SemaLambda.cpp 80.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for C++ lambda expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/DeclSpec.h"
#include "TypeLocBuilder.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/SemaLambda.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;
using namespace sema;

/// Examines the FunctionScopeInfo stack to determine the nearest
/// enclosing lambda (to the current lambda) that is 'capture-ready' for
/// the variable referenced in the current lambda (i.e. \p VarToCapture).
/// If successful, returns the index into Sema's FunctionScopeInfo stack
/// of the capture-ready lambda's LambdaScopeInfo.
///
/// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
/// lambda - is on top) to determine the index of the nearest enclosing/outer
/// lambda that is ready to capture the \p VarToCapture being referenced in
/// the current lambda.
/// As we climb down the stack, we want the index of the first such lambda -
/// that is the lambda with the highest index that is 'capture-ready'.
///
/// A lambda 'L' is capture-ready for 'V' (var or this) if:
///  - its enclosing context is non-dependent
///  - and if the chain of lambdas between L and the lambda in which
///    V is potentially used (i.e. the lambda at the top of the scope info
///    stack), can all capture or have already captured V.
/// If \p VarToCapture is 'null' then we are trying to capture 'this'.
///
/// Note that a lambda that is deemed 'capture-ready' still needs to be checked
/// for whether it is 'capture-capable' (see
/// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
/// capture.
///
/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
///  is at the top of the stack and has the highest index.
/// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
///
/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
/// which is capture-ready.  If the return value evaluates to 'false' then
/// no lambda is capture-ready for \p VarToCapture.

static inline Optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(
    ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
    VarDecl *VarToCapture) {
  // Label failure to capture.
  const Optional<unsigned> NoLambdaIsCaptureReady;

  // Ignore all inner captured regions.
  unsigned CurScopeIndex = FunctionScopes.size() - 1;
  while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
                                  FunctionScopes[CurScopeIndex]))
    --CurScopeIndex;
  assert(
      isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
      "The function on the top of sema's function-info stack must be a lambda");

  // If VarToCapture is null, we are attempting to capture 'this'.
  const bool IsCapturingThis = !VarToCapture;
  const bool IsCapturingVariable = !IsCapturingThis;

  // Start with the current lambda at the top of the stack (highest index).
  DeclContext *EnclosingDC =
      cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;

  do {
    const clang::sema::LambdaScopeInfo *LSI =
        cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
    // IF we have climbed down to an intervening enclosing lambda that contains
    // the variable declaration - it obviously can/must not capture the
    // variable.
    // Since its enclosing DC is dependent, all the lambdas between it and the
    // innermost nested lambda are dependent (otherwise we wouldn't have
    // arrived here) - so we don't yet have a lambda that can capture the
    // variable.
    if (IsCapturingVariable &&
        VarToCapture->getDeclContext()->Equals(EnclosingDC))
      return NoLambdaIsCaptureReady;

    // For an enclosing lambda to be capture ready for an entity, all
    // intervening lambda's have to be able to capture that entity. If even
    // one of the intervening lambda's is not capable of capturing the entity
    // then no enclosing lambda can ever capture that entity.
    // For e.g.
    // const int x = 10;
    // [=](auto a) {    #1
    //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
    //    [=](auto c) { #3
    //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
    //    }; }; };
    // If they do not have a default implicit capture, check to see
    // if the entity has already been explicitly captured.
    // If even a single dependent enclosing lambda lacks the capability
    // to ever capture this variable, there is no further enclosing
    // non-dependent lambda that can capture this variable.
    if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
      if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
        return NoLambdaIsCaptureReady;
      if (IsCapturingThis && !LSI->isCXXThisCaptured())
        return NoLambdaIsCaptureReady;
    }
    EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);

    assert(CurScopeIndex);
    --CurScopeIndex;
  } while (!EnclosingDC->isTranslationUnit() &&
           EnclosingDC->isDependentContext() &&
           isLambdaCallOperator(EnclosingDC));

  assert(CurScopeIndex < (FunctionScopes.size() - 1));
  // If the enclosingDC is not dependent, then the immediately nested lambda
  // (one index above) is capture-ready.
  if (!EnclosingDC->isDependentContext())
    return CurScopeIndex + 1;
  return NoLambdaIsCaptureReady;
}

/// Examines the FunctionScopeInfo stack to determine the nearest
/// enclosing lambda (to the current lambda) that is 'capture-capable' for
/// the variable referenced in the current lambda (i.e. \p VarToCapture).
/// If successful, returns the index into Sema's FunctionScopeInfo stack
/// of the capture-capable lambda's LambdaScopeInfo.
///
/// Given the current stack of lambdas being processed by Sema and
/// the variable of interest, to identify the nearest enclosing lambda (to the
/// current lambda at the top of the stack) that can truly capture
/// a variable, it has to have the following two properties:
///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
///     - climb down the stack (i.e. starting from the innermost and examining
///       each outer lambda step by step) checking if each enclosing
///       lambda can either implicitly or explicitly capture the variable.
///       Record the first such lambda that is enclosed in a non-dependent
///       context. If no such lambda currently exists return failure.
///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
///  capture the variable by checking all its enclosing lambdas:
///     - check if all outer lambdas enclosing the 'capture-ready' lambda
///       identified above in 'a' can also capture the variable (this is done
///       via tryCaptureVariable for variables and CheckCXXThisCapture for
///       'this' by passing in the index of the Lambda identified in step 'a')
///
/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
/// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
/// is at the top of the stack.
///
/// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
///
///
/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
/// which is capture-capable.  If the return value evaluates to 'false' then
/// no lambda is capture-capable for \p VarToCapture.

Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
    ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
    VarDecl *VarToCapture, Sema &S) {

  const Optional<unsigned> NoLambdaIsCaptureCapable;

  const Optional<unsigned> OptionalStackIndex =
      getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
                                                        VarToCapture);
  if (!OptionalStackIndex)
    return NoLambdaIsCaptureCapable;

  const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
  assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
          S.getCurGenericLambda()) &&
         "The capture ready lambda for a potential capture can only be the "
         "current lambda if it is a generic lambda");

  const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
      cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);

  // If VarToCapture is null, we are attempting to capture 'this'
  const bool IsCapturingThis = !VarToCapture;
  const bool IsCapturingVariable = !IsCapturingThis;

  if (IsCapturingVariable) {
    // Check if the capture-ready lambda can truly capture the variable, by
    // checking whether all enclosing lambdas of the capture-ready lambda allow
    // the capture - i.e. make sure it is capture-capable.
    QualType CaptureType, DeclRefType;
    const bool CanCaptureVariable =
        !S.tryCaptureVariable(VarToCapture,
                              /*ExprVarIsUsedInLoc*/ SourceLocation(),
                              clang::Sema::TryCapture_Implicit,
                              /*EllipsisLoc*/ SourceLocation(),
                              /*BuildAndDiagnose*/ false, CaptureType,
                              DeclRefType, &IndexOfCaptureReadyLambda);
    if (!CanCaptureVariable)
      return NoLambdaIsCaptureCapable;
  } else {
    // Check if the capture-ready lambda can truly capture 'this' by checking
    // whether all enclosing lambdas of the capture-ready lambda can capture
    // 'this'.
    const bool CanCaptureThis =
        !S.CheckCXXThisCapture(
             CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
             /*Explicit*/ false, /*BuildAndDiagnose*/ false,
             &IndexOfCaptureReadyLambda);
    if (!CanCaptureThis)
      return NoLambdaIsCaptureCapable;
  }
  return IndexOfCaptureReadyLambda;
}

static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
  if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
    LSI->GLTemplateParameterList = TemplateParameterList::Create(
        SemaRef.Context,
        /*Template kw loc*/ SourceLocation(),
        /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
        LSI->TemplateParams,
        /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
        nullptr);
  }
  return LSI->GLTemplateParameterList;
}

CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
                                             TypeSourceInfo *Info,
                                             bool KnownDependent,
                                             LambdaCaptureDefault CaptureDefault) {
  DeclContext *DC = CurContext;
  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
    DC = DC->getParent();
  bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
                                                               *this);
  // Start constructing the lambda class.
  CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
                                                     IntroducerRange.getBegin(),
                                                     KnownDependent,
                                                     IsGenericLambda,
                                                     CaptureDefault);
  DC->addDecl(Class);

  return Class;
}

/// Determine whether the given context is or is enclosed in an inline
/// function.
static bool isInInlineFunction(const DeclContext *DC) {
  while (!DC->isFileContext()) {
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
      if (FD->isInlined())
        return true;

    DC = DC->getLexicalParent();
  }

  return false;
}

std::tuple<MangleNumberingContext *, Decl *>
Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
  // Compute the context for allocating mangling numbers in the current
  // expression, if the ABI requires them.
  Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;

  enum ContextKind {
    Normal,
    DefaultArgument,
    DataMember,
    StaticDataMember,
    InlineVariable,
    VariableTemplate
  } Kind = Normal;

  // Default arguments of member function parameters that appear in a class
  // definition, as well as the initializers of data members, receive special
  // treatment. Identify them.
  if (ManglingContextDecl) {
    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
      if (const DeclContext *LexicalDC
          = Param->getDeclContext()->getLexicalParent())
        if (LexicalDC->isRecord())
          Kind = DefaultArgument;
    } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
      if (Var->getDeclContext()->isRecord())
        Kind = StaticDataMember;
      else if (Var->getMostRecentDecl()->isInline())
        Kind = InlineVariable;
      else if (Var->getDescribedVarTemplate())
        Kind = VariableTemplate;
      else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
        if (!VTS->isExplicitSpecialization())
          Kind = VariableTemplate;
      }
    } else if (isa<FieldDecl>(ManglingContextDecl)) {
      Kind = DataMember;
    }
  }

  // Itanium ABI [5.1.7]:
  //   In the following contexts [...] the one-definition rule requires closure
  //   types in different translation units to "correspond":
  bool IsInNonspecializedTemplate =
      inTemplateInstantiation() || CurContext->isDependentContext();
  switch (Kind) {
  case Normal: {
    //  -- the bodies of non-exported nonspecialized template functions
    //  -- the bodies of inline functions
    if ((IsInNonspecializedTemplate &&
         !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
        isInInlineFunction(CurContext)) {
      while (auto *CD = dyn_cast<CapturedDecl>(DC))
        DC = CD->getParent();
      return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
    }

    return std::make_tuple(nullptr, nullptr);
  }

  case StaticDataMember:
    //  -- the initializers of nonspecialized static members of template classes
    if (!IsInNonspecializedTemplate)
      return std::make_tuple(nullptr, ManglingContextDecl);
    // Fall through to get the current context.
    LLVM_FALLTHROUGH;

  case DataMember:
    //  -- the in-class initializers of class members
  case DefaultArgument:
    //  -- default arguments appearing in class definitions
  case InlineVariable:
    //  -- the initializers of inline variables
  case VariableTemplate:
    //  -- the initializers of templated variables
    return std::make_tuple(
        &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
                                          ManglingContextDecl),
        ManglingContextDecl);
  }

  llvm_unreachable("unexpected context");
}

CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
                                           SourceRange IntroducerRange,
                                           TypeSourceInfo *MethodTypeInfo,
                                           SourceLocation EndLoc,
                                           ArrayRef<ParmVarDecl *> Params,
                                           ConstexprSpecKind ConstexprKind,
                                           Expr *TrailingRequiresClause) {
  QualType MethodType = MethodTypeInfo->getType();
  TemplateParameterList *TemplateParams =
      getGenericLambdaTemplateParameterList(getCurLambda(), *this);
  // If a lambda appears in a dependent context or is a generic lambda (has
  // template parameters) and has an 'auto' return type, deduce it to a
  // dependent type.
  if (Class->isDependentContext() || TemplateParams) {
    const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
    QualType Result = FPT->getReturnType();
    if (Result->isUndeducedType()) {
      Result = SubstAutoType(Result, Context.DependentTy);
      MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
                                           FPT->getExtProtoInfo());
    }
  }

  // C++11 [expr.prim.lambda]p5:
  //   The closure type for a lambda-expression has a public inline function
  //   call operator (13.5.4) whose parameters and return type are described by
  //   the lambda-expression's parameter-declaration-clause and
  //   trailing-return-type respectively.
  DeclarationName MethodName
    = Context.DeclarationNames.getCXXOperatorName(OO_Call);
  DeclarationNameLoc MethodNameLoc;
  MethodNameLoc.CXXOperatorName.BeginOpNameLoc
    = IntroducerRange.getBegin().getRawEncoding();
  MethodNameLoc.CXXOperatorName.EndOpNameLoc
    = IntroducerRange.getEnd().getRawEncoding();
  CXXMethodDecl *Method = CXXMethodDecl::Create(
      Context, Class, EndLoc,
      DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
                          MethodNameLoc),
      MethodType, MethodTypeInfo, SC_None,
      /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
  Method->setAccess(AS_public);
  if (!TemplateParams)
    Class->addDecl(Method);

  // Temporarily set the lexical declaration context to the current
  // context, so that the Scope stack matches the lexical nesting.
  Method->setLexicalDeclContext(CurContext);
  // Create a function template if we have a template parameter list
  FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
            FunctionTemplateDecl::Create(Context, Class,
                                         Method->getLocation(), MethodName,
                                         TemplateParams,
                                         Method) : nullptr;
  if (TemplateMethod) {
    TemplateMethod->setAccess(AS_public);
    Method->setDescribedFunctionTemplate(TemplateMethod);
    Class->addDecl(TemplateMethod);
    TemplateMethod->setLexicalDeclContext(CurContext);
  }

  // Add parameters.
  if (!Params.empty()) {
    Method->setParams(Params);
    CheckParmsForFunctionDef(Params,
                             /*CheckParameterNames=*/false);

    for (auto P : Method->parameters())
      P->setOwningFunction(Method);
  }

  return Method;
}

void Sema::handleLambdaNumbering(
    CXXRecordDecl *Class, CXXMethodDecl *Method,
    Optional<std::tuple<unsigned, bool, Decl *>> Mangling) {
  if (Mangling) {
    unsigned ManglingNumber;
    bool HasKnownInternalLinkage;
    Decl *ManglingContextDecl;
    std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) =
        Mangling.getValue();
    Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
                             HasKnownInternalLinkage);
    return;
  }

  auto getMangleNumberingContext =
      [this](CXXRecordDecl *Class,
             Decl *ManglingContextDecl) -> MangleNumberingContext * {
    // Get mangle numbering context if there's any extra decl context.
    if (ManglingContextDecl)
      return &Context.getManglingNumberContext(
          ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
    // Otherwise, from that lambda's decl context.
    auto DC = Class->getDeclContext();
    while (auto *CD = dyn_cast<CapturedDecl>(DC))
      DC = CD->getParent();
    return &Context.getManglingNumberContext(DC);
  };

  MangleNumberingContext *MCtx;
  Decl *ManglingContextDecl;
  std::tie(MCtx, ManglingContextDecl) =
      getCurrentMangleNumberContext(Class->getDeclContext());
  bool HasKnownInternalLinkage = false;
  if (!MCtx && getLangOpts().CUDA) {
    // Force lambda numbering in CUDA/HIP as we need to name lambdas following
    // ODR. Both device- and host-compilation need to have a consistent naming
    // on kernel functions. As lambdas are potential part of these `__global__`
    // function names, they needs numbering following ODR.
    MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
    assert(MCtx && "Retrieving mangle numbering context failed!");
    HasKnownInternalLinkage = true;
  }
  if (MCtx) {
    unsigned ManglingNumber = MCtx->getManglingNumber(Method);
    Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
                             HasKnownInternalLinkage);
  }
}

void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
                                        CXXMethodDecl *CallOperator,
                                        SourceRange IntroducerRange,
                                        LambdaCaptureDefault CaptureDefault,
                                        SourceLocation CaptureDefaultLoc,
                                        bool ExplicitParams,
                                        bool ExplicitResultType,
                                        bool Mutable) {
  LSI->CallOperator = CallOperator;
  CXXRecordDecl *LambdaClass = CallOperator->getParent();
  LSI->Lambda = LambdaClass;
  if (CaptureDefault == LCD_ByCopy)
    LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
  else if (CaptureDefault == LCD_ByRef)
    LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
  LSI->CaptureDefaultLoc = CaptureDefaultLoc;
  LSI->IntroducerRange = IntroducerRange;
  LSI->ExplicitParams = ExplicitParams;
  LSI->Mutable = Mutable;

  if (ExplicitResultType) {
    LSI->ReturnType = CallOperator->getReturnType();

    if (!LSI->ReturnType->isDependentType() &&
        !LSI->ReturnType->isVoidType()) {
      if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
                              diag::err_lambda_incomplete_result)) {
        // Do nothing.
      }
    }
  } else {
    LSI->HasImplicitReturnType = true;
  }
}

void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
  LSI->finishedExplicitCaptures();
}

void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
                                                    ArrayRef<NamedDecl *> TParams,
                                                    SourceLocation RAngleLoc) {
  LambdaScopeInfo *LSI = getCurLambda();
  assert(LSI && "Expected a lambda scope");
  assert(LSI->NumExplicitTemplateParams == 0 &&
         "Already acted on explicit template parameters");
  assert(LSI->TemplateParams.empty() &&
         "Explicit template parameters should come "
         "before invented (auto) ones");
  assert(!TParams.empty() &&
         "No template parameters to act on");
  LSI->TemplateParams.append(TParams.begin(), TParams.end());
  LSI->NumExplicitTemplateParams = TParams.size();
  LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
}

void Sema::addLambdaParameters(
    ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
    CXXMethodDecl *CallOperator, Scope *CurScope) {
  // Introduce our parameters into the function scope
  for (unsigned p = 0, NumParams = CallOperator->getNumParams();
       p < NumParams; ++p) {
    ParmVarDecl *Param = CallOperator->getParamDecl(p);

    // If this has an identifier, add it to the scope stack.
    if (CurScope && Param->getIdentifier()) {
      bool Error = false;
      // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
      // retroactively apply it.
      for (const auto &Capture : Captures) {
        if (Capture.Id == Param->getIdentifier()) {
          Error = true;
          Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
          Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
              << Capture.Id << true;
        }
      }
      if (!Error)
        CheckShadow(CurScope, Param);

      PushOnScopeChains(Param, CurScope);
    }
  }
}

/// If this expression is an enumerator-like expression of some type
/// T, return the type T; otherwise, return null.
///
/// Pointer comparisons on the result here should always work because
/// it's derived from either the parent of an EnumConstantDecl
/// (i.e. the definition) or the declaration returned by
/// EnumType::getDecl() (i.e. the definition).
static EnumDecl *findEnumForBlockReturn(Expr *E) {
  // An expression is an enumerator-like expression of type T if,
  // ignoring parens and parens-like expressions:
  E = E->IgnoreParens();

  //  - it is an enumerator whose enum type is T or
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    if (EnumConstantDecl *D
          = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
      return cast<EnumDecl>(D->getDeclContext());
    }
    return nullptr;
  }

  //  - it is a comma expression whose RHS is an enumerator-like
  //    expression of type T or
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    if (BO->getOpcode() == BO_Comma)
      return findEnumForBlockReturn(BO->getRHS());
    return nullptr;
  }

  //  - it is a statement-expression whose value expression is an
  //    enumerator-like expression of type T or
  if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
    if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
      return findEnumForBlockReturn(last);
    return nullptr;
  }

  //   - it is a ternary conditional operator (not the GNU ?:
  //     extension) whose second and third operands are
  //     enumerator-like expressions of type T or
  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
    if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
      if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
        return ED;
    return nullptr;
  }

  // (implicitly:)
  //   - it is an implicit integral conversion applied to an
  //     enumerator-like expression of type T or
  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    // We can sometimes see integral conversions in valid
    // enumerator-like expressions.
    if (ICE->getCastKind() == CK_IntegralCast)
      return findEnumForBlockReturn(ICE->getSubExpr());

    // Otherwise, just rely on the type.
  }

  //   - it is an expression of that formal enum type.
  if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
    return ET->getDecl();
  }

  // Otherwise, nope.
  return nullptr;
}

/// Attempt to find a type T for which the returned expression of the
/// given statement is an enumerator-like expression of that type.
static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
  if (Expr *retValue = ret->getRetValue())
    return findEnumForBlockReturn(retValue);
  return nullptr;
}

/// Attempt to find a common type T for which all of the returned
/// expressions in a block are enumerator-like expressions of that
/// type.
static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
  ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();

  // Try to find one for the first return.
  EnumDecl *ED = findEnumForBlockReturn(*i);
  if (!ED) return nullptr;

  // Check that the rest of the returns have the same enum.
  for (++i; i != e; ++i) {
    if (findEnumForBlockReturn(*i) != ED)
      return nullptr;
  }

  // Never infer an anonymous enum type.
  if (!ED->hasNameForLinkage()) return nullptr;

  return ED;
}

/// Adjust the given return statements so that they formally return
/// the given type.  It should require, at most, an IntegralCast.
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
                                     QualType returnType) {
  for (ArrayRef<ReturnStmt*>::iterator
         i = returns.begin(), e = returns.end(); i != e; ++i) {
    ReturnStmt *ret = *i;
    Expr *retValue = ret->getRetValue();
    if (S.Context.hasSameType(retValue->getType(), returnType))
      continue;

    // Right now we only support integral fixup casts.
    assert(returnType->isIntegralOrUnscopedEnumerationType());
    assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());

    ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);

    Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
    E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
                                 E, /*base path*/ nullptr, VK_RValue);
    if (cleanups) {
      cleanups->setSubExpr(E);
    } else {
      ret->setRetValue(E);
    }
  }
}

void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
  assert(CSI.HasImplicitReturnType);
  // If it was ever a placeholder, it had to been deduced to DependentTy.
  assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
  assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
         "lambda expressions use auto deduction in C++14 onwards");

  // C++ core issue 975:
  //   If a lambda-expression does not include a trailing-return-type,
  //   it is as if the trailing-return-type denotes the following type:
  //     - if there are no return statements in the compound-statement,
  //       or all return statements return either an expression of type
  //       void or no expression or braced-init-list, the type void;
  //     - otherwise, if all return statements return an expression
  //       and the types of the returned expressions after
  //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
  //       array-to-pointer conversion (4.2 [conv.array]), and
  //       function-to-pointer conversion (4.3 [conv.func]) are the
  //       same, that common type;
  //     - otherwise, the program is ill-formed.
  //
  // C++ core issue 1048 additionally removes top-level cv-qualifiers
  // from the types of returned expressions to match the C++14 auto
  // deduction rules.
  //
  // In addition, in blocks in non-C++ modes, if all of the return
  // statements are enumerator-like expressions of some type T, where
  // T has a name for linkage, then we infer the return type of the
  // block to be that type.

  // First case: no return statements, implicit void return type.
  ASTContext &Ctx = getASTContext();
  if (CSI.Returns.empty()) {
    // It's possible there were simply no /valid/ return statements.
    // In this case, the first one we found may have at least given us a type.
    if (CSI.ReturnType.isNull())
      CSI.ReturnType = Ctx.VoidTy;
    return;
  }

  // Second case: at least one return statement has dependent type.
  // Delay type checking until instantiation.
  assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
  if (CSI.ReturnType->isDependentType())
    return;

  // Try to apply the enum-fuzz rule.
  if (!getLangOpts().CPlusPlus) {
    assert(isa<BlockScopeInfo>(CSI));
    const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
    if (ED) {
      CSI.ReturnType = Context.getTypeDeclType(ED);
      adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
      return;
    }
  }

  // Third case: only one return statement. Don't bother doing extra work!
  if (CSI.Returns.size() == 1)
    return;

  // General case: many return statements.
  // Check that they all have compatible return types.

  // We require the return types to strictly match here.
  // Note that we've already done the required promotions as part of
  // processing the return statement.
  for (const ReturnStmt *RS : CSI.Returns) {
    const Expr *RetE = RS->getRetValue();

    QualType ReturnType =
        (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
    if (Context.getCanonicalFunctionResultType(ReturnType) ==
          Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
      // Use the return type with the strictest possible nullability annotation.
      auto RetTyNullability = ReturnType->getNullability(Ctx);
      auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
      if (BlockNullability &&
          (!RetTyNullability ||
           hasWeakerNullability(*RetTyNullability, *BlockNullability)))
        CSI.ReturnType = ReturnType;
      continue;
    }

    // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
    // TODO: It's possible that the *first* return is the divergent one.
    Diag(RS->getBeginLoc(),
         diag::err_typecheck_missing_return_type_incompatible)
        << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
    // Continue iterating so that we keep emitting diagnostics.
  }
}

QualType Sema::buildLambdaInitCaptureInitialization(
    SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
    Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
    Expr *&Init) {
  // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
  // deduce against.
  QualType DeductType = Context.getAutoDeductType();
  TypeLocBuilder TLB;
  AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
  TL.setNameLoc(Loc);
  if (ByRef) {
    DeductType = BuildReferenceType(DeductType, true, Loc, Id);
    assert(!DeductType.isNull() && "can't build reference to auto");
    TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
  }
  if (EllipsisLoc.isValid()) {
    if (Init->containsUnexpandedParameterPack()) {
      Diag(EllipsisLoc, getLangOpts().CPlusPlus2a
                            ? diag::warn_cxx17_compat_init_capture_pack
                            : diag::ext_init_capture_pack);
      DeductType = Context.getPackExpansionType(DeductType, NumExpansions);
      TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
    } else {
      // Just ignore the ellipsis for now and form a non-pack variable. We'll
      // diagnose this later when we try to capture it.
    }
  }
  TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);

  // Deduce the type of the init capture.
  QualType DeducedType = deduceVarTypeFromInitializer(
      /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
      SourceRange(Loc, Loc), IsDirectInit, Init);
  if (DeducedType.isNull())
    return QualType();

  // Are we a non-list direct initialization?
  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);

  // Perform initialization analysis and ensure any implicit conversions
  // (such as lvalue-to-rvalue) are enforced.
  InitializedEntity Entity =
      InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
  InitializationKind Kind =
      IsDirectInit
          ? (CXXDirectInit ? InitializationKind::CreateDirect(
                                 Loc, Init->getBeginLoc(), Init->getEndLoc())
                           : InitializationKind::CreateDirectList(Loc))
          : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());

  MultiExprArg Args = Init;
  if (CXXDirectInit)
    Args =
        MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
  QualType DclT;
  InitializationSequence InitSeq(*this, Entity, Kind, Args);
  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);

  if (Result.isInvalid())
    return QualType();

  Init = Result.getAs<Expr>();
  return DeducedType;
}

VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
                                              QualType InitCaptureType,
                                              SourceLocation EllipsisLoc,
                                              IdentifierInfo *Id,
                                              unsigned InitStyle, Expr *Init) {
  // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
  // rather than reconstructing it here.
  TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
  if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
    PETL.setEllipsisLoc(EllipsisLoc);

  // Create a dummy variable representing the init-capture. This is not actually
  // used as a variable, and only exists as a way to name and refer to the
  // init-capture.
  // FIXME: Pass in separate source locations for '&' and identifier.
  VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
                                   Loc, Id, InitCaptureType, TSI, SC_Auto);
  NewVD->setInitCapture(true);
  NewVD->setReferenced(true);
  // FIXME: Pass in a VarDecl::InitializationStyle.
  NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
  NewVD->markUsed(Context);
  NewVD->setInit(Init);
  if (NewVD->isParameterPack())
    getCurLambda()->LocalPacks.push_back(NewVD);
  return NewVD;
}

void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
  assert(Var->isInitCapture() && "init capture flag should be set");
  LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
                  /*isNested*/false, Var->getLocation(), SourceLocation(),
                  Var->getType(), /*Invalid*/false);
}

void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
                                        Declarator &ParamInfo,
                                        Scope *CurScope) {
  LambdaScopeInfo *const LSI = getCurLambda();
  assert(LSI && "LambdaScopeInfo should be on stack!");

  // Determine if we're within a context where we know that the lambda will
  // be dependent, because there are template parameters in scope.
  bool KnownDependent;
  if (LSI->NumExplicitTemplateParams > 0) {
    auto *TemplateParamScope = CurScope->getTemplateParamParent();
    assert(TemplateParamScope &&
           "Lambda with explicit template param list should establish a "
           "template param scope");
    assert(TemplateParamScope->getParent());
    KnownDependent = TemplateParamScope->getParent()
                                       ->getTemplateParamParent() != nullptr;
  } else {
    KnownDependent = CurScope->getTemplateParamParent() != nullptr;
  }

  // Determine the signature of the call operator.
  TypeSourceInfo *MethodTyInfo;
  bool ExplicitParams = true;
  bool ExplicitResultType = true;
  bool ContainsUnexpandedParameterPack = false;
  SourceLocation EndLoc;
  SmallVector<ParmVarDecl *, 8> Params;
  if (ParamInfo.getNumTypeObjects() == 0) {
    // C++11 [expr.prim.lambda]p4:
    //   If a lambda-expression does not include a lambda-declarator, it is as
    //   if the lambda-declarator were ().
    FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
        /*IsVariadic=*/false, /*IsCXXMethod=*/true));
    EPI.HasTrailingReturn = true;
    EPI.TypeQuals.addConst();
    LangAS AS = getDefaultCXXMethodAddrSpace();
    if (AS != LangAS::Default)
      EPI.TypeQuals.addAddressSpace(AS);

    // C++1y [expr.prim.lambda]:
    //   The lambda return type is 'auto', which is replaced by the
    //   trailing-return type if provided and/or deduced from 'return'
    //   statements
    // We don't do this before C++1y, because we don't support deduced return
    // types there.
    QualType DefaultTypeForNoTrailingReturn =
        getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
                                  : Context.DependentTy;
    QualType MethodTy =
        Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
    MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
    ExplicitParams = false;
    ExplicitResultType = false;
    EndLoc = Intro.Range.getEnd();
  } else {
    assert(ParamInfo.isFunctionDeclarator() &&
           "lambda-declarator is a function");
    DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();

    // C++11 [expr.prim.lambda]p5:
    //   This function call operator is declared const (9.3.1) if and only if
    //   the lambda-expression's parameter-declaration-clause is not followed
    //   by mutable. It is neither virtual nor declared volatile. [...]
    if (!FTI.hasMutableQualifier()) {
      FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
                                                    SourceLocation());
    }

    MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
    assert(MethodTyInfo && "no type from lambda-declarator");
    EndLoc = ParamInfo.getSourceRange().getEnd();

    ExplicitResultType = FTI.hasTrailingReturnType();

    if (FTIHasNonVoidParameters(FTI)) {
      Params.reserve(FTI.NumParams);
      for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
        Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
    }

    // Check for unexpanded parameter packs in the method type.
    if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
      DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
                                      UPPC_DeclarationType);
  }

  CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
                                                 KnownDependent, Intro.Default);
  CXXMethodDecl *Method =
      startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
                            ParamInfo.getDeclSpec().getConstexprSpecifier(),
                            ParamInfo.getTrailingRequiresClause());
  if (ExplicitParams)
    CheckCXXDefaultArguments(Method);

  // This represents the function body for the lambda function, check if we
  // have to apply optnone due to a pragma.
  AddRangeBasedOptnone(Method);

  // code_seg attribute on lambda apply to the method.
  if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
    Method->addAttr(A);

  // Attributes on the lambda apply to the method.
  ProcessDeclAttributes(CurScope, Method, ParamInfo);

  // CUDA lambdas get implicit attributes based on the scope in which they're
  // declared.
  if (getLangOpts().CUDA)
    CUDASetLambdaAttrs(Method);

  // Number the lambda for linkage purposes if necessary.
  handleLambdaNumbering(Class, Method);

  // Introduce the function call operator as the current declaration context.
  PushDeclContext(CurScope, Method);

  // Build the lambda scope.
  buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
                   ExplicitParams, ExplicitResultType, !Method->isConst());

  // C++11 [expr.prim.lambda]p9:
  //   A lambda-expression whose smallest enclosing scope is a block scope is a
  //   local lambda expression; any other lambda expression shall not have a
  //   capture-default or simple-capture in its lambda-introducer.
  //
  // For simple-captures, this is covered by the check below that any named
  // entity is a variable that can be captured.
  //
  // For DR1632, we also allow a capture-default in any context where we can
  // odr-use 'this' (in particular, in a default initializer for a non-static
  // data member).
  if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
      (getCurrentThisType().isNull() ||
       CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
                           /*BuildAndDiagnose*/false)))
    Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);

  // Distinct capture names, for diagnostics.
  llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;

  // Handle explicit captures.
  SourceLocation PrevCaptureLoc
    = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
  for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
       PrevCaptureLoc = C->Loc, ++C) {
    if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
      if (C->Kind == LCK_StarThis)
        Diag(C->Loc, !getLangOpts().CPlusPlus17
                             ? diag::ext_star_this_lambda_capture_cxx17
                             : diag::warn_cxx14_compat_star_this_lambda_capture);

      // C++11 [expr.prim.lambda]p8:
      //   An identifier or this shall not appear more than once in a
      //   lambda-capture.
      if (LSI->isCXXThisCaptured()) {
        Diag(C->Loc, diag::err_capture_more_than_once)
            << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
            << FixItHint::CreateRemoval(
                   SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
        continue;
      }

      // C++2a [expr.prim.lambda]p8:
      //  If a lambda-capture includes a capture-default that is =,
      //  each simple-capture of that lambda-capture shall be of the form
      //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
      //  redundant but accepted for compatibility with ISO C++14. --end note ]
      if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
        Diag(C->Loc, !getLangOpts().CPlusPlus2a
                         ? diag::ext_equals_this_lambda_capture_cxx2a
                         : diag::warn_cxx17_compat_equals_this_lambda_capture);

      // C++11 [expr.prim.lambda]p12:
      //   If this is captured by a local lambda expression, its nearest
      //   enclosing function shall be a non-static member function.
      QualType ThisCaptureType = getCurrentThisType();
      if (ThisCaptureType.isNull()) {
        Diag(C->Loc, diag::err_this_capture) << true;
        continue;
      }

      CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
                          /*FunctionScopeIndexToStopAtPtr*/ nullptr,
                          C->Kind == LCK_StarThis);
      if (!LSI->Captures.empty())
        LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
      continue;
    }

    assert(C->Id && "missing identifier for capture");

    if (C->Init.isInvalid())
      continue;

    VarDecl *Var = nullptr;
    if (C->Init.isUsable()) {
      Diag(C->Loc, getLangOpts().CPlusPlus14
                       ? diag::warn_cxx11_compat_init_capture
                       : diag::ext_init_capture);

      // If the initializer expression is usable, but the InitCaptureType
      // is not, then an error has occurred - so ignore the capture for now.
      // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
      // FIXME: we should create the init capture variable and mark it invalid
      // in this case.
      if (C->InitCaptureType.get().isNull())
        continue;

      if (C->Init.get()->containsUnexpandedParameterPack() &&
          !C->InitCaptureType.get()->getAs<PackExpansionType>())
        DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);

      unsigned InitStyle;
      switch (C->InitKind) {
      case LambdaCaptureInitKind::NoInit:
        llvm_unreachable("not an init-capture?");
      case LambdaCaptureInitKind::CopyInit:
        InitStyle = VarDecl::CInit;
        break;
      case LambdaCaptureInitKind::DirectInit:
        InitStyle = VarDecl::CallInit;
        break;
      case LambdaCaptureInitKind::ListInit:
        InitStyle = VarDecl::ListInit;
        break;
      }
      Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
                                           C->EllipsisLoc, C->Id, InitStyle,
                                           C->Init.get());
      // C++1y [expr.prim.lambda]p11:
      //   An init-capture behaves as if it declares and explicitly
      //   captures a variable [...] whose declarative region is the
      //   lambda-expression's compound-statement
      if (Var)
        PushOnScopeChains(Var, CurScope, false);
    } else {
      assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
             "init capture has valid but null init?");

      // C++11 [expr.prim.lambda]p8:
      //   If a lambda-capture includes a capture-default that is &, the
      //   identifiers in the lambda-capture shall not be preceded by &.
      //   If a lambda-capture includes a capture-default that is =, [...]
      //   each identifier it contains shall be preceded by &.
      if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
        Diag(C->Loc, diag::err_reference_capture_with_reference_default)
            << FixItHint::CreateRemoval(
                SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
        continue;
      } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
        Diag(C->Loc, diag::err_copy_capture_with_copy_default)
            << FixItHint::CreateRemoval(
                SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
        continue;
      }

      // C++11 [expr.prim.lambda]p10:
      //   The identifiers in a capture-list are looked up using the usual
      //   rules for unqualified name lookup (3.4.1)
      DeclarationNameInfo Name(C->Id, C->Loc);
      LookupResult R(*this, Name, LookupOrdinaryName);
      LookupName(R, CurScope);
      if (R.isAmbiguous())
        continue;
      if (R.empty()) {
        // FIXME: Disable corrections that would add qualification?
        CXXScopeSpec ScopeSpec;
        DeclFilterCCC<VarDecl> Validator{};
        if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
          continue;
      }

      Var = R.getAsSingle<VarDecl>();
      if (Var && DiagnoseUseOfDecl(Var, C->Loc))
        continue;
    }

    // C++11 [expr.prim.lambda]p8:
    //   An identifier or this shall not appear more than once in a
    //   lambda-capture.
    if (!CaptureNames.insert(C->Id).second) {
      if (Var && LSI->isCaptured(Var)) {
        Diag(C->Loc, diag::err_capture_more_than_once)
            << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
            << FixItHint::CreateRemoval(
                   SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
      } else
        // Previous capture captured something different (one or both was
        // an init-cpature): no fixit.
        Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
      continue;
    }

    // C++11 [expr.prim.lambda]p10:
    //   [...] each such lookup shall find a variable with automatic storage
    //   duration declared in the reaching scope of the local lambda expression.
    // Note that the 'reaching scope' check happens in tryCaptureVariable().
    if (!Var) {
      Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
      continue;
    }

    // Ignore invalid decls; they'll just confuse the code later.
    if (Var->isInvalidDecl())
      continue;

    if (!Var->hasLocalStorage()) {
      Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
      Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
      continue;
    }

    // C++11 [expr.prim.lambda]p23:
    //   A capture followed by an ellipsis is a pack expansion (14.5.3).
    SourceLocation EllipsisLoc;
    if (C->EllipsisLoc.isValid()) {
      if (Var->isParameterPack()) {
        EllipsisLoc = C->EllipsisLoc;
      } else {
        Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
            << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
                                   : SourceRange(C->Loc));

        // Just ignore the ellipsis.
      }
    } else if (Var->isParameterPack()) {
      ContainsUnexpandedParameterPack = true;
    }

    if (C->Init.isUsable()) {
      addInitCapture(LSI, Var);
    } else {
      TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
                                                   TryCapture_ExplicitByVal;
      tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
    }
    if (!LSI->Captures.empty())
      LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
  }
  finishLambdaExplicitCaptures(LSI);

  LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;

  // Add lambda parameters into scope.
  addLambdaParameters(Intro.Captures, Method, CurScope);

  // Enter a new evaluation context to insulate the lambda from any
  // cleanups from the enclosing full-expression.
  PushExpressionEvaluationContext(
      ExpressionEvaluationContext::PotentiallyEvaluated);
}

void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
                            bool IsInstantiation) {
  LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());

  // Leave the expression-evaluation context.
  DiscardCleanupsInEvaluationContext();
  PopExpressionEvaluationContext();

  // Leave the context of the lambda.
  if (!IsInstantiation)
    PopDeclContext();

  // Finalize the lambda.
  CXXRecordDecl *Class = LSI->Lambda;
  Class->setInvalidDecl();
  SmallVector<Decl*, 4> Fields(Class->fields());
  ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
              SourceLocation(), ParsedAttributesView());
  CheckCompletedCXXClass(nullptr, Class);

  PopFunctionScopeInfo();
}

QualType Sema::getLambdaConversionFunctionResultType(
    const FunctionProtoType *CallOpProto) {
  // The function type inside the pointer type is the same as the call
  // operator with some tweaks. The calling convention is the default free
  // function convention, and the type qualifications are lost.
  const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
      CallOpProto->getExtProtoInfo();
  FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
  CallingConv CC = Context.getDefaultCallingConvention(
      CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
  InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
  InvokerExtInfo.TypeQuals = Qualifiers();
  assert(InvokerExtInfo.RefQualifier == RQ_None &&
      "Lambda's call operator should not have a reference qualifier");
  return Context.getFunctionType(CallOpProto->getReturnType(),
                                 CallOpProto->getParamTypes(), InvokerExtInfo);
}

/// Add a lambda's conversion to function pointer, as described in
/// C++11 [expr.prim.lambda]p6.
static void addFunctionPointerConversion(Sema &S,
                                         SourceRange IntroducerRange,
                                         CXXRecordDecl *Class,
                                         CXXMethodDecl *CallOperator) {
  // This conversion is explicitly disabled if the lambda's function has
  // pass_object_size attributes on any of its parameters.
  auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
    return P->hasAttr<PassObjectSizeAttr>();
  };
  if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
    return;

  // Add the conversion to function pointer.
  QualType InvokerFunctionTy = S.getLambdaConversionFunctionResultType(
      CallOperator->getType()->castAs<FunctionProtoType>());
  QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);

  // Create the type of the conversion function.
  FunctionProtoType::ExtProtoInfo ConvExtInfo(
      S.Context.getDefaultCallingConvention(
      /*IsVariadic=*/false, /*IsCXXMethod=*/true));
  // The conversion function is always const and noexcept.
  ConvExtInfo.TypeQuals = Qualifiers();
  ConvExtInfo.TypeQuals.addConst();
  ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
  QualType ConvTy =
      S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);

  SourceLocation Loc = IntroducerRange.getBegin();
  DeclarationName ConversionName
    = S.Context.DeclarationNames.getCXXConversionFunctionName(
        S.Context.getCanonicalType(PtrToFunctionTy));
  DeclarationNameLoc ConvNameLoc;
  // Construct a TypeSourceInfo for the conversion function, and wire
  // all the parameters appropriately for the FunctionProtoTypeLoc
  // so that everything works during transformation/instantiation of
  // generic lambdas.
  // The main reason for wiring up the parameters of the conversion
  // function with that of the call operator is so that constructs
  // like the following work:
  // auto L = [](auto b) {                <-- 1
  //   return [](auto a) -> decltype(a) { <-- 2
  //      return a;
  //   };
  // };
  // int (*fp)(int) = L(5);
  // Because the trailing return type can contain DeclRefExprs that refer
  // to the original call operator's variables, we hijack the call
  // operators ParmVarDecls below.
  TypeSourceInfo *ConvNamePtrToFunctionTSI =
      S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
  ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;

  // The conversion function is a conversion to a pointer-to-function.
  TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
  FunctionProtoTypeLoc ConvTL =
      ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
  // Get the result of the conversion function which is a pointer-to-function.
  PointerTypeLoc PtrToFunctionTL =
      ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
  // Do the same for the TypeSourceInfo that is used to name the conversion
  // operator.
  PointerTypeLoc ConvNamePtrToFunctionTL =
      ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();

  // Get the underlying function types that the conversion function will
  // be converting to (should match the type of the call operator).
  FunctionProtoTypeLoc CallOpConvTL =
      PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
  FunctionProtoTypeLoc CallOpConvNameTL =
    ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();

  // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
  // These parameter's are essentially used to transform the name and
  // the type of the conversion operator.  By using the same parameters
  // as the call operator's we don't have to fix any back references that
  // the trailing return type of the call operator's uses (such as
  // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
  // - we can simply use the return type of the call operator, and
  // everything should work.
  SmallVector<ParmVarDecl *, 4> InvokerParams;
  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
    ParmVarDecl *From = CallOperator->getParamDecl(I);

    InvokerParams.push_back(ParmVarDecl::Create(
        S.Context,
        // Temporarily add to the TU. This is set to the invoker below.
        S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
        From->getLocation(), From->getIdentifier(), From->getType(),
        From->getTypeSourceInfo(), From->getStorageClass(),
        /*DefArg=*/nullptr));
    CallOpConvTL.setParam(I, From);
    CallOpConvNameTL.setParam(I, From);
  }

  CXXConversionDecl *Conversion = CXXConversionDecl::Create(
      S.Context, Class, Loc,
      DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
      /*isInline=*/true, ExplicitSpecifier(),
      S.getLangOpts().CPlusPlus17 ? CSK_constexpr : CSK_unspecified,
      CallOperator->getBody()->getEndLoc());
  Conversion->setAccess(AS_public);
  Conversion->setImplicit(true);

  if (Class->isGenericLambda()) {
    // Create a template version of the conversion operator, using the template
    // parameter list of the function call operator.
    FunctionTemplateDecl *TemplateCallOperator =
            CallOperator->getDescribedFunctionTemplate();
    FunctionTemplateDecl *ConversionTemplate =
                  FunctionTemplateDecl::Create(S.Context, Class,
                                      Loc, ConversionName,
                                      TemplateCallOperator->getTemplateParameters(),
                                      Conversion);
    ConversionTemplate->setAccess(AS_public);
    ConversionTemplate->setImplicit(true);
    Conversion->setDescribedFunctionTemplate(ConversionTemplate);
    Class->addDecl(ConversionTemplate);
  } else
    Class->addDecl(Conversion);
  // Add a non-static member function that will be the result of
  // the conversion with a certain unique ID.
  DeclarationName InvokerName = &S.Context.Idents.get(
                                                 getLambdaStaticInvokerName());
  // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
  // we should get a prebuilt TrivialTypeSourceInfo from Context
  // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
  // then rewire the parameters accordingly, by hoisting up the InvokeParams
  // loop below and then use its Params to set Invoke->setParams(...) below.
  // This would avoid the 'const' qualifier of the calloperator from
  // contaminating the type of the invoker, which is currently adjusted
  // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
  // trailing return type of the invoker would require a visitor to rebuild
  // the trailing return type and adjusting all back DeclRefExpr's to refer
  // to the new static invoker parameters - not the call operator's.
  CXXMethodDecl *Invoke = CXXMethodDecl::Create(
      S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
      InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
      /*isInline=*/true, CSK_unspecified, CallOperator->getBody()->getEndLoc());
  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
    InvokerParams[I]->setOwningFunction(Invoke);
  Invoke->setParams(InvokerParams);
  Invoke->setAccess(AS_private);
  Invoke->setImplicit(true);
  if (Class->isGenericLambda()) {
    FunctionTemplateDecl *TemplateCallOperator =
            CallOperator->getDescribedFunctionTemplate();
    FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
                          S.Context, Class, Loc, InvokerName,
                          TemplateCallOperator->getTemplateParameters(),
                          Invoke);
    StaticInvokerTemplate->setAccess(AS_private);
    StaticInvokerTemplate->setImplicit(true);
    Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
    Class->addDecl(StaticInvokerTemplate);
  } else
    Class->addDecl(Invoke);
}

/// Add a lambda's conversion to block pointer.
static void addBlockPointerConversion(Sema &S,
                                      SourceRange IntroducerRange,
                                      CXXRecordDecl *Class,
                                      CXXMethodDecl *CallOperator) {
  QualType FunctionTy = S.getLambdaConversionFunctionResultType(
      CallOperator->getType()->castAs<FunctionProtoType>());
  QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);

  FunctionProtoType::ExtProtoInfo ConversionEPI(
      S.Context.getDefaultCallingConvention(
          /*IsVariadic=*/false, /*IsCXXMethod=*/true));
  ConversionEPI.TypeQuals = Qualifiers();
  ConversionEPI.TypeQuals.addConst();
  QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);

  SourceLocation Loc = IntroducerRange.getBegin();
  DeclarationName Name
    = S.Context.DeclarationNames.getCXXConversionFunctionName(
        S.Context.getCanonicalType(BlockPtrTy));
  DeclarationNameLoc NameLoc;
  NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
  CXXConversionDecl *Conversion = CXXConversionDecl::Create(
      S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
      S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
      /*isInline=*/true, ExplicitSpecifier(), CSK_unspecified,
      CallOperator->getBody()->getEndLoc());
  Conversion->setAccess(AS_public);
  Conversion->setImplicit(true);
  Class->addDecl(Conversion);
}

ExprResult Sema::BuildCaptureInit(const Capture &Cap,
                                  SourceLocation ImplicitCaptureLoc,
                                  bool IsOpenMPMapping) {
  // VLA captures don't have a stored initialization expression.
  if (Cap.isVLATypeCapture())
    return ExprResult();

  // An init-capture is initialized directly from its stored initializer.
  if (Cap.isInitCapture())
    return Cap.getVariable()->getInit();

  // For anything else, build an initialization expression. For an implicit
  // capture, the capture notionally happens at the capture-default, so use
  // that location here.
  SourceLocation Loc =
      ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();

  // C++11 [expr.prim.lambda]p21:
  //   When the lambda-expression is evaluated, the entities that
  //   are captured by copy are used to direct-initialize each
  //   corresponding non-static data member of the resulting closure
  //   object. (For array members, the array elements are
  //   direct-initialized in increasing subscript order.) These
  //   initializations are performed in the (unspecified) order in
  //   which the non-static data members are declared.

  // C++ [expr.prim.lambda]p12:
  //   An entity captured by a lambda-expression is odr-used (3.2) in
  //   the scope containing the lambda-expression.
  ExprResult Init;
  IdentifierInfo *Name = nullptr;
  if (Cap.isThisCapture()) {
    QualType ThisTy = getCurrentThisType();
    Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
    if (Cap.isCopyCapture())
      Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
    else
      Init = This;
  } else {
    assert(Cap.isVariableCapture() && "unknown kind of capture");
    VarDecl *Var = Cap.getVariable();
    Name = Var->getIdentifier();
    Init = BuildDeclarationNameExpr(
      CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
  }

  // In OpenMP, the capture kind doesn't actually describe how to capture:
  // variables are "mapped" onto the device in a process that does not formally
  // make a copy, even for a "copy capture".
  if (IsOpenMPMapping)
    return Init;

  if (Init.isInvalid())
    return ExprError();

  Expr *InitExpr = Init.get();
  InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
      Name, Cap.getCaptureType(), Loc);
  InitializationKind InitKind =
      InitializationKind::CreateDirect(Loc, Loc, Loc);
  InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
  return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
}

ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
                                 Scope *CurScope) {
  LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
  ActOnFinishFunctionBody(LSI.CallOperator, Body);
  return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
}

static LambdaCaptureDefault
mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
  switch (ICS) {
  case CapturingScopeInfo::ImpCap_None:
    return LCD_None;
  case CapturingScopeInfo::ImpCap_LambdaByval:
    return LCD_ByCopy;
  case CapturingScopeInfo::ImpCap_CapturedRegion:
  case CapturingScopeInfo::ImpCap_LambdaByref:
    return LCD_ByRef;
  case CapturingScopeInfo::ImpCap_Block:
    llvm_unreachable("block capture in lambda");
  }
  llvm_unreachable("Unknown implicit capture style");
}

bool Sema::CaptureHasSideEffects(const Capture &From) {
  if (From.isInitCapture()) {
    Expr *Init = From.getVariable()->getInit();
    if (Init && Init->HasSideEffects(Context))
      return true;
  }

  if (!From.isCopyCapture())
    return false;

  const QualType T = From.isThisCapture()
                         ? getCurrentThisType()->getPointeeType()
                         : From.getCaptureType();

  if (T.isVolatileQualified())
    return true;

  const Type *BaseT = T->getBaseElementTypeUnsafe();
  if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
    return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
           !RD->hasTrivialDestructor();

  return false;
}

bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
                                       const Capture &From) {
  if (CaptureHasSideEffects(From))
    return false;

  if (From.isVLATypeCapture())
    return false;

  auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
  if (From.isThisCapture())
    diag << "'this'";
  else
    diag << From.getVariable();
  diag << From.isNonODRUsed();
  diag << FixItHint::CreateRemoval(CaptureRange);
  return true;
}

/// Create a field within the lambda class or captured statement record for the
/// given capture.
FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
                                   const sema::Capture &Capture) {
  SourceLocation Loc = Capture.getLocation();
  QualType FieldType = Capture.getCaptureType();

  TypeSourceInfo *TSI = nullptr;
  if (Capture.isVariableCapture()) {
    auto *Var = Capture.getVariable();
    if (Var->isInitCapture())
      TSI = Capture.getVariable()->getTypeSourceInfo();
  }

  // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
  // appropriate, at least for an implicit capture.
  if (!TSI)
    TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);

  // Build the non-static data member.
  FieldDecl *Field =
      FieldDecl::Create(Context, RD, Loc, Loc, nullptr, FieldType, TSI, nullptr,
                        false, ICIS_NoInit);
  // If the variable being captured has an invalid type, mark the class as
  // invalid as well.
  if (!FieldType->isDependentType()) {
    if (RequireCompleteType(Loc, FieldType, diag::err_field_incomplete)) {
      RD->setInvalidDecl();
      Field->setInvalidDecl();
    } else {
      NamedDecl *Def;
      FieldType->isIncompleteType(&Def);
      if (Def && Def->isInvalidDecl()) {
        RD->setInvalidDecl();
        Field->setInvalidDecl();
      }
    }
  }
  Field->setImplicit(true);
  Field->setAccess(AS_private);
  RD->addDecl(Field);

  if (Capture.isVLATypeCapture())
    Field->setCapturedVLAType(Capture.getCapturedVLAType());

  return Field;
}

ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
                                 LambdaScopeInfo *LSI) {
  // Collect information from the lambda scope.
  SmallVector<LambdaCapture, 4> Captures;
  SmallVector<Expr *, 4> CaptureInits;
  SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
  LambdaCaptureDefault CaptureDefault =
      mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
  CXXRecordDecl *Class;
  CXXMethodDecl *CallOperator;
  SourceRange IntroducerRange;
  bool ExplicitParams;
  bool ExplicitResultType;
  CleanupInfo LambdaCleanup;
  bool ContainsUnexpandedParameterPack;
  bool IsGenericLambda;
  {
    CallOperator = LSI->CallOperator;
    Class = LSI->Lambda;
    IntroducerRange = LSI->IntroducerRange;
    ExplicitParams = LSI->ExplicitParams;
    ExplicitResultType = !LSI->HasImplicitReturnType;
    LambdaCleanup = LSI->Cleanup;
    ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
    IsGenericLambda = Class->isGenericLambda();

    CallOperator->setLexicalDeclContext(Class);
    Decl *TemplateOrNonTemplateCallOperatorDecl =
        CallOperator->getDescribedFunctionTemplate()
        ? CallOperator->getDescribedFunctionTemplate()
        : cast<Decl>(CallOperator);

    // FIXME: Is this really the best choice? Keeping the lexical decl context
    // set as CurContext seems more faithful to the source.
    TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);

    PopExpressionEvaluationContext();

    // True if the current capture has a used capture or default before it.
    bool CurHasPreviousCapture = CaptureDefault != LCD_None;
    SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
        CaptureDefaultLoc : IntroducerRange.getBegin();

    for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
      const Capture &From = LSI->Captures[I];

      if (From.isInvalid())
        return ExprError();

      assert(!From.isBlockCapture() && "Cannot capture __block variables");
      bool IsImplicit = I >= LSI->NumExplicitCaptures;
      SourceLocation ImplicitCaptureLoc =
          IsImplicit ? CaptureDefaultLoc : SourceLocation();

      // Use source ranges of explicit captures for fixits where available.
      SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];

      // Warn about unused explicit captures.
      bool IsCaptureUsed = true;
      if (!CurContext->isDependentContext() && !IsImplicit &&
          !From.isODRUsed()) {
        // Initialized captures that are non-ODR used may not be eliminated.
        // FIXME: Where did the IsGenericLambda here come from?
        bool NonODRUsedInitCapture =
            IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
        if (!NonODRUsedInitCapture) {
          bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
          SourceRange FixItRange;
          if (CaptureRange.isValid()) {
            if (!CurHasPreviousCapture && !IsLast) {
              // If there are no captures preceding this capture, remove the
              // following comma.
              FixItRange = SourceRange(CaptureRange.getBegin(),
                                       getLocForEndOfToken(CaptureRange.getEnd()));
            } else {
              // Otherwise, remove the comma since the last used capture.
              FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
                                       CaptureRange.getEnd());
            }
          }

          IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
        }
      }

      if (CaptureRange.isValid()) {
        CurHasPreviousCapture |= IsCaptureUsed;
        PrevCaptureLoc = CaptureRange.getEnd();
      }

      // Map the capture to our AST representation.
      LambdaCapture Capture = [&] {
        if (From.isThisCapture()) {
          // Capturing 'this' implicitly with a default of '[=]' is deprecated,
          // because it results in a reference capture. Don't warn prior to
          // C++2a; there's nothing that can be done about it before then.
          if (getLangOpts().CPlusPlus2a && IsImplicit &&
              CaptureDefault == LCD_ByCopy) {
            Diag(From.getLocation(), diag::warn_deprecated_this_capture);
            Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
                << FixItHint::CreateInsertion(
                       getLocForEndOfToken(CaptureDefaultLoc), ", this");
          }
          return LambdaCapture(From.getLocation(), IsImplicit,
                               From.isCopyCapture() ? LCK_StarThis : LCK_This);
        } else if (From.isVLATypeCapture()) {
          return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
        } else {
          assert(From.isVariableCapture() && "unknown kind of capture");
          VarDecl *Var = From.getVariable();
          LambdaCaptureKind Kind =
              From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
          return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
                               From.getEllipsisLoc());
        }
      }();

      // Form the initializer for the capture field.
      ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);

      // FIXME: Skip this capture if the capture is not used, the initializer
      // has no side-effects, the type of the capture is trivial, and the
      // lambda is not externally visible.

      // Add a FieldDecl for the capture and form its initializer.
      BuildCaptureField(Class, From);
      Captures.push_back(Capture);
      CaptureInits.push_back(Init.get());
    }

    // C++11 [expr.prim.lambda]p6:
    //   The closure type for a lambda-expression with no lambda-capture
    //   has a public non-virtual non-explicit const conversion function
    //   to pointer to function having the same parameter and return
    //   types as the closure type's function call operator.
    if (Captures.empty() && CaptureDefault == LCD_None)
      addFunctionPointerConversion(*this, IntroducerRange, Class,
                                   CallOperator);

    // Objective-C++:
    //   The closure type for a lambda-expression has a public non-virtual
    //   non-explicit const conversion function to a block pointer having the
    //   same parameter and return types as the closure type's function call
    //   operator.
    // FIXME: Fix generic lambda to block conversions.
    if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
      addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);

    // Finalize the lambda class.
    SmallVector<Decl*, 4> Fields(Class->fields());
    ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
                SourceLocation(), ParsedAttributesView());
    CheckCompletedCXXClass(nullptr, Class);
  }

  Cleanup.mergeFrom(LambdaCleanup);

  LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
                                          CaptureDefault, CaptureDefaultLoc,
                                          Captures,
                                          ExplicitParams, ExplicitResultType,
                                          CaptureInits, EndLoc,
                                          ContainsUnexpandedParameterPack);
  // If the lambda expression's call operator is not explicitly marked constexpr
  // and we are not in a dependent context, analyze the call operator to infer
  // its constexpr-ness, suppressing diagnostics while doing so.
  if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
      !CallOperator->isConstexpr() &&
      !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
      !Class->getDeclContext()->isDependentContext()) {
    CallOperator->setConstexprKind(
        CheckConstexprFunctionDefinition(CallOperator,
                                         CheckConstexprKind::CheckValid)
            ? CSK_constexpr
            : CSK_unspecified);
  }

  // Emit delayed shadowing warnings now that the full capture list is known.
  DiagnoseShadowingLambdaDecls(LSI);

  if (!CurContext->isDependentContext()) {
    switch (ExprEvalContexts.back().Context) {
    // C++11 [expr.prim.lambda]p2:
    //   A lambda-expression shall not appear in an unevaluated operand
    //   (Clause 5).
    case ExpressionEvaluationContext::Unevaluated:
    case ExpressionEvaluationContext::UnevaluatedList:
    case ExpressionEvaluationContext::UnevaluatedAbstract:
    // C++1y [expr.const]p2:
    //   A conditional-expression e is a core constant expression unless the
    //   evaluation of e, following the rules of the abstract machine, would
    //   evaluate [...] a lambda-expression.
    //
    // This is technically incorrect, there are some constant evaluated contexts
    // where this should be allowed.  We should probably fix this when DR1607 is
    // ratified, it lays out the exact set of conditions where we shouldn't
    // allow a lambda-expression.
    case ExpressionEvaluationContext::ConstantEvaluated:
      // We don't actually diagnose this case immediately, because we
      // could be within a context where we might find out later that
      // the expression is potentially evaluated (e.g., for typeid).
      ExprEvalContexts.back().Lambdas.push_back(Lambda);
      break;

    case ExpressionEvaluationContext::DiscardedStatement:
    case ExpressionEvaluationContext::PotentiallyEvaluated:
    case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
      break;
    }
  }

  return MaybeBindToTemporary(Lambda);
}

ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
                                               SourceLocation ConvLocation,
                                               CXXConversionDecl *Conv,
                                               Expr *Src) {
  // Make sure that the lambda call operator is marked used.
  CXXRecordDecl *Lambda = Conv->getParent();
  CXXMethodDecl *CallOperator
    = cast<CXXMethodDecl>(
        Lambda->lookup(
          Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
  CallOperator->setReferenced();
  CallOperator->markUsed(Context);

  ExprResult Init = PerformCopyInitialization(
      InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
                                                 /*NRVO=*/false),
      CurrentLocation, Src);
  if (!Init.isInvalid())
    Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);

  if (Init.isInvalid())
    return ExprError();

  // Create the new block to be returned.
  BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);

  // Set the type information.
  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
  Block->setIsVariadic(CallOperator->isVariadic());
  Block->setBlockMissingReturnType(false);

  // Add parameters.
  SmallVector<ParmVarDecl *, 4> BlockParams;
  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
    ParmVarDecl *From = CallOperator->getParamDecl(I);
    BlockParams.push_back(ParmVarDecl::Create(
        Context, Block, From->getBeginLoc(), From->getLocation(),
        From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
        From->getStorageClass(),
        /*DefArg=*/nullptr));
  }
  Block->setParams(BlockParams);

  Block->setIsConversionFromLambda(true);

  // Add capture. The capture uses a fake variable, which doesn't correspond
  // to any actual memory location. However, the initializer copy-initializes
  // the lambda object.
  TypeSourceInfo *CapVarTSI =
      Context.getTrivialTypeSourceInfo(Src->getType());
  VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
                                    ConvLocation, nullptr,
                                    Src->getType(), CapVarTSI,
                                    SC_None);
  BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
                             /*nested=*/false, /*copy=*/Init.get());
  Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);

  // Add a fake function body to the block. IR generation is responsible
  // for filling in the actual body, which cannot be expressed as an AST.
  Block->setBody(new (Context) CompoundStmt(ConvLocation));

  // Create the block literal expression.
  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
  ExprCleanupObjects.push_back(Block);
  Cleanup.setExprNeedsCleanups(true);

  return BuildBlock;
}