SemaExprMember.cpp 73.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis member access expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/Overload.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"

using namespace clang;
using namespace sema;

typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;

/// Determines if the given class is provably not derived from all of
/// the prospective base classes.
static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
                                     const BaseSet &Bases) {
  auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
    return !Bases.count(Base->getCanonicalDecl());
  };
  return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
}

enum IMAKind {
  /// The reference is definitely not an instance member access.
  IMA_Static,

  /// The reference may be an implicit instance member access.
  IMA_Mixed,

  /// The reference may be to an instance member, but it might be invalid if
  /// so, because the context is not an instance method.
  IMA_Mixed_StaticContext,

  /// The reference may be to an instance member, but it is invalid if
  /// so, because the context is from an unrelated class.
  IMA_Mixed_Unrelated,

  /// The reference is definitely an implicit instance member access.
  IMA_Instance,

  /// The reference may be to an unresolved using declaration.
  IMA_Unresolved,

  /// The reference is a contextually-permitted abstract member reference.
  IMA_Abstract,

  /// The reference may be to an unresolved using declaration and the
  /// context is not an instance method.
  IMA_Unresolved_StaticContext,

  // The reference refers to a field which is not a member of the containing
  // class, which is allowed because we're in C++11 mode and the context is
  // unevaluated.
  IMA_Field_Uneval_Context,

  /// All possible referrents are instance members and the current
  /// context is not an instance method.
  IMA_Error_StaticContext,

  /// All possible referrents are instance members of an unrelated
  /// class.
  IMA_Error_Unrelated
};

/// The given lookup names class member(s) and is not being used for
/// an address-of-member expression.  Classify the type of access
/// according to whether it's possible that this reference names an
/// instance member.  This is best-effort in dependent contexts; it is okay to
/// conservatively answer "yes", in which case some errors will simply
/// not be caught until template-instantiation.
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
                                            const LookupResult &R) {
  assert(!R.empty() && (*R.begin())->isCXXClassMember());

  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();

  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());

  if (R.isUnresolvableResult())
    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;

  // Collect all the declaring classes of instance members we find.
  bool hasNonInstance = false;
  bool isField = false;
  BaseSet Classes;
  for (NamedDecl *D : R) {
    // Look through any using decls.
    D = D->getUnderlyingDecl();

    if (D->isCXXInstanceMember()) {
      isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
                 isa<IndirectFieldDecl>(D);

      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
      Classes.insert(R->getCanonicalDecl());
    } else
      hasNonInstance = true;
  }

  // If we didn't find any instance members, it can't be an implicit
  // member reference.
  if (Classes.empty())
    return IMA_Static;

  // C++11 [expr.prim.general]p12:
  //   An id-expression that denotes a non-static data member or non-static
  //   member function of a class can only be used:
  //   (...)
  //   - if that id-expression denotes a non-static data member and it
  //     appears in an unevaluated operand.
  //
  // This rule is specific to C++11.  However, we also permit this form
  // in unevaluated inline assembly operands, like the operand to a SIZE.
  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
  assert(!AbstractInstanceResult);
  switch (SemaRef.ExprEvalContexts.back().Context) {
  case Sema::ExpressionEvaluationContext::Unevaluated:
  case Sema::ExpressionEvaluationContext::UnevaluatedList:
    if (isField && SemaRef.getLangOpts().CPlusPlus11)
      AbstractInstanceResult = IMA_Field_Uneval_Context;
    break;

  case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
    AbstractInstanceResult = IMA_Abstract;
    break;

  case Sema::ExpressionEvaluationContext::DiscardedStatement:
  case Sema::ExpressionEvaluationContext::ConstantEvaluated:
  case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
  case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
    break;
  }

  // If the current context is not an instance method, it can't be
  // an implicit member reference.
  if (isStaticContext) {
    if (hasNonInstance)
      return IMA_Mixed_StaticContext;

    return AbstractInstanceResult ? AbstractInstanceResult
                                  : IMA_Error_StaticContext;
  }

  CXXRecordDecl *contextClass;
  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
    contextClass = MD->getParent()->getCanonicalDecl();
  else
    contextClass = cast<CXXRecordDecl>(DC);

  // [class.mfct.non-static]p3:
  // ...is used in the body of a non-static member function of class X,
  // if name lookup (3.4.1) resolves the name in the id-expression to a
  // non-static non-type member of some class C [...]
  // ...if C is not X or a base class of X, the class member access expression
  // is ill-formed.
  if (R.getNamingClass() &&
      contextClass->getCanonicalDecl() !=
        R.getNamingClass()->getCanonicalDecl()) {
    // If the naming class is not the current context, this was a qualified
    // member name lookup, and it's sufficient to check that we have the naming
    // class as a base class.
    Classes.clear();
    Classes.insert(R.getNamingClass()->getCanonicalDecl());
  }

  // If we can prove that the current context is unrelated to all the
  // declaring classes, it can't be an implicit member reference (in
  // which case it's an error if any of those members are selected).
  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
    return hasNonInstance ? IMA_Mixed_Unrelated :
           AbstractInstanceResult ? AbstractInstanceResult :
                                    IMA_Error_Unrelated;

  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
}

/// Diagnose a reference to a field with no object available.
static void diagnoseInstanceReference(Sema &SemaRef,
                                      const CXXScopeSpec &SS,
                                      NamedDecl *Rep,
                                      const DeclarationNameInfo &nameInfo) {
  SourceLocation Loc = nameInfo.getLoc();
  SourceRange Range(Loc);
  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());

  // Look through using shadow decls and aliases.
  Rep = Rep->getUnderlyingDecl();

  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());

  bool InStaticMethod = Method && Method->isStatic();
  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);

  if (IsField && InStaticMethod)
    // "invalid use of member 'x' in static member function"
    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
        << Range << nameInfo.getName();
  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
    // Unqualified lookup in a non-static member function found a member of an
    // enclosing class.
    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
  else if (IsField)
    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
      << nameInfo.getName() << Range;
  else
    SemaRef.Diag(Loc, diag::err_member_call_without_object)
      << Range;
}

/// Builds an expression which might be an implicit member expression.
ExprResult
Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
                                      SourceLocation TemplateKWLoc,
                                      LookupResult &R,
                                const TemplateArgumentListInfo *TemplateArgs,
                                      const Scope *S) {
  switch (ClassifyImplicitMemberAccess(*this, R)) {
  case IMA_Instance:
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);

  case IMA_Mixed:
  case IMA_Mixed_Unrelated:
  case IMA_Unresolved:
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
                                   S);

  case IMA_Field_Uneval_Context:
    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
      << R.getLookupNameInfo().getName();
    LLVM_FALLTHROUGH;
  case IMA_Static:
  case IMA_Abstract:
  case IMA_Mixed_StaticContext:
  case IMA_Unresolved_StaticContext:
    if (TemplateArgs || TemplateKWLoc.isValid())
      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
    return BuildDeclarationNameExpr(SS, R, false);

  case IMA_Error_StaticContext:
  case IMA_Error_Unrelated:
    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
                              R.getLookupNameInfo());
    return ExprError();
  }

  llvm_unreachable("unexpected instance member access kind");
}

/// Determine whether input char is from rgba component set.
static bool
IsRGBA(char c) {
  switch (c) {
  case 'r':
  case 'g':
  case 'b':
  case 'a':
    return true;
  default:
    return false;
  }
}

// OpenCL v1.1, s6.1.7
// The component swizzle length must be in accordance with the acceptable
// vector sizes.
static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
{
  return (len >= 1 && len <= 4) || len == 8 || len == 16;
}

/// Check an ext-vector component access expression.
///
/// VK should be set in advance to the value kind of the base
/// expression.
static QualType
CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
                        SourceLocation OpLoc, const IdentifierInfo *CompName,
                        SourceLocation CompLoc) {
  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
  // see FIXME there.
  //
  // FIXME: This logic can be greatly simplified by splitting it along
  // halving/not halving and reworking the component checking.
  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();

  // The vector accessor can't exceed the number of elements.
  const char *compStr = CompName->getNameStart();

  // This flag determines whether or not the component is one of the four
  // special names that indicate a subset of exactly half the elements are
  // to be selected.
  bool HalvingSwizzle = false;

  // This flag determines whether or not CompName has an 's' char prefix,
  // indicating that it is a string of hex values to be used as vector indices.
  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];

  bool HasRepeated = false;
  bool HasIndex[16] = {};

  int Idx;

  // Check that we've found one of the special components, or that the component
  // names must come from the same set.
  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
    HalvingSwizzle = true;
  } else if (!HexSwizzle &&
             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
    bool HasRGBA = IsRGBA(*compStr);
    do {
      // Ensure that xyzw and rgba components don't intermingle.
      if (HasRGBA != IsRGBA(*compStr))
        break;
      if (HasIndex[Idx]) HasRepeated = true;
      HasIndex[Idx] = true;
      compStr++;
    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);

    // Emit a warning if an rgba selector is used earlier than OpenCL 2.2
    if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
      if (S.getLangOpts().OpenCL && S.getLangOpts().OpenCLVersion < 220) {
        const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
        S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
          << StringRef(DiagBegin, 1)
          << S.getLangOpts().OpenCLVersion << SourceRange(CompLoc);
      }
    }
  } else {
    if (HexSwizzle) compStr++;
    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
      if (HasIndex[Idx]) HasRepeated = true;
      HasIndex[Idx] = true;
      compStr++;
    }
  }

  if (!HalvingSwizzle && *compStr) {
    // We didn't get to the end of the string. This means the component names
    // didn't come from the same set *or* we encountered an illegal name.
    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
      << StringRef(compStr, 1) << SourceRange(CompLoc);
    return QualType();
  }

  // Ensure no component accessor exceeds the width of the vector type it
  // operates on.
  if (!HalvingSwizzle) {
    compStr = CompName->getNameStart();

    if (HexSwizzle)
      compStr++;

    while (*compStr) {
      if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
          << baseType << SourceRange(CompLoc);
        return QualType();
      }
    }
  }

  // OpenCL mode requires swizzle length to be in accordance with accepted
  // sizes. Clang however supports arbitrary lengths for other languages.
  if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
    unsigned SwizzleLength = CompName->getLength();

    if (HexSwizzle)
      SwizzleLength--;

    if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
      S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
        << SwizzleLength << SourceRange(CompLoc);
      return QualType();
    }
  }

  // The component accessor looks fine - now we need to compute the actual type.
  // The vector type is implied by the component accessor. For example,
  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
                                     : CompName->getLength();
  if (HexSwizzle)
    CompSize--;

  if (CompSize == 1)
    return vecType->getElementType();

  if (HasRepeated) VK = VK_RValue;

  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
  // Now look up the TypeDefDecl from the vector type. Without this,
  // diagostics look bad. We want extended vector types to appear built-in.
  for (Sema::ExtVectorDeclsType::iterator
         I = S.ExtVectorDecls.begin(S.getExternalSource()),
         E = S.ExtVectorDecls.end();
       I != E; ++I) {
    if ((*I)->getUnderlyingType() == VT)
      return S.Context.getTypedefType(*I);
  }

  return VT; // should never get here (a typedef type should always be found).
}

static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
                                                IdentifierInfo *Member,
                                                const Selector &Sel,
                                                ASTContext &Context) {
  if (Member)
    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
            Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
      return PD;
  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
    return OMD;

  for (const auto *I : PDecl->protocols()) {
    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
                                                           Context))
      return D;
  }
  return nullptr;
}

static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
                                      IdentifierInfo *Member,
                                      const Selector &Sel,
                                      ASTContext &Context) {
  // Check protocols on qualified interfaces.
  Decl *GDecl = nullptr;
  for (const auto *I : QIdTy->quals()) {
    if (Member)
      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
              Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
        GDecl = PD;
        break;
      }
    // Also must look for a getter or setter name which uses property syntax.
    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
      GDecl = OMD;
      break;
    }
  }
  if (!GDecl) {
    for (const auto *I : QIdTy->quals()) {
      // Search in the protocol-qualifier list of current protocol.
      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
      if (GDecl)
        return GDecl;
    }
  }
  return GDecl;
}

ExprResult
Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
                               bool IsArrow, SourceLocation OpLoc,
                               const CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               const DeclarationNameInfo &NameInfo,
                               const TemplateArgumentListInfo *TemplateArgs) {
  // Even in dependent contexts, try to diagnose base expressions with
  // obviously wrong types, e.g.:
  //
  // T* t;
  // t.f;
  //
  // In Obj-C++, however, the above expression is valid, since it could be
  // accessing the 'f' property if T is an Obj-C interface. The extra check
  // allows this, while still reporting an error if T is a struct pointer.
  if (!IsArrow) {
    const PointerType *PT = BaseType->getAs<PointerType>();
    if (PT && (!getLangOpts().ObjC ||
               PT->getPointeeType()->isRecordType())) {
      assert(BaseExpr && "cannot happen with implicit member accesses");
      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
      return ExprError();
    }
  }

  assert(BaseType->isDependentType() ||
         NameInfo.getName().isDependentName() ||
         isDependentScopeSpecifier(SS));

  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
  // must have pointer type, and the accessed type is the pointee.
  return CXXDependentScopeMemberExpr::Create(
      Context, BaseExpr, BaseType, IsArrow, OpLoc,
      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
      NameInfo, TemplateArgs);
}

/// We know that the given qualified member reference points only to
/// declarations which do not belong to the static type of the base
/// expression.  Diagnose the problem.
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
                                             Expr *BaseExpr,
                                             QualType BaseType,
                                             const CXXScopeSpec &SS,
                                             NamedDecl *rep,
                                       const DeclarationNameInfo &nameInfo) {
  // If this is an implicit member access, use a different set of
  // diagnostics.
  if (!BaseExpr)
    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);

  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
    << SS.getRange() << rep << BaseType;
}

// Check whether the declarations we found through a nested-name
// specifier in a member expression are actually members of the base
// type.  The restriction here is:
//
//   C++ [expr.ref]p2:
//     ... In these cases, the id-expression shall name a
//     member of the class or of one of its base classes.
//
// So it's perfectly legitimate for the nested-name specifier to name
// an unrelated class, and for us to find an overload set including
// decls from classes which are not superclasses, as long as the decl
// we actually pick through overload resolution is from a superclass.
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
                                         QualType BaseType,
                                         const CXXScopeSpec &SS,
                                         const LookupResult &R) {
  CXXRecordDecl *BaseRecord =
    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
  if (!BaseRecord) {
    // We can't check this yet because the base type is still
    // dependent.
    assert(BaseType->isDependentType());
    return false;
  }

  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    // If this is an implicit member reference and we find a
    // non-instance member, it's not an error.
    if (!BaseExpr && !(*I)->isCXXInstanceMember())
      return false;

    // Note that we use the DC of the decl, not the underlying decl.
    DeclContext *DC = (*I)->getDeclContext();
    while (DC->isTransparentContext())
      DC = DC->getParent();

    if (!DC->isRecord())
      continue;

    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
      return false;
  }

  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
                                   R.getRepresentativeDecl(),
                                   R.getLookupNameInfo());
  return true;
}

namespace {

// Callback to only accept typo corrections that are either a ValueDecl or a
// FunctionTemplateDecl and are declared in the current record or, for a C++
// classes, one of its base classes.
class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
public:
  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
      : Record(RTy->getDecl()) {
    // Don't add bare keywords to the consumer since they will always fail
    // validation by virtue of not being associated with any decls.
    WantTypeSpecifiers = false;
    WantExpressionKeywords = false;
    WantCXXNamedCasts = false;
    WantFunctionLikeCasts = false;
    WantRemainingKeywords = false;
  }

  bool ValidateCandidate(const TypoCorrection &candidate) override {
    NamedDecl *ND = candidate.getCorrectionDecl();
    // Don't accept candidates that cannot be member functions, constants,
    // variables, or templates.
    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
      return false;

    // Accept candidates that occur in the current record.
    if (Record->containsDecl(ND))
      return true;

    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
      // Accept candidates that occur in any of the current class' base classes.
      for (const auto &BS : RD->bases()) {
        if (const RecordType *BSTy =
                dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
          if (BSTy->getDecl()->containsDecl(ND))
            return true;
        }
      }
    }

    return false;
  }

  std::unique_ptr<CorrectionCandidateCallback> clone() override {
    return std::make_unique<RecordMemberExprValidatorCCC>(*this);
  }

private:
  const RecordDecl *const Record;
};

}

static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
                                     Expr *BaseExpr,
                                     const RecordType *RTy,
                                     SourceLocation OpLoc, bool IsArrow,
                                     CXXScopeSpec &SS, bool HasTemplateArgs,
                                     SourceLocation TemplateKWLoc,
                                     TypoExpr *&TE) {
  SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
  RecordDecl *RDecl = RTy->getDecl();
  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
                                  diag::err_typecheck_incomplete_tag,
                                  BaseRange))
    return true;

  if (HasTemplateArgs || TemplateKWLoc.isValid()) {
    // LookupTemplateName doesn't expect these both to exist simultaneously.
    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);

    bool MOUS;
    return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
                                      TemplateKWLoc);
  }

  DeclContext *DC = RDecl;
  if (SS.isSet()) {
    // If the member name was a qualified-id, look into the
    // nested-name-specifier.
    DC = SemaRef.computeDeclContext(SS, false);

    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
          << SS.getRange() << DC;
      return true;
    }

    assert(DC && "Cannot handle non-computable dependent contexts in lookup");

    if (!isa<TypeDecl>(DC)) {
      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
          << DC << SS.getRange();
      return true;
    }
  }

  // The record definition is complete, now look up the member.
  SemaRef.LookupQualifiedName(R, DC, SS);

  if (!R.empty())
    return false;

  DeclarationName Typo = R.getLookupName();
  SourceLocation TypoLoc = R.getNameLoc();

  struct QueryState {
    Sema &SemaRef;
    DeclarationNameInfo NameInfo;
    Sema::LookupNameKind LookupKind;
    Sema::RedeclarationKind Redecl;
  };
  QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
                  R.redeclarationKind()};
  RecordMemberExprValidatorCCC CCC(RTy);
  TE = SemaRef.CorrectTypoDelayed(
      R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
      [=, &SemaRef](const TypoCorrection &TC) {
        if (TC) {
          assert(!TC.isKeyword() &&
                 "Got a keyword as a correction for a member!");
          bool DroppedSpecifier =
              TC.WillReplaceSpecifier() &&
              Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
          SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
                                       << Typo << DC << DroppedSpecifier
                                       << SS.getRange());
        } else {
          SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
        }
      },
      [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
        LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
        R.clear(); // Ensure there's no decls lingering in the shared state.
        R.suppressDiagnostics();
        R.setLookupName(TC.getCorrection());
        for (NamedDecl *ND : TC)
          R.addDecl(ND);
        R.resolveKind();
        return SemaRef.BuildMemberReferenceExpr(
            BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
            nullptr, R, nullptr, nullptr);
      },
      Sema::CTK_ErrorRecovery, DC);

  return false;
}

static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
                                   ExprResult &BaseExpr, bool &IsArrow,
                                   SourceLocation OpLoc, CXXScopeSpec &SS,
                                   Decl *ObjCImpDecl, bool HasTemplateArgs,
                                   SourceLocation TemplateKWLoc);

ExprResult
Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
                               SourceLocation OpLoc, bool IsArrow,
                               CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               const DeclarationNameInfo &NameInfo,
                               const TemplateArgumentListInfo *TemplateArgs,
                               const Scope *S,
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
  if (BaseType->isDependentType() ||
      (SS.isSet() && isDependentScopeSpecifier(SS)))
    return ActOnDependentMemberExpr(Base, BaseType,
                                    IsArrow, OpLoc,
                                    SS, TemplateKWLoc, FirstQualifierInScope,
                                    NameInfo, TemplateArgs);

  LookupResult R(*this, NameInfo, LookupMemberName);

  // Implicit member accesses.
  if (!Base) {
    TypoExpr *TE = nullptr;
    QualType RecordTy = BaseType;
    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
    if (LookupMemberExprInRecord(
            *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
            SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
      return ExprError();
    if (TE)
      return TE;

  // Explicit member accesses.
  } else {
    ExprResult BaseResult = Base;
    ExprResult Result =
        LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
                         ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
                         TemplateArgs != nullptr, TemplateKWLoc);

    if (BaseResult.isInvalid())
      return ExprError();
    Base = BaseResult.get();

    if (Result.isInvalid())
      return ExprError();

    if (Result.get())
      return Result;

    // LookupMemberExpr can modify Base, and thus change BaseType
    BaseType = Base->getType();
  }

  return BuildMemberReferenceExpr(Base, BaseType,
                                  OpLoc, IsArrow, SS, TemplateKWLoc,
                                  FirstQualifierInScope, R, TemplateArgs, S,
                                  false, ExtraArgs);
}

ExprResult
Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
                                               SourceLocation loc,
                                               IndirectFieldDecl *indirectField,
                                               DeclAccessPair foundDecl,
                                               Expr *baseObjectExpr,
                                               SourceLocation opLoc) {
  // First, build the expression that refers to the base object.

  // Case 1:  the base of the indirect field is not a field.
  VarDecl *baseVariable = indirectField->getVarDecl();
  CXXScopeSpec EmptySS;
  if (baseVariable) {
    assert(baseVariable->getType()->isRecordType());

    // In principle we could have a member access expression that
    // accesses an anonymous struct/union that's a static member of
    // the base object's class.  However, under the current standard,
    // static data members cannot be anonymous structs or unions.
    // Supporting this is as easy as building a MemberExpr here.
    assert(!baseObjectExpr && "anonymous struct/union is static data member?");

    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);

    ExprResult result
      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
    if (result.isInvalid()) return ExprError();

    baseObjectExpr = result.get();
  }

  assert((baseVariable || baseObjectExpr) &&
         "referencing anonymous struct/union without a base variable or "
         "expression");

  // Build the implicit member references to the field of the
  // anonymous struct/union.
  Expr *result = baseObjectExpr;
  IndirectFieldDecl::chain_iterator
  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();

  // Case 2: the base of the indirect field is a field and the user
  // wrote a member expression.
  if (!baseVariable) {
    FieldDecl *field = cast<FieldDecl>(*FI);

    bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();

    // Make a nameInfo that properly uses the anonymous name.
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);

    // Build the first member access in the chain with full information.
    result =
        BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
                                SS, field, foundDecl, memberNameInfo)
            .get();
    if (!result)
      return ExprError();
  }

  // In all cases, we should now skip the first declaration in the chain.
  ++FI;

  while (FI != FEnd) {
    FieldDecl *field = cast<FieldDecl>(*FI++);

    // FIXME: these are somewhat meaningless
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    DeclAccessPair fakeFoundDecl =
        DeclAccessPair::make(field, field->getAccess());

    result =
        BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
                                (FI == FEnd ? SS : EmptySS), field,
                                fakeFoundDecl, memberNameInfo)
            .get();
  }

  return result;
}

static ExprResult
BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
                       const CXXScopeSpec &SS,
                       MSPropertyDecl *PD,
                       const DeclarationNameInfo &NameInfo) {
  // Property names are always simple identifiers and therefore never
  // require any interesting additional storage.
  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
                                           S.Context.PseudoObjectTy, VK_LValue,
                                           SS.getWithLocInContext(S.Context),
                                           NameInfo.getLoc());
}

MemberExpr *Sema::BuildMemberExpr(
    Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
    SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
    bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
    QualType Ty, ExprValueKind VK, ExprObjectKind OK,
    const TemplateArgumentListInfo *TemplateArgs) {
  NestedNameSpecifierLoc NNS =
      SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
  return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
                         FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
                         VK, OK, TemplateArgs);
}

MemberExpr *Sema::BuildMemberExpr(
    Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
    SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
    bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
    QualType Ty, ExprValueKind VK, ExprObjectKind OK,
    const TemplateArgumentListInfo *TemplateArgs) {
  assert((!IsArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
  MemberExpr *E =
      MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
                         Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
                         VK, OK, getNonOdrUseReasonInCurrentContext(Member));
  E->setHadMultipleCandidates(HadMultipleCandidates);
  MarkMemberReferenced(E);

  // C++ [except.spec]p17:
  //   An exception-specification is considered to be needed when:
  //   - in an expression the function is the unique lookup result or the
  //     selected member of a set of overloaded functions
  if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
      if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
        E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
    }
  }

  return E;
}

/// Determine if the given scope is within a function-try-block handler.
static bool IsInFnTryBlockHandler(const Scope *S) {
  // Walk the scope stack until finding a FnTryCatchScope, or leave the
  // function scope. If a FnTryCatchScope is found, check whether the TryScope
  // flag is set. If it is not, it's a function-try-block handler.
  for (; S != S->getFnParent(); S = S->getParent()) {
    if (S->getFlags() & Scope::FnTryCatchScope)
      return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
  }
  return false;
}

VarDecl *
Sema::getVarTemplateSpecialization(VarTemplateDecl *VarTempl,
                      const TemplateArgumentListInfo *TemplateArgs,
                      const DeclarationNameInfo &MemberNameInfo,
                      SourceLocation TemplateKWLoc) {
  if (!TemplateArgs) {
    diagnoseMissingTemplateArguments(TemplateName(VarTempl),
                                     MemberNameInfo.getBeginLoc());
    return nullptr;
  }

  DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
                                        MemberNameInfo.getLoc(), *TemplateArgs);
  if (VDecl.isInvalid())
    return nullptr;
  VarDecl *Var = cast<VarDecl>(VDecl.get());
  if (!Var->getTemplateSpecializationKind())
    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
                                       MemberNameInfo.getLoc());
  return Var;
}

ExprResult
Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
                               SourceLocation OpLoc, bool IsArrow,
                               const CXXScopeSpec &SS,
                               SourceLocation TemplateKWLoc,
                               NamedDecl *FirstQualifierInScope,
                               LookupResult &R,
                               const TemplateArgumentListInfo *TemplateArgs,
                               const Scope *S,
                               bool SuppressQualifierCheck,
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
  QualType BaseType = BaseExprType;
  if (IsArrow) {
    assert(BaseType->isPointerType());
    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
  }
  R.setBaseObjectType(BaseType);

  // C++1z [expr.ref]p2:
  //   For the first option (dot) the first expression shall be a glvalue [...]
  if (!IsArrow && BaseExpr && BaseExpr->isRValue()) {
    ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
    if (Converted.isInvalid())
      return ExprError();
    BaseExpr = Converted.get();
  }


  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
  DeclarationName MemberName = MemberNameInfo.getName();
  SourceLocation MemberLoc = MemberNameInfo.getLoc();

  if (R.isAmbiguous())
    return ExprError();

  // [except.handle]p10: Referring to any non-static member or base class of an
  // object in the handler for a function-try-block of a constructor or
  // destructor for that object results in undefined behavior.
  const auto *FD = getCurFunctionDecl();
  if (S && BaseExpr && FD &&
      (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
      isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
      IsInFnTryBlockHandler(S))
    Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
        << isa<CXXDestructorDecl>(FD);

  if (R.empty()) {
    // Rederive where we looked up.
    DeclContext *DC = (SS.isSet()
                       ? computeDeclContext(SS, false)
                       : BaseType->castAs<RecordType>()->getDecl());

    if (ExtraArgs) {
      ExprResult RetryExpr;
      if (!IsArrow && BaseExpr) {
        SFINAETrap Trap(*this, true);
        ParsedType ObjectType;
        bool MayBePseudoDestructor = false;
        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
                                                 OpLoc, tok::arrow, ObjectType,
                                                 MayBePseudoDestructor);
        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
          CXXScopeSpec TempSS(SS);
          RetryExpr = ActOnMemberAccessExpr(
              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
        }
        if (Trap.hasErrorOccurred())
          RetryExpr = ExprError();
      }
      if (RetryExpr.isUsable()) {
        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
        return RetryExpr;
      }
    }

    Diag(R.getNameLoc(), diag::err_no_member)
      << MemberName << DC
      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
    return ExprError();
  }

  // Diagnose lookups that find only declarations from a non-base
  // type.  This is possible for either qualified lookups (which may
  // have been qualified with an unrelated type) or implicit member
  // expressions (which were found with unqualified lookup and thus
  // may have come from an enclosing scope).  Note that it's okay for
  // lookup to find declarations from a non-base type as long as those
  // aren't the ones picked by overload resolution.
  if ((SS.isSet() || !BaseExpr ||
       (isa<CXXThisExpr>(BaseExpr) &&
        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
      !SuppressQualifierCheck &&
      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
    return ExprError();

  // Construct an unresolved result if we in fact got an unresolved
  // result.
  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
    // Suppress any lookup-related diagnostics; we'll do these when we
    // pick a member.
    R.suppressDiagnostics();

    UnresolvedMemberExpr *MemExpr
      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
                                     BaseExpr, BaseExprType,
                                     IsArrow, OpLoc,
                                     SS.getWithLocInContext(Context),
                                     TemplateKWLoc, MemberNameInfo,
                                     TemplateArgs, R.begin(), R.end());

    return MemExpr;
  }

  assert(R.isSingleResult());
  DeclAccessPair FoundDecl = R.begin().getPair();
  NamedDecl *MemberDecl = R.getFoundDecl();

  // FIXME: diagnose the presence of template arguments now.

  // If the decl being referenced had an error, return an error for this
  // sub-expr without emitting another error, in order to avoid cascading
  // error cases.
  if (MemberDecl->isInvalidDecl())
    return ExprError();

  // Handle the implicit-member-access case.
  if (!BaseExpr) {
    // If this is not an instance member, convert to a non-member access.
    if (!MemberDecl->isCXXInstanceMember()) {
      // If this is a variable template, get the instantiated variable
      // declaration corresponding to the supplied template arguments
      // (while emitting diagnostics as necessary) that will be referenced
      // by this expression.
      assert((!TemplateArgs || isa<VarTemplateDecl>(MemberDecl)) &&
             "How did we get template arguments here sans a variable template");
      if (isa<VarTemplateDecl>(MemberDecl)) {
        MemberDecl = getVarTemplateSpecialization(
            cast<VarTemplateDecl>(MemberDecl), TemplateArgs,
            R.getLookupNameInfo(), TemplateKWLoc);
        if (!MemberDecl)
          return ExprError();
      }
      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
                                      FoundDecl, TemplateArgs);
    }
    SourceLocation Loc = R.getNameLoc();
    if (SS.getRange().isValid())
      Loc = SS.getRange().getBegin();
    BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
  }

  // Check the use of this member.
  if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
    return ExprError();

  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
    return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
                                   MemberNameInfo);

  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
                                  MemberNameInfo);

  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
    // We may have found a field within an anonymous union or struct
    // (C++ [class.union]).
    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
                                                    FoundDecl, BaseExpr,
                                                    OpLoc);

  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
                           FoundDecl, /*HadMultipleCandidates=*/false,
                           MemberNameInfo, Var->getType().getNonReferenceType(),
                           VK_LValue, OK_Ordinary);
  }

  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    ExprValueKind valueKind;
    QualType type;
    if (MemberFn->isInstance()) {
      valueKind = VK_RValue;
      type = Context.BoundMemberTy;
    } else {
      valueKind = VK_LValue;
      type = MemberFn->getType();
    }

    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
                           MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
                           MemberNameInfo, type, valueKind, OK_Ordinary);
  }
  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");

  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
                           FoundDecl, /*HadMultipleCandidates=*/false,
                           MemberNameInfo, Enum->getType(), VK_RValue,
                           OK_Ordinary);
  }
  if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
    if (VarDecl *Var = getVarTemplateSpecialization(
            VarTempl, TemplateArgs, MemberNameInfo, TemplateKWLoc))
      return BuildMemberExpr(
          BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, FoundDecl,
          /*HadMultipleCandidates=*/false, MemberNameInfo,
          Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary);
    return ExprError();
  }

  // We found something that we didn't expect. Complain.
  if (isa<TypeDecl>(MemberDecl))
    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
      << MemberName << BaseType << int(IsArrow);
  else
    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
      << MemberName << BaseType << int(IsArrow);

  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
    << MemberName;
  R.suppressDiagnostics();
  return ExprError();
}

/// Given that normal member access failed on the given expression,
/// and given that the expression's type involves builtin-id or
/// builtin-Class, decide whether substituting in the redefinition
/// types would be profitable.  The redefinition type is whatever
/// this translation unit tried to typedef to id/Class;  we store
/// it to the side and then re-use it in places like this.
static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
  const ObjCObjectPointerType *opty
    = base.get()->getType()->getAs<ObjCObjectPointerType>();
  if (!opty) return false;

  const ObjCObjectType *ty = opty->getObjectType();

  QualType redef;
  if (ty->isObjCId()) {
    redef = S.Context.getObjCIdRedefinitionType();
  } else if (ty->isObjCClass()) {
    redef = S.Context.getObjCClassRedefinitionType();
  } else {
    return false;
  }

  // Do the substitution as long as the redefinition type isn't just a
  // possibly-qualified pointer to builtin-id or builtin-Class again.
  opty = redef->getAs<ObjCObjectPointerType>();
  if (opty && !opty->getObjectType()->getInterface())
    return false;

  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
  return true;
}

static bool isRecordType(QualType T) {
  return T->isRecordType();
}
static bool isPointerToRecordType(QualType T) {
  if (const PointerType *PT = T->getAs<PointerType>())
    return PT->getPointeeType()->isRecordType();
  return false;
}

/// Perform conversions on the LHS of a member access expression.
ExprResult
Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
  if (IsArrow && !Base->getType()->isFunctionType())
    return DefaultFunctionArrayLvalueConversion(Base);

  return CheckPlaceholderExpr(Base);
}

/// Look up the given member of the given non-type-dependent
/// expression.  This can return in one of two ways:
///  * If it returns a sentinel null-but-valid result, the caller will
///    assume that lookup was performed and the results written into
///    the provided structure.  It will take over from there.
///  * Otherwise, the returned expression will be produced in place of
///    an ordinary member expression.
///
/// The ObjCImpDecl bit is a gross hack that will need to be properly
/// fixed for ObjC++.
static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
                                   ExprResult &BaseExpr, bool &IsArrow,
                                   SourceLocation OpLoc, CXXScopeSpec &SS,
                                   Decl *ObjCImpDecl, bool HasTemplateArgs,
                                   SourceLocation TemplateKWLoc) {
  assert(BaseExpr.get() && "no base expression");

  // Perform default conversions.
  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
  if (BaseExpr.isInvalid())
    return ExprError();

  QualType BaseType = BaseExpr.get()->getType();
  assert(!BaseType->isDependentType());

  DeclarationName MemberName = R.getLookupName();
  SourceLocation MemberLoc = R.getNameLoc();

  // For later type-checking purposes, turn arrow accesses into dot
  // accesses.  The only access type we support that doesn't follow
  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
  // and those never use arrows, so this is unaffected.
  if (IsArrow) {
    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
      BaseType = Ptr->getPointeeType();
    else if (const ObjCObjectPointerType *Ptr
               = BaseType->getAs<ObjCObjectPointerType>())
      BaseType = Ptr->getPointeeType();
    else if (BaseType->isRecordType()) {
      // Recover from arrow accesses to records, e.g.:
      //   struct MyRecord foo;
      //   foo->bar
      // This is actually well-formed in C++ if MyRecord has an
      // overloaded operator->, but that should have been dealt with
      // by now--or a diagnostic message already issued if a problem
      // was encountered while looking for the overloaded operator->.
      if (!S.getLangOpts().CPlusPlus) {
        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
          << FixItHint::CreateReplacement(OpLoc, ".");
      }
      IsArrow = false;
    } else if (BaseType->isFunctionType()) {
      goto fail;
    } else {
      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
        << BaseType << BaseExpr.get()->getSourceRange();
      return ExprError();
    }
  }

  // Handle field access to simple records.
  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
    TypoExpr *TE = nullptr;
    if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
                                 HasTemplateArgs, TemplateKWLoc, TE))
      return ExprError();

    // Returning valid-but-null is how we indicate to the caller that
    // the lookup result was filled in. If typo correction was attempted and
    // failed, the lookup result will have been cleared--that combined with the
    // valid-but-null ExprResult will trigger the appropriate diagnostics.
    return ExprResult(TE);
  }

  // Handle ivar access to Objective-C objects.
  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
    if (!SS.isEmpty() && !SS.isInvalid()) {
      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
        << 1 << SS.getScopeRep()
        << FixItHint::CreateRemoval(SS.getRange());
      SS.clear();
    }

    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

    // There are three cases for the base type:
    //   - builtin id (qualified or unqualified)
    //   - builtin Class (qualified or unqualified)
    //   - an interface
    ObjCInterfaceDecl *IDecl = OTy->getInterface();
    if (!IDecl) {
      if (S.getLangOpts().ObjCAutoRefCount &&
          (OTy->isObjCId() || OTy->isObjCClass()))
        goto fail;
      // There's an implicit 'isa' ivar on all objects.
      // But we only actually find it this way on objects of type 'id',
      // apparently.
      if (OTy->isObjCId() && Member->isStr("isa"))
        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
                                           OpLoc, S.Context.getObjCClassType());
      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
      goto fail;
    }

    if (S.RequireCompleteType(OpLoc, BaseType,
                              diag::err_typecheck_incomplete_tag,
                              BaseExpr.get()))
      return ExprError();

    ObjCInterfaceDecl *ClassDeclared = nullptr;
    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);

    if (!IV) {
      // Attempt to correct for typos in ivar names.
      DeclFilterCCC<ObjCIvarDecl> Validator{};
      Validator.IsObjCIvarLookup = IsArrow;
      if (TypoCorrection Corrected = S.CorrectTypo(
              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
              Validator, Sema::CTK_ErrorRecovery, IDecl)) {
        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
        S.diagnoseTypo(
            Corrected,
            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
                << IDecl->getDeclName() << MemberName);

        // Figure out the class that declares the ivar.
        assert(!ClassDeclared);

        Decl *D = cast<Decl>(IV->getDeclContext());
        if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
          D = Category->getClassInterface();

        if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
          ClassDeclared = Implementation->getClassInterface();
        else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
          ClassDeclared = Interface;

        assert(ClassDeclared && "cannot query interface");
      } else {
        if (IsArrow &&
            IDecl->FindPropertyDeclaration(
                Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
          S.Diag(MemberLoc, diag::err_property_found_suggest)
              << Member << BaseExpr.get()->getType()
              << FixItHint::CreateReplacement(OpLoc, ".");
          return ExprError();
        }

        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
            << IDecl->getDeclName() << MemberName
            << BaseExpr.get()->getSourceRange();
        return ExprError();
      }
    }

    assert(ClassDeclared);

    // If the decl being referenced had an error, return an error for this
    // sub-expr without emitting another error, in order to avoid cascading
    // error cases.
    if (IV->isInvalidDecl())
      return ExprError();

    // Check whether we can reference this field.
    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
      return ExprError();
    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
        IV->getAccessControl() != ObjCIvarDecl::Package) {
      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
        ClassOfMethodDecl =  MD->getClassInterface();
      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
        // Case of a c-function declared inside an objc implementation.
        // FIXME: For a c-style function nested inside an objc implementation
        // class, there is no implementation context available, so we pass
        // down the context as argument to this routine. Ideally, this context
        // need be passed down in the AST node and somehow calculated from the
        // AST for a function decl.
        if (ObjCImplementationDecl *IMPD =
              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
          ClassOfMethodDecl = IMPD->getClassInterface();
        else if (ObjCCategoryImplDecl* CatImplClass =
                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
          ClassOfMethodDecl = CatImplClass->getClassInterface();
      }
      if (!S.getLangOpts().DebuggerSupport) {
        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
          if (!declaresSameEntity(ClassDeclared, IDecl) ||
              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
            S.Diag(MemberLoc, diag::err_private_ivar_access)
              << IV->getDeclName();
        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
          // @protected
          S.Diag(MemberLoc, diag::err_protected_ivar_access)
              << IV->getDeclName();
      }
    }
    bool warn = true;
    if (S.getLangOpts().ObjCWeak) {
      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
        if (UO->getOpcode() == UO_Deref)
          BaseExp = UO->getSubExpr()->IgnoreParenCasts();

      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
          S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
          warn = false;
        }
    }
    if (warn) {
      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
        ObjCMethodFamily MF = MD->getMethodFamily();
        warn = (MF != OMF_init && MF != OMF_dealloc &&
                MF != OMF_finalize &&
                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
      }
      if (warn)
        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
    }

    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
        IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
        IsArrow);

    if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
      if (!S.isUnevaluatedContext() &&
          !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
        S.getCurFunction()->recordUseOfWeak(Result);
    }

    return Result;
  }

  // Objective-C property access.
  const ObjCObjectPointerType *OPT;
  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
    if (!SS.isEmpty() && !SS.isInvalid()) {
      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
      SS.clear();
    }

    // This actually uses the base as an r-value.
    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
    if (BaseExpr.isInvalid())
      return ExprError();

    assert(S.Context.hasSameUnqualifiedType(BaseType,
                                            BaseExpr.get()->getType()));

    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

    const ObjCObjectType *OT = OPT->getObjectType();

    // id, with and without qualifiers.
    if (OT->isObjCId()) {
      // Check protocols on qualified interfaces.
      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
      if (Decl *PMDecl =
              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
          // Check the use of this declaration
          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
            return ExprError();

          return new (S.Context)
              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
        }

        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
          Selector SetterSel =
            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
                                                   S.PP.getSelectorTable(),
                                                   Member);
          ObjCMethodDecl *SMD = nullptr;
          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
                                                     /*Property id*/ nullptr,
                                                     SetterSel, S.Context))
            SMD = dyn_cast<ObjCMethodDecl>(SDecl);

          return new (S.Context)
              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
        }
      }
      // Use of id.member can only be for a property reference. Do not
      // use the 'id' redefinition in this case.
      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);

      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
                         << MemberName << BaseType);
    }

    // 'Class', unqualified only.
    if (OT->isObjCClass()) {
      // Only works in a method declaration (??!).
      ObjCMethodDecl *MD = S.getCurMethodDecl();
      if (!MD) {
        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                                  ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);

        goto fail;
      }

      // Also must look for a getter name which uses property syntax.
      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
      ObjCInterfaceDecl *IFace = MD->getClassInterface();
      if (!IFace)
        goto fail;

      ObjCMethodDecl *Getter;
      if ((Getter = IFace->lookupClassMethod(Sel))) {
        // Check the use of this method.
        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
          return ExprError();
      } else
        Getter = IFace->lookupPrivateMethod(Sel, false);
      // If we found a getter then this may be a valid dot-reference, we
      // will look for the matching setter, in case it is needed.
      Selector SetterSel =
        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
                                               S.PP.getSelectorTable(),
                                               Member);
      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
      if (!Setter) {
        // If this reference is in an @implementation, also check for 'private'
        // methods.
        Setter = IFace->lookupPrivateMethod(SetterSel, false);
      }

      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
        return ExprError();

      if (Getter || Setter) {
        return new (S.Context) ObjCPropertyRefExpr(
            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
            OK_ObjCProperty, MemberLoc, BaseExpr.get());
      }

      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);

      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
                         << MemberName << BaseType);
    }

    // Normal property access.
    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
                                       MemberLoc, SourceLocation(), QualType(),
                                       false);
  }

  // Handle 'field access' to vectors, such as 'V.xx'.
  if (BaseType->isExtVectorType()) {
    // FIXME: this expr should store IsArrow.
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    ExprValueKind VK;
    if (IsArrow)
      VK = VK_LValue;
    else {
      if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
        VK = POE->getSyntacticForm()->getValueKind();
      else
        VK = BaseExpr.get()->getValueKind();
    }

    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
                                           Member, MemberLoc);
    if (ret.isNull())
      return ExprError();
    Qualifiers BaseQ =
        S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
    ret = S.Context.getQualifiedType(ret, BaseQ);

    return new (S.Context)
        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
  }

  // Adjust builtin-sel to the appropriate redefinition type if that's
  // not just a pointer to builtin-sel again.
  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
    BaseExpr = S.ImpCastExprToType(
        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                            ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
  }

  // Failure cases.
 fail:

  // Recover from dot accesses to pointers, e.g.:
  //   type *foo;
  //   foo.bar
  // This is actually well-formed in two cases:
  //   - 'type' is an Objective C type
  //   - 'bar' is a pseudo-destructor name which happens to refer to
  //     the appropriate pointer type
  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
          << FixItHint::CreateReplacement(OpLoc, "->");

      // Recurse as an -> access.
      IsArrow = true;
      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                              ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
    }
  }

  // If the user is trying to apply -> or . to a function name, it's probably
  // because they forgot parentheses to call that function.
  if (S.tryToRecoverWithCall(
          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
          /*complain*/ false,
          IsArrow ? &isPointerToRecordType : &isRecordType)) {
    if (BaseExpr.isInvalid())
      return ExprError();
    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
                            ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
  }

  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;

  return ExprError();
}

/// The main callback when the parser finds something like
///   expression . [nested-name-specifier] identifier
///   expression -> [nested-name-specifier] identifier
/// where 'identifier' encompasses a fairly broad spectrum of
/// possibilities, including destructor and operator references.
///
/// \param OpKind either tok::arrow or tok::period
/// \param ObjCImpDecl the current Objective-C \@implementation
///   decl; this is an ugly hack around the fact that Objective-C
///   \@implementations aren't properly put in the context chain
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
                                       SourceLocation OpLoc,
                                       tok::TokenKind OpKind,
                                       CXXScopeSpec &SS,
                                       SourceLocation TemplateKWLoc,
                                       UnqualifiedId &Id,
                                       Decl *ObjCImpDecl) {
  if (SS.isSet() && SS.isInvalid())
    return ExprError();

  // Warn about the explicit constructor calls Microsoft extension.
  if (getLangOpts().MicrosoftExt &&
      Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
    Diag(Id.getSourceRange().getBegin(),
         diag::ext_ms_explicit_constructor_call);

  TemplateArgumentListInfo TemplateArgsBuffer;

  // Decompose the name into its component parts.
  DeclarationNameInfo NameInfo;
  const TemplateArgumentListInfo *TemplateArgs;
  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
                         NameInfo, TemplateArgs);

  DeclarationName Name = NameInfo.getName();
  bool IsArrow = (OpKind == tok::arrow);

  NamedDecl *FirstQualifierInScope
    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));

  // This is a postfix expression, so get rid of ParenListExprs.
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
  if (Result.isInvalid()) return ExprError();
  Base = Result.get();

  if (Base->getType()->isDependentType() || Name.isDependentName() ||
      isDependentScopeSpecifier(SS)) {
    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
                                    TemplateKWLoc, FirstQualifierInScope,
                                    NameInfo, TemplateArgs);
  }

  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
  ExprResult Res = BuildMemberReferenceExpr(
      Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
      FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);

  if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
    CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));

  return Res;
}

void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
  QualType ResultTy = E->getType();

  // Do not warn on member accesses to arrays since this returns an array
  // lvalue and does not actually dereference memory.
  if (isa<ArrayType>(ResultTy))
    return;

  if (E->isArrow()) {
    if (const auto *Ptr = dyn_cast<PointerType>(
            E->getBase()->getType().getDesugaredType(Context))) {
      if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
        ExprEvalContexts.back().PossibleDerefs.insert(E);
    }
  }
}

ExprResult
Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
                              SourceLocation OpLoc, const CXXScopeSpec &SS,
                              FieldDecl *Field, DeclAccessPair FoundDecl,
                              const DeclarationNameInfo &MemberNameInfo) {
  // x.a is an l-value if 'a' has a reference type. Otherwise:
  // x.a is an l-value/x-value/pr-value if the base is (and note
  //   that *x is always an l-value), except that if the base isn't
  //   an ordinary object then we must have an rvalue.
  ExprValueKind VK = VK_LValue;
  ExprObjectKind OK = OK_Ordinary;
  if (!IsArrow) {
    if (BaseExpr->getObjectKind() == OK_Ordinary)
      VK = BaseExpr->getValueKind();
    else
      VK = VK_RValue;
  }
  if (VK != VK_RValue && Field->isBitField())
    OK = OK_BitField;

  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
  QualType MemberType = Field->getType();
  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
    MemberType = Ref->getPointeeType();
    VK = VK_LValue;
  } else {
    QualType BaseType = BaseExpr->getType();
    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();

    Qualifiers BaseQuals = BaseType.getQualifiers();

    // GC attributes are never picked up by members.
    BaseQuals.removeObjCGCAttr();

    // CVR attributes from the base are picked up by members,
    // except that 'mutable' members don't pick up 'const'.
    if (Field->isMutable()) BaseQuals.removeConst();

    Qualifiers MemberQuals =
        Context.getCanonicalType(MemberType).getQualifiers();

    assert(!MemberQuals.hasAddressSpace());

    Qualifiers Combined = BaseQuals + MemberQuals;
    if (Combined != MemberQuals)
      MemberType = Context.getQualifiedType(MemberType, Combined);
  }

  auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
  if (!(CurMethod && CurMethod->isDefaulted()))
    UnusedPrivateFields.remove(Field);

  ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
                                                  FoundDecl, Field);
  if (Base.isInvalid())
    return ExprError();

  // Build a reference to a private copy for non-static data members in
  // non-static member functions, privatized by OpenMP constructs.
  if (getLangOpts().OpenMP && IsArrow &&
      !CurContext->isDependentContext() &&
      isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
    if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
      return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
                                   MemberNameInfo.getLoc());
    }
  }

  return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
                         /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
                         /*HadMultipleCandidates=*/false, MemberNameInfo,
                         MemberType, VK, OK);
}

/// Builds an implicit member access expression.  The current context
/// is known to be an instance method, and the given unqualified lookup
/// set is known to contain only instance members, at least one of which
/// is from an appropriate type.
ExprResult
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
                              SourceLocation TemplateKWLoc,
                              LookupResult &R,
                              const TemplateArgumentListInfo *TemplateArgs,
                              bool IsKnownInstance, const Scope *S) {
  assert(!R.empty() && !R.isAmbiguous());

  SourceLocation loc = R.getNameLoc();

  // If this is known to be an instance access, go ahead and build an
  // implicit 'this' expression now.
  // 'this' expression now.
  QualType ThisTy = getCurrentThisType();
  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");

  Expr *baseExpr = nullptr; // null signifies implicit access
  if (IsKnownInstance) {
    SourceLocation Loc = R.getNameLoc();
    if (SS.getRange().isValid())
      Loc = SS.getRange().getBegin();
    baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
  }

  return BuildMemberReferenceExpr(baseExpr, ThisTy,
                                  /*OpLoc*/ SourceLocation(),
                                  /*IsArrow*/ true,
                                  SS, TemplateKWLoc,
                                  /*FirstQualifierInScope*/ nullptr,
                                  R, TemplateArgs, S);
}