))
      HasNonType = true;
  }

  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
      !candidate.getCorrectionSpecifier())
    return false;

  return WantTypeSpecifiers || HasNonType;
}

FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
                                             bool HasExplicitTemplateArgs,
                                             MemberExpr *ME)
    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
      CurContext(SemaRef.CurContext), MemberFn(ME) {
  WantTypeSpecifiers = false;
  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
                          !HasExplicitTemplateArgs && NumArgs == 1;
  WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
  WantRemainingKeywords = false;
}

bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
  if (!candidate.getCorrectionDecl())
    return candidate.isKeyword();

  for (auto *C : candidate) {
    FunctionDecl *FD = nullptr;
    NamedDecl *ND = C->getUnderlyingDecl();
    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
      FD = FTD->getTemplatedDecl();
    if (!HasExplicitTemplateArgs && !FD) {
      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
        // If the Decl is neither a function nor a template function,
        // determine if it is a pointer or reference to a function. If so,
        // check against the number of arguments expected for the pointee.
        QualType ValType = cast<ValueDecl>(ND)->getType();
        if (ValType.isNull())
          continue;
        if (ValType->isAnyPointerType() || ValType->isReferenceType())
          ValType = ValType->getPointeeType();
        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
          if (FPT->getNumParams() == NumArgs)
            return true;
      }
    }

    // A typo for a function-style cast can look like a function call in C++.
    if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
                                 : isa<TypeDecl>(ND)) &&
        CurContext->getParentASTContext().getLangOpts().CPlusPlus)
      // Only a class or class template can take two or more arguments.
      return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);

    // Skip the current candidate if it is not a FunctionDecl or does not accept
    // the current number of arguments.
    if (!FD || !(FD->getNumParams() >= NumArgs &&
                 FD->getMinRequiredArguments() <= NumArgs))
      continue;

    // If the current candidate is a non-static C++ method, skip the candidate
    // unless the method being corrected--or the current DeclContext, if the
    // function being corrected is not a method--is a method in the same class
    // or a descendent class of the candidate's parent class.
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
      if (MemberFn || !MD->isStatic()) {
        CXXMethodDecl *CurMD =
            MemberFn
                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
        CXXRecordDecl *CurRD =
            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
          continue;
      }
    }
    return true;
  }
  return false;
}

void Sema::diagnoseTypo(const TypoCorrection &Correction,
                        const PartialDiagnostic &TypoDiag,
                        bool ErrorRecovery) {
  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
               ErrorRecovery);
}

/// Find which declaration we should import to provide the definition of
/// the given declaration.
static NamedDecl *getDefinitionToImport(NamedDecl *D) {
  if (VarDecl *VD = dyn_cast<VarDecl>(D))
    return VD->getDefinition();
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    return FD->getDefinition();
  if (TagDecl *TD = dyn_cast<TagDecl>(D))
    return TD->getDefinition();
  // The first definition for this ObjCInterfaceDecl might be in the TU
  // and not associated with any module. Use the one we know to be complete
  // and have just seen in a module.
  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
    return ID;
  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
    return PD->getDefinition();
  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
    if (NamedDecl *TTD = TD->getTemplatedDecl())
      return getDefinitionToImport(TTD);
  return nullptr;
}

void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
                                 MissingImportKind MIK, bool Recover) {
  // Suggest importing a module providing the definition of this entity, if
  // possible.
  NamedDecl *Def = getDefinitionToImport(Decl);
  if (!Def)
    Def = Decl;

  Module *Owner = getOwningModule(Def);
  assert(Owner && "definition of hidden declaration is not in a module");

  llvm::SmallVector<Module*, 8> OwningModules;
  OwningModules.push_back(Owner);
  auto Merged = Context.getModulesWithMergedDefinition(Def);
  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());

  diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
                        Recover);
}

/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
/// suggesting the addition of a #include of the specified file.
static std::string getIncludeStringForHeader(Preprocessor &PP,
                                             const FileEntry *E,
                                             llvm::StringRef IncludingFile) {
  bool IsSystem = false;
  auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
      E, IncludingFile, &IsSystem);
  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
}

void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
                                 SourceLocation DeclLoc,
                                 ArrayRef<Module *> Modules,
                                 MissingImportKind MIK, bool Recover) {
  assert(!Modules.empty());

  auto NotePrevious = [&] {
    unsigned DiagID;
    switch (MIK) {
    case MissingImportKind::Declaration:
      DiagID = diag::note_previous_declaration;
      break;
    case MissingImportKind::Definition:
      DiagID = diag::note_previous_definition;
      break;
    case MissingImportKind::DefaultArgument:
      DiagID = diag::note_default_argument_declared_here;
      break;
    case MissingImportKind::ExplicitSpecialization:
      DiagID = diag::note_explicit_specialization_declared_here;
      break;
    case MissingImportKind::PartialSpecialization:
      DiagID = diag::note_partial_specialization_declared_here;
      break;
    }
    Diag(DeclLoc, DiagID);
  };

  // Weed out duplicates from module list.
  llvm::SmallVector<Module*, 8> UniqueModules;
  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
  for (auto *M : Modules) {
    if (M->Kind == Module::GlobalModuleFragment)
      continue;
    if (UniqueModuleSet.insert(M).second)
      UniqueModules.push_back(M);
  }

  llvm::StringRef IncludingFile;
  if (const FileEntry *FE =
          SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
    IncludingFile = FE->tryGetRealPathName();

  if (UniqueModules.empty()) {
    // All candidates were global module fragments. Try to suggest a #include.
    const FileEntry *E =
        PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, Modules[0], DeclLoc);
    // FIXME: Find a smart place to suggest inserting a #include, and add
    // a FixItHint there.
    Diag(UseLoc, diag::err_module_unimported_use_global_module_fragment)
        << (int)MIK << Decl << !!E
        << (E ? getIncludeStringForHeader(PP, E, IncludingFile) : "");
    // Produce a "previous" note if it will point to a header rather than some
    // random global module fragment.
    // FIXME: Suppress the note backtrace even under
    // -fdiagnostics-show-note-include-stack.
    if (E)
      NotePrevious();
    if (Recover)
      createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
    return;
  }

  Modules = UniqueModules;

  if (Modules.size() > 1) {
    std::string ModuleList;
    unsigned N = 0;
    for (Module *M : Modules) {
      ModuleList += "\n        ";
      if (++N == 5 && N != Modules.size()) {
        ModuleList += "[...]";
        break;
      }
      ModuleList += M->getFullModuleName();
    }

    Diag(UseLoc, diag::err_module_unimported_use_multiple)
      << (int)MIK << Decl << ModuleList;
  } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
                 UseLoc, Modules[0], DeclLoc)) {
    // The right way to make the declaration visible is to include a header;
    // suggest doing so.
    //
    // FIXME: Find a smart place to suggest inserting a #include, and add
    // a FixItHint there.
    Diag(UseLoc, diag::err_module_unimported_use_header)
        << (int)MIK << Decl << Modules[0]->getFullModuleName()
        << getIncludeStringForHeader(PP, E, IncludingFile);
  } else {
    // FIXME: Add a FixItHint that imports the corresponding module.
    Diag(UseLoc, diag::err_module_unimported_use)
      << (int)MIK << Decl << Modules[0]->getFullModuleName();
  }

  NotePrevious();

  // Try to recover by implicitly importing this module.
  if (Recover)
    createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
}

/// Diagnose a successfully-corrected typo. Separated from the correction
/// itself to allow external validation of the result, etc.
///
/// \param Correction The result of performing typo correction.
/// \param TypoDiag The diagnostic to produce. This will have the corrected
///        string added to it (and usually also a fixit).
/// \param PrevNote A note to use when indicating the location of the entity to
///        which we are correcting. Will have the correction string added to it.
/// \param ErrorRecovery If \c true (the default), the caller is going to
///        recover from the typo as if the corrected string had been typed.
///        In this case, \c PDiag must be an error, and we will attach a fixit
///        to it.
void Sema::diagnoseTypo(const TypoCorrection &Correction,
                        const PartialDiagnostic &TypoDiag,
                        const PartialDiagnostic &PrevNote,
                        bool ErrorRecovery) {
  std::string CorrectedStr = Correction.getAsString(getLangOpts());
  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
  FixItHint FixTypo = FixItHint::CreateReplacement(
      Correction.getCorrectionRange(), CorrectedStr);

  // Maybe we're just missing a module import.
  if (Correction.requiresImport()) {
    NamedDecl *Decl = Correction.getFoundDecl();
    assert(Decl && "import required but no declaration to import");

    diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
                          MissingImportKind::Declaration, ErrorRecovery);
    return;
  }

  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());

  NamedDecl *ChosenDecl =
      Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
  if (PrevNote.getDiagID() && ChosenDecl)
    Diag(ChosenDecl->getLocation(), PrevNote)
      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);

  // Add any extra diagnostics.
  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
    Diag(Correction.getCorrectionRange().getBegin(), PD);
}

TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
                                  TypoDiagnosticGenerator TDG,
                                  TypoRecoveryCallback TRC) {
  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
  auto TE = new (Context) TypoExpr(Context.DependentTy);
  auto &State = DelayedTypos[TE];
  State.Consumer = std::move(TCC);
  State.DiagHandler = std::move(TDG);
  State.RecoveryHandler = std::move(TRC);
  if (TE)
    TypoExprs.push_back(TE);
  return TE;
}

const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
  auto Entry = DelayedTypos.find(TE);
  assert(Entry != DelayedTypos.end() &&
         "Failed to get the state for a TypoExpr!");
  return Entry->second;
}

void Sema::clearDelayedTypo(TypoExpr *TE) {
  DelayedTypos.erase(TE);
}

void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
  DeclarationNameInfo Name(II, IILoc);
  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
  R.suppressDiagnostics();
  R.setHideTags(false);
  LookupName(R, S);
  R.dump();
}