SemaDecl.cpp 695 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for declarations.
//
//===----------------------------------------------------------------------===//

#include "TreeTransform.h"
#include "TypeLocBuilder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/CommentDiagnostic.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NonTrivialTypeVisitor.h"
#include "clang/AST/StmtCXX.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
#include "clang/Sema/CXXFieldCollector.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include <algorithm>
#include <cstring>
#include <functional>

using namespace clang;
using namespace sema;

Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
  if (OwnedType) {
    Decl *Group[2] = { OwnedType, Ptr };
    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
  }

  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
}

namespace {

class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
 public:
   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
                        bool AllowTemplates = false,
                        bool AllowNonTemplates = true)
       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
         AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
     WantExpressionKeywords = false;
     WantCXXNamedCasts = false;
     WantRemainingKeywords = false;
  }

  bool ValidateCandidate(const TypoCorrection &candidate) override {
    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
      if (!AllowInvalidDecl && ND->isInvalidDecl())
        return false;

      if (getAsTypeTemplateDecl(ND))
        return AllowTemplates;

      bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
      if (!IsType)
        return false;

      if (AllowNonTemplates)
        return true;

      // An injected-class-name of a class template (specialization) is valid
      // as a template or as a non-template.
      if (AllowTemplates) {
        auto *RD = dyn_cast<CXXRecordDecl>(ND);
        if (!RD || !RD->isInjectedClassName())
          return false;
        RD = cast<CXXRecordDecl>(RD->getDeclContext());
        return RD->getDescribedClassTemplate() ||
               isa<ClassTemplateSpecializationDecl>(RD);
      }

      return false;
    }

    return !WantClassName && candidate.isKeyword();
  }

  std::unique_ptr<CorrectionCandidateCallback> clone() override {
    return std::make_unique<TypeNameValidatorCCC>(*this);
  }

 private:
  bool AllowInvalidDecl;
  bool WantClassName;
  bool AllowTemplates;
  bool AllowNonTemplates;
};

} // end anonymous namespace

/// Determine whether the token kind starts a simple-type-specifier.
bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
  switch (Kind) {
  // FIXME: Take into account the current language when deciding whether a
  // token kind is a valid type specifier
  case tok::kw_short:
  case tok::kw_long:
  case tok::kw___int64:
  case tok::kw___int128:
  case tok::kw_signed:
  case tok::kw_unsigned:
  case tok::kw_void:
  case tok::kw_char:
  case tok::kw_int:
  case tok::kw_half:
  case tok::kw_float:
  case tok::kw_double:
  case tok::kw__Float16:
  case tok::kw___float128:
  case tok::kw_wchar_t:
  case tok::kw_bool:
  case tok::kw___underlying_type:
  case tok::kw___auto_type:
    return true;

  case tok::annot_typename:
  case tok::kw_char16_t:
  case tok::kw_char32_t:
  case tok::kw_typeof:
  case tok::annot_decltype:
  case tok::kw_decltype:
    return getLangOpts().CPlusPlus;

  case tok::kw_char8_t:
    return getLangOpts().Char8;

  default:
    break;
  }

  return false;
}

namespace {
enum class UnqualifiedTypeNameLookupResult {
  NotFound,
  FoundNonType,
  FoundType
};
} // end anonymous namespace

/// Tries to perform unqualified lookup of the type decls in bases for
/// dependent class.
/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
/// type decl, \a FoundType if only type decls are found.
static UnqualifiedTypeNameLookupResult
lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
                                SourceLocation NameLoc,
                                const CXXRecordDecl *RD) {
  if (!RD->hasDefinition())
    return UnqualifiedTypeNameLookupResult::NotFound;
  // Look for type decls in base classes.
  UnqualifiedTypeNameLookupResult FoundTypeDecl =
      UnqualifiedTypeNameLookupResult::NotFound;
  for (const auto &Base : RD->bases()) {
    const CXXRecordDecl *BaseRD = nullptr;
    if (auto *BaseTT = Base.getType()->getAs<TagType>())
      BaseRD = BaseTT->getAsCXXRecordDecl();
    else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
      // Look for type decls in dependent base classes that have known primary
      // templates.
      if (!TST || !TST->isDependentType())
        continue;
      auto *TD = TST->getTemplateName().getAsTemplateDecl();
      if (!TD)
        continue;
      if (auto *BasePrimaryTemplate =
          dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
        if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
          BaseRD = BasePrimaryTemplate;
        else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
          if (const ClassTemplatePartialSpecializationDecl *PS =
                  CTD->findPartialSpecialization(Base.getType()))
            if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
              BaseRD = PS;
        }
      }
    }
    if (BaseRD) {
      for (NamedDecl *ND : BaseRD->lookup(&II)) {
        if (!isa<TypeDecl>(ND))
          return UnqualifiedTypeNameLookupResult::FoundNonType;
        FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
      }
      if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
        switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
        case UnqualifiedTypeNameLookupResult::FoundNonType:
          return UnqualifiedTypeNameLookupResult::FoundNonType;
        case UnqualifiedTypeNameLookupResult::FoundType:
          FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
          break;
        case UnqualifiedTypeNameLookupResult::NotFound:
          break;
        }
      }
    }
  }

  return FoundTypeDecl;
}

static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
                                                      const IdentifierInfo &II,
                                                      SourceLocation NameLoc) {
  // Lookup in the parent class template context, if any.
  const CXXRecordDecl *RD = nullptr;
  UnqualifiedTypeNameLookupResult FoundTypeDecl =
      UnqualifiedTypeNameLookupResult::NotFound;
  for (DeclContext *DC = S.CurContext;
       DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
       DC = DC->getParent()) {
    // Look for type decls in dependent base classes that have known primary
    // templates.
    RD = dyn_cast<CXXRecordDecl>(DC);
    if (RD && RD->getDescribedClassTemplate())
      FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
  }
  if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
    return nullptr;

  // We found some types in dependent base classes.  Recover as if the user
  // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
  // lookup during template instantiation.
  S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;

  ASTContext &Context = S.Context;
  auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
                                          cast<Type>(Context.getRecordType(RD)));
  QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);

  CXXScopeSpec SS;
  SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));

  TypeLocBuilder Builder;
  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
  DepTL.setNameLoc(NameLoc);
  DepTL.setElaboratedKeywordLoc(SourceLocation());
  DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
}

/// If the identifier refers to a type name within this scope,
/// return the declaration of that type.
///
/// This routine performs ordinary name lookup of the identifier II
/// within the given scope, with optional C++ scope specifier SS, to
/// determine whether the name refers to a type. If so, returns an
/// opaque pointer (actually a QualType) corresponding to that
/// type. Otherwise, returns NULL.
ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
                             Scope *S, CXXScopeSpec *SS,
                             bool isClassName, bool HasTrailingDot,
                             ParsedType ObjectTypePtr,
                             bool IsCtorOrDtorName,
                             bool WantNontrivialTypeSourceInfo,
                             bool IsClassTemplateDeductionContext,
                             IdentifierInfo **CorrectedII) {
  // FIXME: Consider allowing this outside C++1z mode as an extension.
  bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
                              getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
                              !isClassName && !HasTrailingDot;

  // Determine where we will perform name lookup.
  DeclContext *LookupCtx = nullptr;
  if (ObjectTypePtr) {
    QualType ObjectType = ObjectTypePtr.get();
    if (ObjectType->isRecordType())
      LookupCtx = computeDeclContext(ObjectType);
  } else if (SS && SS->isNotEmpty()) {
    LookupCtx = computeDeclContext(*SS, false);

    if (!LookupCtx) {
      if (isDependentScopeSpecifier(*SS)) {
        // C++ [temp.res]p3:
        //   A qualified-id that refers to a type and in which the
        //   nested-name-specifier depends on a template-parameter (14.6.2)
        //   shall be prefixed by the keyword typename to indicate that the
        //   qualified-id denotes a type, forming an
        //   elaborated-type-specifier (7.1.5.3).
        //
        // We therefore do not perform any name lookup if the result would
        // refer to a member of an unknown specialization.
        if (!isClassName && !IsCtorOrDtorName)
          return nullptr;

        // We know from the grammar that this name refers to a type,
        // so build a dependent node to describe the type.
        if (WantNontrivialTypeSourceInfo)
          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();

        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
        QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
                                       II, NameLoc);
        return ParsedType::make(T);
      }

      return nullptr;
    }

    if (!LookupCtx->isDependentContext() &&
        RequireCompleteDeclContext(*SS, LookupCtx))
      return nullptr;
  }

  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
  // lookup for class-names.
  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
                                      LookupOrdinaryName;
  LookupResult Result(*this, &II, NameLoc, Kind);
  if (LookupCtx) {
    // Perform "qualified" name lookup into the declaration context we
    // computed, which is either the type of the base of a member access
    // expression or the declaration context associated with a prior
    // nested-name-specifier.
    LookupQualifiedName(Result, LookupCtx);

    if (ObjectTypePtr && Result.empty()) {
      // C++ [basic.lookup.classref]p3:
      //   If the unqualified-id is ~type-name, the type-name is looked up
      //   in the context of the entire postfix-expression. If the type T of
      //   the object expression is of a class type C, the type-name is also
      //   looked up in the scope of class C. At least one of the lookups shall
      //   find a name that refers to (possibly cv-qualified) T.
      LookupName(Result, S);
    }
  } else {
    // Perform unqualified name lookup.
    LookupName(Result, S);

    // For unqualified lookup in a class template in MSVC mode, look into
    // dependent base classes where the primary class template is known.
    if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
      if (ParsedType TypeInBase =
              recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
        return TypeInBase;
    }
  }

  NamedDecl *IIDecl = nullptr;
  switch (Result.getResultKind()) {
  case LookupResult::NotFound:
  case LookupResult::NotFoundInCurrentInstantiation:
    if (CorrectedII) {
      TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
                               AllowDeducedTemplate);
      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
                                              S, SS, CCC, CTK_ErrorRecovery);
      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
      TemplateTy Template;
      bool MemberOfUnknownSpecialization;
      UnqualifiedId TemplateName;
      TemplateName.setIdentifier(NewII, NameLoc);
      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
      CXXScopeSpec NewSS, *NewSSPtr = SS;
      if (SS && NNS) {
        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
        NewSSPtr = &NewSS;
      }
      if (Correction && (NNS || NewII != &II) &&
          // Ignore a correction to a template type as the to-be-corrected
          // identifier is not a template (typo correction for template names
          // is handled elsewhere).
          !(getLangOpts().CPlusPlus && NewSSPtr &&
            isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
                           Template, MemberOfUnknownSpecialization))) {
        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
                                    isClassName, HasTrailingDot, ObjectTypePtr,
                                    IsCtorOrDtorName,
                                    WantNontrivialTypeSourceInfo,
                                    IsClassTemplateDeductionContext);
        if (Ty) {
          diagnoseTypo(Correction,
                       PDiag(diag::err_unknown_type_or_class_name_suggest)
                         << Result.getLookupName() << isClassName);
          if (SS && NNS)
            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
          *CorrectedII = NewII;
          return Ty;
        }
      }
    }
    // If typo correction failed or was not performed, fall through
    LLVM_FALLTHROUGH;
  case LookupResult::FoundOverloaded:
  case LookupResult::FoundUnresolvedValue:
    Result.suppressDiagnostics();
    return nullptr;

  case LookupResult::Ambiguous:
    // Recover from type-hiding ambiguities by hiding the type.  We'll
    // do the lookup again when looking for an object, and we can
    // diagnose the error then.  If we don't do this, then the error
    // about hiding the type will be immediately followed by an error
    // that only makes sense if the identifier was treated like a type.
    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
      Result.suppressDiagnostics();
      return nullptr;
    }

    // Look to see if we have a type anywhere in the list of results.
    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
         Res != ResEnd; ++Res) {
      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
          (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
        if (!IIDecl ||
            (*Res)->getLocation().getRawEncoding() <
              IIDecl->getLocation().getRawEncoding())
          IIDecl = *Res;
      }
    }

    if (!IIDecl) {
      // None of the entities we found is a type, so there is no way
      // to even assume that the result is a type. In this case, don't
      // complain about the ambiguity. The parser will either try to
      // perform this lookup again (e.g., as an object name), which
      // will produce the ambiguity, or will complain that it expected
      // a type name.
      Result.suppressDiagnostics();
      return nullptr;
    }

    // We found a type within the ambiguous lookup; diagnose the
    // ambiguity and then return that type. This might be the right
    // answer, or it might not be, but it suppresses any attempt to
    // perform the name lookup again.
    break;

  case LookupResult::Found:
    IIDecl = Result.getFoundDecl();
    break;
  }

  assert(IIDecl && "Didn't find decl");

  QualType T;
  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    // C++ [class.qual]p2: A lookup that would find the injected-class-name
    // instead names the constructors of the class, except when naming a class.
    // This is ill-formed when we're not actually forming a ctor or dtor name.
    auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
    auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
    if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
        FoundRD->isInjectedClassName() &&
        declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
      Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
          << &II << /*Type*/1;

    DiagnoseUseOfDecl(IIDecl, NameLoc);

    T = Context.getTypeDeclType(TD);
    MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    if (!HasTrailingDot)
      T = Context.getObjCInterfaceType(IDecl);
  } else if (AllowDeducedTemplate) {
    if (auto *TD = getAsTypeTemplateDecl(IIDecl))
      T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
                                                       QualType(), false);
  }

  if (T.isNull()) {
    // If it's not plausibly a type, suppress diagnostics.
    Result.suppressDiagnostics();
    return nullptr;
  }

  // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
  // constructor or destructor name (in such a case, the scope specifier
  // will be attached to the enclosing Expr or Decl node).
  if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
      !isa<ObjCInterfaceDecl>(IIDecl)) {
    if (WantNontrivialTypeSourceInfo) {
      // Construct a type with type-source information.
      TypeLocBuilder Builder;
      Builder.pushTypeSpec(T).setNameLoc(NameLoc);

      T = getElaboratedType(ETK_None, *SS, T);
      ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
      ElabTL.setElaboratedKeywordLoc(SourceLocation());
      ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
      return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    } else {
      T = getElaboratedType(ETK_None, *SS, T);
    }
  }

  return ParsedType::make(T);
}

// Builds a fake NNS for the given decl context.
static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
  for (;; DC = DC->getLookupParent()) {
    DC = DC->getPrimaryContext();
    auto *ND = dyn_cast<NamespaceDecl>(DC);
    if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
      return NestedNameSpecifier::Create(Context, nullptr, ND);
    else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
      return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
                                         RD->getTypeForDecl());
    else if (isa<TranslationUnitDecl>(DC))
      return NestedNameSpecifier::GlobalSpecifier(Context);
  }
  llvm_unreachable("something isn't in TU scope?");
}

/// Find the parent class with dependent bases of the innermost enclosing method
/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
/// up allowing unqualified dependent type names at class-level, which MSVC
/// correctly rejects.
static const CXXRecordDecl *
findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
  for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
    DC = DC->getPrimaryContext();
    if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
      if (MD->getParent()->hasAnyDependentBases())
        return MD->getParent();
  }
  return nullptr;
}

ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
                                          SourceLocation NameLoc,
                                          bool IsTemplateTypeArg) {
  assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");

  NestedNameSpecifier *NNS = nullptr;
  if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
    // If we weren't able to parse a default template argument, delay lookup
    // until instantiation time by making a non-dependent DependentTypeName. We
    // pretend we saw a NestedNameSpecifier referring to the current scope, and
    // lookup is retried.
    // FIXME: This hurts our diagnostic quality, since we get errors like "no
    // type named 'Foo' in 'current_namespace'" when the user didn't write any
    // name specifiers.
    NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
    Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
  } else if (const CXXRecordDecl *RD =
                 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
    // Build a DependentNameType that will perform lookup into RD at
    // instantiation time.
    NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
                                      RD->getTypeForDecl());

    // Diagnose that this identifier was undeclared, and retry the lookup during
    // template instantiation.
    Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
                                                                      << RD;
  } else {
    // This is not a situation that we should recover from.
    return ParsedType();
  }

  QualType T = Context.getDependentNameType(ETK_None, NNS, &II);

  // Build type location information.  We synthesized the qualifier, so we have
  // to build a fake NestedNameSpecifierLoc.
  NestedNameSpecifierLocBuilder NNSLocBuilder;
  NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
  NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);

  TypeLocBuilder Builder;
  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
  DepTL.setNameLoc(NameLoc);
  DepTL.setElaboratedKeywordLoc(SourceLocation());
  DepTL.setQualifierLoc(QualifierLoc);
  return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
}

/// isTagName() - This method is called *for error recovery purposes only*
/// to determine if the specified name is a valid tag name ("struct foo").  If
/// so, this returns the TST for the tag corresponding to it (TST_enum,
/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
/// cases in C where the user forgot to specify the tag.
DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
  // Do a tag name lookup in this scope.
  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
  LookupName(R, S, false);
  R.suppressDiagnostics();
  if (R.getResultKind() == LookupResult::Found)
    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
      switch (TD->getTagKind()) {
      case TTK_Struct: return DeclSpec::TST_struct;
      case TTK_Interface: return DeclSpec::TST_interface;
      case TTK_Union:  return DeclSpec::TST_union;
      case TTK_Class:  return DeclSpec::TST_class;
      case TTK_Enum:   return DeclSpec::TST_enum;
      }
    }

  return DeclSpec::TST_unspecified;
}

/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
/// if a CXXScopeSpec's type is equal to the type of one of the base classes
/// then downgrade the missing typename error to a warning.
/// This is needed for MSVC compatibility; Example:
/// @code
/// template<class T> class A {
/// public:
///   typedef int TYPE;
/// };
/// template<class T> class B : public A<T> {
/// public:
///   A<T>::TYPE a; // no typename required because A<T> is a base class.
/// };
/// @endcode
bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
  if (CurContext->isRecord()) {
    if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
      return true;

    const Type *Ty = SS->getScopeRep()->getAsType();

    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    for (const auto &Base : RD->bases())
      if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
        return true;
    return S->isFunctionPrototypeScope();
  }
  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
}

void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
                                   SourceLocation IILoc,
                                   Scope *S,
                                   CXXScopeSpec *SS,
                                   ParsedType &SuggestedType,
                                   bool IsTemplateName) {
  // Don't report typename errors for editor placeholders.
  if (II->isEditorPlaceholder())
    return;
  // We don't have anything to suggest (yet).
  SuggestedType = nullptr;

  // There may have been a typo in the name of the type. Look up typo
  // results, in case we have something that we can suggest.
  TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
                           /*AllowTemplates=*/IsTemplateName,
                           /*AllowNonTemplates=*/!IsTemplateName);
  if (TypoCorrection Corrected =
          CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
                      CCC, CTK_ErrorRecovery)) {
    // FIXME: Support error recovery for the template-name case.
    bool CanRecover = !IsTemplateName;
    if (Corrected.isKeyword()) {
      // We corrected to a keyword.
      diagnoseTypo(Corrected,
                   PDiag(IsTemplateName ? diag::err_no_template_suggest
                                        : diag::err_unknown_typename_suggest)
                       << II);
      II = Corrected.getCorrectionAsIdentifierInfo();
    } else {
      // We found a similarly-named type or interface; suggest that.
      if (!SS || !SS->isSet()) {
        diagnoseTypo(Corrected,
                     PDiag(IsTemplateName ? diag::err_no_template_suggest
                                          : diag::err_unknown_typename_suggest)
                         << II, CanRecover);
      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
                                II->getName().equals(CorrectedStr);
        diagnoseTypo(Corrected,
                     PDiag(IsTemplateName
                               ? diag::err_no_member_template_suggest
                               : diag::err_unknown_nested_typename_suggest)
                         << II << DC << DroppedSpecifier << SS->getRange(),
                     CanRecover);
      } else {
        llvm_unreachable("could not have corrected a typo here");
      }

      if (!CanRecover)
        return;

      CXXScopeSpec tmpSS;
      if (Corrected.getCorrectionSpecifier())
        tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
                          SourceRange(IILoc));
      // FIXME: Support class template argument deduction here.
      SuggestedType =
          getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
                      tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
                      /*IsCtorOrDtorName=*/false,
                      /*WantNontrivialTypeSourceInfo=*/true);
    }
    return;
  }

  if (getLangOpts().CPlusPlus && !IsTemplateName) {
    // See if II is a class template that the user forgot to pass arguments to.
    UnqualifiedId Name;
    Name.setIdentifier(II, IILoc);
    CXXScopeSpec EmptySS;
    TemplateTy TemplateResult;
    bool MemberOfUnknownSpecialization;
    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
                       Name, nullptr, true, TemplateResult,
                       MemberOfUnknownSpecialization) == TNK_Type_template) {
      diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
      return;
    }
  }

  // FIXME: Should we move the logic that tries to recover from a missing tag
  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?

  if (!SS || (!SS->isSet() && !SS->isInvalid()))
    Diag(IILoc, IsTemplateName ? diag::err_no_template
                               : diag::err_unknown_typename)
        << II;
  else if (DeclContext *DC = computeDeclContext(*SS, false))
    Diag(IILoc, IsTemplateName ? diag::err_no_member_template
                               : diag::err_typename_nested_not_found)
        << II << DC << SS->getRange();
  else if (isDependentScopeSpecifier(*SS)) {
    unsigned DiagID = diag::err_typename_missing;
    if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
      DiagID = diag::ext_typename_missing;

    Diag(SS->getRange().getBegin(), DiagID)
      << SS->getScopeRep() << II->getName()
      << SourceRange(SS->getRange().getBegin(), IILoc)
      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    SuggestedType = ActOnTypenameType(S, SourceLocation(),
                                      *SS, *II, IILoc).get();
  } else {
    assert(SS && SS->isInvalid() &&
           "Invalid scope specifier has already been diagnosed");
  }
}

/// Determine whether the given result set contains either a type name
/// or
static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
                       NextToken.is(tok::less);

  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
      return true;

    if (CheckTemplate && isa<TemplateDecl>(*I))
      return true;
  }

  return false;
}

static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
                                    Scope *S, CXXScopeSpec &SS,
                                    IdentifierInfo *&Name,
                                    SourceLocation NameLoc) {
  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
  SemaRef.LookupParsedName(R, S, &SS);
  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
    StringRef FixItTagName;
    switch (Tag->getTagKind()) {
      case TTK_Class:
        FixItTagName = "class ";
        break;

      case TTK_Enum:
        FixItTagName = "enum ";
        break;

      case TTK_Struct:
        FixItTagName = "struct ";
        break;

      case TTK_Interface:
        FixItTagName = "__interface ";
        break;

      case TTK_Union:
        FixItTagName = "union ";
        break;
    }

    StringRef TagName = FixItTagName.drop_back();
    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
      << FixItHint::CreateInsertion(NameLoc, FixItTagName);

    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
         I != IEnd; ++I)
      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
        << Name << TagName;

    // Replace lookup results with just the tag decl.
    Result.clear(Sema::LookupTagName);
    SemaRef.LookupParsedName(Result, S, &SS);
    return true;
  }

  return false;
}

/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
                                  QualType T, SourceLocation NameLoc) {
  ASTContext &Context = S.Context;

  TypeLocBuilder Builder;
  Builder.pushTypeSpec(T).setNameLoc(NameLoc);

  T = S.getElaboratedType(ETK_None, SS, T);
  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
  ElabTL.setElaboratedKeywordLoc(SourceLocation());
  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
}

Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
                                            IdentifierInfo *&Name,
                                            SourceLocation NameLoc,
                                            const Token &NextToken,
                                            CorrectionCandidateCallback *CCC) {
  DeclarationNameInfo NameInfo(Name, NameLoc);
  ObjCMethodDecl *CurMethod = getCurMethodDecl();

  assert(NextToken.isNot(tok::coloncolon) &&
         "parse nested name specifiers before calling ClassifyName");
  if (getLangOpts().CPlusPlus && SS.isSet() &&
      isCurrentClassName(*Name, S, &SS)) {
    // Per [class.qual]p2, this names the constructors of SS, not the
    // injected-class-name. We don't have a classification for that.
    // There's not much point caching this result, since the parser
    // will reject it later.
    return NameClassification::Unknown();
  }

  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
  LookupParsedName(Result, S, &SS, !CurMethod);

  if (SS.isInvalid())
    return NameClassification::Error();

  // For unqualified lookup in a class template in MSVC mode, look into
  // dependent base classes where the primary class template is known.
  if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
    if (ParsedType TypeInBase =
            recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
      return TypeInBase;
  }

  // Perform lookup for Objective-C instance variables (including automatically
  // synthesized instance variables), if we're in an Objective-C method.
  // FIXME: This lookup really, really needs to be folded in to the normal
  // unqualified lookup mechanism.
  if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
    if (Ivar.isInvalid())
      return NameClassification::Error();
    if (Ivar.isUsable())
      return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));

    // We defer builtin creation until after ivar lookup inside ObjC methods.
    if (Result.empty())
      LookupBuiltin(Result);
  }

  bool SecondTry = false;
  bool IsFilteredTemplateName = false;

Corrected:
  switch (Result.getResultKind()) {
  case LookupResult::NotFound:
    // If an unqualified-id is followed by a '(', then we have a function
    // call.
    if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
      // In C++, this is an ADL-only call.
      // FIXME: Reference?
      if (getLangOpts().CPlusPlus)
        return NameClassification::UndeclaredNonType();

      // C90 6.3.2.2:
      //   If the expression that precedes the parenthesized argument list in a
      //   function call consists solely of an identifier, and if no
      //   declaration is visible for this identifier, the identifier is
      //   implicitly declared exactly as if, in the innermost block containing
      //   the function call, the declaration
      //
      //     extern int identifier ();
      //
      //   appeared.
      //
      // We also allow this in C99 as an extension.
      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
        return NameClassification::NonType(D);
    }

    if (getLangOpts().CPlusPlus2a && SS.isEmpty() && NextToken.is(tok::less)) {
      // In C++20 onwards, this could be an ADL-only call to a function
      // template, and we're required to assume that this is a template name.
      //
      // FIXME: Find a way to still do typo correction in this case.
      TemplateName Template =
          Context.getAssumedTemplateName(NameInfo.getName());
      return NameClassification::UndeclaredTemplate(Template);
    }

    // In C, we first see whether there is a tag type by the same name, in
    // which case it's likely that the user just forgot to write "enum",
    // "struct", or "union".
    if (!getLangOpts().CPlusPlus && !SecondTry &&
        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
      break;
    }

    // Perform typo correction to determine if there is another name that is
    // close to this name.
    if (!SecondTry && CCC) {
      SecondTry = true;
      if (TypoCorrection Corrected =
              CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
                          &SS, *CCC, CTK_ErrorRecovery)) {
        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
        unsigned QualifiedDiag = diag::err_no_member_suggest;

        NamedDecl *FirstDecl = Corrected.getFoundDecl();
        NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
          UnqualifiedDiag = diag::err_no_template_suggest;
          QualifiedDiag = diag::err_no_member_template_suggest;
        } else if (UnderlyingFirstDecl &&
                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
          UnqualifiedDiag = diag::err_unknown_typename_suggest;
          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
        }

        if (SS.isEmpty()) {
          diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
        } else {// FIXME: is this even reachable? Test it.
          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
                                  Name->getName().equals(CorrectedStr);
          diagnoseTypo(Corrected, PDiag(QualifiedDiag)
                                    << Name << computeDeclContext(SS, false)
                                    << DroppedSpecifier << SS.getRange());
        }

        // Update the name, so that the caller has the new name.
        Name = Corrected.getCorrectionAsIdentifierInfo();

        // Typo correction corrected to a keyword.
        if (Corrected.isKeyword())
          return Name;

        // Also update the LookupResult...
        // FIXME: This should probably go away at some point
        Result.clear();
        Result.setLookupName(Corrected.getCorrection());
        if (FirstDecl)
          Result.addDecl(FirstDecl);

        // If we found an Objective-C instance variable, let
        // LookupInObjCMethod build the appropriate expression to
        // reference the ivar.
        // FIXME: This is a gross hack.
        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
          DeclResult R =
              LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
          if (R.isInvalid())
            return NameClassification::Error();
          if (R.isUsable())
            return NameClassification::NonType(Ivar);
        }

        goto Corrected;
      }
    }

    // We failed to correct; just fall through and let the parser deal with it.
    Result.suppressDiagnostics();
    return NameClassification::Unknown();

  case LookupResult::NotFoundInCurrentInstantiation: {
    // We performed name lookup into the current instantiation, and there were
    // dependent bases, so we treat this result the same way as any other
    // dependent nested-name-specifier.

    // C++ [temp.res]p2:
    //   A name used in a template declaration or definition and that is
    //   dependent on a template-parameter is assumed not to name a type
    //   unless the applicable name lookup finds a type name or the name is
    //   qualified by the keyword typename.
    //
    // FIXME: If the next token is '<', we might want to ask the parser to
    // perform some heroics to see if we actually have a
    // template-argument-list, which would indicate a missing 'template'
    // keyword here.
    return NameClassification::DependentNonType();
  }

  case LookupResult::Found:
  case LookupResult::FoundOverloaded:
  case LookupResult::FoundUnresolvedValue:
    break;

  case LookupResult::Ambiguous:
    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
        hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
                                      /*AllowDependent=*/false)) {
      // C++ [temp.local]p3:
      //   A lookup that finds an injected-class-name (10.2) can result in an
      //   ambiguity in certain cases (for example, if it is found in more than
      //   one base class). If all of the injected-class-names that are found
      //   refer to specializations of the same class template, and if the name
      //   is followed by a template-argument-list, the reference refers to the
      //   class template itself and not a specialization thereof, and is not
      //   ambiguous.
      //
      // This filtering can make an ambiguous result into an unambiguous one,
      // so try again after filtering out template names.
      FilterAcceptableTemplateNames(Result);
      if (!Result.isAmbiguous()) {
        IsFilteredTemplateName = true;
        break;
      }
    }

    // Diagnose the ambiguity and return an error.
    return NameClassification::Error();
  }

  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
      (IsFilteredTemplateName ||
       hasAnyAcceptableTemplateNames(
           Result, /*AllowFunctionTemplates=*/true,
           /*AllowDependent=*/false,
           /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
               getLangOpts().CPlusPlus2a))) {
    // C++ [temp.names]p3:
    //   After name lookup (3.4) finds that a name is a template-name or that
    //   an operator-function-id or a literal- operator-id refers to a set of
    //   overloaded functions any member of which is a function template if
    //   this is followed by a <, the < is always taken as the delimiter of a
    //   template-argument-list and never as the less-than operator.
    // C++2a [temp.names]p2:
    //   A name is also considered to refer to a template if it is an
    //   unqualified-id followed by a < and name lookup finds either one
    //   or more functions or finds nothing.
    if (!IsFilteredTemplateName)
      FilterAcceptableTemplateNames(Result);

    bool IsFunctionTemplate;
    bool IsVarTemplate;
    TemplateName Template;
    if (Result.end() - Result.begin() > 1) {
      IsFunctionTemplate = true;
      Template = Context.getOverloadedTemplateName(Result.begin(),
                                                   Result.end());
    } else if (!Result.empty()) {
      auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
          *Result.begin(), /*AllowFunctionTemplates=*/true,
          /*AllowDependent=*/false));
      IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
      IsVarTemplate = isa<VarTemplateDecl>(TD);

      if (SS.isNotEmpty())
        Template =
            Context.getQualifiedTemplateName(SS.getScopeRep(),
                                             /*TemplateKeyword=*/false, TD);
      else
        Template = TemplateName(TD);
    } else {
      // All results were non-template functions. This is a function template
      // name.
      IsFunctionTemplate = true;
      Template = Context.getAssumedTemplateName(NameInfo.getName());
    }

    if (IsFunctionTemplate) {
      // Function templates always go through overload resolution, at which
      // point we'll perform the various checks (e.g., accessibility) we need
      // to based on which function we selected.
      Result.suppressDiagnostics();

      return NameClassification::FunctionTemplate(Template);
    }

    return IsVarTemplate ? NameClassification::VarTemplate(Template)
                         : NameClassification::TypeTemplate(Template);
  }

  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
    DiagnoseUseOfDecl(Type, NameLoc);
    MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
    QualType T = Context.getTypeDeclType(Type);
    if (SS.isNotEmpty())
      return buildNestedType(*this, SS, T, NameLoc);
    return ParsedType::make(T);
  }

  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
  if (!Class) {
    // FIXME: It's unfortunate that we don't have a Type node for handling this.
    if (ObjCCompatibleAliasDecl *Alias =
            dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
      Class = Alias->getClassInterface();
  }

  if (Class) {
    DiagnoseUseOfDecl(Class, NameLoc);

    if (NextToken.is(tok::period)) {
      // Interface. <something> is parsed as a property reference expression.
      // Just return "unknown" as a fall-through for now.
      Result.suppressDiagnostics();
      return NameClassification::Unknown();
    }

    QualType T = Context.getObjCInterfaceType(Class);
    return ParsedType::make(T);
  }

  if (isa<ConceptDecl>(FirstDecl))
    return NameClassification::Concept(
        TemplateName(cast<TemplateDecl>(FirstDecl)));

  // We can have a type template here if we're classifying a template argument.
  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
      !isa<VarTemplateDecl>(FirstDecl))
    return NameClassification::TypeTemplate(
        TemplateName(cast<TemplateDecl>(FirstDecl)));

  // Check for a tag type hidden by a non-type decl in a few cases where it
  // seems likely a type is wanted instead of the non-type that was found.
  bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
  if ((NextToken.is(tok::identifier) ||
       (NextIsOp &&
        FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
    DiagnoseUseOfDecl(Type, NameLoc);
    QualType T = Context.getTypeDeclType(Type);
    if (SS.isNotEmpty())
      return buildNestedType(*this, SS, T, NameLoc);
    return ParsedType::make(T);
  }

  // FIXME: This is context-dependent. We need to defer building the member
  // expression until the classification is consumed.
  if (FirstDecl->isCXXClassMember())
    return NameClassification::ContextIndependentExpr(
        BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, nullptr,
                                        S));

  // If we already know which single declaration is referenced, just annotate
  // that declaration directly.
  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
  if (Result.isSingleResult() && !ADL)
    return NameClassification::NonType(Result.getRepresentativeDecl());

  // Build an UnresolvedLookupExpr. Note that this doesn't depend on the
  // context in which we performed classification, so it's safe to do now.
  return NameClassification::ContextIndependentExpr(
      BuildDeclarationNameExpr(SS, Result, ADL));
}

ExprResult
Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
                                             SourceLocation NameLoc) {
  assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
  CXXScopeSpec SS;
  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
  return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
}

ExprResult
Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
                                            IdentifierInfo *Name,
                                            SourceLocation NameLoc,
                                            bool IsAddressOfOperand) {
  DeclarationNameInfo NameInfo(Name, NameLoc);
  return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
                                    NameInfo, IsAddressOfOperand,
                                    /*TemplateArgs=*/nullptr);
}

ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
                                              NamedDecl *Found,
                                              SourceLocation NameLoc,
                                              const Token &NextToken) {
  if (getCurMethodDecl() && SS.isEmpty())
    if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
      return BuildIvarRefExpr(S, NameLoc, Ivar);

  // Reconstruct the lookup result.
  LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
  Result.addDecl(Found);
  Result.resolveKind();

  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
  return BuildDeclarationNameExpr(SS, Result, ADL);
}

Sema::TemplateNameKindForDiagnostics
Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
  auto *TD = Name.getAsTemplateDecl();
  if (!TD)
    return TemplateNameKindForDiagnostics::DependentTemplate;
  if (isa<ClassTemplateDecl>(TD))
    return TemplateNameKindForDiagnostics::ClassTemplate;
  if (isa<FunctionTemplateDecl>(TD))
    return TemplateNameKindForDiagnostics::FunctionTemplate;
  if (isa<VarTemplateDecl>(TD))
    return TemplateNameKindForDiagnostics::VarTemplate;
  if (isa<TypeAliasTemplateDecl>(TD))
    return TemplateNameKindForDiagnostics::AliasTemplate;
  if (isa<TemplateTemplateParmDecl>(TD))
    return TemplateNameKindForDiagnostics::TemplateTemplateParam;
  if (isa<ConceptDecl>(TD))
    return TemplateNameKindForDiagnostics::Concept;
  return TemplateNameKindForDiagnostics::DependentTemplate;
}

// Determines the context to return to after temporarily entering a
// context.  This depends in an unnecessarily complicated way on the
// exact ordering of callbacks from the parser.
DeclContext *Sema::getContainingDC(DeclContext *DC) {

  // Functions defined inline within classes aren't parsed until we've
  // finished parsing the top-level class, so the top-level class is
  // the context we'll need to return to.
  // A Lambda call operator whose parent is a class must not be treated
  // as an inline member function.  A Lambda can be used legally
  // either as an in-class member initializer or a default argument.  These
  // are parsed once the class has been marked complete and so the containing
  // context would be the nested class (when the lambda is defined in one);
  // If the class is not complete, then the lambda is being used in an
  // ill-formed fashion (such as to specify the width of a bit-field, or
  // in an array-bound) - in which case we still want to return the
  // lexically containing DC (which could be a nested class).
  if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
    DC = DC->getLexicalParent();

    // A function not defined within a class will always return to its
    // lexical context.
    if (!isa<CXXRecordDecl>(DC))
      return DC;

    // A C++ inline method/friend is parsed *after* the topmost class
    // it was declared in is fully parsed ("complete");  the topmost
    // class is the context we need to return to.
    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
      DC = RD;

    // Return the declaration context of the topmost class the inline method is
    // declared in.
    return DC;
  }

  return DC->getLexicalParent();
}

void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
  assert(getContainingDC(DC) == CurContext &&
      "The next DeclContext should be lexically contained in the current one.");
  CurContext = DC;
  S->setEntity(DC);
}

void Sema::PopDeclContext() {
  assert(CurContext && "DeclContext imbalance!");

  CurContext = getContainingDC(CurContext);
  assert(CurContext && "Popped translation unit!");
}

Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
                                                                    Decl *D) {
  // Unlike PushDeclContext, the context to which we return is not necessarily
  // the containing DC of TD, because the new context will be some pre-existing
  // TagDecl definition instead of a fresh one.
  auto Result = static_cast<SkippedDefinitionContext>(CurContext);
  CurContext = cast<TagDecl>(D)->getDefinition();
  assert(CurContext && "skipping definition of undefined tag");
  // Start lookups from the parent of the current context; we don't want to look
  // into the pre-existing complete definition.
  S->setEntity(CurContext->getLookupParent());
  return Result;
}

void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
  CurContext = static_cast<decltype(CurContext)>(Context);
}

/// EnterDeclaratorContext - Used when we must lookup names in the context
/// of a declarator's nested name specifier.
///
void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
  // C++0x [basic.lookup.unqual]p13:
  //   A name used in the definition of a static data member of class
  //   X (after the qualified-id of the static member) is looked up as
  //   if the name was used in a member function of X.
  // C++0x [basic.lookup.unqual]p14:
  //   If a variable member of a namespace is defined outside of the
  //   scope of its namespace then any name used in the definition of
  //   the variable member (after the declarator-id) is looked up as
  //   if the definition of the variable member occurred in its
  //   namespace.
  // Both of these imply that we should push a scope whose context
  // is the semantic context of the declaration.  We can't use
  // PushDeclContext here because that context is not necessarily
  // lexically contained in the current context.  Fortunately,
  // the containing scope should have the appropriate information.

  assert(!S->getEntity() && "scope already has entity");

#ifndef NDEBUG
  Scope *Ancestor = S->getParent();
  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
#endif

  CurContext = DC;
  S->setEntity(DC);
}

void Sema::ExitDeclaratorContext(Scope *S) {
  assert(S->getEntity() == CurContext && "Context imbalance!");

  // Switch back to the lexical context.  The safety of this is
  // enforced by an assert in EnterDeclaratorContext.
  Scope *Ancestor = S->getParent();
  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
  CurContext = Ancestor->getEntity();

  // We don't need to do anything with the scope, which is going to
  // disappear.
}

void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
  // We assume that the caller has already called
  // ActOnReenterTemplateScope so getTemplatedDecl() works.
  FunctionDecl *FD = D->getAsFunction();
  if (!FD)
    return;

  // Same implementation as PushDeclContext, but enters the context
  // from the lexical parent, rather than the top-level class.
  assert(CurContext == FD->getLexicalParent() &&
    "The next DeclContext should be lexically contained in the current one.");
  CurContext = FD;
  S->setEntity(CurContext);

  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
    ParmVarDecl *Param = FD->getParamDecl(P);
    // If the parameter has an identifier, then add it to the scope
    if (Param->getIdentifier()) {
      S->AddDecl(Param);
      IdResolver.AddDecl(Param);
    }
  }
}

void Sema::ActOnExitFunctionContext() {
  // Same implementation as PopDeclContext, but returns to the lexical parent,
  // rather than the top-level class.
  assert(CurContext && "DeclContext imbalance!");
  CurContext = CurContext->getLexicalParent();
  assert(CurContext && "Popped translation unit!");
}

/// Determine whether we allow overloading of the function
/// PrevDecl with another declaration.
///
/// This routine determines whether overloading is possible, not
/// whether some new function is actually an overload. It will return
/// true in C++ (where we can always provide overloads) or, as an
/// extension, in C when the previous function is already an
/// overloaded function declaration or has the "overloadable"
/// attribute.
static bool AllowOverloadingOfFunction(LookupResult &Previous,
                                       ASTContext &Context,
                                       const FunctionDecl *New) {
  if (Context.getLangOpts().CPlusPlus)
    return true;

  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
    return true;

  return Previous.getResultKind() == LookupResult::Found &&
         (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
          New->hasAttr<OverloadableAttr>());
}

/// Add this decl to the scope shadowed decl chains.
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
  // Move up the scope chain until we find the nearest enclosing
  // non-transparent context. The declaration will be introduced into this
  // scope.
  while (S->getEntity() && S->getEntity()->isTransparentContext())
    S = S->getParent();

  // Add scoped declarations into their context, so that they can be
  // found later. Declarations without a context won't be inserted
  // into any context.
  if (AddToContext)
    CurContext->addDecl(D);

  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
  // are function-local declarations.
  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
      !D->getDeclContext()->getRedeclContext()->Equals(
        D->getLexicalDeclContext()->getRedeclContext()) &&
      !D->getLexicalDeclContext()->isFunctionOrMethod())
    return;

  // Template instantiations should also not be pushed into scope.
  if (isa<FunctionDecl>(D) &&
      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
    return;

  // If this replaces anything in the current scope,
  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
                               IEnd = IdResolver.end();
  for (; I != IEnd; ++I) {
    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
      S->RemoveDecl(*I);
      IdResolver.RemoveDecl(*I);

      // Should only need to replace one decl.
      break;
    }
  }

  S->AddDecl(D);

  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
    // Implicitly-generated labels may end up getting generated in an order that
    // isn't strictly lexical, which breaks name lookup. Be careful to insert
    // the label at the appropriate place in the identifier chain.
    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
      if (IDC == CurContext) {
        if (!S->isDeclScope(*I))
          continue;
      } else if (IDC->Encloses(CurContext))
        break;
    }

    IdResolver.InsertDeclAfter(I, D);
  } else {
    IdResolver.AddDecl(D);
  }
}

bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
                         bool AllowInlineNamespace) {
  return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
}

Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
  DeclContext *TargetDC = DC->getPrimaryContext();
  do {
    if (DeclContext *ScopeDC = S->getEntity())
      if (ScopeDC->getPrimaryContext() == TargetDC)
        return S;
  } while ((S = S->getParent()));

  return nullptr;
}

static bool isOutOfScopePreviousDeclaration(NamedDecl *,
                                            DeclContext*,
                                            ASTContext&);

/// Filters out lookup results that don't fall within the given scope
/// as determined by isDeclInScope.
void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
                                bool ConsiderLinkage,
                                bool AllowInlineNamespace) {
  LookupResult::Filter F = R.makeFilter();
  while (F.hasNext()) {
    NamedDecl *D = F.next();

    if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
      continue;

    if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
      continue;

    F.erase();
  }

  F.done();
}

/// We've determined that \p New is a redeclaration of \p Old. Check that they
/// have compatible owning modules.
bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
  // FIXME: The Modules TS is not clear about how friend declarations are
  // to be treated. It's not meaningful to have different owning modules for
  // linkage in redeclarations of the same entity, so for now allow the
  // redeclaration and change the owning modules to match.
  if (New->getFriendObjectKind() &&
      Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
    New->setLocalOwningModule(Old->getOwningModule());
    makeMergedDefinitionVisible(New);
    return false;
  }

  Module *NewM = New->getOwningModule();
  Module *OldM = Old->getOwningModule();

  if (NewM && NewM->Kind == Module::PrivateModuleFragment)
    NewM = NewM->Parent;
  if (OldM && OldM->Kind == Module::PrivateModuleFragment)
    OldM = OldM->Parent;

  if (NewM == OldM)
    return false;

  bool NewIsModuleInterface = NewM && NewM->isModulePurview();
  bool OldIsModuleInterface = OldM && OldM->isModulePurview();
  if (NewIsModuleInterface || OldIsModuleInterface) {
    // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
    //   if a declaration of D [...] appears in the purview of a module, all
    //   other such declarations shall appear in the purview of the same module
    Diag(New->getLocation(), diag::err_mismatched_owning_module)
      << New
      << NewIsModuleInterface
      << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
      << OldIsModuleInterface
      << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
    Diag(Old->getLocation(), diag::note_previous_declaration);
    New->setInvalidDecl();
    return true;
  }

  return false;
}

static bool isUsingDecl(NamedDecl *D) {
  return isa<UsingShadowDecl>(D) ||
         isa<UnresolvedUsingTypenameDecl>(D) ||
         isa<UnresolvedUsingValueDecl>(D);
}

/// Removes using shadow declarations from the lookup results.
static void RemoveUsingDecls(LookupResult &R) {
  LookupResult::Filter F = R.makeFilter();
  while (F.hasNext())
    if (isUsingDecl(F.next()))
      F.erase();

  F.done();
}

/// Check for this common pattern:
/// @code
/// class S {
///   S(const S&); // DO NOT IMPLEMENT
///   void operator=(const S&); // DO NOT IMPLEMENT
/// };
/// @endcode
static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
  // FIXME: Should check for private access too but access is set after we get
  // the decl here.
  if (D->doesThisDeclarationHaveABody())
    return false;

  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
    return CD->isCopyConstructor();
  return D->isCopyAssignmentOperator();
}

// We need this to handle
//
// typedef struct {
//   void *foo() { return 0; }
// } A;
//
// When we see foo we don't know if after the typedef we will get 'A' or '*A'
// for example. If 'A', foo will have external linkage. If we have '*A',
// foo will have no linkage. Since we can't know until we get to the end
// of the typedef, this function finds out if D might have non-external linkage.
// Callers should verify at the end of the TU if it D has external linkage or
// not.
bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
  const DeclContext *DC = D->getDeclContext();
  while (!DC->isTranslationUnit()) {
    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
      if (!RD->hasNameForLinkage())
        return true;
    }
    DC = DC->getParent();
  }

  return !D->isExternallyVisible();
}

// FIXME: This needs to be refactored; some other isInMainFile users want
// these semantics.
static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
  if (S.TUKind != TU_Complete)
    return false;
  return S.SourceMgr.isInMainFile(Loc);
}

bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
  assert(D);

  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
    return false;

  // Ignore all entities declared within templates, and out-of-line definitions
  // of members of class templates.
  if (D->getDeclContext()->isDependentContext() ||
      D->getLexicalDeclContext()->isDependentContext())
    return false;

  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
      return false;
    // A non-out-of-line declaration of a member specialization was implicitly
    // instantiated; it's the out-of-line declaration that we're interested in.
    if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
        FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
      return false;

    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
        return false;
    } else {
      // 'static inline' functions are defined in headers; don't warn.
      if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
        return false;
    }

    if (FD->doesThisDeclarationHaveABody() &&
        Context.DeclMustBeEmitted(FD))
      return false;
  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    // Constants and utility variables are defined in headers with internal
    // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
    // like "inline".)
    if (!isMainFileLoc(*this, VD->getLocation()))
      return false;

    if (Context.DeclMustBeEmitted(VD))
      return false;

    if (VD->isStaticDataMember() &&
        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
      return false;
    if (VD->isStaticDataMember() &&
        VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
        VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
      return false;

    if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
      return false;
  } else {
    return false;
  }

  // Only warn for unused decls internal to the translation unit.
  // FIXME: This seems like a bogus check; it suppresses -Wunused-function
  // for inline functions defined in the main source file, for instance.
  return mightHaveNonExternalLinkage(D);
}

void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
  if (!D)
    return;

  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    const FunctionDecl *First = FD->getFirstDecl();
    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
      return; // First should already be in the vector.
  }

  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    const VarDecl *First = VD->getFirstDecl();
    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
      return; // First should already be in the vector.
  }

  if (ShouldWarnIfUnusedFileScopedDecl(D))
    UnusedFileScopedDecls.push_back(D);
}

static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
  if (D->isInvalidDecl())
    return false;

  bool Referenced = false;
  if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
    // For a decomposition declaration, warn if none of the bindings are
    // referenced, instead of if the variable itself is referenced (which
    // it is, by the bindings' expressions).
    for (auto *BD : DD->bindings()) {
      if (BD->isReferenced()) {
        Referenced = true;
        break;
      }
    }
  } else if (!D->getDeclName()) {
    return false;
  } else if (D->isReferenced() || D->isUsed()) {
    Referenced = true;
  }

  if (Referenced || D->hasAttr<UnusedAttr>() ||
      D->hasAttr<ObjCPreciseLifetimeAttr>())
    return false;

  if (isa<LabelDecl>(D))
    return true;

  // Except for labels, we only care about unused decls that are local to
  // functions.
  bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
  if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
    // For dependent types, the diagnostic is deferred.
    WithinFunction =
        WithinFunction || (R->isLocalClass() && !R->isDependentType());
  if (!WithinFunction)
    return false;

  if (isa<TypedefNameDecl>(D))
    return true;

  // White-list anything that isn't a local variable.
  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
    return false;

  // Types of valid local variables should be complete, so this should succeed.
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {

    // White-list anything with an __attribute__((unused)) type.
    const auto *Ty = VD->getType().getTypePtr();

    // Only look at the outermost level of typedef.
    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
      if (TT->getDecl()->hasAttr<UnusedAttr>())
        return false;
    }

    // If we failed to complete the type for some reason, or if the type is
    // dependent, don't diagnose the variable.
    if (Ty->isIncompleteType() || Ty->isDependentType())
      return false;

    // Look at the element type to ensure that the warning behaviour is
    // consistent for both scalars and arrays.
    Ty = Ty->getBaseElementTypeUnsafe();

    if (const TagType *TT = Ty->getAs<TagType>()) {
      const TagDecl *Tag = TT->getDecl();
      if (Tag->hasAttr<UnusedAttr>())
        return false;

      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
          return false;

        if (const Expr *Init = VD->getInit()) {
          if (const ExprWithCleanups *Cleanups =
                  dyn_cast<ExprWithCleanups>(Init))
            Init = Cleanups->getSubExpr();
          const CXXConstructExpr *Construct =
            dyn_cast<CXXConstructExpr>(Init);
          if (Construct && !Construct->isElidable()) {
            CXXConstructorDecl *CD = Construct->getConstructor();
            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
                (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
              return false;
          }

          // Suppress the warning if we don't know how this is constructed, and
          // it could possibly be non-trivial constructor.
          if (Init->isTypeDependent())
            for (const CXXConstructorDecl *Ctor : RD->ctors())
              if (!Ctor->isTrivial())
                return false;
        }
      }
    }

    // TODO: __attribute__((unused)) templates?
  }

  return true;
}

static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
                                     FixItHint &Hint) {
  if (isa<LabelDecl>(D)) {
    SourceLocation AfterColon = Lexer::findLocationAfterToken(
        D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
        true);
    if (AfterColon.isInvalid())
      return;
    Hint = FixItHint::CreateRemoval(
        CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
  }
}

void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
  if (D->getTypeForDecl()->isDependentType())
    return;

  for (auto *TmpD : D->decls()) {
    if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
      DiagnoseUnusedDecl(T);
    else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
      DiagnoseUnusedNestedTypedefs(R);
  }
}

/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
/// unless they are marked attr(unused).
void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
  if (!ShouldDiagnoseUnusedDecl(D))
    return;

  if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
    // typedefs can be referenced later on, so the diagnostics are emitted
    // at end-of-translation-unit.
    UnusedLocalTypedefNameCandidates.insert(TD);
    return;
  }

  FixItHint Hint;
  GenerateFixForUnusedDecl(D, Context, Hint);

  unsigned DiagID;
  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
    DiagID = diag::warn_unused_exception_param;
  else if (isa<LabelDecl>(D))
    DiagID = diag::warn_unused_label;
  else
    DiagID = diag::warn_unused_variable;

  Diag(D->getLocation(), DiagID) << D << Hint;
}

static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
  // Verify that we have no forward references left.  If so, there was a goto
  // or address of a label taken, but no definition of it.  Label fwd
  // definitions are indicated with a null substmt which is also not a resolved
  // MS inline assembly label name.
  bool Diagnose = false;
  if (L->isMSAsmLabel())
    Diagnose = !L->isResolvedMSAsmLabel();
  else
    Diagnose = L->getStmt() == nullptr;
  if (Diagnose)
    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
}

void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
  S->mergeNRVOIntoParent();

  if (S->decl_empty()) return;
  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
         "Scope shouldn't contain decls!");

  for (auto *TmpD : S->decls()) {
    assert(TmpD && "This decl didn't get pushed??");

    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
    NamedDecl *D = cast<NamedDecl>(TmpD);

    // Diagnose unused variables in this scope.
    if (!S->hasUnrecoverableErrorOccurred()) {
      DiagnoseUnusedDecl(D);
      if (const auto *RD = dyn_cast<RecordDecl>(D))
        DiagnoseUnusedNestedTypedefs(RD);
    }

    if (!D->getDeclName()) continue;

    // If this was a forward reference to a label, verify it was defined.
    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
      CheckPoppedLabel(LD, *this);

    // Remove this name from our lexical scope, and warn on it if we haven't
    // already.
    IdResolver.RemoveDecl(D);
    auto ShadowI = ShadowingDecls.find(D);
    if (ShadowI != ShadowingDecls.end()) {
      if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
        Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
            << D << FD << FD->getParent();
        Diag(FD->getLocation(), diag::note_previous_declaration);
      }
      ShadowingDecls.erase(ShadowI);
    }
  }
}

/// Look for an Objective-C class in the translation unit.
///
/// \param Id The name of the Objective-C class we're looking for. If
/// typo-correction fixes this name, the Id will be updated
/// to the fixed name.
///
/// \param IdLoc The location of the name in the translation unit.
///
/// \param DoTypoCorrection If true, this routine will attempt typo correction
/// if there is no class with the given name.
///
/// \returns The declaration of the named Objective-C class, or NULL if the
/// class could not be found.
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
                                              SourceLocation IdLoc,
                                              bool DoTypoCorrection) {
  // The third "scope" argument is 0 since we aren't enabling lazy built-in
  // creation from this context.
  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);

  if (!IDecl && DoTypoCorrection) {
    // Perform typo correction at the given location, but only if we
    // find an Objective-C class name.
    DeclFilterCCC<ObjCInterfaceDecl> CCC{};
    if (TypoCorrection C =
            CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
                        TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
      diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
      Id = IDecl->getIdentifier();
    }
  }
  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
  // This routine must always return a class definition, if any.
  if (Def && Def->getDefinition())
      Def = Def->getDefinition();
  return Def;
}

/// getNonFieldDeclScope - Retrieves the innermost scope, starting
/// from S, where a non-field would be declared. This routine copes
/// with the difference between C and C++ scoping rules in structs and
/// unions. For example, the following code is well-formed in C but
/// ill-formed in C++:
/// @code
/// struct S6 {
///   enum { BAR } e;
/// };
///
/// void test_S6() {
///   struct S6 a;
///   a.e = BAR;
/// }
/// @endcode
/// For the declaration of BAR, this routine will return a different
/// scope. The scope S will be the scope of the unnamed enumeration
/// within S6. In C++, this routine will return the scope associated
/// with S6, because the enumeration's scope is a transparent
/// context but structures can contain non-field names. In C, this
/// routine will return the translation unit scope, since the
/// enumeration's scope is a transparent context and structures cannot
/// contain non-field names.
Scope *Sema::getNonFieldDeclScope(Scope *S) {
  while (((S->getFlags() & Scope::DeclScope) == 0) ||
         (S->getEntity() && S->getEntity()->isTransparentContext()) ||
         (S->isClassScope() && !getLangOpts().CPlusPlus))
    S = S->getParent();
  return S;
}

/// Looks up the declaration of "struct objc_super" and
/// saves it for later use in building builtin declaration of
/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
/// pre-existing declaration exists no action takes place.
static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
                                        IdentifierInfo *II) {
  if (!II->isStr("objc_msgSendSuper"))
    return;
  ASTContext &Context = ThisSema.Context;

  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
                      SourceLocation(), Sema::LookupTagName);
  ThisSema.LookupName(Result, S);
  if (Result.getResultKind() == LookupResult::Found)
    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
      Context.setObjCSuperType(Context.getTagDeclType(TD));
}

static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
                               ASTContext::GetBuiltinTypeError Error) {
  switch (Error) {
  case ASTContext::GE_None:
    return "";
  case ASTContext::GE_Missing_type:
    return BuiltinInfo.getHeaderName(ID);
  case ASTContext::GE_Missing_stdio:
    return "stdio.h";
  case ASTContext::GE_Missing_setjmp:
    return "setjmp.h";
  case ASTContext::GE_Missing_ucontext:
    return "ucontext.h";
  }
  llvm_unreachable("unhandled error kind");
}

/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
/// file scope.  lazily create a decl for it. ForRedeclaration is true
/// if we're creating this built-in in anticipation of redeclaring the
/// built-in.
NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
                                     Scope *S, bool ForRedeclaration,
                                     SourceLocation Loc) {
  LookupPredefedObjCSuperType(*this, S, II);

  ASTContext::GetBuiltinTypeError Error;
  QualType R = Context.GetBuiltinType(ID, Error);
  if (Error) {
    if (!ForRedeclaration)
      return nullptr;

    // If we have a builtin without an associated type we should not emit a
    // warning when we were not able to find a type for it.
    if (Error == ASTContext::GE_Missing_type)
      return nullptr;

    // If we could not find a type for setjmp it is because the jmp_buf type was
    // not defined prior to the setjmp declaration.
    if (Error == ASTContext::GE_Missing_setjmp) {
      Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
          << Context.BuiltinInfo.getName(ID);
      return nullptr;
    }

    // Generally, we emit a warning that the declaration requires the
    // appropriate header.
    Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
        << getHeaderName(Context.BuiltinInfo, ID, Error)
        << Context.BuiltinInfo.getName(ID);
    return nullptr;
  }

  if (!ForRedeclaration &&
      (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
       Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
    Diag(Loc, diag::ext_implicit_lib_function_decl)
        << Context.BuiltinInfo.getName(ID) << R;
    if (Context.BuiltinInfo.getHeaderName(ID) &&
        !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
      Diag(Loc, diag::note_include_header_or_declare)
          << Context.BuiltinInfo.getHeaderName(ID)
          << Context.BuiltinInfo.getName(ID);
  }

  if (R.isNull())
    return nullptr;

  DeclContext *Parent = Context.getTranslationUnitDecl();
  if (getLangOpts().CPlusPlus) {
    LinkageSpecDecl *CLinkageDecl =
        LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
                                LinkageSpecDecl::lang_c, false);
    CLinkageDecl->setImplicit();
    Parent->addDecl(CLinkageDecl);
    Parent = CLinkageDecl;
  }

  FunctionDecl *New = FunctionDecl::Create(Context,
                                           Parent,
                                           Loc, Loc, II, R, /*TInfo=*/nullptr,
                                           SC_Extern,
                                           false,
                                           R->isFunctionProtoType());
  New->setImplicit();

  // Create Decl objects for each parameter, adding them to the
  // FunctionDecl.
  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
    SmallVector<ParmVarDecl*, 16> Params;
    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
      ParmVarDecl *parm =
          ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
                              nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
                              SC_None, nullptr);
      parm->setScopeInfo(0, i);
      Params.push_back(parm);
    }
    New->setParams(Params);
  }

  AddKnownFunctionAttributes(New);
  RegisterLocallyScopedExternCDecl(New, S);

  // TUScope is the translation-unit scope to insert this function into.
  // FIXME: This is hideous. We need to teach PushOnScopeChains to
  // relate Scopes to DeclContexts, and probably eliminate CurContext
  // entirely, but we're not there yet.
  DeclContext *SavedContext = CurContext;
  CurContext = Parent;
  PushOnScopeChains(New, TUScope);
  CurContext = SavedContext;
  return New;
}

/// Typedef declarations don't have linkage, but they still denote the same
/// entity if their types are the same.
/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
/// isSameEntity.
static void filterNonConflictingPreviousTypedefDecls(Sema &S,
                                                     TypedefNameDecl *Decl,
                                                     LookupResult &Previous) {
  // This is only interesting when modules are enabled.
  if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
    return;

  // Empty sets are uninteresting.
  if (Previous.empty())
    return;

  LookupResult::Filter Filter = Previous.makeFilter();
  while (Filter.hasNext()) {
    NamedDecl *Old = Filter.next();

    // Non-hidden declarations are never ignored.
    if (S.isVisible(Old))
      continue;

    // Declarations of the same entity are not ignored, even if they have
    // different linkages.
    if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
      if (S.Context.hasSameType(OldTD->getUnderlyingType(),
                                Decl->getUnderlyingType()))
        continue;

      // If both declarations give a tag declaration a typedef name for linkage
      // purposes, then they declare the same entity.
      if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
          Decl->getAnonDeclWithTypedefName())
        continue;
    }

    Filter.erase();
  }

  Filter.done();
}

bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
  QualType OldType;
  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
    OldType = OldTypedef->getUnderlyingType();
  else
    OldType = Context.getTypeDeclType(Old);
  QualType NewType = New->getUnderlyingType();

  if (NewType->isVariablyModifiedType()) {
    // Must not redefine a typedef with a variably-modified type.
    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
      << Kind << NewType;
    if (Old->getLocation().isValid())
      notePreviousDefinition(Old, New->getLocation());
    New->setInvalidDecl();
    return true;
  }

  if (OldType != NewType &&
      !OldType->isDependentType() &&
      !NewType->isDependentType() &&
      !Context.hasSameType(OldType, NewType)) {
    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
      << Kind << NewType << OldType;
    if (Old->getLocation().isValid())
      notePreviousDefinition(Old, New->getLocation());
    New->setInvalidDecl();
    return true;
  }
  return false;
}

/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
/// same name and scope as a previous declaration 'Old'.  Figure out
/// how to resolve this situation, merging decls or emitting
/// diagnostics as appropriate. If there was an error, set New to be invalid.
///
void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
                                LookupResult &OldDecls) {
  // If the new decl is known invalid already, don't bother doing any
  // merging checks.
  if (New->isInvalidDecl()) return;

  // Allow multiple definitions for ObjC built-in typedefs.
  // FIXME: Verify the underlying types are equivalent!
  if (getLangOpts().ObjC) {
    const IdentifierInfo *TypeID = New->getIdentifier();
    switch (TypeID->getLength()) {
    default: break;
    case 2:
      {
        if (!TypeID->isStr("id"))
          break;
        QualType T = New->getUnderlyingType();
        if (!T->isPointerType())
          break;
        if (!T->isVoidPointerType()) {
          QualType PT = T->castAs<PointerType>()->getPointeeType();
          if (!PT->isStructureType())
            break;
        }
        Context.setObjCIdRedefinitionType(T);
        // Install the built-in type for 'id', ignoring the current definition.
        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
        return;
      }
    case 5:
      if (!TypeID->isStr("Class"))
        break;
      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
      // Install the built-in type for 'Class', ignoring the current definition.
      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
      return;
    case 3:
      if (!TypeID->isStr("SEL"))
        break;
      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
      // Install the built-in type for 'SEL', ignoring the current definition.
      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
      return;
    }
    // Fall through - the typedef name was not a builtin type.
  }

  // Verify the old decl was also a type.
  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
  if (!Old) {
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
      << New->getDeclName();

    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
    if (OldD->getLocation().isValid())
      notePreviousDefinition(OldD, New->getLocation());

    return New->setInvalidDecl();
  }

  // If the old declaration is invalid, just give up here.
  if (Old->isInvalidDecl())
    return New->setInvalidDecl();

  if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
    auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
    auto *NewTag = New->getAnonDeclWithTypedefName();
    NamedDecl *Hidden = nullptr;
    if (OldTag && NewTag &&
        OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
        !hasVisibleDefinition(OldTag, &Hidden)) {
      // There is a definition of this tag, but it is not visible. Use it
      // instead of our tag.
      New->setTypeForDecl(OldTD->getTypeForDecl());
      if (OldTD->isModed())
        New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
                                    OldTD->getUnderlyingType());
      else
        New->setTypeSourceInfo(OldTD->getTypeSourceInfo());

      // Make the old tag definition visible.
      makeMergedDefinitionVisible(Hidden);

      // If this was an unscoped enumeration, yank all of its enumerators
      // out of the scope.
      if (isa<EnumDecl>(NewTag)) {
        Scope *EnumScope = getNonFieldDeclScope(S);
        for (auto *D : NewTag->decls()) {
          auto *ED = cast<EnumConstantDecl>(D);
          assert(EnumScope->isDeclScope(ED));
          EnumScope->RemoveDecl(ED);
          IdResolver.RemoveDecl(ED);
          ED->getLexicalDeclContext()->removeDecl(ED);
        }
      }
    }
  }

  // If the typedef types are not identical, reject them in all languages and
  // with any extensions enabled.
  if (isIncompatibleTypedef(Old, New))
    return;

  // The types match.  Link up the redeclaration chain and merge attributes if
  // the old declaration was a typedef.
  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
    New->setPreviousDecl(Typedef);
    mergeDeclAttributes(New, Old);
  }

  if (getLangOpts().MicrosoftExt)
    return;

  if (getLangOpts().CPlusPlus) {
    // C++ [dcl.typedef]p2:
    //   In a given non-class scope, a typedef specifier can be used to
    //   redefine the name of any type declared in that scope to refer
    //   to the type to which it already refers.
    if (!isa<CXXRecordDecl>(CurContext))
      return;

    // C++0x [dcl.typedef]p4:
    //   In a given class scope, a typedef specifier can be used to redefine
    //   any class-name declared in that scope that is not also a typedef-name
    //   to refer to the type to which it already refers.
    //
    // This wording came in via DR424, which was a correction to the
    // wording in DR56, which accidentally banned code like:
    //
    //   struct S {
    //     typedef struct A { } A;
    //   };
    //
    // in the C++03 standard. We implement the C++0x semantics, which
    // allow the above but disallow
    //
    //   struct S {
    //     typedef int I;
    //     typedef int I;
    //   };
    //
    // since that was the intent of DR56.
    if (!isa<TypedefNameDecl>(Old))
      return;

    Diag(New->getLocation(), diag::err_redefinition)
      << New->getDeclName();
    notePreviousDefinition(Old, New->getLocation());
    return New->setInvalidDecl();
  }

  // Modules always permit redefinition of typedefs, as does C11.
  if (getLangOpts().Modules || getLangOpts().C11)
    return;

  // If we have a redefinition of a typedef in C, emit a warning.  This warning
  // is normally mapped to an error, but can be controlled with
  // -Wtypedef-redefinition.  If either the original or the redefinition is
  // in a system header, don't emit this for compatibility with GCC.
  if (getDiagnostics().getSuppressSystemWarnings() &&
      // Some standard types are defined implicitly in Clang (e.g. OpenCL).
      (Old->isImplicit() ||
       Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
       Context.getSourceManager().isInSystemHeader(New->getLocation())))
    return;

  Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
    << New->getDeclName();
  notePreviousDefinition(Old, New->getLocation());
}

/// DeclhasAttr - returns true if decl Declaration already has the target
/// attribute.
static bool DeclHasAttr(const Decl *D, const Attr *A) {
  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
  for (const auto *i : D->attrs())
    if (i->getKind() == A->getKind()) {
      if (Ann) {
        if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
          return true;
        continue;
      }
      // FIXME: Don't hardcode this check
      if (OA && isa<OwnershipAttr>(i))
        return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
      return true;
    }

  return false;
}

static bool isAttributeTargetADefinition(Decl *D) {
  if (VarDecl *VD = dyn_cast<VarDecl>(D))
    return VD->isThisDeclarationADefinition();
  if (TagDecl *TD = dyn_cast<TagDecl>(D))
    return TD->isCompleteDefinition() || TD->isBeingDefined();
  return true;
}

/// Merge alignment attributes from \p Old to \p New, taking into account the
/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
///
/// \return \c true if any attributes were added to \p New.
static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
  // Look for alignas attributes on Old, and pick out whichever attribute
  // specifies the strictest alignment requirement.
  AlignedAttr *OldAlignasAttr = nullptr;
  AlignedAttr *OldStrictestAlignAttr = nullptr;
  unsigned OldAlign = 0;
  for (auto *I : Old->specific_attrs<AlignedAttr>()) {
    // FIXME: We have no way of representing inherited dependent alignments
    // in a case like:
    //   template<int A, int B> struct alignas(A) X;
    //   template<int A, int B> struct alignas(B) X {};
    // For now, we just ignore any alignas attributes which are not on the
    // definition in such a case.
    if (I->isAlignmentDependent())
      return false;

    if (I->isAlignas())
      OldAlignasAttr = I;

    unsigned Align = I->getAlignment(S.Context);
    if (Align > OldAlign) {
      OldAlign = Align;
      OldStrictestAlignAttr = I;
    }
  }

  // Look for alignas attributes on New.
  AlignedAttr *NewAlignasAttr = nullptr;
  unsigned NewAlign = 0;
  for (auto *I : New->specific_attrs<AlignedAttr>()) {
    if (I->isAlignmentDependent())
      return false;

    if (I->isAlignas())
      NewAlignasAttr = I;

    unsigned Align = I->getAlignment(S.Context);
    if (Align > NewAlign)
      NewAlign = Align;
  }

  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
    // Both declarations have 'alignas' attributes. We require them to match.
    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
    // fall short. (If two declarations both have alignas, they must both match
    // every definition, and so must match each other if there is a definition.)

    // If either declaration only contains 'alignas(0)' specifiers, then it
    // specifies the natural alignment for the type.
    if (OldAlign == 0 || NewAlign == 0) {
      QualType Ty;
      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
        Ty = VD->getType();
      else
        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));

      if (OldAlign == 0)
        OldAlign = S.Context.getTypeAlign(Ty);
      if (NewAlign == 0)
        NewAlign = S.Context.getTypeAlign(Ty);
    }

    if (OldAlign != NewAlign) {
      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
    }
  }

  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
    // C++11 [dcl.align]p6:
    //   if any declaration of an entity has an alignment-specifier,
    //   every defining declaration of that entity shall specify an
    //   equivalent alignment.
    // C11 6.7.5/7:
    //   If the definition of an object does not have an alignment
    //   specifier, any other declaration of that object shall also
    //   have no alignment specifier.
    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
      << OldAlignasAttr;
    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
      << OldAlignasAttr;
  }

  bool AnyAdded = false;

  // Ensure we have an attribute representing the strictest alignment.
  if (OldAlign > NewAlign) {
    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
    Clone->setInherited(true);
    New->addAttr(Clone);
    AnyAdded = true;
  }

  // Ensure we have an alignas attribute if the old declaration had one.
  if (OldAlignasAttr && !NewAlignasAttr &&
      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
    Clone->setInherited(true);
    New->addAttr(Clone);
    AnyAdded = true;
  }

  return AnyAdded;
}

static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
                               const InheritableAttr *Attr,
                               Sema::AvailabilityMergeKind AMK) {
  // This function copies an attribute Attr from a previous declaration to the
  // new declaration D if the new declaration doesn't itself have that attribute
  // yet or if that attribute allows duplicates.
  // If you're adding a new attribute that requires logic different from
  // "use explicit attribute on decl if present, else use attribute from
  // previous decl", for example if the attribute needs to be consistent
  // between redeclarations, you need to call a custom merge function here.
  InheritableAttr *NewAttr = nullptr;
  if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
    NewAttr = S.mergeAvailabilityAttr(
        D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
        AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
        AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
        AA->getPriority());
  else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
    NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
  else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
    NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
  else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
    NewAttr = S.mergeDLLImportAttr(D, *ImportA);
  else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
    NewAttr = S.mergeDLLExportAttr(D, *ExportA);
  else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
    NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
                                FA->getFirstArg());
  else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
    NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
  else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
    NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
  else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
    NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
                                       IA->getInheritanceModel());
  else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
    NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
                                      &S.Context.Idents.get(AA->getSpelling()));
  else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
           (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
            isa<CUDAGlobalAttr>(Attr))) {
    // CUDA target attributes are part of function signature for
    // overloading purposes and must not be merged.
    return false;
  } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
    NewAttr = S.mergeMinSizeAttr(D, *MA);
  else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
    NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
  else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
    NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
  else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
    NewAttr = S.mergeCommonAttr(D, *CommonA);
  else if (isa<AlignedAttr>(Attr))
    // AlignedAttrs are handled separately, because we need to handle all
    // such attributes on a declaration at the same time.
    NewAttr = nullptr;
  else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
           (AMK == Sema::AMK_Override ||
            AMK == Sema::AMK_ProtocolImplementation))
    NewAttr = nullptr;
  else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
    NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid());
  else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
    NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
  else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
    NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
  else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));

  if (NewAttr) {
    NewAttr->setInherited(true);
    D->addAttr(NewAttr);
    if (isa<MSInheritanceAttr>(NewAttr))
      S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
    return true;
  }

  return false;
}

static const NamedDecl *getDefinition(const Decl *D) {
  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
    return TD->getDefinition();
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    const VarDecl *Def = VD->getDefinition();
    if (Def)
      return Def;
    return VD->getActingDefinition();
  }
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    return FD->getDefinition();
  return nullptr;
}

static bool hasAttribute(const Decl *D, attr::Kind Kind) {
  for (const auto *Attribute : D->attrs())
    if (Attribute->getKind() == Kind)
      return true;
  return false;
}

/// checkNewAttributesAfterDef - If we already have a definition, check that
/// there are no new attributes in this declaration.
static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
  if (!New->hasAttrs())
    return;

  const NamedDecl *Def = getDefinition(Old);
  if (!Def || Def == New)
    return;

  AttrVec &NewAttributes = New->getAttrs();
  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
    const Attr *NewAttribute = NewAttributes[I];

    if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
      if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
        Sema::SkipBodyInfo SkipBody;
        S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);

        // If we're skipping this definition, drop the "alias" attribute.
        if (SkipBody.ShouldSkip) {
          NewAttributes.erase(NewAttributes.begin() + I);
          --E;
          continue;
        }
      } else {
        VarDecl *VD = cast<VarDecl>(New);
        unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
                                VarDecl::TentativeDefinition
                            ? diag::err_alias_after_tentative
                            : diag::err_redefinition;
        S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
        if (Diag == diag::err_redefinition)
          S.notePreviousDefinition(Def, VD->getLocation());
        else
          S.Diag(Def->getLocation(), diag::note_previous_definition);
        VD->setInvalidDecl();
      }
      ++I;
      continue;
    }

    if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
      // Tentative definitions are only interesting for the alias check above.
      if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
        ++I;
        continue;
      }
    }

    if (hasAttribute(Def, NewAttribute->getKind())) {
      ++I;
      continue; // regular attr merging will take care of validating this.
    }

    if (isa<C11NoReturnAttr>(NewAttribute)) {
      // C's _Noreturn is allowed to be added to a function after it is defined.
      ++I;
      continue;
    } else if (isa<UuidAttr>(NewAttribute)) {
      // msvc will allow a subsequent definition to add an uuid to a class
      ++I;
      continue;
    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
      if (AA->isAlignas()) {
        // C++11 [dcl.align]p6:
        //   if any declaration of an entity has an alignment-specifier,
        //   every defining declaration of that entity shall specify an
        //   equivalent alignment.
        // C11 6.7.5/7:
        //   If the definition of an object does not have an alignment
        //   specifier, any other declaration of that object shall also
        //   have no alignment specifier.
        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
          << AA;
        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
          << AA;
        NewAttributes.erase(NewAttributes.begin() + I);
        --E;
        continue;
      }
    } else if (isa<SelectAnyAttr>(NewAttribute) &&
               cast<VarDecl>(New)->isInline() &&
               !cast<VarDecl>(New)->isInlineSpecified()) {
      // Don't warn about applying selectany to implicitly inline variables.
      // Older compilers and language modes would require the use of selectany
      // to make such variables inline, and it would have no effect if we
      // honored it.
      ++I;
      continue;
    }

    S.Diag(NewAttribute->getLocation(),
           diag::warn_attribute_precede_definition);
    S.Diag(Def->getLocation(), diag::note_previous_definition);
    NewAttributes.erase(NewAttributes.begin() + I);
    --E;
  }
}

static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
                                     const ConstInitAttr *CIAttr,
                                     bool AttrBeforeInit) {
  SourceLocation InsertLoc = InitDecl->getInnerLocStart();

  // Figure out a good way to write this specifier on the old declaration.
  // FIXME: We should just use the spelling of CIAttr, but we don't preserve
  // enough of the attribute list spelling information to extract that without
  // heroics.
  std::string SuitableSpelling;
  if (S.getLangOpts().CPlusPlus2a)
    SuitableSpelling =
        S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit});
  if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
    SuitableSpelling = S.PP.getLastMacroWithSpelling(
        InsertLoc,
        {tok::l_square, tok::l_square, S.PP.getIdentifierInfo("clang"),
         tok::coloncolon,
         S.PP.getIdentifierInfo("require_constant_initialization"),
         tok::r_square, tok::r_square});
  if (SuitableSpelling.empty())
    SuitableSpelling = S.PP.getLastMacroWithSpelling(
        InsertLoc,
        {tok::kw___attribute, tok::l_paren, tok::r_paren,
         S.PP.getIdentifierInfo("require_constant_initialization"),
         tok::r_paren, tok::r_paren});
  if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus2a)
    SuitableSpelling = "constinit";
  if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
    SuitableSpelling = "[[clang::require_constant_initialization]]";
  if (SuitableSpelling.empty())
    SuitableSpelling = "__attribute__((require_constant_initialization))";
  SuitableSpelling += " ";

  if (AttrBeforeInit) {
    // extern constinit int a;
    // int a = 0; // error (missing 'constinit'), accepted as extension
    assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
    S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
        << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
    S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
  } else {
    // int a = 0;
    // constinit extern int a; // error (missing 'constinit')
    S.Diag(CIAttr->getLocation(),
           CIAttr->isConstinit() ? diag::err_constinit_added_too_late
                                 : diag::warn_require_const_init_added_too_late)
        << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
    S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
        << CIAttr->isConstinit()
        << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
  }
}

/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
                               AvailabilityMergeKind AMK) {
  if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
    UsedAttr *NewAttr = OldAttr->clone(Context);
    NewAttr->setInherited(true);
    New->addAttr(NewAttr);
  }

  if (!Old->hasAttrs() && !New->hasAttrs())
    return;

  // [dcl.constinit]p1:
  //   If the [constinit] specifier is applied to any declaration of a
  //   variable, it shall be applied to the initializing declaration.
  const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
  const auto *NewConstInit = New->getAttr<ConstInitAttr>();
  if (bool(OldConstInit) != bool(NewConstInit)) {
    const auto *OldVD = cast<VarDecl>(Old);
    auto *NewVD = cast<VarDecl>(New);

    // Find the initializing declaration. Note that we might not have linked
    // the new declaration into the redeclaration chain yet.
    const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
    if (!InitDecl &&
        (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
      InitDecl = NewVD;

    if (InitDecl == NewVD) {
      // This is the initializing declaration. If it would inherit 'constinit',
      // that's ill-formed. (Note that we do not apply this to the attribute
      // form).
      if (OldConstInit && OldConstInit->isConstinit())
        diagnoseMissingConstinit(*this, NewVD, OldConstInit,
                                 /*AttrBeforeInit=*/true);
    } else if (NewConstInit) {
      // This is the first time we've been told that this declaration should
      // have a constant initializer. If we already saw the initializing
      // declaration, this is too late.
      if (InitDecl && InitDecl != NewVD) {
        diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
                                 /*AttrBeforeInit=*/false);
        NewVD->dropAttr<ConstInitAttr>();
      }
    }
  }

  // Attributes declared post-definition are currently ignored.
  checkNewAttributesAfterDef(*this, New, Old);

  if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
    if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
      if (!OldA->isEquivalent(NewA)) {
        // This redeclaration changes __asm__ label.
        Diag(New->getLocation(), diag::err_different_asm_label);
        Diag(OldA->getLocation(), diag::note_previous_declaration);
      }
    } else if (Old->isUsed()) {
      // This redeclaration adds an __asm__ label to a declaration that has
      // already been ODR-used.
      Diag(New->getLocation(), diag::err_late_asm_label_name)
        << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
    }
  }

  // Re-declaration cannot add abi_tag's.
  if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
    if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
      for (const auto &NewTag : NewAbiTagAttr->tags()) {
        if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
                      NewTag) == OldAbiTagAttr->tags_end()) {
          Diag(NewAbiTagAttr->getLocation(),
               diag::err_new_abi_tag_on_redeclaration)
              << NewTag;
          Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
        }
      }
    } else {
      Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
      Diag(Old->getLocation(), diag::note_previous_declaration);
    }
  }

  // This redeclaration adds a section attribute.
  if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
    if (auto *VD = dyn_cast<VarDecl>(New)) {
      if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
        Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
        Diag(Old->getLocation(), diag::note_previous_declaration);
      }
    }
  }

  // Redeclaration adds code-seg attribute.
  const auto *NewCSA = New->getAttr<CodeSegAttr>();
  if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
      !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
    Diag(New->getLocation(), diag::warn_mismatched_section)
         << 0 /*codeseg*/;
    Diag(Old->getLocation(), diag::note_previous_declaration);
  }

  if (!Old->hasAttrs())
    return;

  bool foundAny = New->hasAttrs();

  // Ensure that any moving of objects within the allocated map is done before
  // we process them.
  if (!foundAny) New->setAttrs(AttrVec());

  for (auto *I : Old->specific_attrs<InheritableAttr>()) {
    // Ignore deprecated/unavailable/availability attributes if requested.
    AvailabilityMergeKind LocalAMK = AMK_None;
    if (isa<DeprecatedAttr>(I) ||
        isa<UnavailableAttr>(I) ||
        isa<AvailabilityAttr>(I)) {
      switch (AMK) {
      case AMK_None:
        continue;

      case AMK_Redeclaration:
      case AMK_Override:
      case AMK_ProtocolImplementation:
        LocalAMK = AMK;
        break;
      }
    }

    // Already handled.
    if (isa<UsedAttr>(I))
      continue;

    if (mergeDeclAttribute(*this, New, I, LocalAMK))
      foundAny = true;
  }

  if (mergeAlignedAttrs(*this, New, Old))
    foundAny = true;

  if (!foundAny) New->dropAttrs();
}

/// mergeParamDeclAttributes - Copy attributes from the old parameter
/// to the new one.
static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
                                     const ParmVarDecl *oldDecl,
                                     Sema &S) {
  // C++11 [dcl.attr.depend]p2:
  //   The first declaration of a function shall specify the
  //   carries_dependency attribute for its declarator-id if any declaration
  //   of the function specifies the carries_dependency attribute.
  const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
  if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
    S.Diag(CDA->getLocation(),
           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
    // Find the first declaration of the parameter.
    // FIXME: Should we build redeclaration chains for function parameters?
    const FunctionDecl *FirstFD =
      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
    const ParmVarDecl *FirstVD =
      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
    S.Diag(FirstVD->getLocation(),
           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
  }

  if (!oldDecl->hasAttrs())
    return;

  bool foundAny = newDecl->hasAttrs();

  // Ensure that any moving of objects within the allocated map is
  // done before we process them.
  if (!foundAny) newDecl->setAttrs(AttrVec());

  for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
    if (!DeclHasAttr(newDecl, I)) {
      InheritableAttr *newAttr =
        cast<InheritableParamAttr>(I->clone(S.Context));
      newAttr->setInherited(true);
      newDecl->addAttr(newAttr);
      foundAny = true;
    }
  }

  if (!foundAny) newDecl->dropAttrs();
}

static void mergeParamDeclTypes(ParmVarDecl *NewParam,
                                const ParmVarDecl *OldParam,
                                Sema &S) {
  if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
    if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
      if (*Oldnullability != *Newnullability) {
        S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
          << DiagNullabilityKind(
               *Newnullability,
               ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
                != 0))
          << DiagNullabilityKind(
               *Oldnullability,
               ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
                != 0));
        S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
      }
    } else {
      QualType NewT = NewParam->getType();
      NewT = S.Context.getAttributedType(
                         AttributedType::getNullabilityAttrKind(*Oldnullability),
                         NewT, NewT);
      NewParam->setType(NewT);
    }
  }
}

namespace {

/// Used in MergeFunctionDecl to keep track of function parameters in
/// C.
struct GNUCompatibleParamWarning {
  ParmVarDecl *OldParm;
  ParmVarDecl *NewParm;
  QualType PromotedType;
};

} // end anonymous namespace

// Determine whether the previous declaration was a definition, implicit
// declaration, or a declaration.
template <typename T>
static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
  diag::kind PrevDiag;
  SourceLocation OldLocation = Old->getLocation();
  if (Old->isThisDeclarationADefinition())
    PrevDiag = diag::note_previous_definition;
  else if (Old->isImplicit()) {
    PrevDiag = diag::note_previous_implicit_declaration;
    if (OldLocation.isInvalid())
      OldLocation = New->getLocation();
  } else
    PrevDiag = diag::note_previous_declaration;
  return std::make_pair(PrevDiag, OldLocation);
}

/// canRedefineFunction - checks if a function can be redefined. Currently,
/// only extern inline functions can be redefined, and even then only in
/// GNU89 mode.
static bool canRedefineFunction(const FunctionDecl *FD,
                                const LangOptions& LangOpts) {
  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
          !LangOpts.CPlusPlus &&
          FD->isInlineSpecified() &&
          FD->getStorageClass() == SC_Extern);
}

const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
  const AttributedType *AT = T->getAs<AttributedType>();
  while (AT && !AT->isCallingConv())
    AT = AT->getModifiedType()->getAs<AttributedType>();
  return AT;
}

template <typename T>
static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
  const DeclContext *DC = Old->getDeclContext();
  if (DC->isRecord())
    return false;

  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
    return true;
  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
    return true;
  return false;
}

template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
static bool isExternC(VarTemplateDecl *) { return false; }

/// Check whether a redeclaration of an entity introduced by a
/// using-declaration is valid, given that we know it's not an overload
/// (nor a hidden tag declaration).
template<typename ExpectedDecl>
static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
                                   ExpectedDecl *New) {
  // C++11 [basic.scope.declarative]p4:
  //   Given a set of declarations in a single declarative region, each of
  //   which specifies the same unqualified name,
  //   -- they shall all refer to the same entity, or all refer to functions
  //      and function templates; or
  //   -- exactly one declaration shall declare a class name or enumeration
  //      name that is not a typedef name and the other declarations shall all
  //      refer to the same variable or enumerator, or all refer to functions
  //      and function templates; in this case the class name or enumeration
  //      name is hidden (3.3.10).

  // C++11 [namespace.udecl]p14:
  //   If a function declaration in namespace scope or block scope has the
  //   same name and the same parameter-type-list as a function introduced
  //   by a using-declaration, and the declarations do not declare the same
  //   function, the program is ill-formed.

  auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
  if (Old &&
      !Old->getDeclContext()->getRedeclContext()->Equals(
          New->getDeclContext()->getRedeclContext()) &&
      !(isExternC(Old) && isExternC(New)))
    Old = nullptr;

  if (!Old) {
    S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
    S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
    S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
    return true;
  }
  return false;
}

static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
                                            const FunctionDecl *B) {
  assert(A->getNumParams() == B->getNumParams());

  auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
    const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
    const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
    if (AttrA == AttrB)
      return true;
    return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
           AttrA->isDynamic() == AttrB->isDynamic();
  };

  return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
}

/// If necessary, adjust the semantic declaration context for a qualified
/// declaration to name the correct inline namespace within the qualifier.
static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
                                               DeclaratorDecl *OldD) {
  // The only case where we need to update the DeclContext is when
  // redeclaration lookup for a qualified name finds a declaration
  // in an inline namespace within the context named by the qualifier:
  //
  //   inline namespace N { int f(); }
  //   int ::f(); // Sema DC needs adjusting from :: to N::.
  //
  // For unqualified declarations, the semantic context *can* change
  // along the redeclaration chain (for local extern declarations,
  // extern "C" declarations, and friend declarations in particular).
  if (!NewD->getQualifier())
    return;

  // NewD is probably already in the right context.
  auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
  auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
  if (NamedDC->Equals(SemaDC))
    return;

  assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
          NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
         "unexpected context for redeclaration");

  auto *LexDC = NewD->getLexicalDeclContext();
  auto FixSemaDC = [=](NamedDecl *D) {
    if (!D)
      return;
    D->setDeclContext(SemaDC);
    D->setLexicalDeclContext(LexDC);
  };

  FixSemaDC(NewD);
  if (auto *FD = dyn_cast<FunctionDecl>(NewD))
    FixSemaDC(FD->getDescribedFunctionTemplate());
  else if (auto *VD = dyn_cast<VarDecl>(NewD))
    FixSemaDC(VD->getDescribedVarTemplate());
}

/// MergeFunctionDecl - We just parsed a function 'New' from
/// declarator D which has the same name and scope as a previous
/// declaration 'Old'.  Figure out how to resolve this situation,
/// merging decls or emitting diagnostics as appropriate.
///
/// In C++, New and Old must be declarations that are not
/// overloaded. Use IsOverload to determine whether New and Old are
/// overloaded, and to select the Old declaration that New should be
/// merged with.
///
/// Returns true if there was an error, false otherwise.
bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
                             Scope *S, bool MergeTypeWithOld) {
  // Verify the old decl was also a function.
  FunctionDecl *Old = OldD->getAsFunction();
  if (!Old) {
    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
      if (New->getFriendObjectKind()) {
        Diag(New->getLocation(), diag::err_using_decl_friend);
        Diag(Shadow->getTargetDecl()->getLocation(),
             diag::note_using_decl_target);
        Diag(Shadow->getUsingDecl()->getLocation(),
             diag::note_using_decl) << 0;
        return true;
      }

      // Check whether the two declarations might declare the same function.
      if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
        return true;
      OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
    } else {
      Diag(New->getLocation(), diag::err_redefinition_different_kind)
        << New->getDeclName();
      notePreviousDefinition(OldD, New->getLocation());
      return true;
    }
  }

  // If the old declaration is invalid, just give up here.
  if (Old->isInvalidDecl())
    return true;

  // Disallow redeclaration of some builtins.
  if (!getASTContext().canBuiltinBeRedeclared(Old)) {
    Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
    Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
        << Old << Old->getType();
    return true;
  }

  diag::kind PrevDiag;
  SourceLocation OldLocation;
  std::tie(PrevDiag, OldLocation) =
      getNoteDiagForInvalidRedeclaration(Old, New);

  // Don't complain about this if we're in GNU89 mode and the old function
  // is an extern inline function.
  // Don't complain about specializations. They are not supposed to have
  // storage classes.
  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
      New->getStorageClass() == SC_Static &&
      Old->hasExternalFormalLinkage() &&
      !New->getTemplateSpecializationInfo() &&
      !canRedefineFunction(Old, getLangOpts())) {
    if (getLangOpts().MicrosoftExt) {
      Diag(New->getLocation(), diag::ext_static_non_static) << New;
      Diag(OldLocation, PrevDiag);
    } else {
      Diag(New->getLocation(), diag::err_static_non_static) << New;
      Diag(OldLocation, PrevDiag);
      return true;
    }
  }

  if (New->hasAttr<InternalLinkageAttr>() &&
      !Old->hasAttr<InternalLinkageAttr>()) {
    Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
        << New->getDeclName();
    notePreviousDefinition(Old, New->getLocation());
    New->dropAttr<InternalLinkageAttr>();
  }

  if (CheckRedeclarationModuleOwnership(New, Old))
    return true;

  if (!getLangOpts().CPlusPlus) {
    bool OldOvl = Old->hasAttr<OverloadableAttr>();
    if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
      Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
        << New << OldOvl;

      // Try our best to find a decl that actually has the overloadable
      // attribute for the note. In most cases (e.g. programs with only one
      // broken declaration/definition), this won't matter.
      //
      // FIXME: We could do this if we juggled some extra state in
      // OverloadableAttr, rather than just removing it.
      const Decl *DiagOld = Old;
      if (OldOvl) {
        auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
          const auto *A = D->getAttr<OverloadableAttr>();
          return A && !A->isImplicit();
        });
        // If we've implicitly added *all* of the overloadable attrs to this
        // chain, emitting a "previous redecl" note is pointless.
        DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
      }

      if (DiagOld)
        Diag(DiagOld->getLocation(),
             diag::note_attribute_overloadable_prev_overload)
          << OldOvl;

      if (OldOvl)
        New->addAttr(OverloadableAttr::CreateImplicit(Context));
      else
        New->dropAttr<OverloadableAttr>();
    }
  }

  // If a function is first declared with a calling convention, but is later
  // declared or defined without one, all following decls assume the calling
  // convention of the first.
  //
  // It's OK if a function is first declared without a calling convention,
  // but is later declared or defined with the default calling convention.
  //
  // To test if either decl has an explicit calling convention, we look for
  // AttributedType sugar nodes on the type as written.  If they are missing or
  // were canonicalized away, we assume the calling convention was implicit.
  //
  // Note also that we DO NOT return at this point, because we still have
  // other tests to run.
  QualType OldQType = Context.getCanonicalType(Old->getType());
  QualType NewQType = Context.getCanonicalType(New->getType());
  const FunctionType *OldType = cast<FunctionType>(OldQType);
  const FunctionType *NewType = cast<FunctionType>(NewQType);
  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
  bool RequiresAdjustment = false;

  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
    FunctionDecl *First = Old->getFirstDecl();
    const FunctionType *FT =
        First->getType().getCanonicalType()->castAs<FunctionType>();
    FunctionType::ExtInfo FI = FT->getExtInfo();
    bool NewCCExplicit = getCallingConvAttributedType(New->getType());
    if (!NewCCExplicit) {
      // Inherit the CC from the previous declaration if it was specified
      // there but not here.
      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
      RequiresAdjustment = true;
    } else if (New->getBuiltinID()) {
      // Calling Conventions on a Builtin aren't really useful and setting a
      // default calling convention and cdecl'ing some builtin redeclarations is
      // common, so warn and ignore the calling convention on the redeclaration.
      Diag(New->getLocation(), diag::warn_cconv_unsupported)
          << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
          << (int)CallingConventionIgnoredReason::BuiltinFunction;
      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
      RequiresAdjustment = true;
    } else {
      // Calling conventions aren't compatible, so complain.
      bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
      Diag(New->getLocation(), diag::err_cconv_change)
        << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
        << !FirstCCExplicit
        << (!FirstCCExplicit ? "" :
            FunctionType::getNameForCallConv(FI.getCC()));

      // Put the note on the first decl, since it is the one that matters.
      Diag(First->getLocation(), diag::note_previous_declaration);
      return true;
    }
  }

  // FIXME: diagnose the other way around?
  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
    NewTypeInfo = NewTypeInfo.withNoReturn(true);
    RequiresAdjustment = true;
  }

  // Merge regparm attribute.
  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
    if (NewTypeInfo.getHasRegParm()) {
      Diag(New->getLocation(), diag::err_regparm_mismatch)
        << NewType->getRegParmType()
        << OldType->getRegParmType();
      Diag(OldLocation, diag::note_previous_declaration);
      return true;
    }

    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
    RequiresAdjustment = true;
  }

  // Merge ns_returns_retained attribute.
  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
    if (NewTypeInfo.getProducesResult()) {
      Diag(New->getLocation(), diag::err_function_attribute_mismatch)
          << "'ns_returns_retained'";
      Diag(OldLocation, diag::note_previous_declaration);
      return true;
    }

    NewTypeInfo = NewTypeInfo.withProducesResult(true);
    RequiresAdjustment = true;
  }

  if (OldTypeInfo.getNoCallerSavedRegs() !=
      NewTypeInfo.getNoCallerSavedRegs()) {
    if (NewTypeInfo.getNoCallerSavedRegs()) {
      AnyX86NoCallerSavedRegistersAttr *Attr =
        New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
      Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
      Diag(OldLocation, diag::note_previous_declaration);
      return true;
    }

    NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
    RequiresAdjustment = true;
  }

  if (RequiresAdjustment) {
    const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
    AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
    New->setType(QualType(AdjustedType, 0));
    NewQType = Context.getCanonicalType(New->getType());
  }

  // If this redeclaration makes the function inline, we may need to add it to
  // UndefinedButUsed.
  if (!Old->isInlined() && New->isInlined() &&
      !New->hasAttr<GNUInlineAttr>() &&
      !getLangOpts().GNUInline &&
      Old->isUsed(false) &&
      !Old->isDefined() && !New->isThisDeclarationADefinition())
    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
                                           SourceLocation()));

  // If this redeclaration makes it newly gnu_inline, we don't want to warn
  // about it.
  if (New->hasAttr<GNUInlineAttr>() &&
      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
    UndefinedButUsed.erase(Old->getCanonicalDecl());
  }

  // If pass_object_size params don't match up perfectly, this isn't a valid
  // redeclaration.
  if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
      !hasIdenticalPassObjectSizeAttrs(Old, New)) {
    Diag(New->getLocation(), diag::err_different_pass_object_size_params)
        << New->getDeclName();
    Diag(OldLocation, PrevDiag) << Old << Old->getType();
    return true;
  }

  if (getLangOpts().CPlusPlus) {
    // C++1z [over.load]p2
    //   Certain function declarations cannot be overloaded:
    //     -- Function declarations that differ only in the return type,
    //        the exception specification, or both cannot be overloaded.

    // Check the exception specifications match. This may recompute the type of
    // both Old and New if it resolved exception specifications, so grab the
    // types again after this. Because this updates the type, we do this before
    // any of the other checks below, which may update the "de facto" NewQType
    // but do not necessarily update the type of New.
    if (CheckEquivalentExceptionSpec(Old, New))
      return true;
    OldQType = Context.getCanonicalType(Old->getType());
    NewQType = Context.getCanonicalType(New->getType());

    // Go back to the type source info to compare the declared return types,
    // per C++1y [dcl.type.auto]p13:
    //   Redeclarations or specializations of a function or function template
    //   with a declared return type that uses a placeholder type shall also
    //   use that placeholder, not a deduced type.
    QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
    QualType NewDeclaredReturnType = New->getDeclaredReturnType();
    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
        canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
                                       OldDeclaredReturnType)) {
      QualType ResQT;
      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
          OldDeclaredReturnType->isObjCObjectPointerType())
        // FIXME: This does the wrong thing for a deduced return type.
        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
      if (ResQT.isNull()) {
        if (New->isCXXClassMember() && New->isOutOfLine())
          Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
              << New << New->getReturnTypeSourceRange();
        else
          Diag(New->getLocation(), diag::err_ovl_diff_return_type)
              << New->getReturnTypeSourceRange();
        Diag(OldLocation, PrevDiag) << Old << Old->getType()
                                    << Old->getReturnTypeSourceRange();
        return true;
      }
      else
        NewQType = ResQT;
    }

    QualType OldReturnType = OldType->getReturnType();
    QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
    if (OldReturnType != NewReturnType) {
      // If this function has a deduced return type and has already been
      // defined, copy the deduced value from the old declaration.
      AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
      if (OldAT && OldAT->isDeduced()) {
        New->setType(
            SubstAutoType(New->getType(),
                          OldAT->isDependentType() ? Context.DependentTy
                                                   : OldAT->getDeducedType()));
        NewQType = Context.getCanonicalType(
            SubstAutoType(NewQType,
                          OldAT->isDependentType() ? Context.DependentTy
                                                   : OldAT->getDeducedType()));
      }
    }

    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
    if (OldMethod && NewMethod) {
      // Preserve triviality.
      NewMethod->setTrivial(OldMethod->isTrivial());

      // MSVC allows explicit template specialization at class scope:
      // 2 CXXMethodDecls referring to the same function will be injected.
      // We don't want a redeclaration error.
      bool IsClassScopeExplicitSpecialization =
                              OldMethod->isFunctionTemplateSpecialization() &&
                              NewMethod->isFunctionTemplateSpecialization();
      bool isFriend = NewMethod->getFriendObjectKind();

      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
          !IsClassScopeExplicitSpecialization) {
        //    -- Member function declarations with the same name and the
        //       same parameter types cannot be overloaded if any of them
        //       is a static member function declaration.
        if (OldMethod->isStatic() != NewMethod->isStatic()) {
          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
          Diag(OldLocation, PrevDiag) << Old << Old->getType();
          return true;
        }

        // C++ [class.mem]p1:
        //   [...] A member shall not be declared twice in the
        //   member-specification, except that a nested class or member
        //   class template can be declared and then later defined.
        if (!inTemplateInstantiation()) {
          unsigned NewDiag;
          if (isa<CXXConstructorDecl>(OldMethod))
            NewDiag = diag::err_constructor_redeclared;
          else if (isa<CXXDestructorDecl>(NewMethod))
            NewDiag = diag::err_destructor_redeclared;
          else if (isa<CXXConversionDecl>(NewMethod))
            NewDiag = diag::err_conv_function_redeclared;
          else
            NewDiag = diag::err_member_redeclared;

          Diag(New->getLocation(), NewDiag);
        } else {
          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
            << New << New->getType();
        }
        Diag(OldLocation, PrevDiag) << Old << Old->getType();
        return true;

      // Complain if this is an explicit declaration of a special
      // member that was initially declared implicitly.
      //
      // As an exception, it's okay to befriend such methods in order
      // to permit the implicit constructor/destructor/operator calls.
      } else if (OldMethod->isImplicit()) {
        if (isFriend) {
          NewMethod->setImplicit();
        } else {
          Diag(NewMethod->getLocation(),
               diag::err_definition_of_implicitly_declared_member)
            << New << getSpecialMember(OldMethod);
          return true;
        }
      } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
        Diag(NewMethod->getLocation(),
             diag::err_definition_of_explicitly_defaulted_member)
          << getSpecialMember(OldMethod);
        return true;
      }
    }

    // C++11 [dcl.attr.noreturn]p1:
    //   The first declaration of a function shall specify the noreturn
    //   attribute if any declaration of that function specifies the noreturn
    //   attribute.
    const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
    if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
      Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
      Diag(Old->getFirstDecl()->getLocation(),
           diag::note_noreturn_missing_first_decl);
    }

    // C++11 [dcl.attr.depend]p2:
    //   The first declaration of a function shall specify the
    //   carries_dependency attribute for its declarator-id if any declaration
    //   of the function specifies the carries_dependency attribute.
    const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
    if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
      Diag(CDA->getLocation(),
           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
      Diag(Old->getFirstDecl()->getLocation(),
           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
    }

    // (C++98 8.3.5p3):
    //   All declarations for a function shall agree exactly in both the
    //   return type and the parameter-type-list.
    // We also want to respect all the extended bits except noreturn.

    // noreturn should now match unless the old type info didn't have it.
    QualType OldQTypeForComparison = OldQType;
    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
      auto *OldType = OldQType->castAs<FunctionProtoType>();
      const FunctionType *OldTypeForComparison
        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
      assert(OldQTypeForComparison.isCanonical());
    }

    if (haveIncompatibleLanguageLinkages(Old, New)) {
      // As a special case, retain the language linkage from previous
      // declarations of a friend function as an extension.
      //
      // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
      // and is useful because there's otherwise no way to specify language
      // linkage within class scope.
      //
      // Check cautiously as the friend object kind isn't yet complete.
      if (New->getFriendObjectKind() != Decl::FOK_None) {
        Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
        Diag(OldLocation, PrevDiag);
      } else {
        Diag(New->getLocation(), diag::err_different_language_linkage) << New;
        Diag(OldLocation, PrevDiag);
        return true;
      }
    }

    // If the function types are compatible, merge the declarations. Ignore the
    // exception specifier because it was already checked above in
    // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
    // about incompatible types under -fms-compatibility.
    if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
                                                         NewQType))
      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);

    // If the types are imprecise (due to dependent constructs in friends or
    // local extern declarations), it's OK if they differ. We'll check again
    // during instantiation.
    if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
      return false;

    // Fall through for conflicting redeclarations and redefinitions.
  }

  // C: Function types need to be compatible, not identical. This handles
  // duplicate function decls like "void f(int); void f(enum X);" properly.
  if (!getLangOpts().CPlusPlus &&
      Context.typesAreCompatible(OldQType, NewQType)) {
    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
    const FunctionProtoType *OldProto = nullptr;
    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
      // The old declaration provided a function prototype, but the
      // new declaration does not. Merge in the prototype.
      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
      SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
      NewQType =
          Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
                                  OldProto->getExtProtoInfo());
      New->setType(NewQType);
      New->setHasInheritedPrototype();

      // Synthesize parameters with the same types.
      SmallVector<ParmVarDecl*, 16> Params;
      for (const auto &ParamType : OldProto->param_types()) {
        ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
                                                 SourceLocation(), nullptr,
                                                 ParamType, /*TInfo=*/nullptr,
                                                 SC_None, nullptr);
        Param->setScopeInfo(0, Params.size());
        Param->setImplicit();
        Params.push_back(Param);
      }

      New->setParams(Params);
    }

    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
  }

  // Check if the function types are compatible when pointer size address
  // spaces are ignored.
  if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
    return false;

  // GNU C permits a K&R definition to follow a prototype declaration
  // if the declared types of the parameters in the K&R definition
  // match the types in the prototype declaration, even when the
  // promoted types of the parameters from the K&R definition differ
  // from the types in the prototype. GCC then keeps the types from
  // the prototype.
  //
  // If a variadic prototype is followed by a non-variadic K&R definition,
  // the K&R definition becomes variadic.  This is sort of an edge case, but
  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
  // C99 6.9.1p8.
  if (!getLangOpts().CPlusPlus &&
      Old->hasPrototype() && !New->hasPrototype() &&
      New->getType()->getAs<FunctionProtoType>() &&
      Old->getNumParams() == New->getNumParams()) {
    SmallVector<QualType, 16> ArgTypes;
    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
    const FunctionProtoType *OldProto
      = Old->getType()->getAs<FunctionProtoType>();
    const FunctionProtoType *NewProto
      = New->getType()->getAs<FunctionProtoType>();

    // Determine whether this is the GNU C extension.
    QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
                                               NewProto->getReturnType());
    bool LooseCompatible = !MergedReturn.isNull();
    for (unsigned Idx = 0, End = Old->getNumParams();
         LooseCompatible && Idx != End; ++Idx) {
      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
      ParmVarDecl *NewParm = New->getParamDecl(Idx);
      if (Context.typesAreCompatible(OldParm->getType(),
                                     NewProto->getParamType(Idx))) {
        ArgTypes.push_back(NewParm->getType());
      } else if (Context.typesAreCompatible(OldParm->getType(),
                                            NewParm->getType(),
                                            /*CompareUnqualified=*/true)) {
        GNUCompatibleParamWarning Warn = { OldParm, NewParm,
                                           NewProto->getParamType(Idx) };
        Warnings.push_back(Warn);
        ArgTypes.push_back(NewParm->getType());
      } else
        LooseCompatible = false;
    }

    if (LooseCompatible) {
      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
        Diag(Warnings[Warn].NewParm->getLocation(),
             diag::ext_param_promoted_not_compatible_with_prototype)
          << Warnings[Warn].PromotedType
          << Warnings[Warn].OldParm->getType();
        if (Warnings[Warn].OldParm->getLocation().isValid())
          Diag(Warnings[Warn].OldParm->getLocation(),
               diag::note_previous_declaration);
      }

      if (MergeTypeWithOld)
        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
                                             OldProto->getExtProtoInfo()));
      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
    }

    // Fall through to diagnose conflicting types.
  }

  // A function that has already been declared has been redeclared or
  // defined with a different type; show an appropriate diagnostic.

  // If the previous declaration was an implicitly-generated builtin
  // declaration, then at the very least we should use a specialized note.
  unsigned BuiltinID;
  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
    // If it's actually a library-defined builtin function like 'malloc'
    // or 'printf', just warn about the incompatible redeclaration.
    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
      Diag(OldLocation, diag::note_previous_builtin_declaration)
        << Old << Old->getType();

      // If this is a global redeclaration, just forget hereafter
      // about the "builtin-ness" of the function.
      //
      // Doing this for local extern declarations is problematic.  If
      // the builtin declaration remains visible, a second invalid
      // local declaration will produce a hard error; if it doesn't
      // remain visible, a single bogus local redeclaration (which is
      // actually only a warning) could break all the downstream code.
      if (!New->getLexicalDeclContext()->isFunctionOrMethod())
        New->getIdentifier()->revertBuiltin();

      return false;
    }

    PrevDiag = diag::note_previous_builtin_declaration;
  }

  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
  Diag(OldLocation, PrevDiag) << Old << Old->getType();
  return true;
}

/// Completes the merge of two function declarations that are
/// known to be compatible.
///
/// This routine handles the merging of attributes and other
/// properties of function declarations from the old declaration to
/// the new declaration, once we know that New is in fact a
/// redeclaration of Old.
///
/// \returns false
bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
                                        Scope *S, bool MergeTypeWithOld) {
  // Merge the attributes
  mergeDeclAttributes(New, Old);

  // Merge "pure" flag.
  if (Old->isPure())
    New->setPure();

  // Merge "used" flag.
  if (Old->getMostRecentDecl()->isUsed(false))
    New->setIsUsed();

  // Merge attributes from the parameters.  These can mismatch with K&R
  // declarations.
  if (New->getNumParams() == Old->getNumParams())
      for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
        ParmVarDecl *NewParam = New->getParamDecl(i);
        ParmVarDecl *OldParam = Old->getParamDecl(i);
        mergeParamDeclAttributes(NewParam, OldParam, *this);
        mergeParamDeclTypes(NewParam, OldParam, *this);
      }

  if (getLangOpts().CPlusPlus)
    return MergeCXXFunctionDecl(New, Old, S);

  // Merge the function types so the we get the composite types for the return
  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
  // was visible.
  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
  if (!Merged.isNull() && MergeTypeWithOld)
    New->setType(Merged);

  return false;
}

void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
                                ObjCMethodDecl *oldMethod) {
  // Merge the attributes, including deprecated/unavailable
  AvailabilityMergeKind MergeKind =
    isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
      ? AMK_ProtocolImplementation
      : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
                                                       : AMK_Override;

  mergeDeclAttributes(newMethod, oldMethod, MergeKind);

  // Merge attributes from the parameters.
  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
                                       oe = oldMethod->param_end();
  for (ObjCMethodDecl::param_iterator
         ni = newMethod->param_begin(), ne = newMethod->param_end();
       ni != ne && oi != oe; ++ni, ++oi)
    mergeParamDeclAttributes(*ni, *oi, *this);

  CheckObjCMethodOverride(newMethod, oldMethod);
}

static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
  assert(!S.Context.hasSameType(New->getType(), Old->getType()));

  S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
         ? diag::err_redefinition_different_type
         : diag::err_redeclaration_different_type)
    << New->getDeclName() << New->getType() << Old->getType();

  diag::kind PrevDiag;
  SourceLocation OldLocation;
  std::tie(PrevDiag, OldLocation)
    = getNoteDiagForInvalidRedeclaration(Old, New);
  S.Diag(OldLocation, PrevDiag);
  New->setInvalidDecl();
}

/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
/// emitting diagnostics as appropriate.
///
/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
/// to here in AddInitializerToDecl. We can't check them before the initializer
/// is attached.
void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
                             bool MergeTypeWithOld) {
  if (New->isInvalidDecl() || Old->isInvalidDecl())
    return;

  QualType MergedT;
  if (getLangOpts().CPlusPlus) {
    if (New->getType()->isUndeducedType()) {
      // We don't know what the new type is until the initializer is attached.
      return;
    } else if (Context.hasSameType(New->getType(), Old->getType())) {
      // These could still be something that needs exception specs checked.
      return MergeVarDeclExceptionSpecs(New, Old);
    }
    // C++ [basic.link]p10:
    //   [...] the types specified by all declarations referring to a given
    //   object or function shall be identical, except that declarations for an
    //   array object can specify array types that differ by the presence or
    //   absence of a major array bound (8.3.4).
    else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
      const ArrayType *NewArray = Context.getAsArrayType(New->getType());

      // We are merging a variable declaration New into Old. If it has an array
      // bound, and that bound differs from Old's bound, we should diagnose the
      // mismatch.
      if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
        for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
             PrevVD = PrevVD->getPreviousDecl()) {
          const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
          if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
            continue;

          if (!Context.hasSameType(NewArray, PrevVDTy))
            return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
        }
      }

      if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
        if (Context.hasSameType(OldArray->getElementType(),
                                NewArray->getElementType()))
          MergedT = New->getType();
      }
      // FIXME: Check visibility. New is hidden but has a complete type. If New
      // has no array bound, it should not inherit one from Old, if Old is not
      // visible.
      else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
        if (Context.hasSameType(OldArray->getElementType(),
                                NewArray->getElementType()))
          MergedT = Old->getType();
      }
    }
    else if (New->getType()->isObjCObjectPointerType() &&
               Old->getType()->isObjCObjectPointerType()) {
      MergedT = Context.mergeObjCGCQualifiers(New->getType(),
                                              Old->getType());
    }
  } else {
    // C 6.2.7p2:
    //   All declarations that refer to the same object or function shall have
    //   compatible type.
    MergedT = Context.mergeTypes(New->getType(), Old->getType());
  }
  if (MergedT.isNull()) {
    // It's OK if we couldn't merge types if either type is dependent, for a
    // block-scope variable. In other cases (static data members of class
    // templates, variable templates, ...), we require the types to be
    // equivalent.
    // FIXME: The C++ standard doesn't say anything about this.
    if ((New->getType()->isDependentType() ||
         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
      // If the old type was dependent, we can't merge with it, so the new type
      // becomes dependent for now. We'll reproduce the original type when we
      // instantiate the TypeSourceInfo for the variable.
      if (!New->getType()->isDependentType() && MergeTypeWithOld)
        New->setType(Context.DependentTy);
      return;
    }
    return diagnoseVarDeclTypeMismatch(*this, New, Old);
  }

  // Don't actually update the type on the new declaration if the old
  // declaration was an extern declaration in a different scope.
  if (MergeTypeWithOld)
    New->setType(MergedT);
}

static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
                                  LookupResult &Previous) {
  // C11 6.2.7p4:
  //   For an identifier with internal or external linkage declared
  //   in a scope in which a prior declaration of that identifier is
  //   visible, if the prior declaration specifies internal or
  //   external linkage, the type of the identifier at the later
  //   declaration becomes the composite type.
  //
  // If the variable isn't visible, we do not merge with its type.
  if (Previous.isShadowed())
    return false;

  if (S.getLangOpts().CPlusPlus) {
    // C++11 [dcl.array]p3:
    //   If there is a preceding declaration of the entity in the same
    //   scope in which the bound was specified, an omitted array bound
    //   is taken to be the same as in that earlier declaration.
    return NewVD->isPreviousDeclInSameBlockScope() ||
           (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
            !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
  } else {
    // If the old declaration was function-local, don't merge with its
    // type unless we're in the same function.
    return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
           OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
  }
}

/// MergeVarDecl - We just parsed a variable 'New' which has the same name
/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
/// situation, merging decls or emitting diagnostics as appropriate.
///
/// Tentative definition rules (C99 6.9.2p2) are checked by
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
/// definitions here, since the initializer hasn't been attached.
///
void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
  // If the new decl is already invalid, don't do any other checking.
  if (New->isInvalidDecl())
    return;

  if (!shouldLinkPossiblyHiddenDecl(Previous, New))
    return;

  VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();

  // Verify the old decl was also a variable or variable template.
  VarDecl *Old = nullptr;
  VarTemplateDecl *OldTemplate = nullptr;
  if (Previous.isSingleResult()) {
    if (NewTemplate) {
      OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
      Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;

      if (auto *Shadow =
              dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
        if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
          return New->setInvalidDecl();
    } else {
      Old = dyn_cast<VarDecl>(Previous.getFoundDecl());

      if (auto *Shadow =
              dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
        if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
          return New->setInvalidDecl();
    }
  }
  if (!Old) {
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
        << New->getDeclName();
    notePreviousDefinition(Previous.getRepresentativeDecl(),
                           New->getLocation());
    return New->setInvalidDecl();
  }

  // Ensure the template parameters are compatible.
  if (NewTemplate &&
      !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
                                      OldTemplate->getTemplateParameters(),
                                      /*Complain=*/true, TPL_TemplateMatch))
    return New->setInvalidDecl();

  // C++ [class.mem]p1:
  //   A member shall not be declared twice in the member-specification [...]
  //
  // Here, we need only consider static data members.
  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
    Diag(New->getLocation(), diag::err_duplicate_member)
      << New->getIdentifier();
    Diag(Old->getLocation(), diag::note_previous_declaration);
    New->setInvalidDecl();
  }

  mergeDeclAttributes(New, Old);
  // Warn if an already-declared variable is made a weak_import in a subsequent
  // declaration
  if (New->hasAttr<WeakImportAttr>() &&
      Old->getStorageClass() == SC_None &&
      !Old->hasAttr<WeakImportAttr>()) {
    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
    notePreviousDefinition(Old, New->getLocation());
    // Remove weak_import attribute on new declaration.
    New->dropAttr<WeakImportAttr>();
  }

  if (New->hasAttr<InternalLinkageAttr>() &&
      !Old->hasAttr<InternalLinkageAttr>()) {
    Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
        << New->getDeclName();
    notePreviousDefinition(Old, New->getLocation());
    New->dropAttr<InternalLinkageAttr>();
  }

  // Merge the types.
  VarDecl *MostRecent = Old->getMostRecentDecl();
  if (MostRecent != Old) {
    MergeVarDeclTypes(New, MostRecent,
                      mergeTypeWithPrevious(*this, New, MostRecent, Previous));
    if (New->isInvalidDecl())
      return;
  }

  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
  if (New->isInvalidDecl())
    return;

  diag::kind PrevDiag;
  SourceLocation OldLocation;
  std::tie(PrevDiag, OldLocation) =
      getNoteDiagForInvalidRedeclaration(Old, New);

  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
  if (New->getStorageClass() == SC_Static &&
      !New->isStaticDataMember() &&
      Old->hasExternalFormalLinkage()) {
    if (getLangOpts().MicrosoftExt) {
      Diag(New->getLocation(), diag::ext_static_non_static)
          << New->getDeclName();
      Diag(OldLocation, PrevDiag);
    } else {
      Diag(New->getLocation(), diag::err_static_non_static)
          << New->getDeclName();
      Diag(OldLocation, PrevDiag);
      return New->setInvalidDecl();
    }
  }
  // C99 6.2.2p4:
  //   For an identifier declared with the storage-class specifier
  //   extern in a scope in which a prior declaration of that
  //   identifier is visible,23) if the prior declaration specifies
  //   internal or external linkage, the linkage of the identifier at
  //   the later declaration is the same as the linkage specified at
  //   the prior declaration. If no prior declaration is visible, or
  //   if the prior declaration specifies no linkage, then the
  //   identifier has external linkage.
  if (New->hasExternalStorage() && Old->hasLinkage())
    /* Okay */;
  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
           !New->isStaticDataMember() &&
           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
    Diag(OldLocation, PrevDiag);
    return New->setInvalidDecl();
  }

  // Check if extern is followed by non-extern and vice-versa.
  if (New->hasExternalStorage() &&
      !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
    Diag(OldLocation, PrevDiag);
    return New->setInvalidDecl();
  }
  if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
      !New->hasExternalStorage()) {
    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
    Diag(OldLocation, PrevDiag);
    return New->setInvalidDecl();
  }

  if (CheckRedeclarationModuleOwnership(New, Old))
    return;

  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.

  // FIXME: The test for external storage here seems wrong? We still
  // need to check for mismatches.
  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
      // Don't complain about out-of-line definitions of static members.
      !(Old->getLexicalDeclContext()->isRecord() &&
        !New->getLexicalDeclContext()->isRecord())) {
    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
    Diag(OldLocation, PrevDiag);
    return New->setInvalidDecl();
  }

  if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
    if (VarDecl *Def = Old->getDefinition()) {
      // C++1z [dcl.fcn.spec]p4:
      //   If the definition of a variable appears in a translation unit before
      //   its first declaration as inline, the program is ill-formed.
      Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
      Diag(Def->getLocation(), diag::note_previous_definition);
    }
  }

  // If this redeclaration makes the variable inline, we may need to add it to
  // UndefinedButUsed.
  if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
      !Old->getDefinition() && !New->isThisDeclarationADefinition())
    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
                                           SourceLocation()));

  if (New->getTLSKind() != Old->getTLSKind()) {
    if (!Old->getTLSKind()) {
      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
      Diag(OldLocation, PrevDiag);
    } else if (!New->getTLSKind()) {
      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
      Diag(OldLocation, PrevDiag);
    } else {
      // Do not allow redeclaration to change the variable between requiring
      // static and dynamic initialization.
      // FIXME: GCC allows this, but uses the TLS keyword on the first
      // declaration to determine the kind. Do we need to be compatible here?
      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
      Diag(OldLocation, PrevDiag);
    }
  }

  // C++ doesn't have tentative definitions, so go right ahead and check here.
  if (getLangOpts().CPlusPlus &&
      New->isThisDeclarationADefinition() == VarDecl::Definition) {
    if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
        Old->getCanonicalDecl()->isConstexpr()) {
      // This definition won't be a definition any more once it's been merged.
      Diag(New->getLocation(),
           diag::warn_deprecated_redundant_constexpr_static_def);
    } else if (VarDecl *Def = Old->getDefinition()) {
      if (checkVarDeclRedefinition(Def, New))
        return;
    }
  }

  if (haveIncompatibleLanguageLinkages(Old, New)) {
    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
    Diag(OldLocation, PrevDiag);
    New->setInvalidDecl();
    return;
  }

  // Merge "used" flag.
  if (Old->getMostRecentDecl()->isUsed(false))
    New->setIsUsed();

  // Keep a chain of previous declarations.
  New->setPreviousDecl(Old);
  if (NewTemplate)
    NewTemplate->setPreviousDecl(OldTemplate);
  adjustDeclContextForDeclaratorDecl(New, Old);

  // Inherit access appropriately.
  New->setAccess(Old->getAccess());
  if (NewTemplate)
    NewTemplate->setAccess(New->getAccess());

  if (Old->isInline())
    New->setImplicitlyInline();
}

void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
  SourceManager &SrcMgr = getSourceManager();
  auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
  auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
  auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
  auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
  auto &HSI = PP.getHeaderSearchInfo();
  StringRef HdrFilename =
      SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));

  auto noteFromModuleOrInclude = [&](Module *Mod,
                                     SourceLocation IncLoc) -> bool {
    // Redefinition errors with modules are common with non modular mapped
    // headers, example: a non-modular header H in module A that also gets
    // included directly in a TU. Pointing twice to the same header/definition
    // is confusing, try to get better diagnostics when modules is on.
    if (IncLoc.isValid()) {
      if (Mod) {
        Diag(IncLoc, diag::note_redefinition_modules_same_file)
            << HdrFilename.str() << Mod->getFullModuleName();
        if (!Mod->DefinitionLoc.isInvalid())
          Diag(Mod->DefinitionLoc, diag::note_defined_here)
              << Mod->getFullModuleName();
      } else {
        Diag(IncLoc, diag::note_redefinition_include_same_file)
            << HdrFilename.str();
      }
      return true;
    }

    return false;
  };

  // Is it the same file and same offset? Provide more information on why
  // this leads to a redefinition error.
  if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
    SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
    SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
    bool EmittedDiag =
        noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
    EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);

    // If the header has no guards, emit a note suggesting one.
    if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
      Diag(Old->getLocation(), diag::note_use_ifdef_guards);

    if (EmittedDiag)
      return;
  }

  // Redefinition coming from different files or couldn't do better above.
  if (Old->getLocation().isValid())
    Diag(Old->getLocation(), diag::note_previous_definition);
}

/// We've just determined that \p Old and \p New both appear to be definitions
/// of the same variable. Either diagnose or fix the problem.
bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
  if (!hasVisibleDefinition(Old) &&
      (New->getFormalLinkage() == InternalLinkage ||
       New->isInline() ||
       New->getDescribedVarTemplate() ||
       New->getNumTemplateParameterLists() ||
       New->getDeclContext()->isDependentContext())) {
    // The previous definition is hidden, and multiple definitions are
    // permitted (in separate TUs). Demote this to a declaration.
    New->demoteThisDefinitionToDeclaration();

    // Make the canonical definition visible.
    if (auto *OldTD = Old->getDescribedVarTemplate())
      makeMergedDefinitionVisible(OldTD);
    makeMergedDefinitionVisible(Old);
    return false;
  } else {
    Diag(New->getLocation(), diag::err_redefinition) << New;
    notePreviousDefinition(Old, New->getLocation());
    New->setInvalidDecl();
    return true;
  }
}

/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
Decl *
Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
                                 RecordDecl *&AnonRecord) {
  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
                                    AnonRecord);
}

// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
// disambiguate entities defined in different scopes.
// While the VS2015 ABI fixes potential miscompiles, it is also breaks
// compatibility.
// We will pick our mangling number depending on which version of MSVC is being
// targeted.
static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
  return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
             ? S->getMSCurManglingNumber()
             : S->getMSLastManglingNumber();
}

void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
  if (!Context.getLangOpts().CPlusPlus)
    return;

  if (isa<CXXRecordDecl>(Tag->getParent())) {
    // If this tag is the direct child of a class, number it if
    // it is anonymous.
    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
      return;
    MangleNumberingContext &MCtx =
        Context.getManglingNumberContext(Tag->getParent());
    Context.setManglingNumber(
        Tag, MCtx.getManglingNumber(
                 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
    return;
  }

  // If this tag isn't a direct child of a class, number it if it is local.
  MangleNumberingContext *MCtx;
  Decl *ManglingContextDecl;
  std::tie(MCtx, ManglingContextDecl) =
      getCurrentMangleNumberContext(Tag->getDeclContext());
  if (MCtx) {
    Context.setManglingNumber(
        Tag, MCtx->getManglingNumber(
                 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
  }
}

void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
                                        TypedefNameDecl *NewTD) {
  if (TagFromDeclSpec->isInvalidDecl())
    return;

  // Do nothing if the tag already has a name for linkage purposes.
  if (TagFromDeclSpec->hasNameForLinkage())
    return;

  // A well-formed anonymous tag must always be a TUK_Definition.
  assert(TagFromDeclSpec->isThisDeclarationADefinition());

  // The type must match the tag exactly;  no qualifiers allowed.
  if (!Context.hasSameType(NewTD->getUnderlyingType(),
                           Context.getTagDeclType(TagFromDeclSpec))) {
    if (getLangOpts().CPlusPlus)
      Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
    return;
  }

  // If we've already computed linkage for the anonymous tag, then
  // adding a typedef name for the anonymous decl can change that
  // linkage, which might be a serious problem.  Diagnose this as
  // unsupported and ignore the typedef name.  TODO: we should
  // pursue this as a language defect and establish a formal rule
  // for how to handle it.
  if (TagFromDeclSpec->hasLinkageBeenComputed()) {
    Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);

    SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
    tagLoc = getLocForEndOfToken(tagLoc);

    llvm::SmallString<40> textToInsert;
    textToInsert += ' ';
    textToInsert += NewTD->getIdentifier()->getName();
    Diag(tagLoc, diag::note_typedef_changes_linkage)
        << FixItHint::CreateInsertion(tagLoc, textToInsert);
    return;
  }

  // Otherwise, set this is the anon-decl typedef for the tag.
  TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
}

static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
  switch (T) {
  case DeclSpec::TST_class:
    return 0;
  case DeclSpec::TST_struct:
    return 1;
  case DeclSpec::TST_interface:
    return 2;
  case DeclSpec::TST_union:
    return 3;
  case DeclSpec::TST_enum:
    return 4;
  default:
    llvm_unreachable("unexpected type specifier");
  }
}

/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
/// parameters to cope with template friend declarations.
Decl *
Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
                                 MultiTemplateParamsArg TemplateParams,
                                 bool IsExplicitInstantiation,
                                 RecordDecl *&AnonRecord) {
  Decl *TagD = nullptr;
  TagDecl *Tag = nullptr;
  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
      DS.getTypeSpecType() == DeclSpec::TST_struct ||
      DS.getTypeSpecType() == DeclSpec::TST_interface ||
      DS.getTypeSpecType() == DeclSpec::TST_union ||
      DS.getTypeSpecType() == DeclSpec::TST_enum) {
    TagD = DS.getRepAsDecl();

    if (!TagD) // We probably had an error
      return nullptr;

    // Note that the above type specs guarantee that the
    // type rep is a Decl, whereas in many of the others
    // it's a Type.
    if (isa<TagDecl>(TagD))
      Tag = cast<TagDecl>(TagD);
    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
      Tag = CTD->getTemplatedDecl();
  }

  if (Tag) {
    handleTagNumbering(Tag, S);
    Tag->setFreeStanding();
    if (Tag->isInvalidDecl())
      return Tag;
  }

  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
    // or incomplete types shall not be restrict-qualified."
    if (TypeQuals & DeclSpec::TQ_restrict)
      Diag(DS.getRestrictSpecLoc(),
           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
           << DS.getSourceRange();
  }

  if (DS.isInlineSpecified())
    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
        << getLangOpts().CPlusPlus17;

  if (DS.hasConstexprSpecifier()) {
    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
    // and definitions of functions and variables.
    // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
    // the declaration of a function or function template
    if (Tag)
      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
          << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
          << DS.getConstexprSpecifier();
    else
      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
          << DS.getConstexprSpecifier();
    // Don't emit warnings after this error.
    return TagD;
  }

  DiagnoseFunctionSpecifiers(DS);

  if (DS.isFriendSpecified()) {
    // If we're dealing with a decl but not a TagDecl, assume that
    // whatever routines created it handled the friendship aspect.
    if (TagD && !Tag)
      return nullptr;
    return ActOnFriendTypeDecl(S, DS, TemplateParams);
  }

  const CXXScopeSpec &SS = DS.getTypeSpecScope();
  bool IsExplicitSpecialization =
    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
      !IsExplicitInstantiation && !IsExplicitSpecialization &&
      !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
    // nested-name-specifier unless it is an explicit instantiation
    // or an explicit specialization.
    //
    // FIXME: We allow class template partial specializations here too, per the
    // obvious intent of DR1819.
    //
    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
        << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
    return nullptr;
  }

  // Track whether this decl-specifier declares anything.
  bool DeclaresAnything = true;

  // Handle anonymous struct definitions.
  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
      if (getLangOpts().CPlusPlus ||
          Record->getDeclContext()->isRecord()) {
        // If CurContext is a DeclContext that can contain statements,
        // RecursiveASTVisitor won't visit the decls that
        // BuildAnonymousStructOrUnion() will put into CurContext.
        // Also store them here so that they can be part of the
        // DeclStmt that gets created in this case.
        // FIXME: Also return the IndirectFieldDecls created by
        // BuildAnonymousStructOr union, for the same reason?
        if (CurContext->isFunctionOrMethod())
          AnonRecord = Record;
        return BuildAnonymousStructOrUnion(S, DS, AS, Record,
                                           Context.getPrintingPolicy());
      }

      DeclaresAnything = false;
    }
  }

  // C11 6.7.2.1p2:
  //   A struct-declaration that does not declare an anonymous structure or
  //   anonymous union shall contain a struct-declarator-list.
  //
  // This rule also existed in C89 and C99; the grammar for struct-declaration
  // did not permit a struct-declaration without a struct-declarator-list.
  if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
    // Check for Microsoft C extension: anonymous struct/union member.
    // Handle 2 kinds of anonymous struct/union:
    //   struct STRUCT;
    //   union UNION;
    // and
    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
    //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
    if ((Tag && Tag->getDeclName()) ||
        DS.getTypeSpecType() == DeclSpec::TST_typename) {
      RecordDecl *Record = nullptr;
      if (Tag)
        Record = dyn_cast<RecordDecl>(Tag);
      else if (const RecordType *RT =
                   DS.getRepAsType().get()->getAsStructureType())
        Record = RT->getDecl();
      else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
        Record = UT->getDecl();

      if (Record && getLangOpts().MicrosoftExt) {
        Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
            << Record->isUnion() << DS.getSourceRange();
        return BuildMicrosoftCAnonymousStruct(S, DS, Record);
      }

      DeclaresAnything = false;
    }
  }

  // Skip all the checks below if we have a type error.
  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
      (TagD && TagD->isInvalidDecl()))
    return TagD;

  if (getLangOpts().CPlusPlus &&
      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
          !Enum->getIdentifier() && !Enum->isInvalidDecl())
        DeclaresAnything = false;

  if (!DS.isMissingDeclaratorOk()) {
    // Customize diagnostic for a typedef missing a name.
    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
      Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
          << DS.getSourceRange();
    else
      DeclaresAnything = false;
  }

  if (DS.isModulePrivateSpecified() &&
      Tag && Tag->getDeclContext()->isFunctionOrMethod())
    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
      << Tag->getTagKind()
      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());

  ActOnDocumentableDecl(TagD);

  // C 6.7/2:
  //   A declaration [...] shall declare at least a declarator [...], a tag,
  //   or the members of an enumeration.
  // C++ [dcl.dcl]p3:
  //   [If there are no declarators], and except for the declaration of an
  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
  //   names into the program, or shall redeclare a name introduced by a
  //   previous declaration.
  if (!DeclaresAnything) {
    // In C, we allow this as a (popular) extension / bug. Don't bother
    // producing further diagnostics for redundant qualifiers after this.
    Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
    return TagD;
  }

  // C++ [dcl.stc]p1:
  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
  //   init-declarator-list of the declaration shall not be empty.
  // C++ [dcl.fct.spec]p1:
  //   If a cv-qualifier appears in a decl-specifier-seq, the
  //   init-declarator-list of the declaration shall not be empty.
  //
  // Spurious qualifiers here appear to be valid in C.
  unsigned DiagID = diag::warn_standalone_specifier;
  if (getLangOpts().CPlusPlus)
    DiagID = diag::ext_standalone_specifier;

  // Note that a linkage-specification sets a storage class, but
  // 'extern "C" struct foo;' is actually valid and not theoretically
  // useless.
  if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
    if (SCS == DeclSpec::SCS_mutable)
      // Since mutable is not a viable storage class specifier in C, there is
      // no reason to treat it as an extension. Instead, diagnose as an error.
      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
    else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
      Diag(DS.getStorageClassSpecLoc(), DiagID)
        << DeclSpec::getSpecifierName(SCS);
  }

  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
      << DeclSpec::getSpecifierName(TSCS);
  if (DS.getTypeQualifiers()) {
    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
      Diag(DS.getConstSpecLoc(), DiagID) << "const";
    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
    // Restrict is covered above.
    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
    if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
      Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
  }

  // Warn about ignored type attributes, for example:
  // __attribute__((aligned)) struct A;
  // Attributes should be placed after tag to apply to type declaration.
  if (!DS.getAttributes().empty()) {
    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
    if (TypeSpecType == DeclSpec::TST_class ||
        TypeSpecType == DeclSpec::TST_struct ||
        TypeSpecType == DeclSpec::TST_interface ||
        TypeSpecType == DeclSpec::TST_union ||
        TypeSpecType == DeclSpec::TST_enum) {
      for (const ParsedAttr &AL : DS.getAttributes())
        Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
            << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
    }
  }

  return TagD;
}

/// We are trying to inject an anonymous member into the given scope;
/// check if there's an existing declaration that can't be overloaded.
///
/// \return true if this is a forbidden redeclaration
static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
                                         Scope *S,
                                         DeclContext *Owner,
                                         DeclarationName Name,
                                         SourceLocation NameLoc,
                                         bool IsUnion) {
  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
                 Sema::ForVisibleRedeclaration);
  if (!SemaRef.LookupName(R, S)) return false;

  // Pick a representative declaration.
  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
  assert(PrevDecl && "Expected a non-null Decl");

  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
    return false;

  SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
    << IsUnion << Name;
  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);

  return true;
}

/// InjectAnonymousStructOrUnionMembers - Inject the members of the
/// anonymous struct or union AnonRecord into the owning context Owner
/// and scope S. This routine will be invoked just after we realize
/// that an unnamed union or struct is actually an anonymous union or
/// struct, e.g.,
///
/// @code
/// union {
///   int i;
///   float f;
/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
///    // f into the surrounding scope.x
/// @endcode
///
/// This routine is recursive, injecting the names of nested anonymous
/// structs/unions into the owning context and scope as well.
static bool
InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
                                    RecordDecl *AnonRecord, AccessSpecifier AS,
                                    SmallVectorImpl<NamedDecl *> &Chaining) {
  bool Invalid = false;

  // Look every FieldDecl and IndirectFieldDecl with a name.
  for (auto *D : AnonRecord->decls()) {
    if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
        cast<NamedDecl>(D)->getDeclName()) {
      ValueDecl *VD = cast<ValueDecl>(D);
      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
                                       VD->getLocation(),
                                       AnonRecord->isUnion())) {
        // C++ [class.union]p2:
        //   The names of the members of an anonymous union shall be
        //   distinct from the names of any other entity in the
        //   scope in which the anonymous union is declared.
        Invalid = true;
      } else {
        // C++ [class.union]p2:
        //   For the purpose of name lookup, after the anonymous union
        //   definition, the members of the anonymous union are
        //   considered to have been defined in the scope in which the
        //   anonymous union is declared.
        unsigned OldChainingSize = Chaining.size();
        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
          Chaining.append(IF->chain_begin(), IF->chain_end());
        else
          Chaining.push_back(VD);

        assert(Chaining.size() >= 2);
        NamedDecl **NamedChain =
          new (SemaRef.Context)NamedDecl*[Chaining.size()];
        for (unsigned i = 0; i < Chaining.size(); i++)
          NamedChain[i] = Chaining[i];

        IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
            SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
            VD->getType(), {NamedChain, Chaining.size()});

        for (const auto *Attr : VD->attrs())
          IndirectField->addAttr(Attr->clone(SemaRef.Context));

        IndirectField->setAccess(AS);
        IndirectField->setImplicit();
        SemaRef.PushOnScopeChains(IndirectField, S);

        // That includes picking up the appropriate access specifier.
        if (AS != AS_none) IndirectField->setAccess(AS);

        Chaining.resize(OldChainingSize);
      }
    }
  }

  return Invalid;
}

/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
/// a VarDecl::StorageClass. Any error reporting is up to the caller:
/// illegal input values are mapped to SC_None.
static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
         "Parser allowed 'typedef' as storage class VarDecl.");
  switch (StorageClassSpec) {
  case DeclSpec::SCS_unspecified:    return SC_None;
  case DeclSpec::SCS_extern:
    if (DS.isExternInLinkageSpec())
      return SC_None;
    return SC_Extern;
  case DeclSpec::SCS_static:         return SC_Static;
  case DeclSpec::SCS_auto:           return SC_Auto;
  case DeclSpec::SCS_register:       return SC_Register;
  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
    // Illegal SCSs map to None: error reporting is up to the caller.
  case DeclSpec::SCS_mutable:        // Fall through.
  case DeclSpec::SCS_typedef:        return SC_None;
  }
  llvm_unreachable("unknown storage class specifier");
}

static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
  assert(Record->hasInClassInitializer());

  for (const auto *I : Record->decls()) {
    const auto *FD = dyn_cast<FieldDecl>(I);
    if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
      FD = IFD->getAnonField();
    if (FD && FD->hasInClassInitializer())
      return FD->getLocation();
  }

  llvm_unreachable("couldn't find in-class initializer");
}

static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
                                      SourceLocation DefaultInitLoc) {
  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
    return;

  S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
  S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
}

static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
                                      CXXRecordDecl *AnonUnion) {
  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
    return;

  checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
}

/// BuildAnonymousStructOrUnion - Handle the declaration of an
/// anonymous structure or union. Anonymous unions are a C++ feature
/// (C++ [class.union]) and a C11 feature; anonymous structures
/// are a C11 feature and GNU C++ extension.
Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
                                        AccessSpecifier AS,
                                        RecordDecl *Record,
                                        const PrintingPolicy &Policy) {
  DeclContext *Owner = Record->getDeclContext();

  // Diagnose whether this anonymous struct/union is an extension.
  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
    Diag(Record->getLocation(), diag::ext_anonymous_union);
  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
  else if (!Record->isUnion() && !getLangOpts().C11)
    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);

  // C and C++ require different kinds of checks for anonymous
  // structs/unions.
  bool Invalid = false;
  if (getLangOpts().CPlusPlus) {
    const char *PrevSpec = nullptr;
    if (Record->isUnion()) {
      // C++ [class.union]p6:
      // C++17 [class.union.anon]p2:
      //   Anonymous unions declared in a named namespace or in the
      //   global namespace shall be declared static.
      unsigned DiagID;
      DeclContext *OwnerScope = Owner->getRedeclContext();
      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
          (OwnerScope->isTranslationUnit() ||
           (OwnerScope->isNamespace() &&
            !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
          << FixItHint::CreateInsertion(Record->getLocation(), "static ");

        // Recover by adding 'static'.
        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
                               PrevSpec, DiagID, Policy);
      }
      // C++ [class.union]p6:
      //   A storage class is not allowed in a declaration of an
      //   anonymous union in a class scope.
      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
               isa<RecordDecl>(Owner)) {
        Diag(DS.getStorageClassSpecLoc(),
             diag::err_anonymous_union_with_storage_spec)
          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());

        // Recover by removing the storage specifier.
        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
                               SourceLocation(),
                               PrevSpec, DiagID, Context.getPrintingPolicy());
      }
    }

    // Ignore const/volatile/restrict qualifiers.
    if (DS.getTypeQualifiers()) {
      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
          << Record->isUnion() << "const"
          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
        Diag(DS.getVolatileSpecLoc(),
             diag::ext_anonymous_struct_union_qualified)
          << Record->isUnion() << "volatile"
          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
        Diag(DS.getRestrictSpecLoc(),
             diag::ext_anonymous_struct_union_qualified)
          << Record->isUnion() << "restrict"
          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
        Diag(DS.getAtomicSpecLoc(),
             diag::ext_anonymous_struct_union_qualified)
          << Record->isUnion() << "_Atomic"
          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
      if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
        Diag(DS.getUnalignedSpecLoc(),
             diag::ext_anonymous_struct_union_qualified)
          << Record->isUnion() << "__unaligned"
          << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());

      DS.ClearTypeQualifiers();
    }

    // C++ [class.union]p2:
    //   The member-specification of an anonymous union shall only
    //   define non-static data members. [Note: nested types and
    //   functions cannot be declared within an anonymous union. ]
    for (auto *Mem : Record->decls()) {
      if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
        // C++ [class.union]p3:
        //   An anonymous union shall not have private or protected
        //   members (clause 11).
        assert(FD->getAccess() != AS_none);
        if (FD->getAccess() != AS_public) {
          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
            << Record->isUnion() << (FD->getAccess() == AS_protected);
          Invalid = true;
        }

        // C++ [class.union]p1
        //   An object of a class with a non-trivial constructor, a non-trivial
        //   copy constructor, a non-trivial destructor, or a non-trivial copy
        //   assignment operator cannot be a member of a union, nor can an
        //   array of such objects.
        if (CheckNontrivialField(FD))
          Invalid = true;
      } else if (Mem->isImplicit()) {
        // Any implicit members are fine.
      } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
        // This is a type that showed up in an
        // elaborated-type-specifier inside the anonymous struct or
        // union, but which actually declares a type outside of the
        // anonymous struct or union. It's okay.
      } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
        if (!MemRecord->isAnonymousStructOrUnion() &&
            MemRecord->getDeclName()) {
          // Visual C++ allows type definition in anonymous struct or union.
          if (getLangOpts().MicrosoftExt)
            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
              << Record->isUnion();
          else {
            // This is a nested type declaration.
            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
              << Record->isUnion();
            Invalid = true;
          }
        } else {
          // This is an anonymous type definition within another anonymous type.
          // This is a popular extension, provided by Plan9, MSVC and GCC, but
          // not part of standard C++.
          Diag(MemRecord->getLocation(),
               diag::ext_anonymous_record_with_anonymous_type)
            << Record->isUnion();
        }
      } else if (isa<AccessSpecDecl>(Mem)) {
        // Any access specifier is fine.
      } else if (isa<StaticAssertDecl>(Mem)) {
        // In C++1z, static_assert declarations are also fine.
      } else {
        // We have something that isn't a non-static data
        // member. Complain about it.
        unsigned DK = diag::err_anonymous_record_bad_member;
        if (isa<TypeDecl>(Mem))
          DK = diag::err_anonymous_record_with_type;
        else if (isa<FunctionDecl>(Mem))
          DK = diag::err_anonymous_record_with_function;
        else if (isa<VarDecl>(Mem))
          DK = diag::err_anonymous_record_with_static;

        // Visual C++ allows type definition in anonymous struct or union.
        if (getLangOpts().MicrosoftExt &&
            DK == diag::err_anonymous_record_with_type)
          Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
            << Record->isUnion();
        else {
          Diag(Mem->getLocation(), DK) << Record->isUnion();
          Invalid = true;
        }
      }
    }

    // C++11 [class.union]p8 (DR1460):
    //   At most one variant member of a union may have a
    //   brace-or-equal-initializer.
    if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
        Owner->isRecord())
      checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
                                cast<CXXRecordDecl>(Record));
  }

  if (!Record->isUnion() && !Owner->isRecord()) {
    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
      << getLangOpts().CPlusPlus;
    Invalid = true;
  }

  // C++ [dcl.dcl]p3:
  //   [If there are no declarators], and except for the declaration of an
  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
  //   names into the program
  // C++ [class.mem]p2:
  //   each such member-declaration shall either declare at least one member
  //   name of the class or declare at least one unnamed bit-field
  //
  // For C this is an error even for a named struct, and is diagnosed elsewhere.
  if (getLangOpts().CPlusPlus && Record->field_empty())
    Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();

  // Mock up a declarator.
  Declarator Dc(DS, DeclaratorContext::MemberContext);
  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
  assert(TInfo && "couldn't build declarator info for anonymous struct/union");

  // Create a declaration for this anonymous struct/union.
  NamedDecl *Anon = nullptr;
  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
    Anon = FieldDecl::Create(
        Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
        /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
        /*BitWidth=*/nullptr, /*Mutable=*/false,
        /*InitStyle=*/ICIS_NoInit);
    Anon->setAccess(AS);
    ProcessDeclAttributes(S, Anon, Dc);

    if (getLangOpts().CPlusPlus)
      FieldCollector->Add(cast<FieldDecl>(Anon));
  } else {
    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
    StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
    if (SCSpec == DeclSpec::SCS_mutable) {
      // mutable can only appear on non-static class members, so it's always
      // an error here
      Diag(Record->getLocation(), diag::err_mutable_nonmember);
      Invalid = true;
      SC = SC_None;
    }

    assert(DS.getAttributes().empty() && "No attribute expected");
    Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
                           Record->getLocation(), /*IdentifierInfo=*/nullptr,
                           Context.getTypeDeclType(Record), TInfo, SC);

    // Default-initialize the implicit variable. This initialization will be
    // trivial in almost all cases, except if a union member has an in-class
    // initializer:
    //   union { int n = 0; };
    ActOnUninitializedDecl(Anon);
  }
  Anon->setImplicit();

  // Mark this as an anonymous struct/union type.
  Record->setAnonymousStructOrUnion(true);

  // Add the anonymous struct/union object to the current
  // context. We'll be referencing this object when we refer to one of
  // its members.
  Owner->addDecl(Anon);

  // Inject the members of the anonymous struct/union into the owning
  // context and into the identifier resolver chain for name lookup
  // purposes.
  SmallVector<NamedDecl*, 2> Chain;
  Chain.push_back(Anon);

  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
    Invalid = true;

  if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
    if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
      MangleNumberingContext *MCtx;
      Decl *ManglingContextDecl;
      std::tie(MCtx, ManglingContextDecl) =
          getCurrentMangleNumberContext(NewVD->getDeclContext());
      if (MCtx) {
        Context.setManglingNumber(
            NewVD, MCtx->getManglingNumber(
                       NewVD, getMSManglingNumber(getLangOpts(), S)));
        Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
      }
    }
  }

  if (Invalid)
    Anon->setInvalidDecl();

  return Anon;
}

/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
/// Microsoft C anonymous structure.
/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
/// Example:
///
/// struct A { int a; };
/// struct B { struct A; int b; };
///
/// void foo() {
///   B var;
///   var.a = 3;
/// }
///
Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
                                           RecordDecl *Record) {
  assert(Record && "expected a record!");

  // Mock up a declarator.
  Declarator Dc(DS, DeclaratorContext::TypeNameContext);
  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
  assert(TInfo && "couldn't build declarator info for anonymous struct");

  auto *ParentDecl = cast<RecordDecl>(CurContext);
  QualType RecTy = Context.getTypeDeclType(Record);

  // Create a declaration for this anonymous struct.
  NamedDecl *Anon =
      FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
                        /*IdentifierInfo=*/nullptr, RecTy, TInfo,
                        /*BitWidth=*/nullptr, /*Mutable=*/false,
                        /*InitStyle=*/ICIS_NoInit);
  Anon->setImplicit();

  // Add the anonymous struct object to the current context.
  CurContext->addDecl(Anon);

  // Inject the members of the anonymous struct into the current
  // context and into the identifier resolver chain for name lookup
  // purposes.
  SmallVector<NamedDecl*, 2> Chain;
  Chain.push_back(Anon);

  RecordDecl *RecordDef = Record->getDefinition();
  if (RequireCompleteType(Anon->getLocation(), RecTy,
                          diag::err_field_incomplete) ||
      InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
                                          AS_none, Chain)) {
    Anon->setInvalidDecl();
    ParentDecl->setInvalidDecl();
  }

  return Anon;
}

/// GetNameForDeclarator - Determine the full declaration name for the
/// given Declarator.
DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
  return GetNameFromUnqualifiedId(D.getName());
}

/// Retrieves the declaration name from a parsed unqualified-id.
DeclarationNameInfo
Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
  DeclarationNameInfo NameInfo;
  NameInfo.setLoc(Name.StartLocation);

  switch (Name.getKind()) {

  case UnqualifiedIdKind::IK_ImplicitSelfParam:
  case UnqualifiedIdKind::IK_Identifier:
    NameInfo.setName(Name.Identifier);
    return NameInfo;

  case UnqualifiedIdKind::IK_DeductionGuideName: {
    // C++ [temp.deduct.guide]p3:
    //   The simple-template-id shall name a class template specialization.
    //   The template-name shall be the same identifier as the template-name
    //   of the simple-template-id.
    // These together intend to imply that the template-name shall name a
    // class template.
    // FIXME: template<typename T> struct X {};
    //        template<typename T> using Y = X<T>;
    //        Y(int) -> Y<int>;
    //   satisfies these rules but does not name a class template.
    TemplateName TN = Name.TemplateName.get().get();
    auto *Template = TN.getAsTemplateDecl();
    if (!Template || !isa<ClassTemplateDecl>(Template)) {
      Diag(Name.StartLocation,
           diag::err_deduction_guide_name_not_class_template)
        << (int)getTemplateNameKindForDiagnostics(TN) << TN;
      if (Template)
        Diag(Template->getLocation(), diag::note_template_decl_here);
      return DeclarationNameInfo();
    }

    NameInfo.setName(
        Context.DeclarationNames.getCXXDeductionGuideName(Template));
    return NameInfo;
  }

  case UnqualifiedIdKind::IK_OperatorFunctionId:
    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
                                           Name.OperatorFunctionId.Operator));
    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
      = Name.OperatorFunctionId.SymbolLocations[0];
    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
      = Name.EndLocation.getRawEncoding();
    return NameInfo;

  case UnqualifiedIdKind::IK_LiteralOperatorId:
    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
                                                           Name.Identifier));
    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
    return NameInfo;

  case UnqualifiedIdKind::IK_ConversionFunctionId: {
    TypeSourceInfo *TInfo;
    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
    if (Ty.isNull())
      return DeclarationNameInfo();
    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
                                               Context.getCanonicalType(Ty)));
    NameInfo.setNamedTypeInfo(TInfo);
    return NameInfo;
  }

  case UnqualifiedIdKind::IK_ConstructorName: {
    TypeSourceInfo *TInfo;
    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
    if (Ty.isNull())
      return DeclarationNameInfo();
    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
                                              Context.getCanonicalType(Ty)));
    NameInfo.setNamedTypeInfo(TInfo);
    return NameInfo;
  }

  case UnqualifiedIdKind::IK_ConstructorTemplateId: {
    // In well-formed code, we can only have a constructor
    // template-id that refers to the current context, so go there
    // to find the actual type being constructed.
    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
      return DeclarationNameInfo();

    // Determine the type of the class being constructed.
    QualType CurClassType = Context.getTypeDeclType(CurClass);

    // FIXME: Check two things: that the template-id names the same type as
    // CurClassType, and that the template-id does not occur when the name
    // was qualified.

    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
                                    Context.getCanonicalType(CurClassType)));
    // FIXME: should we retrieve TypeSourceInfo?
    NameInfo.setNamedTypeInfo(nullptr);
    return NameInfo;
  }

  case UnqualifiedIdKind::IK_DestructorName: {
    TypeSourceInfo *TInfo;
    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
    if (Ty.isNull())
      return DeclarationNameInfo();
    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
                                              Context.getCanonicalType(Ty)));
    NameInfo.setNamedTypeInfo(TInfo);
    return NameInfo;
  }

  case UnqualifiedIdKind::IK_TemplateId: {
    TemplateName TName = Name.TemplateId->Template.get();
    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
    return Context.getNameForTemplate(TName, TNameLoc);
  }

  } // switch (Name.getKind())

  llvm_unreachable("Unknown name kind");
}

static QualType getCoreType(QualType Ty) {
  do {
    if (Ty->isPointerType() || Ty->isReferenceType())
      Ty = Ty->getPointeeType();
    else if (Ty->isArrayType())
      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
    else
      return Ty.withoutLocalFastQualifiers();
  } while (true);
}

/// hasSimilarParameters - Determine whether the C++ functions Declaration
/// and Definition have "nearly" matching parameters. This heuristic is
/// used to improve diagnostics in the case where an out-of-line function
/// definition doesn't match any declaration within the class or namespace.
/// Also sets Params to the list of indices to the parameters that differ
/// between the declaration and the definition. If hasSimilarParameters
/// returns true and Params is empty, then all of the parameters match.
static bool hasSimilarParameters(ASTContext &Context,
                                     FunctionDecl *Declaration,
                                     FunctionDecl *Definition,
                                     SmallVectorImpl<unsigned> &Params) {
  Params.clear();
  if (Declaration->param_size() != Definition->param_size())
    return false;
  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();

    // The parameter types are identical
    if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
      continue;

    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
    QualType DefParamBaseTy = getCoreType(DefParamTy);
    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();

    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
        (DeclTyName && DeclTyName == DefTyName))
      Params.push_back(Idx);
    else  // The two parameters aren't even close
      return false;
  }

  return true;
}

/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
/// declarator needs to be rebuilt in the current instantiation.
/// Any bits of declarator which appear before the name are valid for
/// consideration here.  That's specifically the type in the decl spec
/// and the base type in any member-pointer chunks.
static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
                                                    DeclarationName Name) {
  // The types we specifically need to rebuild are:
  //   - typenames, typeofs, and decltypes
  //   - types which will become injected class names
  // Of course, we also need to rebuild any type referencing such a
  // type.  It's safest to just say "dependent", but we call out a
  // few cases here.

  DeclSpec &DS = D.getMutableDeclSpec();
  switch (DS.getTypeSpecType()) {
  case DeclSpec::TST_typename:
  case DeclSpec::TST_typeofType:
  case DeclSpec::TST_underlyingType:
  case DeclSpec::TST_atomic: {
    // Grab the type from the parser.
    TypeSourceInfo *TSI = nullptr;
    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
    if (T.isNull() || !T->isDependentType()) break;

    // Make sure there's a type source info.  This isn't really much
    // of a waste; most dependent types should have type source info
    // attached already.
    if (!TSI)
      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());

    // Rebuild the type in the current instantiation.
    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
    if (!TSI) return true;

    // Store the new type back in the decl spec.
    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
    DS.UpdateTypeRep(LocType);
    break;
  }

  case DeclSpec::TST_decltype:
  case DeclSpec::TST_typeofExpr: {
    Expr *E = DS.getRepAsExpr();
    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
    if (Result.isInvalid()) return true;
    DS.UpdateExprRep(Result.get());
    break;
  }

  default:
    // Nothing to do for these decl specs.
    break;
  }

  // It doesn't matter what order we do this in.
  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
    DeclaratorChunk &Chunk = D.getTypeObject(I);

    // The only type information in the declarator which can come
    // before the declaration name is the base type of a member
    // pointer.
    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
      continue;

    // Rebuild the scope specifier in-place.
    CXXScopeSpec &SS = Chunk.Mem.Scope();
    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
      return true;
  }

  return false;
}

Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
  D.setFunctionDefinitionKind(FDK_Declaration);
  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());

  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
      Dcl && Dcl->getDeclContext()->isFileContext())
    Dcl->setTopLevelDeclInObjCContainer();

  if (getLangOpts().OpenCL)
    setCurrentOpenCLExtensionForDecl(Dcl);

  return Dcl;
}

/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
///   If T is the name of a class, then each of the following shall have a
///   name different from T:
///     - every static data member of class T;
///     - every member function of class T
///     - every member of class T that is itself a type;
/// \returns true if the declaration name violates these rules.
bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
                                   DeclarationNameInfo NameInfo) {
  DeclarationName Name = NameInfo.getName();

  CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
  while (Record && Record->isAnonymousStructOrUnion())
    Record = dyn_cast<CXXRecordDecl>(Record->getParent());
  if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
    Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
    return true;
  }

  return false;
}

/// Diagnose a declaration whose declarator-id has the given
/// nested-name-specifier.
///
/// \param SS The nested-name-specifier of the declarator-id.
///
/// \param DC The declaration context to which the nested-name-specifier
/// resolves.
///
/// \param Name The name of the entity being declared.
///
/// \param Loc The location of the name of the entity being declared.
///
/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
/// we're declaring an explicit / partial specialization / instantiation.
///
/// \returns true if we cannot safely recover from this error, false otherwise.
bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
                                        DeclarationName Name,
                                        SourceLocation Loc, bool IsTemplateId) {
  DeclContext *Cur = CurContext;
  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
    Cur = Cur->getParent();

  // If the user provided a superfluous scope specifier that refers back to the
  // class in which the entity is already declared, diagnose and ignore it.
  //
  // class X {
  //   void X::f();
  // };
  //
  // Note, it was once ill-formed to give redundant qualification in all
  // contexts, but that rule was removed by DR482.
  if (Cur->Equals(DC)) {
    if (Cur->isRecord()) {
      Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
                                      : diag::err_member_extra_qualification)
        << Name << FixItHint::CreateRemoval(SS.getRange());
      SS.clear();
    } else {
      Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
    }
    return false;
  }

  // Check whether the qualifying scope encloses the scope of the original
  // declaration. For a template-id, we perform the checks in
  // CheckTemplateSpecializationScope.
  if (!Cur->Encloses(DC) && !IsTemplateId) {
    if (Cur->isRecord())
      Diag(Loc, diag::err_member_qualification)
        << Name << SS.getRange();
    else if (isa<TranslationUnitDecl>(DC))
      Diag(Loc, diag::err_invalid_declarator_global_scope)
        << Name << SS.getRange();
    else if (isa<FunctionDecl>(Cur))
      Diag(Loc, diag::err_invalid_declarator_in_function)
        << Name << SS.getRange();
    else if (isa<BlockDecl>(Cur))
      Diag(Loc, diag::err_invalid_declarator_in_block)
        << Name << SS.getRange();
    else
      Diag(Loc, diag::err_invalid_declarator_scope)
      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();

    return true;
  }

  if (Cur->isRecord()) {
    // Cannot qualify members within a class.
    Diag(Loc, diag::err_member_qualification)
      << Name << SS.getRange();
    SS.clear();

    // C++ constructors and destructors with incorrect scopes can break
    // our AST invariants by having the wrong underlying types. If
    // that's the case, then drop this declaration entirely.
    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
        !Context.hasSameType(Name.getCXXNameType(),
                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
      return true;

    return false;
  }

  // C++11 [dcl.meaning]p1:
  //   [...] "The nested-name-specifier of the qualified declarator-id shall
  //   not begin with a decltype-specifer"
  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
  while (SpecLoc.getPrefix())
    SpecLoc = SpecLoc.getPrefix();
  if (dyn_cast_or_null<DecltypeType>(
        SpecLoc.getNestedNameSpecifier()->getAsType()))
    Diag(Loc, diag::err_decltype_in_declarator)
      << SpecLoc.getTypeLoc().getSourceRange();

  return false;
}

NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
                                  MultiTemplateParamsArg TemplateParamLists) {
  // TODO: consider using NameInfo for diagnostic.
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
  DeclarationName Name = NameInfo.getName();

  // All of these full declarators require an identifier.  If it doesn't have
  // one, the ParsedFreeStandingDeclSpec action should be used.
  if (D.isDecompositionDeclarator()) {
    return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
  } else if (!Name) {
    if (!D.isInvalidType())  // Reject this if we think it is valid.
      Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
          << D.getDeclSpec().getSourceRange() << D.getSourceRange();
    return nullptr;
  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
    return nullptr;

  // The scope passed in may not be a decl scope.  Zip up the scope tree until
  // we find one that is.
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
         (S->getFlags() & Scope::TemplateParamScope) != 0)
    S = S->getParent();

  DeclContext *DC = CurContext;
  if (D.getCXXScopeSpec().isInvalid())
    D.setInvalidType();
  else if (D.getCXXScopeSpec().isSet()) {
    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
                                        UPPC_DeclarationQualifier))
      return nullptr;

    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
    if (!DC || isa<EnumDecl>(DC)) {
      // If we could not compute the declaration context, it's because the
      // declaration context is dependent but does not refer to a class,
      // class template, or class template partial specialization. Complain
      // and return early, to avoid the coming semantic disaster.
      Diag(D.getIdentifierLoc(),
           diag::err_template_qualified_declarator_no_match)
        << D.getCXXScopeSpec().getScopeRep()
        << D.getCXXScopeSpec().getRange();
      return nullptr;
    }
    bool IsDependentContext = DC->isDependentContext();

    if (!IsDependentContext &&
        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
      return nullptr;

    // If a class is incomplete, do not parse entities inside it.
    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
      Diag(D.getIdentifierLoc(),
           diag::err_member_def_undefined_record)
        << Name << DC << D.getCXXScopeSpec().getRange();
      return nullptr;
    }
    if (!D.getDeclSpec().isFriendSpecified()) {
      if (diagnoseQualifiedDeclaration(
              D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
              D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
        if (DC->isRecord())
          return nullptr;

        D.setInvalidType();
      }
    }

    // Check whether we need to rebuild the type of the given
    // declaration in the current instantiation.
    if (EnteringContext && IsDependentContext &&
        TemplateParamLists.size() != 0) {
      ContextRAII SavedContext(*this, DC);
      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
        D.setInvalidType();
    }
  }

  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
  QualType R = TInfo->getType();

  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
                                      UPPC_DeclarationType))
    D.setInvalidType();

  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
                        forRedeclarationInCurContext());

  // See if this is a redefinition of a variable in the same scope.
  if (!D.getCXXScopeSpec().isSet()) {
    bool IsLinkageLookup = false;
    bool CreateBuiltins = false;

    // If the declaration we're planning to build will be a function
    // or object with linkage, then look for another declaration with
    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
    //
    // If the declaration we're planning to build will be declared with
    // external linkage in the translation unit, create any builtin with
    // the same name.
    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
      /* Do nothing*/;
    else if (CurContext->isFunctionOrMethod() &&
             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
              R->isFunctionType())) {
      IsLinkageLookup = true;
      CreateBuiltins =
          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
      CreateBuiltins = true;

    if (IsLinkageLookup) {
      Previous.clear(LookupRedeclarationWithLinkage);
      Previous.setRedeclarationKind(ForExternalRedeclaration);
    }

    LookupName(Previous, S, CreateBuiltins);
  } else { // Something like "int foo::x;"
    LookupQualifiedName(Previous, DC);

    // C++ [dcl.meaning]p1:
    //   When the declarator-id is qualified, the declaration shall refer to a
    //  previously declared member of the class or namespace to which the
    //  qualifier refers (or, in the case of a namespace, of an element of the
    //  inline namespace set of that namespace (7.3.1)) or to a specialization
    //  thereof; [...]
    //
    // Note that we already checked the context above, and that we do not have
    // enough information to make sure that Previous contains the declaration
    // we want to match. For example, given:
    //
    //   class X {
    //     void f();
    //     void f(float);
    //   };
    //
    //   void X::f(int) { } // ill-formed
    //
    // In this case, Previous will point to the overload set
    // containing the two f's declared in X, but neither of them
    // matches.

    // C++ [dcl.meaning]p1:
    //   [...] the member shall not merely have been introduced by a
    //   using-declaration in the scope of the class or namespace nominated by
    //   the nested-name-specifier of the declarator-id.
    RemoveUsingDecls(Previous);
  }

  if (Previous.isSingleResult() &&
      Previous.getFoundDecl()->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    if (!D.isInvalidType())
      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
                                      Previous.getFoundDecl());

    // Just pretend that we didn't see the previous declaration.
    Previous.clear();
  }

  if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
    // Forget that the previous declaration is the injected-class-name.
    Previous.clear();

  // In C++, the previous declaration we find might be a tag type
  // (class or enum). In this case, the new declaration will hide the
  // tag type. Note that this applies to functions, function templates, and
  // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
  if (Previous.isSingleTagDecl() &&
      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
      (TemplateParamLists.size() == 0 || R->isFunctionType()))
    Previous.clear();

  // Check that there are no default arguments other than in the parameters
  // of a function declaration (C++ only).
  if (getLangOpts().CPlusPlus)
    CheckExtraCXXDefaultArguments(D);

  NamedDecl *New;

  bool AddToScope = true;
  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
    if (TemplateParamLists.size()) {
      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
      return nullptr;
    }

    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
  } else if (R->isFunctionType()) {
    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
                                  TemplateParamLists,
                                  AddToScope);
  } else {
    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
                                  AddToScope);
  }

  if (!New)
    return nullptr;

  // If this has an identifier and is not a function template specialization,
  // add it to the scope stack.
  if (New->getDeclName() && AddToScope)
    PushOnScopeChains(New, S);

  if (isInOpenMPDeclareTargetContext())
    checkDeclIsAllowedInOpenMPTarget(nullptr, New);

  return New;
}

/// Helper method to turn variable array types into constant array
/// types in certain situations which would otherwise be errors (for
/// GCC compatibility).
static QualType TryToFixInvalidVariablyModifiedType(QualType T,
                                                    ASTContext &Context,
                                                    bool &SizeIsNegative,
                                                    llvm::APSInt &Oversized) {
  // This method tries to turn a variable array into a constant
  // array even when the size isn't an ICE.  This is necessary
  // for compatibility with code that depends on gcc's buggy
  // constant expression folding, like struct {char x[(int)(char*)2];}
  SizeIsNegative = false;
  Oversized = 0;

  if (T->isDependentType())
    return QualType();

  QualifierCollector Qs;
  const Type *Ty = Qs.strip(T);

  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
    QualType Pointee = PTy->getPointeeType();
    QualType FixedType =
        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
                                            Oversized);
    if (FixedType.isNull()) return FixedType;
    FixedType = Context.getPointerType(FixedType);
    return Qs.apply(Context, FixedType);
  }
  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
    QualType Inner = PTy->getInnerType();
    QualType FixedType =
        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
                                            Oversized);
    if (FixedType.isNull()) return FixedType;
    FixedType = Context.getParenType(FixedType);
    return Qs.apply(Context, FixedType);
  }

  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
  if (!VLATy)
    return QualType();
  // FIXME: We should probably handle this case
  if (VLATy->getElementType()->isVariablyModifiedType())
    return QualType();

  Expr::EvalResult Result;
  if (!VLATy->getSizeExpr() ||
      !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
    return QualType();

  llvm::APSInt Res = Result.Val.getInt();

  // Check whether the array size is negative.
  if (Res.isSigned() && Res.isNegative()) {
    SizeIsNegative = true;
    return QualType();
  }

  // Check whether the array is too large to be addressed.
  unsigned ActiveSizeBits
    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
                                              Res);
  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
    Oversized = Res;
    return QualType();
  }

  return Context.getConstantArrayType(
      VLATy->getElementType(), Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
}

static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
  SrcTL = SrcTL.getUnqualifiedLoc();
  DstTL = DstTL.getUnqualifiedLoc();
  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
                                      DstPTL.getPointeeLoc());
    DstPTL.setStarLoc(SrcPTL.getStarLoc());
    return;
  }
  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
                                      DstPTL.getInnerLoc());
    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
    return;
  }
  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
  TypeLoc SrcElemTL = SrcATL.getElementLoc();
  TypeLoc DstElemTL = DstATL.getElementLoc();
  DstElemTL.initializeFullCopy(SrcElemTL);
  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
  DstATL.setSizeExpr(SrcATL.getSizeExpr());
  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
}

/// Helper method to turn variable array types into constant array
/// types in certain situations which would otherwise be errors (for
/// GCC compatibility).
static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
                                              ASTContext &Context,
                                              bool &SizeIsNegative,
                                              llvm::APSInt &Oversized) {
  QualType FixedTy
    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
                                          SizeIsNegative, Oversized);
  if (FixedTy.isNull())
    return nullptr;
  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
                                    FixedTInfo->getTypeLoc());
  return FixedTInfo;
}

/// Register the given locally-scoped extern "C" declaration so
/// that it can be found later for redeclarations. We include any extern "C"
/// declaration that is not visible in the translation unit here, not just
/// function-scope declarations.
void
Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
  if (!getLangOpts().CPlusPlus &&
      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
    // Don't need to track declarations in the TU in C.
    return;

  // Note that we have a locally-scoped external with this name.
  Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
}

NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
  // FIXME: We can have multiple results via __attribute__((overloadable)).
  auto Result = Context.getExternCContextDecl()->lookup(Name);
  return Result.empty() ? nullptr : *Result.begin();
}

/// Diagnose function specifiers on a declaration of an identifier that
/// does not identify a function.
void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
  // FIXME: We should probably indicate the identifier in question to avoid
  // confusion for constructs like "virtual int a(), b;"
  if (DS.isVirtualSpecified())
    Diag(DS.getVirtualSpecLoc(),
         diag::err_virtual_non_function);

  if (DS.hasExplicitSpecifier())
    Diag(DS.getExplicitSpecLoc(),
         diag::err_explicit_non_function);

  if (DS.isNoreturnSpecified())
    Diag(DS.getNoreturnSpecLoc(),
         diag::err_noreturn_non_function);
}

NamedDecl*
Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
                             TypeSourceInfo *TInfo, LookupResult &Previous) {
  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
  if (D.getCXXScopeSpec().isSet()) {
    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
      << D.getCXXScopeSpec().getRange();
    D.setInvalidType();
    // Pretend we didn't see the scope specifier.
    DC = CurContext;
    Previous.clear();
  }

  DiagnoseFunctionSpecifiers(D.getDeclSpec());

  if (D.getDeclSpec().isInlineSpecified())
    Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
        << getLangOpts().CPlusPlus17;
  if (D.getDeclSpec().hasConstexprSpecifier())
    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
        << 1 << D.getDeclSpec().getConstexprSpecifier();

  if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
    if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
      Diag(D.getName().StartLocation,
           diag::err_deduction_guide_invalid_specifier)
          << "typedef";
    else
      Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
          << D.getName().getSourceRange();
    return nullptr;
  }

  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
  if (!NewTD) return nullptr;

  // Handle attributes prior to checking for duplicates in MergeVarDecl
  ProcessDeclAttributes(S, NewTD, D);

  CheckTypedefForVariablyModifiedType(S, NewTD);

  bool Redeclaration = D.isRedeclaration();
  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
  D.setRedeclaration(Redeclaration);
  return ND;
}

void
Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
  // C99 6.7.7p2: If a typedef name specifies a variably modified type
  // then it shall have block scope.
  // Note that variably modified types must be fixed before merging the decl so
  // that redeclarations will match.
  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
  QualType T = TInfo->getType();
  if (T->isVariablyModifiedType()) {
    setFunctionHasBranchProtectedScope();

    if (S->getFnParent() == nullptr) {
      bool SizeIsNegative;
      llvm::APSInt Oversized;
      TypeSourceInfo *FixedTInfo =
        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
                                                      SizeIsNegative,
                                                      Oversized);
      if (FixedTInfo) {
        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
        NewTD->setTypeSourceInfo(FixedTInfo);
      } else {
        if (SizeIsNegative)
          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
        else if (T->isVariableArrayType())
          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
        else if (Oversized.getBoolValue())
          Diag(NewTD->getLocation(), diag::err_array_too_large)
            << Oversized.toString(10);
        else
          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
        NewTD->setInvalidDecl();
      }
    }
  }
}

/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
/// declares a typedef-name, either using the 'typedef' type specifier or via
/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
NamedDecl*
Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
                           LookupResult &Previous, bool &Redeclaration) {

  // Find the shadowed declaration before filtering for scope.
  NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);

  // Merge the decl with the existing one if appropriate. If the decl is
  // in an outer scope, it isn't the same thing.
  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
                       /*AllowInlineNamespace*/false);
  filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
  if (!Previous.empty()) {
    Redeclaration = true;
    MergeTypedefNameDecl(S, NewTD, Previous);
  } else {
    inferGslPointerAttribute(NewTD);
  }

  if (ShadowedDecl && !Redeclaration)
    CheckShadow(NewTD, ShadowedDecl, Previous);

  // If this is the C FILE type, notify the AST context.
  if (IdentifierInfo *II = NewTD->getIdentifier())
    if (!NewTD->isInvalidDecl() &&
        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
      if (II->isStr("FILE"))
        Context.setFILEDecl(NewTD);
      else if (II->isStr("jmp_buf"))
        Context.setjmp_bufDecl(NewTD);
      else if (II->isStr("sigjmp_buf"))
        Context.setsigjmp_bufDecl(NewTD);
      else if (II->isStr("ucontext_t"))
        Context.setucontext_tDecl(NewTD);
    }

  return NewTD;
}

/// Determines whether the given declaration is an out-of-scope
/// previous declaration.
///
/// This routine should be invoked when name lookup has found a
/// previous declaration (PrevDecl) that is not in the scope where a
/// new declaration by the same name is being introduced. If the new
/// declaration occurs in a local scope, previous declarations with
/// linkage may still be considered previous declarations (C99
/// 6.2.2p4-5, C++ [basic.link]p6).
///
/// \param PrevDecl the previous declaration found by name
/// lookup
///
/// \param DC the context in which the new declaration is being
/// declared.
///
/// \returns true if PrevDecl is an out-of-scope previous declaration
/// for a new delcaration with the same name.
static bool
isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
                                ASTContext &Context) {
  if (!PrevDecl)
    return false;

  if (!PrevDecl->hasLinkage())
    return false;

  if (Context.getLangOpts().CPlusPlus) {
    // C++ [basic.link]p6:
    //   If there is a visible declaration of an entity with linkage
    //   having the same name and type, ignoring entities declared
    //   outside the innermost enclosing namespace scope, the block
    //   scope declaration declares that same entity and receives the
    //   linkage of the previous declaration.
    DeclContext *OuterContext = DC->getRedeclContext();
    if (!OuterContext->isFunctionOrMethod())
      // This rule only applies to block-scope declarations.
      return false;

    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
    if (PrevOuterContext->isRecord())
      // We found a member function: ignore it.
      return false;

    // Find the innermost enclosing namespace for the new and
    // previous declarations.
    OuterContext = OuterContext->getEnclosingNamespaceContext();
    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();

    // The previous declaration is in a different namespace, so it
    // isn't the same function.
    if (!OuterContext->Equals(PrevOuterContext))
      return false;
  }

  return true;
}

static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
  CXXScopeSpec &SS = D.getCXXScopeSpec();
  if (!SS.isSet()) return;
  DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
}

bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
  QualType type = decl->getType();
  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
  if (lifetime == Qualifiers::OCL_Autoreleasing) {
    // Various kinds of declaration aren't allowed to be __autoreleasing.
    unsigned kind = -1U;
    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
      if (var->hasAttr<BlocksAttr>())
        kind = 0; // __block
      else if (!var->hasLocalStorage())
        kind = 1; // global
    } else if (isa<ObjCIvarDecl>(decl)) {
      kind = 3; // ivar
    } else if (isa<FieldDecl>(decl)) {
      kind = 2; // field
    }

    if (kind != -1U) {
      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
        << kind;
    }
  } else if (lifetime == Qualifiers::OCL_None) {
    // Try to infer lifetime.
    if (!type->isObjCLifetimeType())
      return false;

    lifetime = type->getObjCARCImplicitLifetime();
    type = Context.getLifetimeQualifiedType(type, lifetime);
    decl->setType(type);
  }

  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
    // Thread-local variables cannot have lifetime.
    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
        var->getTLSKind()) {
      Diag(var->getLocation(), diag::err_arc_thread_ownership)
        << var->getType();
      return true;
    }
  }

  return false;
}

void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
  if (Decl->getType().hasAddressSpace())
    return;
  if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
    QualType Type = Var->getType();
    if (Type->isSamplerT() || Type->isVoidType())
      return;
    LangAS ImplAS = LangAS::opencl_private;
    if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) &&
        Var->hasGlobalStorage())
      ImplAS = LangAS::opencl_global;
    // If the original type from a decayed type is an array type and that array
    // type has no address space yet, deduce it now.
    if (auto DT = dyn_cast<DecayedType>(Type)) {
      auto OrigTy = DT->getOriginalType();
      if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
        // Add the address space to the original array type and then propagate
        // that to the element type through `getAsArrayType`.
        OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
        OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
        // Re-generate the decayed type.
        Type = Context.getDecayedType(OrigTy);
      }
    }
    Type = Context.getAddrSpaceQualType(Type, ImplAS);
    // Apply any qualifiers (including address space) from the array type to
    // the element type. This implements C99 6.7.3p8: "If the specification of
    // an array type includes any type qualifiers, the element type is so
    // qualified, not the array type."
    if (Type->isArrayType())
      Type = QualType(Context.getAsArrayType(Type), 0);
    Decl->setType(Type);
  }
}

static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
  // Ensure that an auto decl is deduced otherwise the checks below might cache
  // the wrong linkage.
  assert(S.ParsingInitForAutoVars.count(&ND) == 0);

  // 'weak' only applies to declarations with external linkage.
  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
    if (!ND.isExternallyVisible()) {
      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
      ND.dropAttr<WeakAttr>();
    }
  }
  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
    if (ND.isExternallyVisible()) {
      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
      ND.dropAttr<WeakRefAttr>();
      ND.dropAttr<AliasAttr>();
    }
  }

  if (auto *VD = dyn_cast<VarDecl>(&ND)) {
    if (VD->hasInit()) {
      if (const auto *Attr = VD->getAttr<AliasAttr>()) {
        assert(VD->isThisDeclarationADefinition() &&
               !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
        S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
        VD->dropAttr<AliasAttr>();
      }
    }
  }

  // 'selectany' only applies to externally visible variable declarations.
  // It does not apply to functions.
  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
      S.Diag(Attr->getLocation(),
             diag::err_attribute_selectany_non_extern_data);
      ND.dropAttr<SelectAnyAttr>();
    }
  }

  if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
    auto *VD = dyn_cast<VarDecl>(&ND);
    bool IsAnonymousNS = false;
    bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
    if (VD) {
      const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
      while (NS && !IsAnonymousNS) {
        IsAnonymousNS = NS->isAnonymousNamespace();
        NS = dyn_cast<NamespaceDecl>(NS->getParent());
      }
    }
    // dll attributes require external linkage. Static locals may have external
    // linkage but still cannot be explicitly imported or exported.
    // In Microsoft mode, a variable defined in anonymous namespace must have
    // external linkage in order to be exported.
    bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
    if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
        (!AnonNSInMicrosoftMode &&
         (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
      S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
        << &ND << Attr;
      ND.setInvalidDecl();
    }
  }

  // Virtual functions cannot be marked as 'notail'.
  if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
    if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
      if (MD->isVirtual()) {
        S.Diag(ND.getLocation(),
               diag::err_invalid_attribute_on_virtual_function)
            << Attr;
        ND.dropAttr<NotTailCalledAttr>();
      }

  // Check the attributes on the function type, if any.
  if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
    // Don't declare this variable in the second operand of the for-statement;
    // GCC miscompiles that by ending its lifetime before evaluating the
    // third operand. See gcc.gnu.org/PR86769.
    AttributedTypeLoc ATL;
    for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
         (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
         TL = ATL.getModifiedLoc()) {
      // The [[lifetimebound]] attribute can be applied to the implicit object
      // parameter of a non-static member function (other than a ctor or dtor)
      // by applying it to the function type.
      if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
        const auto *MD = dyn_cast<CXXMethodDecl>(FD);
        if (!MD || MD->isStatic()) {
          S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
              << !MD << A->getRange();
        } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
          S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
              << isa<CXXDestructorDecl>(MD) << A->getRange();
        }
      }
    }
  }
}

static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
                                           NamedDecl *NewDecl,
                                           bool IsSpecialization,
                                           bool IsDefinition) {
  if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
    return;

  bool IsTemplate = false;
  if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
    OldDecl = OldTD->getTemplatedDecl();
    IsTemplate = true;
    if (!IsSpecialization)
      IsDefinition = false;
  }
  if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
    NewDecl = NewTD->getTemplatedDecl();
    IsTemplate = true;
  }

  if (!OldDecl || !NewDecl)
    return;

  const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
  const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
  const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
  const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();

  // dllimport and dllexport are inheritable attributes so we have to exclude
  // inherited attribute instances.
  bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
                    (NewExportAttr && !NewExportAttr->isInherited());

  // A redeclaration is not allowed to add a dllimport or dllexport attribute,
  // the only exception being explicit specializations.
  // Implicitly generated declarations are also excluded for now because there
  // is no other way to switch these to use dllimport or dllexport.
  bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;

  if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
    // Allow with a warning for free functions and global variables.
    bool JustWarn = false;
    if (!OldDecl->isCXXClassMember()) {
      auto *VD = dyn_cast<VarDecl>(OldDecl);
      if (VD && !VD->getDescribedVarTemplate())
        JustWarn = true;
      auto *FD = dyn_cast<FunctionDecl>(OldDecl);
      if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
        JustWarn = true;
    }

    // We cannot change a declaration that's been used because IR has already
    // been emitted. Dllimported functions will still work though (modulo
    // address equality) as they can use the thunk.
    if (OldDecl->isUsed())
      if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
        JustWarn = false;

    unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
                               : diag::err_attribute_dll_redeclaration;
    S.Diag(NewDecl->getLocation(), DiagID)
        << NewDecl
        << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
    S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
    if (!JustWarn) {
      NewDecl->setInvalidDecl();
      return;
    }
  }

  // A redeclaration is not allowed to drop a dllimport attribute, the only
  // exceptions being inline function definitions (except for function
  // templates), local extern declarations, qualified friend declarations or
  // special MSVC extension: in the last case, the declaration is treated as if
  // it were marked dllexport.
  bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
  bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
  if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
    // Ignore static data because out-of-line definitions are diagnosed
    // separately.
    IsStaticDataMember = VD->isStaticDataMember();
    IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
                   VarDecl::DeclarationOnly;
  } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
    IsInline = FD->isInlined();
    IsQualifiedFriend = FD->getQualifier() &&
                        FD->getFriendObjectKind() == Decl::FOK_Declared;
  }

  if (OldImportAttr && !HasNewAttr &&
      (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
      !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
    if (IsMicrosoft && IsDefinition) {
      S.Diag(NewDecl->getLocation(),
             diag::warn_redeclaration_without_import_attribute)
          << NewDecl;
      S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
      NewDecl->dropAttr<DLLImportAttr>();
      NewDecl->addAttr(
          DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
    } else {
      S.Diag(NewDecl->getLocation(),
             diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
          << NewDecl << OldImportAttr;
      S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
      S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
      OldDecl->dropAttr<DLLImportAttr>();
      NewDecl->dropAttr<DLLImportAttr>();
    }
  } else if (IsInline && OldImportAttr && !IsMicrosoft) {
    // In MinGW, seeing a function declared inline drops the dllimport
    // attribute.
    OldDecl->dropAttr<DLLImportAttr>();
    NewDecl->dropAttr<DLLImportAttr>();
    S.Diag(NewDecl->getLocation(),
           diag::warn_dllimport_dropped_from_inline_function)
        << NewDecl << OldImportAttr;
  }

  // A specialization of a class template member function is processed here
  // since it's a redeclaration. If the parent class is dllexport, the
  // specialization inherits that attribute. This doesn't happen automatically
  // since the parent class isn't instantiated until later.
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
    if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
        !NewImportAttr && !NewExportAttr) {
      if (const DLLExportAttr *ParentExportAttr =
              MD->getParent()->getAttr<DLLExportAttr>()) {
        DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
        NewAttr->setInherited(true);
        NewDecl->addAttr(NewAttr);
      }
    }
  }
}

/// Given that we are within the definition of the given function,
/// will that definition behave like C99's 'inline', where the
/// definition is discarded except for optimization purposes?
static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
  // Try to avoid calling GetGVALinkageForFunction.

  // All cases of this require the 'inline' keyword.
  if (!FD->isInlined()) return false;

  // This is only possible in C++ with the gnu_inline attribute.
  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
    return false;

  // Okay, go ahead and call the relatively-more-expensive function.
  return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
}

/// Determine whether a variable is extern "C" prior to attaching
/// an initializer. We can't just call isExternC() here, because that
/// will also compute and cache whether the declaration is externally
/// visible, which might change when we attach the initializer.
///
/// This can only be used if the declaration is known to not be a
/// redeclaration of an internal linkage declaration.
///
/// For instance:
///
///   auto x = []{};
///
/// Attaching the initializer here makes this declaration not externally
/// visible, because its type has internal linkage.
///
/// FIXME: This is a hack.
template<typename T>
static bool isIncompleteDeclExternC(Sema &S, const T *D) {
  if (S.getLangOpts().CPlusPlus) {
    // In C++, the overloadable attribute negates the effects of extern "C".
    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
      return false;

    // So do CUDA's host/device attributes.
    if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
                                 D->template hasAttr<CUDAHostAttr>()))
      return false;
  }
  return D->isExternC();
}

static bool shouldConsiderLinkage(const VarDecl *VD) {
  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
  if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
      isa<OMPDeclareMapperDecl>(DC))
    return VD->hasExternalStorage();
  if (DC->isFileContext())
    return true;
  if (DC->isRecord())
    return false;
  if (isa<RequiresExprBodyDecl>(DC))
    return false;
  llvm_unreachable("Unexpected context");
}

static bool shouldConsiderLinkage(const FunctionDecl *FD) {
  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
  if (DC->isFileContext() || DC->isFunctionOrMethod() ||
      isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
    return true;
  if (DC->isRecord())
    return false;
  llvm_unreachable("Unexpected context");
}

static bool hasParsedAttr(Scope *S, const Declarator &PD,
                          ParsedAttr::Kind Kind) {
  // Check decl attributes on the DeclSpec.
  if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
    return true;

  // Walk the declarator structure, checking decl attributes that were in a type
  // position to the decl itself.
  for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
    if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
      return true;
  }

  // Finally, check attributes on the decl itself.
  return PD.getAttributes().hasAttribute(Kind);
}

/// Adjust the \c DeclContext for a function or variable that might be a
/// function-local external declaration.
bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
  if (!DC->isFunctionOrMethod())
    return false;

  // If this is a local extern function or variable declared within a function
  // template, don't add it into the enclosing namespace scope until it is
  // instantiated; it might have a dependent type right now.
  if (DC->isDependentContext())
    return true;

  // C++11 [basic.link]p7:
  //   When a block scope declaration of an entity with linkage is not found to
  //   refer to some other declaration, then that entity is a member of the
  //   innermost enclosing namespace.
  //
  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
  // semantically-enclosing namespace, not a lexically-enclosing one.
  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
    DC = DC->getParent();
  return true;
}

/// Returns true if given declaration has external C language linkage.
static bool isDeclExternC(const Decl *D) {
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
    return FD->isExternC();
  if (const auto *VD = dyn_cast<VarDecl>(D))
    return VD->isExternC();

  llvm_unreachable("Unknown type of decl!");
}
/// Returns true if there hasn't been any invalid type diagnosed.
static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D,
                                DeclContext *DC, QualType R) {
  // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
  // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
  // argument.
  if (R->isImageType() || R->isPipeType()) {
    Se.Diag(D.getIdentifierLoc(),
            diag::err_opencl_type_can_only_be_used_as_function_parameter)
        << R;
    D.setInvalidType();
    return false;
  }

  // OpenCL v1.2 s6.9.r:
  // The event type cannot be used to declare a program scope variable.
  // OpenCL v2.0 s6.9.q:
  // The clk_event_t and reserve_id_t types cannot be declared in program
  // scope.
  if (NULL == S->getParent()) {
    if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
      Se.Diag(D.getIdentifierLoc(),
              diag::err_invalid_type_for_program_scope_var)
          << R;
      D.setInvalidType();
      return false;
    }
  }

  // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
  QualType NR = R;
  while (NR->isPointerType()) {
    if (NR->isFunctionPointerType()) {
      Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
      D.setInvalidType();
      return false;
    }
    NR = NR->getPointeeType();
  }

  if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
    // half array type (unless the cl_khr_fp16 extension is enabled).
    if (Se.Context.getBaseElementType(R)->isHalfType()) {
      Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
      D.setInvalidType();
      return false;
    }
  }

  // OpenCL v1.2 s6.9.r:
  // The event type cannot be used with the __local, __constant and __global
  // address space qualifiers.
  if (R->isEventT()) {
    if (R.getAddressSpace() != LangAS::opencl_private) {
      Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
      D.setInvalidType();
      return false;
    }
  }

  // C++ for OpenCL does not allow the thread_local storage qualifier.
  // OpenCL C does not support thread_local either, and
  // also reject all other thread storage class specifiers.
  DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
  if (TSC != TSCS_unspecified) {
    bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus;
    Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
            diag::err_opencl_unknown_type_specifier)
        << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString()
        << DeclSpec::getSpecifierName(TSC) << 1;
    D.setInvalidType();
    return false;
  }

  if (R->isSamplerT()) {
    // OpenCL v1.2 s6.9.b p4:
    // The sampler type cannot be used with the __local and __global address
    // space qualifiers.
    if (R.getAddressSpace() == LangAS::opencl_local ||
        R.getAddressSpace() == LangAS::opencl_global) {
      Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
      D.setInvalidType();
    }

    // OpenCL v1.2 s6.12.14.1:
    // A global sampler must be declared with either the constant address
    // space qualifier or with the const qualifier.
    if (DC->isTranslationUnit() &&
        !(R.getAddressSpace() == LangAS::opencl_constant ||
          R.isConstQualified())) {
      Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
      D.setInvalidType();
    }
    if (D.isInvalidType())
      return false;
  }
  return true;
}

NamedDecl *Sema::ActOnVariableDeclarator(
    Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
    LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
    bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
  QualType R = TInfo->getType();
  DeclarationName Name = GetNameForDeclarator(D).getName();

  IdentifierInfo *II = Name.getAsIdentifierInfo();

  if (D.isDecompositionDeclarator()) {
    // Take the name of the first declarator as our name for diagnostic
    // purposes.
    auto &Decomp = D.getDecompositionDeclarator();
    if (!Decomp.bindings().empty()) {
      II = Decomp.bindings()[0].Name;
      Name = II;
    }
  } else if (!II) {
    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
    return nullptr;
  }


  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
  StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());

  // dllimport globals without explicit storage class are treated as extern. We
  // have to change the storage class this early to get the right DeclContext.
  if (SC == SC_None && !DC->isRecord() &&
      hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
      !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
    SC = SC_Extern;

  DeclContext *OriginalDC = DC;
  bool IsLocalExternDecl = SC == SC_Extern &&
                           adjustContextForLocalExternDecl(DC);

  if (SCSpec == DeclSpec::SCS_mutable) {
    // mutable can only appear on non-static class members, so it's always
    // an error here
    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
    D.setInvalidType();
    SC = SC_None;
  }

  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
                              D.getDeclSpec().getStorageClassSpecLoc())) {
    // In C++11, the 'register' storage class specifier is deprecated.
    // Suppress the warning in system macros, it's used in macros in some
    // popular C system headers, such as in glibc's htonl() macro.
    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
         getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
                                   : diag::warn_deprecated_register)
      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
  }

  DiagnoseFunctionSpecifiers(D.getDeclSpec());

  if (!DC->isRecord() && S->getFnParent() == nullptr) {
    // C99 6.9p2: The storage-class specifiers auto and register shall not
    // appear in the declaration specifiers in an external declaration.
    // Global Register+Asm is a GNU extension we support.
    if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
      D.setInvalidType();
    }
  }

  bool IsMemberSpecialization = false;
  bool IsVariableTemplateSpecialization = false;
  bool IsPartialSpecialization = false;
  bool IsVariableTemplate = false;
  VarDecl *NewVD = nullptr;
  VarTemplateDecl *NewTemplate = nullptr;
  TemplateParameterList *TemplateParams = nullptr;
  if (!getLangOpts().CPlusPlus) {
    NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
                            II, R, TInfo, SC);

    if (R->getContainedDeducedType())
      ParsingInitForAutoVars.insert(NewVD);

    if (D.isInvalidType())
      NewVD->setInvalidDecl();

    if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
        NewVD->hasLocalStorage())
      checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
                            NTCUC_AutoVar, NTCUK_Destruct);
  } else {
    bool Invalid = false;

    if (DC->isRecord() && !CurContext->isRecord()) {
      // This is an out-of-line definition of a static data member.
      switch (SC) {
      case SC_None:
        break;
      case SC_Static:
        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
             diag::err_static_out_of_line)
          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
        break;
      case SC_Auto:
      case SC_Register:
      case SC_Extern:
        // [dcl.stc] p2: The auto or register specifiers shall be applied only
        // to names of variables declared in a block or to function parameters.
        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
        // of class members

        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
             diag::err_storage_class_for_static_member)
          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
        break;
      case SC_PrivateExtern:
        llvm_unreachable("C storage class in c++!");
      }
    }

    if (SC == SC_Static && CurContext->isRecord()) {
      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
        if (RD->isLocalClass())
          Diag(D.getIdentifierLoc(),
               diag::err_static_data_member_not_allowed_in_local_class)
            << Name << RD->getDeclName();

        // C++98 [class.union]p1: If a union contains a static data member,
        // the program is ill-formed. C++11 drops this restriction.
        if (RD->isUnion())
          Diag(D.getIdentifierLoc(),
               getLangOpts().CPlusPlus11
                 ? diag::warn_cxx98_compat_static_data_member_in_union
                 : diag::ext_static_data_member_in_union) << Name;
        // We conservatively disallow static data members in anonymous structs.
        else if (!RD->getDeclName())
          Diag(D.getIdentifierLoc(),
               diag::err_static_data_member_not_allowed_in_anon_struct)
            << Name << RD->isUnion();
      }
    }

    // Match up the template parameter lists with the scope specifier, then
    // determine whether we have a template or a template specialization.
    TemplateParams = MatchTemplateParametersToScopeSpecifier(
        D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
        D.getCXXScopeSpec(),
        D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
            ? D.getName().TemplateId
            : nullptr,
        TemplateParamLists,
        /*never a friend*/ false, IsMemberSpecialization, Invalid);

    if (TemplateParams) {
      if (!TemplateParams->size() &&
          D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
        // There is an extraneous 'template<>' for this variable. Complain
        // about it, but allow the declaration of the variable.
        Diag(TemplateParams->getTemplateLoc(),
             diag::err_template_variable_noparams)
          << II
          << SourceRange(TemplateParams->getTemplateLoc(),
                         TemplateParams->getRAngleLoc());
        TemplateParams = nullptr;
      } else {
        if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
          // This is an explicit specialization or a partial specialization.
          // FIXME: Check that we can declare a specialization here.
          IsVariableTemplateSpecialization = true;
          IsPartialSpecialization = TemplateParams->size() > 0;
        } else { // if (TemplateParams->size() > 0)
          // This is a template declaration.
          IsVariableTemplate = true;

          // Check that we can declare a template here.
          if (CheckTemplateDeclScope(S, TemplateParams))
            return nullptr;

          // Only C++1y supports variable templates (N3651).
          Diag(D.getIdentifierLoc(),
               getLangOpts().CPlusPlus14
                   ? diag::warn_cxx11_compat_variable_template
                   : diag::ext_variable_template);
        }
      }
    } else {
      assert((Invalid ||
              D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
             "should have a 'template<>' for this decl");
    }

    if (IsVariableTemplateSpecialization) {
      SourceLocation TemplateKWLoc =
          TemplateParamLists.size() > 0
              ? TemplateParamLists[0]->getTemplateLoc()
              : SourceLocation();
      DeclResult Res = ActOnVarTemplateSpecialization(
          S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
          IsPartialSpecialization);
      if (Res.isInvalid())
        return nullptr;
      NewVD = cast<VarDecl>(Res.get());
      AddToScope = false;
    } else if (D.isDecompositionDeclarator()) {
      NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
                                        D.getIdentifierLoc(), R, TInfo, SC,
                                        Bindings);
    } else
      NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
                              D.getIdentifierLoc(), II, R, TInfo, SC);

    // If this is supposed to be a variable template, create it as such.
    if (IsVariableTemplate) {
      NewTemplate =
          VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
                                  TemplateParams, NewVD);
      NewVD->setDescribedVarTemplate(NewTemplate);
    }

    // If this decl has an auto type in need of deduction, make a note of the
    // Decl so we can diagnose uses of it in its own initializer.
    if (R->getContainedDeducedType())
      ParsingInitForAutoVars.insert(NewVD);

    if (D.isInvalidType() || Invalid) {
      NewVD->setInvalidDecl();
      if (NewTemplate)
        NewTemplate->setInvalidDecl();
    }

    SetNestedNameSpecifier(*this, NewVD, D);

    // If we have any template parameter lists that don't directly belong to
    // the variable (matching the scope specifier), store them.
    unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
    if (TemplateParamLists.size() > VDTemplateParamLists)
      NewVD->setTemplateParameterListsInfo(
          Context, TemplateParamLists.drop_back(VDTemplateParamLists));
  }

  if (D.getDeclSpec().isInlineSpecified()) {
    if (!getLangOpts().CPlusPlus) {
      Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
          << 0;
    } else if (CurContext->isFunctionOrMethod()) {
      // 'inline' is not allowed on block scope variable declaration.
      Diag(D.getDeclSpec().getInlineSpecLoc(),
           diag::err_inline_declaration_block_scope) << Name
        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
    } else {
      Diag(D.getDeclSpec().getInlineSpecLoc(),
           getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
                                     : diag::ext_inline_variable);
      NewVD->setInlineSpecified();
    }
  }

  // Set the lexical context. If the declarator has a C++ scope specifier, the
  // lexical context will be different from the semantic context.
  NewVD->setLexicalDeclContext(CurContext);
  if (NewTemplate)
    NewTemplate->setLexicalDeclContext(CurContext);

  if (IsLocalExternDecl) {
    if (D.isDecompositionDeclarator())
      for (auto *B : Bindings)
        B->setLocalExternDecl();
    else
      NewVD->setLocalExternDecl();
  }

  bool EmitTLSUnsupportedError = false;
  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
    // C++11 [dcl.stc]p4:
    //   When thread_local is applied to a variable of block scope the
    //   storage-class-specifier static is implied if it does not appear
    //   explicitly.
    // Core issue: 'static' is not implied if the variable is declared
    //   'extern'.
    if (NewVD->hasLocalStorage() &&
        (SCSpec != DeclSpec::SCS_unspecified ||
         TSCS != DeclSpec::TSCS_thread_local ||
         !DC->isFunctionOrMethod()))
      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
           diag::err_thread_non_global)
        << DeclSpec::getSpecifierName(TSCS);
    else if (!Context.getTargetInfo().isTLSSupported()) {
      if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
        // Postpone error emission until we've collected attributes required to
        // figure out whether it's a host or device variable and whether the
        // error should be ignored.
        EmitTLSUnsupportedError = true;
        // We still need to mark the variable as TLS so it shows up in AST with
        // proper storage class for other tools to use even if we're not going
        // to emit any code for it.
        NewVD->setTSCSpec(TSCS);
      } else
        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
             diag::err_thread_unsupported);
    } else
      NewVD->setTSCSpec(TSCS);
  }

  switch (D.getDeclSpec().getConstexprSpecifier()) {
  case CSK_unspecified:
    break;

  case CSK_consteval:
    Diag(D.getDeclSpec().getConstexprSpecLoc(),
        diag::err_constexpr_wrong_decl_kind)
      << D.getDeclSpec().getConstexprSpecifier();
    LLVM_FALLTHROUGH;

  case CSK_constexpr:
    NewVD->setConstexpr(true);
    // C++1z [dcl.spec.constexpr]p1:
    //   A static data member declared with the constexpr specifier is
    //   implicitly an inline variable.
    if (NewVD->isStaticDataMember() &&
        (getLangOpts().CPlusPlus17 ||
         Context.getTargetInfo().getCXXABI().isMicrosoft()))
      NewVD->setImplicitlyInline();
    break;

  case CSK_constinit:
    if (!NewVD->hasGlobalStorage())
      Diag(D.getDeclSpec().getConstexprSpecLoc(),
           diag::err_constinit_local_variable);
    else
      NewVD->addAttr(ConstInitAttr::Create(
          Context, D.getDeclSpec().getConstexprSpecLoc(),
          AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
    break;
  }

  // C99 6.7.4p3
  //   An inline definition of a function with external linkage shall
  //   not contain a definition of a modifiable object with static or
  //   thread storage duration...
  // We only apply this when the function is required to be defined
  // elsewhere, i.e. when the function is not 'extern inline'.  Note
  // that a local variable with thread storage duration still has to
  // be marked 'static'.  Also note that it's possible to get these
  // semantics in C++ using __attribute__((gnu_inline)).
  if (SC == SC_Static && S->getFnParent() != nullptr &&
      !NewVD->getType().isConstQualified()) {
    FunctionDecl *CurFD = getCurFunctionDecl();
    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
           diag::warn_static_local_in_extern_inline);
      MaybeSuggestAddingStaticToDecl(CurFD);
    }
  }

  if (D.getDeclSpec().isModulePrivateSpecified()) {
    if (IsVariableTemplateSpecialization)
      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
          << (IsPartialSpecialization ? 1 : 0)
          << FixItHint::CreateRemoval(
                 D.getDeclSpec().getModulePrivateSpecLoc());
    else if (IsMemberSpecialization)
      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
        << 2
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
    else if (NewVD->hasLocalStorage())
      Diag(NewVD->getLocation(), diag::err_module_private_local)
        << 0 << NewVD->getDeclName()
        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
    else {
      NewVD->setModulePrivate();
      if (NewTemplate)
        NewTemplate->setModulePrivate();
      for (auto *B : Bindings)
        B->setModulePrivate();
    }
  }

  if (getLangOpts().OpenCL) {

    deduceOpenCLAddressSpace(NewVD);

    diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType());
  }

  // Handle attributes prior to checking for duplicates in MergeVarDecl
  ProcessDeclAttributes(S, NewVD, D);

  if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
    if (EmitTLSUnsupportedError &&
        ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
         (getLangOpts().OpenMPIsDevice &&
          OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
           diag::err_thread_unsupported);
    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
    // storage [duration]."
    if (SC == SC_None && S->getFnParent() != nullptr &&
        (NewVD->hasAttr<CUDASharedAttr>() ||
         NewVD->hasAttr<CUDAConstantAttr>())) {
      NewVD->setStorageClass(SC_Static);
    }
  }

  // Ensure that dllimport globals without explicit storage class are treated as
  // extern. The storage class is set above using parsed attributes. Now we can
  // check the VarDecl itself.
  assert(!NewVD->hasAttr<DLLImportAttr>() ||
         NewVD->getAttr<DLLImportAttr>()->isInherited() ||
         NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);

  // In auto-retain/release, infer strong retension for variables of
  // retainable type.
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
    NewVD->setInvalidDecl();

  // Handle GNU asm-label extension (encoded as an attribute).
  if (Expr *E = (Expr*)D.getAsmLabel()) {
    // The parser guarantees this is a string.
    StringLiteral *SE = cast<StringLiteral>(E);
    StringRef Label = SE->getString();
    if (S->getFnParent() != nullptr) {
      switch (SC) {
      case SC_None:
      case SC_Auto:
        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
        break;
      case SC_Register:
        // Local Named register
        if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
            DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
        break;
      case SC_Static:
      case SC_Extern:
      case SC_PrivateExtern:
        break;
      }
    } else if (SC == SC_Register) {
      // Global Named register
      if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
        const auto &TI = Context.getTargetInfo();
        bool HasSizeMismatch;

        if (!TI.isValidGCCRegisterName(Label))
          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
        else if (!TI.validateGlobalRegisterVariable(Label,
                                                    Context.getTypeSize(R),
                                                    HasSizeMismatch))
          Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
        else if (HasSizeMismatch)
          Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
      }

      if (!R->isIntegralType(Context) && !R->isPointerType()) {
        Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
        NewVD->setInvalidDecl(true);
      }
    }

    NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
                                        /*IsLiteralLabel=*/true,
                                        SE->getStrTokenLoc(0)));
  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
    if (I != ExtnameUndeclaredIdentifiers.end()) {
      if (isDeclExternC(NewVD)) {
        NewVD->addAttr(I->second);
        ExtnameUndeclaredIdentifiers.erase(I);
      } else
        Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
            << /*Variable*/1 << NewVD;
    }
  }

  // Find the shadowed declaration before filtering for scope.
  NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
                                ? getShadowedDeclaration(NewVD, Previous)
                                : nullptr;

  // Don't consider existing declarations that are in a different
  // scope and are out-of-semantic-context declarations (if the new
  // declaration has linkage).
  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
                       D.getCXXScopeSpec().isNotEmpty() ||
                       IsMemberSpecialization ||
                       IsVariableTemplateSpecialization);

  // Check whether the previous declaration is in the same block scope. This
  // affects whether we merge types with it, per C++11 [dcl.array]p3.
  if (getLangOpts().CPlusPlus &&
      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
    NewVD->setPreviousDeclInSameBlockScope(
        Previous.isSingleResult() && !Previous.isShadowed() &&
        isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));

  if (!getLangOpts().CPlusPlus) {
    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
  } else {
    // If this is an explicit specialization of a static data member, check it.
    if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
        CheckMemberSpecialization(NewVD, Previous))
      NewVD->setInvalidDecl();

    // Merge the decl with the existing one if appropriate.
    if (!Previous.empty()) {
      if (Previous.isSingleResult() &&
          isa<FieldDecl>(Previous.getFoundDecl()) &&
          D.getCXXScopeSpec().isSet()) {
        // The user tried to define a non-static data member
        // out-of-line (C++ [dcl.meaning]p1).
        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
          << D.getCXXScopeSpec().getRange();
        Previous.clear();
        NewVD->setInvalidDecl();
      }
    } else if (D.getCXXScopeSpec().isSet()) {
      // No previous declaration in the qualifying scope.
      Diag(D.getIdentifierLoc(), diag::err_no_member)
        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
        << D.getCXXScopeSpec().getRange();
      NewVD->setInvalidDecl();
    }

    if (!IsVariableTemplateSpecialization)
      D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));

    if (NewTemplate) {
      VarTemplateDecl *PrevVarTemplate =
          NewVD->getPreviousDecl()
              ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
              : nullptr;

      // Check the template parameter list of this declaration, possibly
      // merging in the template parameter list from the previous variable
      // template declaration.
      if (CheckTemplateParameterList(
              TemplateParams,
              PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
                              : nullptr,
              (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
               DC->isDependentContext())
                  ? TPC_ClassTemplateMember
                  : TPC_VarTemplate))
        NewVD->setInvalidDecl();

      // If we are providing an explicit specialization of a static variable
      // template, make a note of that.
      if (PrevVarTemplate &&
          PrevVarTemplate->getInstantiatedFromMemberTemplate())
        PrevVarTemplate->setMemberSpecialization();
    }
  }

  // Diagnose shadowed variables iff this isn't a redeclaration.
  if (ShadowedDecl && !D.isRedeclaration())
    CheckShadow(NewVD, ShadowedDecl, Previous);

  ProcessPragmaWeak(S, NewVD);

  // If this is the first declaration of an extern C variable, update
  // the map of such variables.
  if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
      isIncompleteDeclExternC(*this, NewVD))
    RegisterLocallyScopedExternCDecl(NewVD, S);

  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
    MangleNumberingContext *MCtx;
    Decl *ManglingContextDecl;
    std::tie(MCtx, ManglingContextDecl) =
        getCurrentMangleNumberContext(NewVD->getDeclContext());
    if (MCtx) {
      Context.setManglingNumber(
          NewVD, MCtx->getManglingNumber(
                     NewVD, getMSManglingNumber(getLangOpts(), S)));
      Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
    }
  }

  // Special handling of variable named 'main'.
  if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
      NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
      !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {

    // C++ [basic.start.main]p3
    // A program that declares a variable main at global scope is ill-formed.
    if (getLangOpts().CPlusPlus)
      Diag(D.getBeginLoc(), diag::err_main_global_variable);

    // In C, and external-linkage variable named main results in undefined
    // behavior.
    else if (NewVD->hasExternalFormalLinkage())
      Diag(D.getBeginLoc(), diag::warn_main_redefined);
  }

  if (D.isRedeclaration() && !Previous.empty()) {
    NamedDecl *Prev = Previous.getRepresentativeDecl();
    checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
                                   D.isFunctionDefinition());
  }

  if (NewTemplate) {
    if (NewVD->isInvalidDecl())
      NewTemplate->setInvalidDecl();
    ActOnDocumentableDecl(NewTemplate);
    return NewTemplate;
  }

  if (IsMemberSpecialization && !NewVD->isInvalidDecl())
    CompleteMemberSpecialization(NewVD, Previous);

  return NewVD;
}

/// Enum describing the %select options in diag::warn_decl_shadow.
enum ShadowedDeclKind {
  SDK_Local,
  SDK_Global,
  SDK_StaticMember,
  SDK_Field,
  SDK_Typedef,
  SDK_Using
};

/// Determine what kind of declaration we're shadowing.
static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
                                                const DeclContext *OldDC) {
  if (isa<TypeAliasDecl>(ShadowedDecl))
    return SDK_Using;
  else if (isa<TypedefDecl>(ShadowedDecl))
    return SDK_Typedef;
  else if (isa<RecordDecl>(OldDC))
    return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;

  return OldDC->isFileContext() ? SDK_Global : SDK_Local;
}

/// Return the location of the capture if the given lambda captures the given
/// variable \p VD, or an invalid source location otherwise.
static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
                                         const VarDecl *VD) {
  for (const Capture &Capture : LSI->Captures) {
    if (Capture.isVariableCapture() && Capture.getVariable() == VD)
      return Capture.getLocation();
  }
  return SourceLocation();
}

static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
                                     const LookupResult &R) {
  // Only diagnose if we're shadowing an unambiguous field or variable.
  if (R.getResultKind() != LookupResult::Found)
    return false;

  // Return false if warning is ignored.
  return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
}

/// Return the declaration shadowed by the given variable \p D, or null
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
                                        const LookupResult &R) {
  if (!shouldWarnIfShadowedDecl(Diags, R))
    return nullptr;

  // Don't diagnose declarations at file scope.
  if (D->hasGlobalStorage())
    return nullptr;

  NamedDecl *ShadowedDecl = R.getFoundDecl();
  return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
             ? ShadowedDecl
             : nullptr;
}

/// Return the declaration shadowed by the given typedef \p D, or null
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
                                        const LookupResult &R) {
  // Don't warn if typedef declaration is part of a class
  if (D->getDeclContext()->isRecord())
    return nullptr;

  if (!shouldWarnIfShadowedDecl(Diags, R))
    return nullptr;

  NamedDecl *ShadowedDecl = R.getFoundDecl();
  return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
}

/// Diagnose variable or built-in function shadowing.  Implements
/// -Wshadow.
///
/// This method is called whenever a VarDecl is added to a "useful"
/// scope.
///
/// \param ShadowedDecl the declaration that is shadowed by the given variable
/// \param R the lookup of the name
///
void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
                       const LookupResult &R) {
  DeclContext *NewDC = D->getDeclContext();

  if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
    // Fields are not shadowed by variables in C++ static methods.
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
      if (MD->isStatic())
        return;

    // Fields shadowed by constructor parameters are a special case. Usually
    // the constructor initializes the field with the parameter.
    if (isa<CXXConstructorDecl>(NewDC))
      if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
        // Remember that this was shadowed so we can either warn about its
        // modification or its existence depending on warning settings.
        ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
        return;
      }
  }

  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
    if (shadowedVar->isExternC()) {
      // For shadowing external vars, make sure that we point to the global
      // declaration, not a locally scoped extern declaration.
      for (auto I : shadowedVar->redecls())
        if (I->isFileVarDecl()) {
          ShadowedDecl = I;
          break;
        }
    }

  DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();

  unsigned WarningDiag = diag::warn_decl_shadow;
  SourceLocation CaptureLoc;
  if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
      isa<CXXMethodDecl>(NewDC)) {
    if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
      if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
        if (RD->getLambdaCaptureDefault() == LCD_None) {
          // Try to avoid warnings for lambdas with an explicit capture list.
          const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
          // Warn only when the lambda captures the shadowed decl explicitly.
          CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
          if (CaptureLoc.isInvalid())
            WarningDiag = diag::warn_decl_shadow_uncaptured_local;
        } else {
          // Remember that this was shadowed so we can avoid the warning if the
          // shadowed decl isn't captured and the warning settings allow it.
          cast<LambdaScopeInfo>(getCurFunction())
              ->ShadowingDecls.push_back(
                  {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
          return;
        }
      }

      if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
        // A variable can't shadow a local variable in an enclosing scope, if
        // they are separated by a non-capturing declaration context.
        for (DeclContext *ParentDC = NewDC;
             ParentDC && !ParentDC->Equals(OldDC);
             ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
          // Only block literals, captured statements, and lambda expressions
          // can capture; other scopes don't.
          if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
              !isLambdaCallOperator(ParentDC)) {
            return;
          }
        }
      }
    }
  }

  // Only warn about certain kinds of shadowing for class members.
  if (NewDC && NewDC->isRecord()) {
    // In particular, don't warn about shadowing non-class members.
    if (!OldDC->isRecord())
      return;

    // TODO: should we warn about static data members shadowing
    // static data members from base classes?

    // TODO: don't diagnose for inaccessible shadowed members.
    // This is hard to do perfectly because we might friend the
    // shadowing context, but that's just a false negative.
  }


  DeclarationName Name = R.getLookupName();

  // Emit warning and note.
  if (getSourceManager().isInSystemMacro(R.getNameLoc()))
    return;
  ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
  Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
  if (!CaptureLoc.isInvalid())
    Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
        << Name << /*explicitly*/ 1;
  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
}

/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
/// when these variables are captured by the lambda.
void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
  for (const auto &Shadow : LSI->ShadowingDecls) {
    const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
    // Try to avoid the warning when the shadowed decl isn't captured.
    SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
    const DeclContext *OldDC = ShadowedDecl->getDeclContext();
    Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
                                       ? diag::warn_decl_shadow_uncaptured_local
                                       : diag::warn_decl_shadow)
        << Shadow.VD->getDeclName()
        << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
    if (!CaptureLoc.isInvalid())
      Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
          << Shadow.VD->getDeclName() << /*explicitly*/ 0;
    Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
  }
}

/// Check -Wshadow without the advantage of a previous lookup.
void Sema::CheckShadow(Scope *S, VarDecl *D) {
  if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
    return;

  LookupResult R(*this, D->getDeclName(), D->getLocation(),
                 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
  LookupName(R, S);
  if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
    CheckShadow(D, ShadowedDecl, R);
}

/// Check if 'E', which is an expression that is about to be modified, refers
/// to a constructor parameter that shadows a field.
void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
  // Quickly ignore expressions that can't be shadowing ctor parameters.
  if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
    return;
  E = E->IgnoreParenImpCasts();
  auto *DRE = dyn_cast<DeclRefExpr>(E);
  if (!DRE)
    return;
  const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
  auto I = ShadowingDecls.find(D);
  if (I == ShadowingDecls.end())
    return;
  const NamedDecl *ShadowedDecl = I->second;
  const DeclContext *OldDC = ShadowedDecl->getDeclContext();
  Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
  Diag(D->getLocation(), diag::note_var_declared_here) << D;
  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);

  // Avoid issuing multiple warnings about the same decl.
  ShadowingDecls.erase(I);
}

/// Check for conflict between this global or extern "C" declaration and
/// previous global or extern "C" declarations. This is only used in C++.
template<typename T>
static bool checkGlobalOrExternCConflict(
    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());

  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
    // The common case: this global doesn't conflict with any extern "C"
    // declaration.
    return false;
  }

  if (Prev) {
    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
      // Both the old and new declarations have C language linkage. This is a
      // redeclaration.
      Previous.clear();
      Previous.addDecl(Prev);
      return true;
    }

    // This is a global, non-extern "C" declaration, and there is a previous
    // non-global extern "C" declaration. Diagnose if this is a variable
    // declaration.
    if (!isa<VarDecl>(ND))
      return false;
  } else {
    // The declaration is extern "C". Check for any declaration in the
    // translation unit which might conflict.
    if (IsGlobal) {
      // We have already performed the lookup into the translation unit.
      IsGlobal = false;
      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
           I != E; ++I) {
        if (isa<VarDecl>(*I)) {
          Prev = *I;
          break;
        }
      }
    } else {
      DeclContext::lookup_result R =
          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
           I != E; ++I) {
        if (isa<VarDecl>(*I)) {
          Prev = *I;
          break;
        }
        // FIXME: If we have any other entity with this name in global scope,
        // the declaration is ill-formed, but that is a defect: it breaks the
        // 'stat' hack, for instance. Only variables can have mangled name
        // clashes with extern "C" declarations, so only they deserve a
        // diagnostic.
      }
    }

    if (!Prev)
      return false;
  }

  // Use the first declaration's location to ensure we point at something which
  // is lexically inside an extern "C" linkage-spec.
  assert(Prev && "should have found a previous declaration to diagnose");
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
    Prev = FD->getFirstDecl();
  else
    Prev = cast<VarDecl>(Prev)->getFirstDecl();

  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
    << IsGlobal << ND;
  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
    << IsGlobal;
  return false;
}

/// Apply special rules for handling extern "C" declarations. Returns \c true
/// if we have found that this is a redeclaration of some prior entity.
///
/// Per C++ [dcl.link]p6:
///   Two declarations [for a function or variable] with C language linkage
///   with the same name that appear in different scopes refer to the same
///   [entity]. An entity with C language linkage shall not be declared with
///   the same name as an entity in global scope.
template<typename T>
static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
                                                  LookupResult &Previous) {
  if (!S.getLangOpts().CPlusPlus) {
    // In C, when declaring a global variable, look for a corresponding 'extern'
    // variable declared in function scope. We don't need this in C++, because
    // we find local extern decls in the surrounding file-scope DeclContext.
    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
        Previous.clear();
        Previous.addDecl(Prev);
        return true;
      }
    }
    return false;
  }

  // A declaration in the translation unit can conflict with an extern "C"
  // declaration.
  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);

  // An extern "C" declaration can conflict with a declaration in the
  // translation unit or can be a redeclaration of an extern "C" declaration
  // in another scope.
  if (isIncompleteDeclExternC(S,ND))
    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);

  // Neither global nor extern "C": nothing to do.
  return false;
}

void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
  // If the decl is already known invalid, don't check it.
  if (NewVD->isInvalidDecl())
    return;

  QualType T = NewVD->getType();

  // Defer checking an 'auto' type until its initializer is attached.
  if (T->isUndeducedType())
    return;

  if (NewVD->hasAttrs())
    CheckAlignasUnderalignment(NewVD);

  if (T->isObjCObjectType()) {
    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
    T = Context.getObjCObjectPointerType(T);
    NewVD->setType(T);
  }

  // Emit an error if an address space was applied to decl with local storage.
  // This includes arrays of objects with address space qualifiers, but not
  // automatic variables that point to other address spaces.
  // ISO/IEC TR 18037 S5.1.2
  if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
      T.getAddressSpace() != LangAS::Default) {
    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
    NewVD->setInvalidDecl();
    return;
  }

  // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
  // scope.
  if (getLangOpts().OpenCLVersion == 120 &&
      !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
      NewVD->isStaticLocal()) {
    Diag(NewVD->getLocation(), diag::err_static_function_scope);
    NewVD->setInvalidDecl();
    return;
  }

  if (getLangOpts().OpenCL) {
    // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
    if (NewVD->hasAttr<BlocksAttr>()) {
      Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
      return;
    }

    if (T->isBlockPointerType()) {
      // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
      // can't use 'extern' storage class.
      if (!T.isConstQualified()) {
        Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
            << 0 /*const*/;
        NewVD->setInvalidDecl();
        return;
      }
      if (NewVD->hasExternalStorage()) {
        Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
        NewVD->setInvalidDecl();
        return;
      }
    }
    // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
    // __constant address space.
    // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
    // variables inside a function can also be declared in the global
    // address space.
    // C++ for OpenCL inherits rule from OpenCL C v2.0.
    // FIXME: Adding local AS in C++ for OpenCL might make sense.
    if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
        NewVD->hasExternalStorage()) {
      if (!T->isSamplerT() &&
          !(T.getAddressSpace() == LangAS::opencl_constant ||
            (T.getAddressSpace() == LangAS::opencl_global &&
             (getLangOpts().OpenCLVersion == 200 ||
              getLangOpts().OpenCLCPlusPlus)))) {
        int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
        if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
              << Scope << "global or constant";
        else
          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
              << Scope << "constant";
        NewVD->setInvalidDecl();
        return;
      }
    } else {
      if (T.getAddressSpace() == LangAS::opencl_global) {
        Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
            << 1 /*is any function*/ << "global";
        NewVD->setInvalidDecl();
        return;
      }
      if (T.getAddressSpace() == LangAS::opencl_constant ||
          T.getAddressSpace() == LangAS::opencl_local) {
        FunctionDecl *FD = getCurFunctionDecl();
        // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
        // in functions.
        if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
          if (T.getAddressSpace() == LangAS::opencl_constant)
            Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
                << 0 /*non-kernel only*/ << "constant";
          else
            Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
                << 0 /*non-kernel only*/ << "local";
          NewVD->setInvalidDecl();
          return;
        }
        // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
        // in the outermost scope of a kernel function.
        if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
          if (!getCurScope()->isFunctionScope()) {
            if (T.getAddressSpace() == LangAS::opencl_constant)
              Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
                  << "constant";
            else
              Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
                  << "local";
            NewVD->setInvalidDecl();
            return;
          }
        }
      } else if (T.getAddressSpace() != LangAS::opencl_private &&
                 // If we are parsing a template we didn't deduce an addr
                 // space yet.
                 T.getAddressSpace() != LangAS::Default) {
        // Do not allow other address spaces on automatic variable.
        Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
        NewVD->setInvalidDecl();
        return;
      }
    }
  }

  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
      && !NewVD->hasAttr<BlocksAttr>()) {
    if (getLangOpts().getGC() != LangOptions::NonGC)
      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
    else {
      assert(!getLangOpts().ObjCAutoRefCount);
      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
    }
  }

  bool isVM = T->isVariablyModifiedType();
  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
      NewVD->hasAttr<BlocksAttr>())
    setFunctionHasBranchProtectedScope();

  if ((isVM && NewVD->hasLinkage()) ||
      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
    bool SizeIsNegative;
    llvm::APSInt Oversized;
    TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
        NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
    QualType FixedT;
    if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
      FixedT = FixedTInfo->getType();
    else if (FixedTInfo) {
      // Type and type-as-written are canonically different. We need to fix up
      // both types separately.
      FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
                                                   Oversized);
    }
    if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
      // FIXME: This won't give the correct result for
      // int a[10][n];
      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();

      if (NewVD->isFileVarDecl())
        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
        << SizeRange;
      else if (NewVD->isStaticLocal())
        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
        << SizeRange;
      else
        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
        << SizeRange;
      NewVD->setInvalidDecl();
      return;
    }

    if (!FixedTInfo) {
      if (NewVD->isFileVarDecl())
        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
      else
        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
      NewVD->setInvalidDecl();
      return;
    }

    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
    NewVD->setType(FixedT);
    NewVD->setTypeSourceInfo(FixedTInfo);
  }

  if (T->isVoidType()) {
    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
    //                    of objects and functions.
    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
        << T;
      NewVD->setInvalidDecl();
      return;
    }
  }

  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
    NewVD->setInvalidDecl();
    return;
  }

  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
    Diag(NewVD->getLocation(), diag::err_block_on_vm);
    NewVD->setInvalidDecl();
    return;
  }

  if (NewVD->isConstexpr() && !T->isDependentType() &&
      RequireLiteralType(NewVD->getLocation(), T,
                         diag::err_constexpr_var_non_literal)) {
    NewVD->setInvalidDecl();
    return;
  }
}

/// Perform semantic checking on a newly-created variable
/// declaration.
///
/// This routine performs all of the type-checking required for a
/// variable declaration once it has been built. It is used both to
/// check variables after they have been parsed and their declarators
/// have been translated into a declaration, and to check variables
/// that have been instantiated from a template.
///
/// Sets NewVD->isInvalidDecl() if an error was encountered.
///
/// Returns true if the variable declaration is a redeclaration.
bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
  CheckVariableDeclarationType(NewVD);

  // If the decl is already known invalid, don't check it.
  if (NewVD->isInvalidDecl())
    return false;

  // If we did not find anything by this name, look for a non-visible
  // extern "C" declaration with the same name.
  if (Previous.empty() &&
      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
    Previous.setShadowed();

  if (!Previous.empty()) {
    MergeVarDecl(NewVD, Previous);
    return true;
  }
  return false;
}

namespace {
struct FindOverriddenMethod {
  Sema *S;
  CXXMethodDecl *Method;

  /// Member lookup function that determines whether a given C++
  /// method overrides a method in a base class, to be used with
  /// CXXRecordDecl::lookupInBases().
  bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
    RecordDecl *BaseRecord =
        Specifier->getType()->castAs<RecordType>()->getDecl();

    DeclarationName Name = Method->getDeclName();

    // FIXME: Do we care about other names here too?
    if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
      // We really want to find the base class destructor here.
      QualType T = S->Context.getTypeDeclType(BaseRecord);
      CanQualType CT = S->Context.getCanonicalType(T);

      Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
    }

    for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
         Path.Decls = Path.Decls.slice(1)) {
      NamedDecl *D = Path.Decls.front();
      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
        if (MD->isVirtual() &&
            !S->IsOverload(
                Method, MD, /*UseMemberUsingDeclRules=*/false,
                /*ConsiderCudaAttrs=*/true,
                // C++2a [class.virtual]p2 does not consider requires clauses
                // when overriding.
                /*ConsiderRequiresClauses=*/false))
          return true;
      }
    }

    return false;
  }
};

enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
} // end anonymous namespace

/// Report an error regarding overriding, along with any relevant
/// overridden methods.
///
/// \param DiagID the primary error to report.
/// \param MD the overriding method.
/// \param OEK which overrides to include as notes.
static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
                            OverrideErrorKind OEK = OEK_All) {
  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
  for (const CXXMethodDecl *O : MD->overridden_methods()) {
    // This check (& the OEK parameter) could be replaced by a predicate, but
    // without lambdas that would be overkill. This is still nicer than writing
    // out the diag loop 3 times.
    if ((OEK == OEK_All) ||
        (OEK == OEK_NonDeleted && !O->isDeleted()) ||
        (OEK == OEK_Deleted && O->isDeleted()))
      S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
  }
}

/// AddOverriddenMethods - See if a method overrides any in the base classes,
/// and if so, check that it's a valid override and remember it.
bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
  // Look for methods in base classes that this method might override.
  CXXBasePaths Paths;
  FindOverriddenMethod FOM;
  FOM.Method = MD;
  FOM.S = this;
  bool hasDeletedOverridenMethods = false;
  bool hasNonDeletedOverridenMethods = false;
  bool AddedAny = false;
  if (DC->lookupInBases(FOM, Paths)) {
    for (auto *I : Paths.found_decls()) {
      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
            !CheckOverridingFunctionAttributes(MD, OldMD) &&
            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
          hasDeletedOverridenMethods |= OldMD->isDeleted();
          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
          AddedAny = true;
        }
      }
    }
  }

  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
  }
  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
  }

  return AddedAny;
}

namespace {
  // Struct for holding all of the extra arguments needed by
  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
  struct ActOnFDArgs {
    Scope *S;
    Declarator &D;
    MultiTemplateParamsArg TemplateParamLists;
    bool AddToScope;
  };
} // end anonymous namespace

namespace {

// Callback to only accept typo corrections that have a non-zero edit distance.
// Also only accept corrections that have the same parent decl.
class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
 public:
  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
                            CXXRecordDecl *Parent)
      : Context(Context), OriginalFD(TypoFD),
        ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}

  bool ValidateCandidate(const TypoCorrection &candidate) override {
    if (candidate.getEditDistance() == 0)
      return false;

    SmallVector<unsigned, 1> MismatchedParams;
    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
                                          CDeclEnd = candidate.end();
         CDecl != CDeclEnd; ++CDecl) {
      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);

      if (FD && !FD->hasBody() &&
          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
          CXXRecordDecl *Parent = MD->getParent();
          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
            return true;
        } else if (!ExpectedParent) {
          return true;
        }
      }
    }

    return false;
  }

  std::unique_ptr<CorrectionCandidateCallback> clone() override {
    return std::make_unique<DifferentNameValidatorCCC>(*this);
  }

 private:
  ASTContext &Context;
  FunctionDecl *OriginalFD;
  CXXRecordDecl *ExpectedParent;
};

} // end anonymous namespace

void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
  TypoCorrectedFunctionDefinitions.insert(F);
}

/// Generate diagnostics for an invalid function redeclaration.
///
/// This routine handles generating the diagnostic messages for an invalid
/// function redeclaration, including finding possible similar declarations
/// or performing typo correction if there are no previous declarations with
/// the same name.
///
/// Returns a NamedDecl iff typo correction was performed and substituting in
/// the new declaration name does not cause new errors.
static NamedDecl *DiagnoseInvalidRedeclaration(
    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
  DeclarationName Name = NewFD->getDeclName();
  DeclContext *NewDC = NewFD->getDeclContext();
  SmallVector<unsigned, 1> MismatchedParams;
  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
  TypoCorrection Correction;
  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
  unsigned DiagMsg =
    IsLocalFriend ? diag::err_no_matching_local_friend :
    NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
    diag::err_member_decl_does_not_match;
  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
                    IsLocalFriend ? Sema::LookupLocalFriendName
                                  : Sema::LookupOrdinaryName,
                    Sema::ForVisibleRedeclaration);

  NewFD->setInvalidDecl();
  if (IsLocalFriend)
    SemaRef.LookupName(Prev, S);
  else
    SemaRef.LookupQualifiedName(Prev, NewDC);
  assert(!Prev.isAmbiguous() &&
         "Cannot have an ambiguity in previous-declaration lookup");
  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
  DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
                                MD ? MD->getParent() : nullptr);
  if (!Prev.empty()) {
    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
         Func != FuncEnd; ++Func) {
      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
      if (FD &&
          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
        // Add 1 to the index so that 0 can mean the mismatch didn't
        // involve a parameter
        unsigned ParamNum =
            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
        NearMatches.push_back(std::make_pair(FD, ParamNum));
      }
    }
  // If the qualified name lookup yielded nothing, try typo correction
  } else if ((Correction = SemaRef.CorrectTypo(
                  Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
                  &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
                  IsLocalFriend ? nullptr : NewDC))) {
    // Set up everything for the call to ActOnFunctionDeclarator
    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
                              ExtraArgs.D.getIdentifierLoc());
    Previous.clear();
    Previous.setLookupName(Correction.getCorrection());
    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
                                    CDeclEnd = Correction.end();
         CDecl != CDeclEnd; ++CDecl) {
      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
      if (FD && !FD->hasBody() &&
          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
        Previous.addDecl(FD);
      }
    }
    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();

    NamedDecl *Result;
    // Retry building the function declaration with the new previous
    // declarations, and with errors suppressed.
    {
      // Trap errors.
      Sema::SFINAETrap Trap(SemaRef);

      // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
      // pieces need to verify the typo-corrected C++ declaration and hopefully
      // eliminate the need for the parameter pack ExtraArgs.
      Result = SemaRef.ActOnFunctionDeclarator(
          ExtraArgs.S, ExtraArgs.D,
          Correction.getCorrectionDecl()->getDeclContext(),
          NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
          ExtraArgs.AddToScope);

      if (Trap.hasErrorOccurred())
        Result = nullptr;
    }

    if (Result) {
      // Determine which correction we picked.
      Decl *Canonical = Result->getCanonicalDecl();
      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
           I != E; ++I)
        if ((*I)->getCanonicalDecl() == Canonical)
          Correction.setCorrectionDecl(*I);

      // Let Sema know about the correction.
      SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
      SemaRef.diagnoseTypo(
          Correction,
          SemaRef.PDiag(IsLocalFriend
                          ? diag::err_no_matching_local_friend_suggest
                          : diag::err_member_decl_does_not_match_suggest)
            << Name << NewDC << IsDefinition);
      return Result;
    }

    // Pretend the typo correction never occurred
    ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
                              ExtraArgs.D.getIdentifierLoc());
    ExtraArgs.D.setRedeclaration(wasRedeclaration);
    Previous.clear();
    Previous.setLookupName(Name);
  }

  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
      << Name << NewDC << IsDefinition << NewFD->getLocation();

  bool NewFDisConst = false;
  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
    NewFDisConst = NewMD->isConst();

  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
       NearMatch != NearMatchEnd; ++NearMatch) {
    FunctionDecl *FD = NearMatch->first;
    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
    bool FDisConst = MD && MD->isConst();
    bool IsMember = MD || !IsLocalFriend;

    // FIXME: These notes are poorly worded for the local friend case.
    if (unsigned Idx = NearMatch->second) {
      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
      if (Loc.isInvalid()) Loc = FD->getLocation();
      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
                                 : diag::note_local_decl_close_param_match)
        << Idx << FDParam->getType()
        << NewFD->getParamDecl(Idx - 1)->getType();
    } else if (FDisConst != NewFDisConst) {
      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
          << NewFDisConst << FD->getSourceRange().getEnd();
    } else
      SemaRef.Diag(FD->getLocation(),
                   IsMember ? diag::note_member_def_close_match
                            : diag::note_local_decl_close_match);
  }
  return nullptr;
}

static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
  switch (D.getDeclSpec().getStorageClassSpec()) {
  default: llvm_unreachable("Unknown storage class!");
  case DeclSpec::SCS_auto:
  case DeclSpec::SCS_register:
  case DeclSpec::SCS_mutable:
    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
                 diag::err_typecheck_sclass_func);
    D.getMutableDeclSpec().ClearStorageClassSpecs();
    D.setInvalidType();
    break;
  case DeclSpec::SCS_unspecified: break;
  case DeclSpec::SCS_extern:
    if (D.getDeclSpec().isExternInLinkageSpec())
      return SC_None;
    return SC_Extern;
  case DeclSpec::SCS_static: {
    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
      // C99 6.7.1p5:
      //   The declaration of an identifier for a function that has
      //   block scope shall have no explicit storage-class specifier
      //   other than extern
      // See also (C++ [dcl.stc]p4).
      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
                   diag::err_static_block_func);
      break;
    } else
      return SC_Static;
  }
  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
  }

  // No explicit storage class has already been returned
  return SC_None;
}

static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
                                           DeclContext *DC, QualType &R,
                                           TypeSourceInfo *TInfo,
                                           StorageClass SC,
                                           bool &IsVirtualOkay) {
  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
  DeclarationName Name = NameInfo.getName();

  FunctionDecl *NewFD = nullptr;
  bool isInline = D.getDeclSpec().isInlineSpecified();

  if (!SemaRef.getLangOpts().CPlusPlus) {
    // Determine whether the function was written with a
    // prototype. This true when:
    //   - there is a prototype in the declarator, or
    //   - the type R of the function is some kind of typedef or other non-
    //     attributed reference to a type name (which eventually refers to a
    //     function type).
    bool HasPrototype =
      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
      (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());

    NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
                                 R, TInfo, SC, isInline, HasPrototype,
                                 CSK_unspecified,
                                 /*TrailingRequiresClause=*/nullptr);
    if (D.isInvalidType())
      NewFD->setInvalidDecl();

    return NewFD;
  }

  ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();

  ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
  if (ConstexprKind == CSK_constinit) {
    SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
                 diag::err_constexpr_wrong_decl_kind)
        << ConstexprKind;
    ConstexprKind = CSK_unspecified;
    D.getMutableDeclSpec().ClearConstexprSpec();
  }
  Expr *TrailingRequiresClause = D.getTrailingRequiresClause();

  // Check that the return type is not an abstract class type.
  // For record types, this is done by the AbstractClassUsageDiagnoser once
  // the class has been completely parsed.
  if (!DC->isRecord() &&
      SemaRef.RequireNonAbstractType(
          D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
          diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
    D.setInvalidType();

  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
    // This is a C++ constructor declaration.
    assert(DC->isRecord() &&
           "Constructors can only be declared in a member context");

    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
    return CXXConstructorDecl::Create(
        SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
        TInfo, ExplicitSpecifier, isInline,
        /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(),
        TrailingRequiresClause);

  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
    // This is a C++ destructor declaration.
    if (DC->isRecord()) {
      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
          SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
          isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
          TrailingRequiresClause);

      // If the destructor needs an implicit exception specification, set it
      // now. FIXME: It'd be nice to be able to create the right type to start
      // with, but the type needs to reference the destructor declaration.
      if (SemaRef.getLangOpts().CPlusPlus11)
        SemaRef.AdjustDestructorExceptionSpec(NewDD);

      IsVirtualOkay = true;
      return NewDD;

    } else {
      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
      D.setInvalidType();

      // Create a FunctionDecl to satisfy the function definition parsing
      // code path.
      return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
                                  D.getIdentifierLoc(), Name, R, TInfo, SC,
                                  isInline,
                                  /*hasPrototype=*/true, ConstexprKind,
                                  TrailingRequiresClause);
    }

  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
    if (!DC->isRecord()) {
      SemaRef.Diag(D.getIdentifierLoc(),
           diag::err_conv_function_not_member);
      return nullptr;
    }

    SemaRef.CheckConversionDeclarator(D, R, SC);
    if (D.isInvalidType())
      return nullptr;

    IsVirtualOkay = true;
    return CXXConversionDecl::Create(
        SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
        TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(),
        TrailingRequiresClause);

  } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
    if (TrailingRequiresClause)
      SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
                   diag::err_trailing_requires_clause_on_deduction_guide)
          << TrailingRequiresClause->getSourceRange();
    SemaRef.CheckDeductionGuideDeclarator(D, R, SC);

    return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
                                         ExplicitSpecifier, NameInfo, R, TInfo,
                                         D.getEndLoc());
  } else if (DC->isRecord()) {
    // If the name of the function is the same as the name of the record,
    // then this must be an invalid constructor that has a return type.
    // (The parser checks for a return type and makes the declarator a
    // constructor if it has no return type).
    if (Name.getAsIdentifierInfo() &&
        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
        << SourceRange(D.getIdentifierLoc());
      return nullptr;
    }

    // This is a C++ method declaration.
    CXXMethodDecl *Ret = CXXMethodDecl::Create(
        SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
        TInfo, SC, isInline, ConstexprKind, SourceLocation(),
        TrailingRequiresClause);
    IsVirtualOkay = !Ret->isStatic();
    return Ret;
  } else {
    bool isFriend =
        SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
    if (!isFriend && SemaRef.CurContext->isRecord())
      return nullptr;

    // Determine whether the function was written with a
    // prototype. This true when:
    //   - we're in C++ (where every function has a prototype),
    return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
                                R, TInfo, SC, isInline, true /*HasPrototype*/,
                                ConstexprKind, TrailingRequiresClause);
  }
}

enum OpenCLParamType {
  ValidKernelParam,
  PtrPtrKernelParam,
  PtrKernelParam,
  InvalidAddrSpacePtrKernelParam,
  InvalidKernelParam,
  RecordKernelParam
};

static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
  // Size dependent types are just typedefs to normal integer types
  // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
  // integers other than by their names.
  StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};

  // Remove typedefs one by one until we reach a typedef
  // for a size dependent type.
  QualType DesugaredTy = Ty;
  do {
    ArrayRef<StringRef> Names(SizeTypeNames);
    auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
    if (Names.end() != Match)
      return true;

    Ty = DesugaredTy;
    DesugaredTy = Ty.getSingleStepDesugaredType(C);
  } while (DesugaredTy != Ty);

  return false;
}

static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
  if (PT->isPointerType()) {
    QualType PointeeType = PT->getPointeeType();
    if (PointeeType->isPointerType())
      return PtrPtrKernelParam;
    if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
        PointeeType.getAddressSpace() == LangAS::opencl_private ||
        PointeeType.getAddressSpace() == LangAS::Default)
      return InvalidAddrSpacePtrKernelParam;
    return PtrKernelParam;
  }

  // OpenCL v1.2 s6.9.k:
  // Arguments to kernel functions in a program cannot be declared with the
  // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
  // uintptr_t or a struct and/or union that contain fields declared to be one
  // of these built-in scalar types.
  if (isOpenCLSizeDependentType(S.getASTContext(), PT))
    return InvalidKernelParam;

  if (PT->isImageType())
    return PtrKernelParam;

  if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
    return InvalidKernelParam;

  // OpenCL extension spec v1.2 s9.5:
  // This extension adds support for half scalar and vector types as built-in
  // types that can be used for arithmetic operations, conversions etc.
  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
    return InvalidKernelParam;

  if (PT->isRecordType())
    return RecordKernelParam;

  // Look into an array argument to check if it has a forbidden type.
  if (PT->isArrayType()) {
    const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
    // Call ourself to check an underlying type of an array. Since the
    // getPointeeOrArrayElementType returns an innermost type which is not an
    // array, this recursive call only happens once.
    return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
  }

  return ValidKernelParam;
}

static void checkIsValidOpenCLKernelParameter(
  Sema &S,
  Declarator &D,
  ParmVarDecl *Param,
  llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
  QualType PT = Param->getType();

  // Cache the valid types we encounter to avoid rechecking structs that are
  // used again
  if (ValidTypes.count(PT.getTypePtr()))
    return;

  switch (getOpenCLKernelParameterType(S, PT)) {
  case PtrPtrKernelParam:
    // OpenCL v1.2 s6.9.a:
    // A kernel function argument cannot be declared as a
    // pointer to a pointer type.
    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
    D.setInvalidType();
    return;

  case InvalidAddrSpacePtrKernelParam:
    // OpenCL v1.0 s6.5:
    // __kernel function arguments declared to be a pointer of a type can point
    // to one of the following address spaces only : __global, __local or
    // __constant.
    S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
    D.setInvalidType();
    return;

    // OpenCL v1.2 s6.9.k:
    // Arguments to kernel functions in a program cannot be declared with the
    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
    // uintptr_t or a struct and/or union that contain fields declared to be
    // one of these built-in scalar types.

  case InvalidKernelParam:
    // OpenCL v1.2 s6.8 n:
    // A kernel function argument cannot be declared
    // of event_t type.
    // Do not diagnose half type since it is diagnosed as invalid argument
    // type for any function elsewhere.
    if (!PT->isHalfType()) {
      S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;

      // Explain what typedefs are involved.
      const TypedefType *Typedef = nullptr;
      while ((Typedef = PT->getAs<TypedefType>())) {
        SourceLocation Loc = Typedef->getDecl()->getLocation();
        // SourceLocation may be invalid for a built-in type.
        if (Loc.isValid())
          S.Diag(Loc, diag::note_entity_declared_at) << PT;
        PT = Typedef->desugar();
      }
    }

    D.setInvalidType();
    return;

  case PtrKernelParam:
  case ValidKernelParam:
    ValidTypes.insert(PT.getTypePtr());
    return;

  case RecordKernelParam:
    break;
  }

  // Track nested structs we will inspect
  SmallVector<const Decl *, 4> VisitStack;

  // Track where we are in the nested structs. Items will migrate from
  // VisitStack to HistoryStack as we do the DFS for bad field.
  SmallVector<const FieldDecl *, 4> HistoryStack;
  HistoryStack.push_back(nullptr);

  // At this point we already handled everything except of a RecordType or
  // an ArrayType of a RecordType.
  assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
  const RecordType *RecTy =
      PT->getPointeeOrArrayElementType()->getAs<RecordType>();
  const RecordDecl *OrigRecDecl = RecTy->getDecl();

  VisitStack.push_back(RecTy->getDecl());
  assert(VisitStack.back() && "First decl null?");

  do {
    const Decl *Next = VisitStack.pop_back_val();
    if (!Next) {
      assert(!HistoryStack.empty());
      // Found a marker, we have gone up a level
      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
        ValidTypes.insert(Hist->getType().getTypePtr());

      continue;
    }

    // Adds everything except the original parameter declaration (which is not a
    // field itself) to the history stack.
    const RecordDecl *RD;
    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
      HistoryStack.push_back(Field);

      QualType FieldTy = Field->getType();
      // Other field types (known to be valid or invalid) are handled while we
      // walk around RecordDecl::fields().
      assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
             "Unexpected type.");
      const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();

      RD = FieldRecTy->castAs<RecordType>()->getDecl();
    } else {
      RD = cast<RecordDecl>(Next);
    }

    // Add a null marker so we know when we've gone back up a level
    VisitStack.push_back(nullptr);

    for (const auto *FD : RD->fields()) {
      QualType QT = FD->getType();

      if (ValidTypes.count(QT.getTypePtr()))
        continue;

      OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
      if (ParamType == ValidKernelParam)
        continue;

      if (ParamType == RecordKernelParam) {
        VisitStack.push_back(FD);
        continue;
      }

      // OpenCL v1.2 s6.9.p:
      // Arguments to kernel functions that are declared to be a struct or union
      // do not allow OpenCL objects to be passed as elements of the struct or
      // union.
      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
          ParamType == InvalidAddrSpacePtrKernelParam) {
        S.Diag(Param->getLocation(),
               diag::err_record_with_pointers_kernel_param)
          << PT->isUnionType()
          << PT;
      } else {
        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
      }

      S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
          << OrigRecDecl->getDeclName();

      // We have an error, now let's go back up through history and show where
      // the offending field came from
      for (ArrayRef<const FieldDecl *>::const_iterator
               I = HistoryStack.begin() + 1,
               E = HistoryStack.end();
           I != E; ++I) {
        const FieldDecl *OuterField = *I;
        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
          << OuterField->getType();
      }

      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
        << QT->isPointerType()
        << QT;
      D.setInvalidType();
      return;
    }
  } while (!VisitStack.empty());
}

/// Find the DeclContext in which a tag is implicitly declared if we see an
/// elaborated type specifier in the specified context, and lookup finds
/// nothing.
static DeclContext *getTagInjectionContext(DeclContext *DC) {
  while (!DC->isFileContext() && !DC->isFunctionOrMethod())
    DC = DC->getParent();
  return DC;
}

/// Find the Scope in which a tag is implicitly declared if we see an
/// elaborated type specifier in the specified context, and lookup finds
/// nothing.
static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
  while (S->isClassScope() ||
         (LangOpts.CPlusPlus &&
          S->isFunctionPrototypeScope()) ||
         ((S->getFlags() & Scope::DeclScope) == 0) ||
         (S->getEntity() && S->getEntity()->isTransparentContext()))
    S = S->getParent();
  return S;
}

NamedDecl*
Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
                              TypeSourceInfo *TInfo, LookupResult &Previous,
                              MultiTemplateParamsArg TemplateParamListsRef,
                              bool &AddToScope) {
  QualType R = TInfo->getType();

  assert(R->isFunctionType());
  SmallVector<TemplateParameterList *, 4> TemplateParamLists;
  for (TemplateParameterList *TPL : TemplateParamListsRef)
    TemplateParamLists.push_back(TPL);
  if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
    if (!TemplateParamLists.empty() &&
        Invented->getDepth() == TemplateParamLists.back()->getDepth())
      TemplateParamLists.back() = Invented;
    else
      TemplateParamLists.push_back(Invented);
  }

  // TODO: consider using NameInfo for diagnostic.
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
  DeclarationName Name = NameInfo.getName();
  StorageClass SC = getFunctionStorageClass(*this, D);

  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
         diag::err_invalid_thread)
      << DeclSpec::getSpecifierName(TSCS);

  if (D.isFirstDeclarationOfMember())
    adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
                           D.getIdentifierLoc());

  bool isFriend = false;
  FunctionTemplateDecl *FunctionTemplate = nullptr;
  bool isMemberSpecialization = false;
  bool isFunctionTemplateSpecialization = false;

  bool isDependentClassScopeExplicitSpecialization = false;
  bool HasExplicitTemplateArgs = false;
  TemplateArgumentListInfo TemplateArgs;

  bool isVirtualOkay = false;

  DeclContext *OriginalDC = DC;
  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);

  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
                                              isVirtualOkay);
  if (!NewFD) return nullptr;

  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
    NewFD->setTopLevelDeclInObjCContainer();

  // Set the lexical context. If this is a function-scope declaration, or has a
  // C++ scope specifier, or is the object of a friend declaration, the lexical
  // context will be different from the semantic context.
  NewFD->setLexicalDeclContext(CurContext);

  if (IsLocalExternDecl)
    NewFD->setLocalExternDecl();

  if (getLangOpts().CPlusPlus) {
    bool isInline = D.getDeclSpec().isInlineSpecified();
    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
    bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
    isFriend = D.getDeclSpec().isFriendSpecified();
    if (isFriend && !isInline && D.isFunctionDefinition()) {
      // C++ [class.friend]p5
      //   A function can be defined in a friend declaration of a
      //   class . . . . Such a function is implicitly inline.
      NewFD->setImplicitlyInline();
    }

    // If this is a method defined in an __interface, and is not a constructor
    // or an overloaded operator, then set the pure flag (isVirtual will already
    // return true).
    if (const CXXRecordDecl *Parent =
          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
        NewFD->setPure(true);

      // C++ [class.union]p2
      //   A union can have member functions, but not virtual functions.
      if (isVirtual && Parent->isUnion())
        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
    }

    SetNestedNameSpecifier(*this, NewFD, D);
    isMemberSpecialization = false;
    isFunctionTemplateSpecialization = false;
    if (D.isInvalidType())
      NewFD->setInvalidDecl();

    // Match up the template parameter lists with the scope specifier, then
    // determine whether we have a template or a template specialization.
    bool Invalid = false;
    TemplateParameterList *TemplateParams =
        MatchTemplateParametersToScopeSpecifier(
            D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
            D.getCXXScopeSpec(),
            D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
                ? D.getName().TemplateId
                : nullptr,
            TemplateParamLists, isFriend, isMemberSpecialization,
            Invalid);
    if (TemplateParams) {
      if (TemplateParams->size() > 0) {
        // This is a function template

        // Check that we can declare a template here.
        if (CheckTemplateDeclScope(S, TemplateParams))
          NewFD->setInvalidDecl();

        // A destructor cannot be a template.
        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
          Diag(NewFD->getLocation(), diag::err_destructor_template);
          NewFD->setInvalidDecl();
        }

        // If we're adding a template to a dependent context, we may need to
        // rebuilding some of the types used within the template parameter list,
        // now that we know what the current instantiation is.
        if (DC->isDependentContext()) {
          ContextRAII SavedContext(*this, DC);
          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
            Invalid = true;
        }

        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
                                                        NewFD->getLocation(),
                                                        Name, TemplateParams,
                                                        NewFD);
        FunctionTemplate->setLexicalDeclContext(CurContext);
        NewFD->setDescribedFunctionTemplate(FunctionTemplate);

        // For source fidelity, store the other template param lists.
        if (TemplateParamLists.size() > 1) {
          NewFD->setTemplateParameterListsInfo(Context,
              ArrayRef<TemplateParameterList *>(TemplateParamLists)
                  .drop_back(1));
        }
      } else {
        // This is a function template specialization.
        isFunctionTemplateSpecialization = true;
        // For source fidelity, store all the template param lists.
        if (TemplateParamLists.size() > 0)
          NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);

        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
        if (isFriend) {
          // We want to remove the "template<>", found here.
          SourceRange RemoveRange = TemplateParams->getSourceRange();

          // If we remove the template<> and the name is not a
          // template-id, we're actually silently creating a problem:
          // the friend declaration will refer to an untemplated decl,
          // and clearly the user wants a template specialization.  So
          // we need to insert '<>' after the name.
          SourceLocation InsertLoc;
          if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
            InsertLoc = D.getName().getSourceRange().getEnd();
            InsertLoc = getLocForEndOfToken(InsertLoc);
          }

          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
            << Name << RemoveRange
            << FixItHint::CreateRemoval(RemoveRange)
            << FixItHint::CreateInsertion(InsertLoc, "<>");
        }
      }
    } else {
      // All template param lists were matched against the scope specifier:
      // this is NOT (an explicit specialization of) a template.
      if (TemplateParamLists.size() > 0)
        // For source fidelity, store all the template param lists.
        NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
    }

    if (Invalid) {
      NewFD->setInvalidDecl();
      if (FunctionTemplate)
        FunctionTemplate->setInvalidDecl();
    }

    // C++ [dcl.fct.spec]p5:
    //   The virtual specifier shall only be used in declarations of
    //   nonstatic class member functions that appear within a
    //   member-specification of a class declaration; see 10.3.
    //
    if (isVirtual && !NewFD->isInvalidDecl()) {
      if (!isVirtualOkay) {
        Diag(D.getDeclSpec().getVirtualSpecLoc(),
             diag::err_virtual_non_function);
      } else if (!CurContext->isRecord()) {
        // 'virtual' was specified outside of the class.
        Diag(D.getDeclSpec().getVirtualSpecLoc(),
             diag::err_virtual_out_of_class)
          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
      } else if (NewFD->getDescribedFunctionTemplate()) {
        // C++ [temp.mem]p3:
        //  A member function template shall not be virtual.
        Diag(D.getDeclSpec().getVirtualSpecLoc(),
             diag::err_virtual_member_function_template)
          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
      } else {
        // Okay: Add virtual to the method.
        NewFD->setVirtualAsWritten(true);
      }

      if (getLangOpts().CPlusPlus14 &&
          NewFD->getReturnType()->isUndeducedType())
        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
    }

    if (getLangOpts().CPlusPlus14 &&
        (NewFD->isDependentContext() ||
         (isFriend && CurContext->isDependentContext())) &&
        NewFD->getReturnType()->isUndeducedType()) {
      // If the function template is referenced directly (for instance, as a
      // member of the current instantiation), pretend it has a dependent type.
      // This is not really justified by the standard, but is the only sane
      // thing to do.
      // FIXME: For a friend function, we have not marked the function as being
      // a friend yet, so 'isDependentContext' on the FD doesn't work.
      const FunctionProtoType *FPT =
          NewFD->getType()->castAs<FunctionProtoType>();
      QualType Result =
          SubstAutoType(FPT->getReturnType(), Context.DependentTy);
      NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
                                             FPT->getExtProtoInfo()));
    }

    // C++ [dcl.fct.spec]p3:
    //  The inline specifier shall not appear on a block scope function
    //  declaration.
    if (isInline && !NewFD->isInvalidDecl()) {
      if (CurContext->isFunctionOrMethod()) {
        // 'inline' is not allowed on block scope function declaration.
        Diag(D.getDeclSpec().getInlineSpecLoc(),
             diag::err_inline_declaration_block_scope) << Name
          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
      }
    }

    // C++ [dcl.fct.spec]p6:
    //  The explicit specifier shall be used only in the declaration of a
    //  constructor or conversion function within its class definition;
    //  see 12.3.1 and 12.3.2.
    if (hasExplicit && !NewFD->isInvalidDecl() &&
        !isa<CXXDeductionGuideDecl>(NewFD)) {
      if (!CurContext->isRecord()) {
        // 'explicit' was specified outside of the class.
        Diag(D.getDeclSpec().getExplicitSpecLoc(),
             diag::err_explicit_out_of_class)
            << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
      } else if (!isa<CXXConstructorDecl>(NewFD) &&
                 !isa<CXXConversionDecl>(NewFD)) {
        // 'explicit' was specified on a function that wasn't a constructor
        // or conversion function.
        Diag(D.getDeclSpec().getExplicitSpecLoc(),
             diag::err_explicit_non_ctor_or_conv_function)
            << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
      }
    }

    if (ConstexprSpecKind ConstexprKind =
            D.getDeclSpec().getConstexprSpecifier()) {
      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
      // are implicitly inline.
      NewFD->setImplicitlyInline();

      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
      // be either constructors or to return a literal type. Therefore,
      // destructors cannot be declared constexpr.
      if (isa<CXXDestructorDecl>(NewFD) && !getLangOpts().CPlusPlus2a) {
        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
            << ConstexprKind;
      }
    }

    // If __module_private__ was specified, mark the function accordingly.
    if (D.getDeclSpec().isModulePrivateSpecified()) {
      if (isFunctionTemplateSpecialization) {
        SourceLocation ModulePrivateLoc
          = D.getDeclSpec().getModulePrivateSpecLoc();
        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
          << 0
          << FixItHint::CreateRemoval(ModulePrivateLoc);
      } else {
        NewFD->setModulePrivate();
        if (FunctionTemplate)
          FunctionTemplate->setModulePrivate();
      }
    }

    if (isFriend) {
      if (FunctionTemplate) {
        FunctionTemplate->setObjectOfFriendDecl();
        FunctionTemplate->setAccess(AS_public);
      }
      NewFD->setObjectOfFriendDecl();
      NewFD->setAccess(AS_public);
    }

    // If a function is defined as defaulted or deleted, mark it as such now.
    // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
    // definition kind to FDK_Definition.
    switch (D.getFunctionDefinitionKind()) {
      case FDK_Declaration:
      case FDK_Definition:
        break;

      case FDK_Defaulted:
        NewFD->setDefaulted();
        break;

      case FDK_Deleted:
        NewFD->setDeletedAsWritten();
        break;
    }

    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
        D.isFunctionDefinition()) {
      // C++ [class.mfct]p2:
      //   A member function may be defined (8.4) in its class definition, in
      //   which case it is an inline member function (7.1.2)
      NewFD->setImplicitlyInline();
    }

    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
        !CurContext->isRecord()) {
      // C++ [class.static]p1:
      //   A data or function member of a class may be declared static
      //   in a class definition, in which case it is a static member of
      //   the class.

      // Complain about the 'static' specifier if it's on an out-of-line
      // member function definition.

      // MSVC permits the use of a 'static' storage specifier on an out-of-line
      // member function template declaration and class member template
      // declaration (MSVC versions before 2015), warn about this.
      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
           ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
             cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
           (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
           ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
    }

    // C++11 [except.spec]p15:
    //   A deallocation function with no exception-specification is treated
    //   as if it were specified with noexcept(true).
    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
      NewFD->setType(Context.getFunctionType(
          FPT->getReturnType(), FPT->getParamTypes(),
          FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
  }

  // Filter out previous declarations that don't match the scope.
  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
                       D.getCXXScopeSpec().isNotEmpty() ||
                       isMemberSpecialization ||
                       isFunctionTemplateSpecialization);

  // Handle GNU asm-label extension (encoded as an attribute).
  if (Expr *E = (Expr*) D.getAsmLabel()) {
    // The parser guarantees this is a string.
    StringLiteral *SE = cast<StringLiteral>(E);
    NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
                                        /*IsLiteralLabel=*/true,
                                        SE->getStrTokenLoc(0)));
  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
    if (I != ExtnameUndeclaredIdentifiers.end()) {
      if (isDeclExternC(NewFD)) {
        NewFD->addAttr(I->second);
        ExtnameUndeclaredIdentifiers.erase(I);
      } else
        Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
            << /*Variable*/0 << NewFD;
    }
  }

  // Copy the parameter declarations from the declarator D to the function
  // declaration NewFD, if they are available.  First scavenge them into Params.
  SmallVector<ParmVarDecl*, 16> Params;
  unsigned FTIIdx;
  if (D.isFunctionDeclarator(FTIIdx)) {
    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;

    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
    // function that takes no arguments, not a function that takes a
    // single void argument.
    // We let through "const void" here because Sema::GetTypeForDeclarator
    // already checks for that case.
    if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
      for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
        assert(Param->getDeclContext() != NewFD && "Was set before ?");
        Param->setDeclContext(NewFD);
        Params.push_back(Param);

        if (Param->isInvalidDecl())
          NewFD->setInvalidDecl();
      }
    }

    if (!getLangOpts().CPlusPlus) {
      // In C, find all the tag declarations from the prototype and move them
      // into the function DeclContext. Remove them from the surrounding tag
      // injection context of the function, which is typically but not always
      // the TU.
      DeclContext *PrototypeTagContext =
          getTagInjectionContext(NewFD->getLexicalDeclContext());
      for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
        auto *TD = dyn_cast<TagDecl>(NonParmDecl);

        // We don't want to reparent enumerators. Look at their parent enum
        // instead.
        if (!TD) {
          if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
            TD = cast<EnumDecl>(ECD->getDeclContext());
        }
        if (!TD)
          continue;
        DeclContext *TagDC = TD->getLexicalDeclContext();
        if (!TagDC->containsDecl(TD))
          continue;
        TagDC->removeDecl(TD);
        TD->setDeclContext(NewFD);
        NewFD->addDecl(TD);

        // Preserve the lexical DeclContext if it is not the surrounding tag
        // injection context of the FD. In this example, the semantic context of
        // E will be f and the lexical context will be S, while both the
        // semantic and lexical contexts of S will be f:
        //   void f(struct S { enum E { a } f; } s);
        if (TagDC != PrototypeTagContext)
          TD->setLexicalDeclContext(TagDC);
      }
    }
  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
    // When we're declaring a function with a typedef, typeof, etc as in the
    // following example, we'll need to synthesize (unnamed)
    // parameters for use in the declaration.
    //
    // @code
    // typedef void fn(int);
    // fn f;
    // @endcode

    // Synthesize a parameter for each argument type.
    for (const auto &AI : FT->param_types()) {
      ParmVarDecl *Param =
          BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
      Param->setScopeInfo(0, Params.size());
      Params.push_back(Param);
    }
  } else {
    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
           "Should not need args for typedef of non-prototype fn");
  }

  // Finally, we know we have the right number of parameters, install them.
  NewFD->setParams(Params);

  if (D.getDeclSpec().isNoreturnSpecified())
    NewFD->addAttr(C11NoReturnAttr::Create(Context,
                                           D.getDeclSpec().getNoreturnSpecLoc(),
                                           AttributeCommonInfo::AS_Keyword));

  // Functions returning a variably modified type violate C99 6.7.5.2p2
  // because all functions have linkage.
  if (!NewFD->isInvalidDecl() &&
      NewFD->getReturnType()->isVariablyModifiedType()) {
    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
    NewFD->setInvalidDecl();
  }

  // Apply an implicit SectionAttr if '#pragma clang section text' is active
  if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
      !NewFD->hasAttr<SectionAttr>())
    NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
        Context, PragmaClangTextSection.SectionName,
        PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));

  // Apply an implicit SectionAttr if #pragma code_seg is active.
  if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
      !NewFD->hasAttr<SectionAttr>()) {
    NewFD->addAttr(SectionAttr::CreateImplicit(
        Context, CodeSegStack.CurrentValue->getString(),
        CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
        SectionAttr::Declspec_allocate));
    if (UnifySection(CodeSegStack.CurrentValue->getString(),
                     ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
                         ASTContext::PSF_Read,
                     NewFD))
      NewFD->dropAttr<SectionAttr>();
  }

  // Apply an implicit CodeSegAttr from class declspec or
  // apply an implicit SectionAttr from #pragma code_seg if active.
  if (!NewFD->hasAttr<CodeSegAttr>()) {
    if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
                                                                 D.isFunctionDefinition())) {
      NewFD->addAttr(SAttr);
    }
  }

  // Handle attributes.
  ProcessDeclAttributes(S, NewFD, D);

  if (getLangOpts().OpenCL) {
    // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
    // type declaration will generate a compilation error.
    LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
    if (AddressSpace != LangAS::Default) {
      Diag(NewFD->getLocation(),
           diag::err_opencl_return_value_with_address_space);
      NewFD->setInvalidDecl();
    }
  }

  if (!getLangOpts().CPlusPlus) {
    // Perform semantic checking on the function declaration.
    if (!NewFD->isInvalidDecl() && NewFD->isMain())
      CheckMain(NewFD, D.getDeclSpec());

    if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
      CheckMSVCRTEntryPoint(NewFD);

    if (!NewFD->isInvalidDecl())
      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
                                                  isMemberSpecialization));
    else if (!Previous.empty())
      // Recover gracefully from an invalid redeclaration.
      D.setRedeclaration(true);
    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
           "previous declaration set still overloaded");

    // Diagnose no-prototype function declarations with calling conventions that
    // don't support variadic calls. Only do this in C and do it after merging
    // possibly prototyped redeclarations.
    const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
    if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
      CallingConv CC = FT->getExtInfo().getCC();
      if (!supportsVariadicCall(CC)) {
        // Windows system headers sometimes accidentally use stdcall without
        // (void) parameters, so we relax this to a warning.
        int DiagID =
            CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
        Diag(NewFD->getLocation(), DiagID)
            << FunctionType::getNameForCallConv(CC);
      }
    }

   if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
       NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
     checkNonTrivialCUnion(NewFD->getReturnType(),
                           NewFD->getReturnTypeSourceRange().getBegin(),
                           NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
  } else {
    // C++11 [replacement.functions]p3:
    //  The program's definitions shall not be specified as inline.
    //
    // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
    //
    // Suppress the diagnostic if the function is __attribute__((used)), since
    // that forces an external definition to be emitted.
    if (D.getDeclSpec().isInlineSpecified() &&
        NewFD->isReplaceableGlobalAllocationFunction() &&
        !NewFD->hasAttr<UsedAttr>())
      Diag(D.getDeclSpec().getInlineSpecLoc(),
           diag::ext_operator_new_delete_declared_inline)
        << NewFD->getDeclName();

    // If the declarator is a template-id, translate the parser's template
    // argument list into our AST format.
    if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
                                         TemplateId->NumArgs);
      translateTemplateArguments(TemplateArgsPtr,
                                 TemplateArgs);

      HasExplicitTemplateArgs = true;

      if (NewFD->isInvalidDecl()) {
        HasExplicitTemplateArgs = false;
      } else if (FunctionTemplate) {
        // Function template with explicit template arguments.
        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);

        HasExplicitTemplateArgs = false;
      } else {
        assert((isFunctionTemplateSpecialization ||
                D.getDeclSpec().isFriendSpecified()) &&
               "should have a 'template<>' for this decl");
        // "friend void foo<>(int);" is an implicit specialization decl.
        isFunctionTemplateSpecialization = true;
      }
    } else if (isFriend && isFunctionTemplateSpecialization) {
      // This combination is only possible in a recovery case;  the user
      // wrote something like:
      //   template <> friend void foo(int);
      // which we're recovering from as if the user had written:
      //   friend void foo<>(int);
      // Go ahead and fake up a template id.
      HasExplicitTemplateArgs = true;
      TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
    }

    // We do not add HD attributes to specializations here because
    // they may have different constexpr-ness compared to their
    // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
    // may end up with different effective targets. Instead, a
    // specialization inherits its target attributes from its template
    // in the CheckFunctionTemplateSpecialization() call below.
    if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
      maybeAddCUDAHostDeviceAttrs(NewFD, Previous);

    // If it's a friend (and only if it's a friend), it's possible
    // that either the specialized function type or the specialized
    // template is dependent, and therefore matching will fail.  In
    // this case, don't check the specialization yet.
    bool InstantiationDependent = false;
    if (isFunctionTemplateSpecialization && isFriend &&
        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
         TemplateSpecializationType::anyDependentTemplateArguments(
            TemplateArgs,
            InstantiationDependent))) {
      assert(HasExplicitTemplateArgs &&
             "friend function specialization without template args");
      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
                                                       Previous))
        NewFD->setInvalidDecl();
    } else if (isFunctionTemplateSpecialization) {
      if (CurContext->isDependentContext() && CurContext->isRecord()
          && !isFriend) {
        isDependentClassScopeExplicitSpecialization = true;
      } else if (!NewFD->isInvalidDecl() &&
                 CheckFunctionTemplateSpecialization(
                     NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
                     Previous))
        NewFD->setInvalidDecl();

      // C++ [dcl.stc]p1:
      //   A storage-class-specifier shall not be specified in an explicit
      //   specialization (14.7.3)
      FunctionTemplateSpecializationInfo *Info =
          NewFD->getTemplateSpecializationInfo();
      if (Info && SC != SC_None) {
        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
          Diag(NewFD->getLocation(),
               diag::err_explicit_specialization_inconsistent_storage_class)
            << SC
            << FixItHint::CreateRemoval(
                                      D.getDeclSpec().getStorageClassSpecLoc());

        else
          Diag(NewFD->getLocation(),
               diag::ext_explicit_specialization_storage_class)
            << FixItHint::CreateRemoval(
                                      D.getDeclSpec().getStorageClassSpecLoc());
      }
    } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
      if (CheckMemberSpecialization(NewFD, Previous))
          NewFD->setInvalidDecl();
    }

    // Perform semantic checking on the function declaration.
    if (!isDependentClassScopeExplicitSpecialization) {
      if (!NewFD->isInvalidDecl() && NewFD->isMain())
        CheckMain(NewFD, D.getDeclSpec());

      if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
        CheckMSVCRTEntryPoint(NewFD);

      if (!NewFD->isInvalidDecl())
        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
                                                    isMemberSpecialization));
      else if (!Previous.empty())
        // Recover gracefully from an invalid redeclaration.
        D.setRedeclaration(true);
    }

    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
           "previous declaration set still overloaded");

    NamedDecl *PrincipalDecl = (FunctionTemplate
                                ? cast<NamedDecl>(FunctionTemplate)
                                : NewFD);

    if (isFriend && NewFD->getPreviousDecl()) {
      AccessSpecifier Access = AS_public;
      if (!NewFD->isInvalidDecl())
        Access = NewFD->getPreviousDecl()->getAccess();

      NewFD->setAccess(Access);
      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
    }

    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
      PrincipalDecl->setNonMemberOperator();

    // If we have a function template, check the template parameter
    // list. This will check and merge default template arguments.
    if (FunctionTemplate) {
      FunctionTemplateDecl *PrevTemplate =
                                     FunctionTemplate->getPreviousDecl();
      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
                       PrevTemplate ? PrevTemplate->getTemplateParameters()
                                    : nullptr,
                            D.getDeclSpec().isFriendSpecified()
                              ? (D.isFunctionDefinition()
                                   ? TPC_FriendFunctionTemplateDefinition
                                   : TPC_FriendFunctionTemplate)
                              : (D.getCXXScopeSpec().isSet() &&
                                 DC && DC->isRecord() &&
                                 DC->isDependentContext())
                                  ? TPC_ClassTemplateMember
                                  : TPC_FunctionTemplate);
    }

    if (NewFD->isInvalidDecl()) {
      // Ignore all the rest of this.
    } else if (!D.isRedeclaration()) {
      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
                                       AddToScope };
      // Fake up an access specifier if it's supposed to be a class member.
      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
        NewFD->setAccess(AS_public);

      // Qualified decls generally require a previous declaration.
      if (D.getCXXScopeSpec().isSet()) {
        // ...with the major exception of templated-scope or
        // dependent-scope friend declarations.

        // TODO: we currently also suppress this check in dependent
        // contexts because (1) the parameter depth will be off when
        // matching friend templates and (2) we might actually be
        // selecting a friend based on a dependent factor.  But there
        // are situations where these conditions don't apply and we
        // can actually do this check immediately.
        //
        // Unless the scope is dependent, it's always an error if qualified
        // redeclaration lookup found nothing at all. Diagnose that now;
        // nothing will diagnose that error later.
        if (isFriend &&
            (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
             (!Previous.empty() && CurContext->isDependentContext()))) {
          // ignore these
        } else {
          // The user tried to provide an out-of-line definition for a
          // function that is a member of a class or namespace, but there
          // was no such member function declared (C++ [class.mfct]p2,
          // C++ [namespace.memdef]p2). For example:
          //
          // class X {
          //   void f() const;
          // };
          //
          // void X::f() { } // ill-formed
          //
          // Complain about this problem, and attempt to suggest close
          // matches (e.g., those that differ only in cv-qualifiers and
          // whether the parameter types are references).

          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
                  *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
            AddToScope = ExtraArgs.AddToScope;
            return Result;
          }
        }

        // Unqualified local friend declarations are required to resolve
        // to something.
      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
                *this, Previous, NewFD, ExtraArgs, true, S)) {
          AddToScope = ExtraArgs.AddToScope;
          return Result;
        }
      }
    } else if (!D.isFunctionDefinition() &&
               isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
               !isFriend && !isFunctionTemplateSpecialization &&
               !isMemberSpecialization) {
      // An out-of-line member function declaration must also be a
      // definition (C++ [class.mfct]p2).
      // Note that this is not the case for explicit specializations of
      // function templates or member functions of class templates, per
      // C++ [temp.expl.spec]p2. We also allow these declarations as an
      // extension for compatibility with old SWIG code which likes to
      // generate them.
      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
        << D.getCXXScopeSpec().getRange();
    }
  }

  ProcessPragmaWeak(S, NewFD);
  checkAttributesAfterMerging(*this, *NewFD);

  AddKnownFunctionAttributes(NewFD);

  if (NewFD->hasAttr<OverloadableAttr>() &&
      !NewFD->getType()->getAs<FunctionProtoType>()) {
    Diag(NewFD->getLocation(),
         diag::err_attribute_overloadable_no_prototype)
      << NewFD;

    // Turn this into a variadic function with no parameters.
    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
    FunctionProtoType::ExtProtoInfo EPI(
        Context.getDefaultCallingConvention(true, false));
    EPI.Variadic = true;
    EPI.ExtInfo = FT->getExtInfo();

    QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
    NewFD->setType(R);
  }

  // If there's a #pragma GCC visibility in scope, and this isn't a class
  // member, set the visibility of this function.
  if (!DC->isRecord() && NewFD->isExternallyVisible())
    AddPushedVisibilityAttribute(NewFD);

  // If there's a #pragma clang arc_cf_code_audited in scope, consider
  // marking the function.
  AddCFAuditedAttribute(NewFD);

  // If this is a function definition, check if we have to apply optnone due to
  // a pragma.
  if(D.isFunctionDefinition())
    AddRangeBasedOptnone(NewFD);

  // If this is the first declaration of an extern C variable, update
  // the map of such variables.
  if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
      isIncompleteDeclExternC(*this, NewFD))
    RegisterLocallyScopedExternCDecl(NewFD, S);

  // Set this FunctionDecl's range up to the right paren.
  NewFD->setRangeEnd(D.getSourceRange().getEnd());

  if (D.isRedeclaration() && !Previous.empty()) {
    NamedDecl *Prev = Previous.getRepresentativeDecl();
    checkDLLAttributeRedeclaration(*this, Prev, NewFD,
                                   isMemberSpecialization ||
                                       isFunctionTemplateSpecialization,
                                   D.isFunctionDefinition());
  }

  if (getLangOpts().CUDA) {
    IdentifierInfo *II = NewFD->getIdentifier();
    if (II && II->isStr(getCudaConfigureFuncName()) &&
        !NewFD->isInvalidDecl() &&
        NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
      if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
        Diag(NewFD->getLocation(), diag::err_config_scalar_return)
            << getCudaConfigureFuncName();
      Context.setcudaConfigureCallDecl(NewFD);
    }

    // Variadic functions, other than a *declaration* of printf, are not allowed
    // in device-side CUDA code, unless someone passed
    // -fcuda-allow-variadic-functions.
    if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
        (NewFD->hasAttr<CUDADeviceAttr>() ||
         NewFD->hasAttr<CUDAGlobalAttr>()) &&
        !(II && II->isStr("printf") && NewFD->isExternC() &&
          !D.isFunctionDefinition())) {
      Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
    }
  }

  MarkUnusedFileScopedDecl(NewFD);



  if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
    if ((getLangOpts().OpenCLVersion >= 120)
        && (SC == SC_Static)) {
      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
      D.setInvalidType();
    }

    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
    if (!NewFD->getReturnType()->isVoidType()) {
      SourceRange RTRange = NewFD->getReturnTypeSourceRange();
      Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
                                : FixItHint());
      D.setInvalidType();
    }

    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
    for (auto Param : NewFD->parameters())
      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);

    if (getLangOpts().OpenCLCPlusPlus) {
      if (DC->isRecord()) {
        Diag(D.getIdentifierLoc(), diag::err_method_kernel);
        D.setInvalidType();
      }
      if (FunctionTemplate) {
        Diag(D.getIdentifierLoc(), diag::err_template_kernel);
        D.setInvalidType();
      }
    }
  }

  if (getLangOpts().CPlusPlus) {
    if (FunctionTemplate) {
      if (NewFD->isInvalidDecl())
        FunctionTemplate->setInvalidDecl();
      return FunctionTemplate;
    }

    if (isMemberSpecialization && !NewFD->isInvalidDecl())
      CompleteMemberSpecialization(NewFD, Previous);
  }

  for (const ParmVarDecl *Param : NewFD->parameters()) {
    QualType PT = Param->getType();

    // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
    // types.
    if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
      if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
        QualType ElemTy = PipeTy->getElementType();
          if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
            Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
            D.setInvalidType();
          }
      }
    }
  }

  // Here we have an function template explicit specialization at class scope.
  // The actual specialization will be postponed to template instatiation
  // time via the ClassScopeFunctionSpecializationDecl node.
  if (isDependentClassScopeExplicitSpecialization) {
    ClassScopeFunctionSpecializationDecl *NewSpec =
                         ClassScopeFunctionSpecializationDecl::Create(
                                Context, CurContext, NewFD->getLocation(),
                                cast<CXXMethodDecl>(NewFD),
                                HasExplicitTemplateArgs, TemplateArgs);
    CurContext->addDecl(NewSpec);
    AddToScope = false;
  }

  // Diagnose availability attributes. Availability cannot be used on functions
  // that are run during load/unload.
  if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
    if (NewFD->hasAttr<ConstructorAttr>()) {
      Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
          << 1;
      NewFD->dropAttr<AvailabilityAttr>();
    }
    if (NewFD->hasAttr<DestructorAttr>()) {
      Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
          << 2;
      NewFD->dropAttr<AvailabilityAttr>();
    }
  }

  // Diagnose no_builtin attribute on function declaration that are not a
  // definition.
  // FIXME: We should really be doing this in
  // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
  // the FunctionDecl and at this point of the code
  // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
  // because Sema::ActOnStartOfFunctionDef has not been called yet.
  if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
    switch (D.getFunctionDefinitionKind()) {
    case FDK_Defaulted:
    case FDK_Deleted:
      Diag(NBA->getLocation(),
           diag::err_attribute_no_builtin_on_defaulted_deleted_function)
          << NBA->getSpelling();
      break;
    case FDK_Declaration:
      Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
          << NBA->getSpelling();
      break;
    case FDK_Definition:
      break;
    }

  return NewFD;
}

/// Return a CodeSegAttr from a containing class.  The Microsoft docs say
/// when __declspec(code_seg) "is applied to a class, all member functions of
/// the class and nested classes -- this includes compiler-generated special
/// member functions -- are put in the specified segment."
/// The actual behavior is a little more complicated. The Microsoft compiler
/// won't check outer classes if there is an active value from #pragma code_seg.
/// The CodeSeg is always applied from the direct parent but only from outer
/// classes when the #pragma code_seg stack is empty. See:
/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
/// available since MS has removed the page.
static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
  const auto *Method = dyn_cast<CXXMethodDecl>(FD);
  if (!Method)
    return nullptr;
  const CXXRecordDecl *Parent = Method->getParent();
  if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
    Attr *NewAttr = SAttr->clone(S.getASTContext());
    NewAttr->setImplicit(true);
    return NewAttr;
  }

  // The Microsoft compiler won't check outer classes for the CodeSeg
  // when the #pragma code_seg stack is active.
  if (S.CodeSegStack.CurrentValue)
   return nullptr;

  while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
    if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
      Attr *NewAttr = SAttr->clone(S.getASTContext());
      NewAttr->setImplicit(true);
      return NewAttr;
    }
  }
  return nullptr;
}

/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
/// containing class. Otherwise it will return implicit SectionAttr if the
/// function is a definition and there is an active value on CodeSegStack
/// (from the current #pragma code-seg value).
///
/// \param FD Function being declared.
/// \param IsDefinition Whether it is a definition or just a declarartion.
/// \returns A CodeSegAttr or SectionAttr to apply to the function or
///          nullptr if no attribute should be added.
Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
                                                       bool IsDefinition) {
  if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
    return A;
  if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
      CodeSegStack.CurrentValue)
    return SectionAttr::CreateImplicit(
        getASTContext(), CodeSegStack.CurrentValue->getString(),
        CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
        SectionAttr::Declspec_allocate);
  return nullptr;
}

/// Determines if we can perform a correct type check for \p D as a
/// redeclaration of \p PrevDecl. If not, we can generally still perform a
/// best-effort check.
///
/// \param NewD The new declaration.
/// \param OldD The old declaration.
/// \param NewT The portion of the type of the new declaration to check.
/// \param OldT The portion of the type of the old declaration to check.
bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
                                          QualType NewT, QualType OldT) {
  if (!NewD->getLexicalDeclContext()->isDependentContext())
    return true;

  // For dependently-typed local extern declarations and friends, we can't
  // perform a correct type check in general until instantiation:
  //
  //   int f();
  //   template<typename T> void g() { T f(); }
  //
  // (valid if g() is only instantiated with T = int).
  if (NewT->isDependentType() &&
      (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
    return false;

  // Similarly, if the previous declaration was a dependent local extern
  // declaration, we don't really know its type yet.
  if (OldT->isDependentType() && OldD->isLocalExternDecl())
    return false;

  return true;
}

/// Checks if the new declaration declared in dependent context must be
/// put in the same redeclaration chain as the specified declaration.
///
/// \param D Declaration that is checked.
/// \param PrevDecl Previous declaration found with proper lookup method for the
///                 same declaration name.
/// \returns True if D must be added to the redeclaration chain which PrevDecl
///          belongs to.
///
bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
  if (!D->getLexicalDeclContext()->isDependentContext())
    return true;

  // Don't chain dependent friend function definitions until instantiation, to
  // permit cases like
  //
  //   void func();
  //   template<typename T> class C1 { friend void func() {} };
  //   template<typename T> class C2 { friend void func() {} };
  //
  // ... which is valid if only one of C1 and C2 is ever instantiated.
  //
  // FIXME: This need only apply to function definitions. For now, we proxy
  // this by checking for a file-scope function. We do not want this to apply
  // to friend declarations nominating member functions, because that gets in
  // the way of access checks.
  if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
    return false;

  auto *VD = dyn_cast<ValueDecl>(D);
  auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
  return !VD || !PrevVD ||
         canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
                                        PrevVD->getType());
}

/// Check the target attribute of the function for MultiVersion
/// validity.
///
/// Returns true if there was an error, false otherwise.
static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
  const auto *TA = FD->getAttr<TargetAttr>();
  assert(TA && "MultiVersion Candidate requires a target attribute");
  ParsedTargetAttr ParseInfo = TA->parse();
  const TargetInfo &TargetInfo = S.Context.getTargetInfo();
  enum ErrType { Feature = 0, Architecture = 1 };

  if (!ParseInfo.Architecture.empty() &&
      !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
    S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
        << Architecture << ParseInfo.Architecture;
    return true;
  }

  for (const auto &Feat : ParseInfo.Features) {
    auto BareFeat = StringRef{Feat}.substr(1);
    if (Feat[0] == '-') {
      S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
          << Feature << ("no-" + BareFeat).str();
      return true;
    }

    if (!TargetInfo.validateCpuSupports(BareFeat) ||
        !TargetInfo.isValidFeatureName(BareFeat)) {
      S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
          << Feature << BareFeat;
      return true;
    }
  }
  return false;
}

static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
                                         MultiVersionKind MVType) {
  for (const Attr *A : FD->attrs()) {
    switch (A->getKind()) {
    case attr::CPUDispatch:
    case attr::CPUSpecific:
      if (MVType != MultiVersionKind::CPUDispatch &&
          MVType != MultiVersionKind::CPUSpecific)
        return true;
      break;
    case attr::Target:
      if (MVType != MultiVersionKind::Target)
        return true;
      break;
    default:
      return true;
    }
  }
  return false;
}

bool Sema::areMultiversionVariantFunctionsCompatible(
    const FunctionDecl *OldFD, const FunctionDecl *NewFD,
    const PartialDiagnostic &NoProtoDiagID,
    const PartialDiagnosticAt &NoteCausedDiagIDAt,
    const PartialDiagnosticAt &NoSupportDiagIDAt,
    const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
    bool ConstexprSupported, bool CLinkageMayDiffer) {
  enum DoesntSupport {
    FuncTemplates = 0,
    VirtFuncs = 1,
    DeducedReturn = 2,
    Constructors = 3,
    Destructors = 4,
    DeletedFuncs = 5,
    DefaultedFuncs = 6,
    ConstexprFuncs = 7,
    ConstevalFuncs = 8,
  };
  enum Different {
    CallingConv = 0,
    ReturnType = 1,
    ConstexprSpec = 2,
    InlineSpec = 3,
    StorageClass = 4,
    Linkage = 5,
  };

  if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
      !OldFD->getType()->getAs<FunctionProtoType>()) {
    Diag(OldFD->getLocation(), NoProtoDiagID);
    Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
    return true;
  }

  if (NoProtoDiagID.getDiagID() != 0 &&
      !NewFD->getType()->getAs<FunctionProtoType>())
    return Diag(NewFD->getLocation(), NoProtoDiagID);

  if (!TemplatesSupported &&
      NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
           << FuncTemplates;

  if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
    if (NewCXXFD->isVirtual())
      return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
             << VirtFuncs;

    if (isa<CXXConstructorDecl>(NewCXXFD))
      return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
             << Constructors;

    if (isa<CXXDestructorDecl>(NewCXXFD))
      return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
             << Destructors;
  }

  if (NewFD->isDeleted())
    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
           << DeletedFuncs;

  if (NewFD->isDefaulted())
    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
           << DefaultedFuncs;

  if (!ConstexprSupported && NewFD->isConstexpr())
    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
           << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);

  QualType NewQType = Context.getCanonicalType(NewFD->getType());
  const auto *NewType = cast<FunctionType>(NewQType);
  QualType NewReturnType = NewType->getReturnType();

  if (NewReturnType->isUndeducedType())
    return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
           << DeducedReturn;

  // Ensure the return type is identical.
  if (OldFD) {
    QualType OldQType = Context.getCanonicalType(OldFD->getType());
    const auto *OldType = cast<FunctionType>(OldQType);
    FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
    FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();

    if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;

    QualType OldReturnType = OldType->getReturnType();

    if (OldReturnType != NewReturnType)
      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;

    if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;

    if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;

    if (OldFD->getStorageClass() != NewFD->getStorageClass())
      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;

    if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
      return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;

    if (CheckEquivalentExceptionSpec(
            OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
            NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
      return true;
  }
  return false;
}

static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
                                             const FunctionDecl *NewFD,
                                             bool CausesMV,
                                             MultiVersionKind MVType) {
  if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
    S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
    if (OldFD)
      S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
    return true;
  }

  bool IsCPUSpecificCPUDispatchMVType =
      MVType == MultiVersionKind::CPUDispatch ||
      MVType == MultiVersionKind::CPUSpecific;

  // For now, disallow all other attributes.  These should be opt-in, but
  // an analysis of all of them is a future FIXME.
  if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
    S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
        << IsCPUSpecificCPUDispatchMVType;
    S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
    return true;
  }

  if (HasNonMultiVersionAttributes(NewFD, MVType))
    return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
           << IsCPUSpecificCPUDispatchMVType;

  // Only allow transition to MultiVersion if it hasn't been used.
  if (OldFD && CausesMV && OldFD->isUsed(false))
    return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);

  return S.areMultiversionVariantFunctionsCompatible(
      OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
      PartialDiagnosticAt(NewFD->getLocation(),
                          S.PDiag(diag::note_multiversioning_caused_here)),
      PartialDiagnosticAt(NewFD->getLocation(),
                          S.PDiag(diag::err_multiversion_doesnt_support)
                              << IsCPUSpecificCPUDispatchMVType),
      PartialDiagnosticAt(NewFD->getLocation(),
                          S.PDiag(diag::err_multiversion_diff)),
      /*TemplatesSupported=*/false,
      /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
      /*CLinkageMayDiffer=*/false);
}

/// Check the validity of a multiversion function declaration that is the
/// first of its kind. Also sets the multiversion'ness' of the function itself.
///
/// This sets NewFD->isInvalidDecl() to true if there was an error.
///
/// Returns true if there was an error, false otherwise.
static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
                                           MultiVersionKind MVType,
                                           const TargetAttr *TA) {
  assert(MVType != MultiVersionKind::None &&
         "Function lacks multiversion attribute");

  // Target only causes MV if it is default, otherwise this is a normal
  // function.
  if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
    return false;

  if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
    FD->setInvalidDecl();
    return true;
  }

  if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
    FD->setInvalidDecl();
    return true;
  }

  FD->setIsMultiVersion();
  return false;
}

static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
  for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
    if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
      return true;
  }

  return false;
}

static bool CheckTargetCausesMultiVersioning(
    Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
    bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
    LookupResult &Previous) {
  const auto *OldTA = OldFD->getAttr<TargetAttr>();
  ParsedTargetAttr NewParsed = NewTA->parse();
  // Sort order doesn't matter, it just needs to be consistent.
  llvm::sort(NewParsed.Features);

  // If the old decl is NOT MultiVersioned yet, and we don't cause that
  // to change, this is a simple redeclaration.
  if (!NewTA->isDefaultVersion() &&
      (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
    return false;

  // Otherwise, this decl causes MultiVersioning.
  if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
    S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
    S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
    NewFD->setInvalidDecl();
    return true;
  }

  if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
                                       MultiVersionKind::Target)) {
    NewFD->setInvalidDecl();
    return true;
  }

  if (CheckMultiVersionValue(S, NewFD)) {
    NewFD->setInvalidDecl();
    return true;
  }

  // If this is 'default', permit the forward declaration.
  if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
    Redeclaration = true;
    OldDecl = OldFD;
    OldFD->setIsMultiVersion();
    NewFD->setIsMultiVersion();
    return false;
  }

  if (CheckMultiVersionValue(S, OldFD)) {
    S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
    NewFD->setInvalidDecl();
    return true;
  }

  ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());

  if (OldParsed == NewParsed) {
    S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
    S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
    NewFD->setInvalidDecl();
    return true;
  }

  for (const auto *FD : OldFD->redecls()) {
    const auto *CurTA = FD->getAttr<TargetAttr>();
    // We allow forward declarations before ANY multiversioning attributes, but
    // nothing after the fact.
    if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
        (!CurTA || CurTA->isInherited())) {
      S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
          << 0;
      S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
      NewFD->setInvalidDecl();
      return true;
    }
  }

  OldFD->setIsMultiVersion();
  NewFD->setIsMultiVersion();
  Redeclaration = false;
  MergeTypeWithPrevious = false;
  OldDecl = nullptr;
  Previous.clear();
  return false;
}

/// Check the validity of a new function declaration being added to an existing
/// multiversioned declaration collection.
static bool CheckMultiVersionAdditionalDecl(
    Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
    MultiVersionKind NewMVType, const TargetAttr *NewTA,
    const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
    bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
    LookupResult &Previous) {

  MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
  // Disallow mixing of multiversioning types.
  if ((OldMVType == MultiVersionKind::Target &&
       NewMVType != MultiVersionKind::Target) ||
      (NewMVType == MultiVersionKind::Target &&
       OldMVType != MultiVersionKind::Target)) {
    S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
    S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
    NewFD->setInvalidDecl();
    return true;
  }

  ParsedTargetAttr NewParsed;
  if (NewTA) {
    NewParsed = NewTA->parse();
    llvm::sort(NewParsed.Features);
  }

  bool UseMemberUsingDeclRules =
      S.CurContext->isRecord() && !NewFD->getFriendObjectKind();

  // Next, check ALL non-overloads to see if this is a redeclaration of a
  // previous member of the MultiVersion set.
  for (NamedDecl *ND : Previous) {
    FunctionDecl *CurFD = ND->getAsFunction();
    if (!CurFD)
      continue;
    if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
      continue;

    if (NewMVType == MultiVersionKind::Target) {
      const auto *CurTA = CurFD->getAttr<TargetAttr>();
      if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
        NewFD->setIsMultiVersion();
        Redeclaration = true;
        OldDecl = ND;
        return false;
      }

      ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
      if (CurParsed == NewParsed) {
        S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
        S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
        NewFD->setInvalidDecl();
        return true;
      }
    } else {
      const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
      const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
      // Handle CPUDispatch/CPUSpecific versions.
      // Only 1 CPUDispatch function is allowed, this will make it go through
      // the redeclaration errors.
      if (NewMVType == MultiVersionKind::CPUDispatch &&
          CurFD->hasAttr<CPUDispatchAttr>()) {
        if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
            std::equal(
                CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
                NewCPUDisp->cpus_begin(),
                [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
                  return Cur->getName() == New->getName();
                })) {
          NewFD->setIsMultiVersion();
          Redeclaration = true;
          OldDecl = ND;
          return false;
        }

        // If the declarations don't match, this is an error condition.
        S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
        S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
        NewFD->setInvalidDecl();
        return true;
      }
      if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {

        if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
            std::equal(
                CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
                NewCPUSpec->cpus_begin(),
                [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
                  return Cur->getName() == New->getName();
                })) {
          NewFD->setIsMultiVersion();
          Redeclaration = true;
          OldDecl = ND;
          return false;
        }

        // Only 1 version of CPUSpecific is allowed for each CPU.
        for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
          for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
            if (CurII == NewII) {
              S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
                  << NewII;
              S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
              NewFD->setInvalidDecl();
              return true;
            }
          }
        }
      }
      // If the two decls aren't the same MVType, there is no possible error
      // condition.
    }
  }

  // Else, this is simply a non-redecl case.  Checking the 'value' is only
  // necessary in the Target case, since The CPUSpecific/Dispatch cases are
  // handled in the attribute adding step.
  if (NewMVType == MultiVersionKind::Target &&
      CheckMultiVersionValue(S, NewFD)) {
    NewFD->setInvalidDecl();
    return true;
  }

  if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
                                       !OldFD->isMultiVersion(), NewMVType)) {
    NewFD->setInvalidDecl();
    return true;
  }

  // Permit forward declarations in the case where these two are compatible.
  if (!OldFD->isMultiVersion()) {
    OldFD->setIsMultiVersion();
    NewFD->setIsMultiVersion();
    Redeclaration = true;
    OldDecl = OldFD;
    return false;
  }

  NewFD->setIsMultiVersion();
  Redeclaration = false;
  MergeTypeWithPrevious = false;
  OldDecl = nullptr;
  Previous.clear();
  return false;
}


/// Check the validity of a mulitversion function declaration.
/// Also sets the multiversion'ness' of the function itself.
///
/// This sets NewFD->isInvalidDecl() to true if there was an error.
///
/// Returns true if there was an error, false otherwise.
static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
                                      bool &Redeclaration, NamedDecl *&OldDecl,
                                      bool &MergeTypeWithPrevious,
                                      LookupResult &Previous) {
  const auto *NewTA = NewFD->getAttr<TargetAttr>();
  const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
  const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();

  // Mixing Multiversioning types is prohibited.
  if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
      (NewCPUDisp && NewCPUSpec)) {
    S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
    NewFD->setInvalidDecl();
    return true;
  }

  MultiVersionKind  MVType = NewFD->getMultiVersionKind();

  // Main isn't allowed to become a multiversion function, however it IS
  // permitted to have 'main' be marked with the 'target' optimization hint.
  if (NewFD->isMain()) {
    if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
        MVType == MultiVersionKind::CPUDispatch ||
        MVType == MultiVersionKind::CPUSpecific) {
      S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
      NewFD->setInvalidDecl();
      return true;
    }
    return false;
  }

  if (!OldDecl || !OldDecl->getAsFunction() ||
      OldDecl->getDeclContext()->getRedeclContext() !=
          NewFD->getDeclContext()->getRedeclContext()) {
    // If there's no previous declaration, AND this isn't attempting to cause
    // multiversioning, this isn't an error condition.
    if (MVType == MultiVersionKind::None)
      return false;
    return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
  }

  FunctionDecl *OldFD = OldDecl->getAsFunction();

  if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
    return false;

  if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
    S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
        << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
    NewFD->setInvalidDecl();
    return true;
  }

  // Handle the target potentially causes multiversioning case.
  if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
    return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
                                            Redeclaration, OldDecl,
                                            MergeTypeWithPrevious, Previous);

  // At this point, we have a multiversion function decl (in OldFD) AND an
  // appropriate attribute in the current function decl.  Resolve that these are
  // still compatible with previous declarations.
  return CheckMultiVersionAdditionalDecl(
      S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
      OldDecl, MergeTypeWithPrevious, Previous);
}

/// Perform semantic checking of a new function declaration.
///
/// Performs semantic analysis of the new function declaration
/// NewFD. This routine performs all semantic checking that does not
/// require the actual declarator involved in the declaration, and is
/// used both for the declaration of functions as they are parsed
/// (called via ActOnDeclarator) and for the declaration of functions
/// that have been instantiated via C++ template instantiation (called
/// via InstantiateDecl).
///
/// \param IsMemberSpecialization whether this new function declaration is
/// a member specialization (that replaces any definition provided by the
/// previous declaration).
///
/// This sets NewFD->isInvalidDecl() to true if there was an error.
///
/// \returns true if the function declaration is a redeclaration.
bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
                                    LookupResult &Previous,
                                    bool IsMemberSpecialization) {
  assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
         "Variably modified return types are not handled here");

  // Determine whether the type of this function should be merged with
  // a previous visible declaration. This never happens for functions in C++,
  // and always happens in C if the previous declaration was visible.
  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
                               !Previous.isShadowed();

  bool Redeclaration = false;
  NamedDecl *OldDecl = nullptr;
  bool MayNeedOverloadableChecks = false;

  // Merge or overload the declaration with an existing declaration of
  // the same name, if appropriate.
  if (!Previous.empty()) {
    // Determine whether NewFD is an overload of PrevDecl or
    // a declaration that requires merging. If it's an overload,
    // there's no more work to do here; we'll just add the new
    // function to the scope.
    if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
      NamedDecl *Candidate = Previous.getRepresentativeDecl();
      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
        Redeclaration = true;
        OldDecl = Candidate;
      }
    } else {
      MayNeedOverloadableChecks = true;
      switch (CheckOverload(S, NewFD, Previous, OldDecl,
                            /*NewIsUsingDecl*/ false)) {
      case Ovl_Match:
        Redeclaration = true;
        break;

      case Ovl_NonFunction:
        Redeclaration = true;
        break;

      case Ovl_Overload:
        Redeclaration = false;
        break;
      }
    }
  }

  // Check for a previous extern "C" declaration with this name.
  if (!Redeclaration &&
      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
    if (!Previous.empty()) {
      // This is an extern "C" declaration with the same name as a previous
      // declaration, and thus redeclares that entity...
      Redeclaration = true;
      OldDecl = Previous.getFoundDecl();
      MergeTypeWithPrevious = false;

      // ... except in the presence of __attribute__((overloadable)).
      if (OldDecl->hasAttr<OverloadableAttr>() ||
          NewFD->hasAttr<OverloadableAttr>()) {
        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
          MayNeedOverloadableChecks = true;
          Redeclaration = false;
          OldDecl = nullptr;
        }
      }
    }
  }

  if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
                                MergeTypeWithPrevious, Previous))
    return Redeclaration;

  // C++11 [dcl.constexpr]p8:
  //   A constexpr specifier for a non-static member function that is not
  //   a constructor declares that member function to be const.
  //
  // This needs to be delayed until we know whether this is an out-of-line
  // definition of a static member function.
  //
  // This rule is not present in C++1y, so we produce a backwards
  // compatibility warning whenever it happens in C++11.
  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
  if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
      !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
    CXXMethodDecl *OldMD = nullptr;
    if (OldDecl)
      OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
    if (!OldMD || !OldMD->isStatic()) {
      const FunctionProtoType *FPT =
        MD->getType()->castAs<FunctionProtoType>();
      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
      EPI.TypeQuals.addConst();
      MD->setType(Context.getFunctionType(FPT->getReturnType(),
                                          FPT->getParamTypes(), EPI));

      // Warn that we did this, if we're not performing template instantiation.
      // In that case, we'll have warned already when the template was defined.
      if (!inTemplateInstantiation()) {
        SourceLocation AddConstLoc;
        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
                .IgnoreParens().getAs<FunctionTypeLoc>())
          AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());

        Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
          << FixItHint::CreateInsertion(AddConstLoc, " const");
      }
    }
  }

  if (Redeclaration) {
    // NewFD and OldDecl represent declarations that need to be
    // merged.
    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
      NewFD->setInvalidDecl();
      return Redeclaration;
    }

    Previous.clear();
    Previous.addDecl(OldDecl);

    if (FunctionTemplateDecl *OldTemplateDecl =
            dyn_cast<FunctionTemplateDecl>(OldDecl)) {
      auto *OldFD = OldTemplateDecl->getTemplatedDecl();
      FunctionTemplateDecl *NewTemplateDecl
        = NewFD->getDescribedFunctionTemplate();
      assert(NewTemplateDecl && "Template/non-template mismatch");

      // The call to MergeFunctionDecl above may have created some state in
      // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
      // can add it as a redeclaration.
      NewTemplateDecl->mergePrevDecl(OldTemplateDecl);

      NewFD->setPreviousDeclaration(OldFD);
      adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
      if (NewFD->isCXXClassMember()) {
        NewFD->setAccess(OldTemplateDecl->getAccess());
        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
      }

      // If this is an explicit specialization of a member that is a function
      // template, mark it as a member specialization.
      if (IsMemberSpecialization &&
          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
        NewTemplateDecl->setMemberSpecialization();
        assert(OldTemplateDecl->isMemberSpecialization());
        // Explicit specializations of a member template do not inherit deleted
        // status from the parent member template that they are specializing.
        if (OldFD->isDeleted()) {
          // FIXME: This assert will not hold in the presence of modules.
          assert(OldFD->getCanonicalDecl() == OldFD);
          // FIXME: We need an update record for this AST mutation.
          OldFD->setDeletedAsWritten(false);
        }
      }

    } else {
      if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
        auto *OldFD = cast<FunctionDecl>(OldDecl);
        // This needs to happen first so that 'inline' propagates.
        NewFD->setPreviousDeclaration(OldFD);
        adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
        if (NewFD->isCXXClassMember())
          NewFD->setAccess(OldFD->getAccess());
      }
    }
  } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
             !NewFD->getAttr<OverloadableAttr>()) {
    assert((Previous.empty() ||
            llvm::any_of(Previous,
                         [](const NamedDecl *ND) {
                           return ND->hasAttr<OverloadableAttr>();
                         })) &&
           "Non-redecls shouldn't happen without overloadable present");

    auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
      const auto *FD = dyn_cast<FunctionDecl>(ND);
      return FD && !FD->hasAttr<OverloadableAttr>();
    });

    if (OtherUnmarkedIter != Previous.end()) {
      Diag(NewFD->getLocation(),
           diag::err_attribute_overloadable_multiple_unmarked_overloads);
      Diag((*OtherUnmarkedIter)->getLocation(),
           diag::note_attribute_overloadable_prev_overload)
          << false;

      NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
    }
  }

  // Semantic checking for this function declaration (in isolation).

  if (getLangOpts().CPlusPlus) {
    // C++-specific checks.
    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
      CheckConstructor(Constructor);
    } else if (CXXDestructorDecl *Destructor =
                dyn_cast<CXXDestructorDecl>(NewFD)) {
      CXXRecordDecl *Record = Destructor->getParent();
      QualType ClassType = Context.getTypeDeclType(Record);

      // FIXME: Shouldn't we be able to perform this check even when the class
      // type is dependent? Both gcc and edg can handle that.
      if (!ClassType->isDependentType()) {
        DeclarationName Name
          = Context.DeclarationNames.getCXXDestructorName(
                                        Context.getCanonicalType(ClassType));
        if (NewFD->getDeclName() != Name) {
          Diag(NewFD->getLocation(), diag::err_destructor_name);
          NewFD->setInvalidDecl();
          return Redeclaration;
        }
      }
    } else if (CXXConversionDecl *Conversion
               = dyn_cast<CXXConversionDecl>(NewFD)) {
      ActOnConversionDeclarator(Conversion);
    } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
      if (auto *TD = Guide->getDescribedFunctionTemplate())
        CheckDeductionGuideTemplate(TD);

      // A deduction guide is not on the list of entities that can be
      // explicitly specialized.
      if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
        Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
            << /*explicit specialization*/ 1;
    }

    // Find any virtual functions that this function overrides.
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
      if (!Method->isFunctionTemplateSpecialization() &&
          !Method->getDescribedFunctionTemplate() &&
          Method->isCanonicalDecl()) {
        if (AddOverriddenMethods(Method->getParent(), Method)) {
          // If the function was marked as "static", we have a problem.
          if (NewFD->getStorageClass() == SC_Static) {
            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
          }
        }
      }
      if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
        // C++2a [class.virtual]p6
        // A virtual method shall not have a requires-clause.
        Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
             diag::err_constrained_virtual_method);

      if (Method->isStatic())
        checkThisInStaticMemberFunctionType(Method);
    }

    // Extra checking for C++ overloaded operators (C++ [over.oper]).
    if (NewFD->isOverloadedOperator() &&
        CheckOverloadedOperatorDeclaration(NewFD)) {
      NewFD->setInvalidDecl();
      return Redeclaration;
    }

    // Extra checking for C++0x literal operators (C++0x [over.literal]).
    if (NewFD->getLiteralIdentifier() &&
        CheckLiteralOperatorDeclaration(NewFD)) {
      NewFD->setInvalidDecl();
      return Redeclaration;
    }

    // In C++, check default arguments now that we have merged decls. Unless
    // the lexical context is the class, because in this case this is done
    // during delayed parsing anyway.
    if (!CurContext->isRecord())
      CheckCXXDefaultArguments(NewFD);

    // If this function declares a builtin function, check the type of this
    // declaration against the expected type for the builtin.
    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
      ASTContext::GetBuiltinTypeError Error;
      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
      QualType T = Context.GetBuiltinType(BuiltinID, Error);
      // If the type of the builtin differs only in its exception
      // specification, that's OK.
      // FIXME: If the types do differ in this way, it would be better to
      // retain the 'noexcept' form of the type.
      if (!T.isNull() &&
          !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
                                                            NewFD->getType()))
        // The type of this function differs from the type of the builtin,
        // so forget about the builtin entirely.
        Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
    }

    // If this function is declared as being extern "C", then check to see if
    // the function returns a UDT (class, struct, or union type) that is not C
    // compatible, and if it does, warn the user.
    // But, issue any diagnostic on the first declaration only.
    if (Previous.empty() && NewFD->isExternC()) {
      QualType R = NewFD->getReturnType();
      if (R->isIncompleteType() && !R->isVoidType())
        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
            << NewFD << R;
      else if (!R.isPODType(Context) && !R->isVoidType() &&
               !R->isObjCObjectPointerType())
        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
    }

    // C++1z [dcl.fct]p6:
    //   [...] whether the function has a non-throwing exception-specification
    //   [is] part of the function type
    //
    // This results in an ABI break between C++14 and C++17 for functions whose
    // declared type includes an exception-specification in a parameter or
    // return type. (Exception specifications on the function itself are OK in
    // most cases, and exception specifications are not permitted in most other
    // contexts where they could make it into a mangling.)
    if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
      auto HasNoexcept = [&](QualType T) -> bool {
        // Strip off declarator chunks that could be between us and a function
        // type. We don't need to look far, exception specifications are very
        // restricted prior to C++17.
        if (auto *RT = T->getAs<ReferenceType>())
          T = RT->getPointeeType();
        else if (T->isAnyPointerType())
          T = T->getPointeeType();
        else if (auto *MPT = T->getAs<MemberPointerType>())
          T = MPT->getPointeeType();
        if (auto *FPT = T->getAs<FunctionProtoType>())
          if (FPT->isNothrow())
            return true;
        return false;
      };

      auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
      bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
      for (QualType T : FPT->param_types())
        AnyNoexcept |= HasNoexcept(T);
      if (AnyNoexcept)
        Diag(NewFD->getLocation(),
             diag::warn_cxx17_compat_exception_spec_in_signature)
            << NewFD;
    }

    if (!Redeclaration && LangOpts.CUDA)
      checkCUDATargetOverload(NewFD, Previous);
  }
  return Redeclaration;
}

void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
  // C++11 [basic.start.main]p3:
  //   A program that [...] declares main to be inline, static or
  //   constexpr is ill-formed.
  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
  //   appear in a declaration of main.
  // static main is not an error under C99, but we should warn about it.
  // We accept _Noreturn main as an extension.
  if (FD->getStorageClass() == SC_Static)
    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
         ? diag::err_static_main : diag::warn_static_main)
      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
  if (FD->isInlineSpecified())
    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
  if (DS.isNoreturnSpecified()) {
    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
    SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
    Diag(NoreturnLoc, diag::ext_noreturn_main);
    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
      << FixItHint::CreateRemoval(NoreturnRange);
  }
  if (FD->isConstexpr()) {
    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
        << FD->isConsteval()
        << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
    FD->setConstexprKind(CSK_unspecified);
  }

  if (getLangOpts().OpenCL) {
    Diag(FD->getLocation(), diag::err_opencl_no_main)
        << FD->hasAttr<OpenCLKernelAttr>();
    FD->setInvalidDecl();
    return;
  }

  QualType T = FD->getType();
  assert(T->isFunctionType() && "function decl is not of function type");
  const FunctionType* FT = T->castAs<FunctionType>();

  // Set default calling convention for main()
  if (FT->getCallConv() != CC_C) {
    FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
    FD->setType(QualType(FT, 0));
    T = Context.getCanonicalType(FD->getType());
  }

  if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
    // In C with GNU extensions we allow main() to have non-integer return
    // type, but we should warn about the extension, and we disable the
    // implicit-return-zero rule.

    // GCC in C mode accepts qualified 'int'.
    if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
      FD->setHasImplicitReturnZero(true);
    else {
      Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
      SourceRange RTRange = FD->getReturnTypeSourceRange();
      if (RTRange.isValid())
        Diag(RTRange.getBegin(), diag::note_main_change_return_type)
            << FixItHint::CreateReplacement(RTRange, "int");
    }
  } else {
    // In C and C++, main magically returns 0 if you fall off the end;
    // set the flag which tells us that.
    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.

    // All the standards say that main() should return 'int'.
    if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
      FD->setHasImplicitReturnZero(true);
    else {
      // Otherwise, this is just a flat-out error.
      SourceRange RTRange = FD->getReturnTypeSourceRange();
      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
                                : FixItHint());
      FD->setInvalidDecl(true);
    }
  }

  // Treat protoless main() as nullary.
  if (isa<FunctionNoProtoType>(FT)) return;

  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
  unsigned nparams = FTP->getNumParams();
  assert(FD->getNumParams() == nparams);

  bool HasExtraParameters = (nparams > 3);

  if (FTP->isVariadic()) {
    Diag(FD->getLocation(), diag::ext_variadic_main);
    // FIXME: if we had information about the location of the ellipsis, we
    // could add a FixIt hint to remove it as a parameter.
  }

  // Darwin passes an undocumented fourth argument of type char**.  If
  // other platforms start sprouting these, the logic below will start
  // getting shifty.
  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
    HasExtraParameters = false;

  if (HasExtraParameters) {
    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
    FD->setInvalidDecl(true);
    nparams = 3;
  }

  // FIXME: a lot of the following diagnostics would be improved
  // if we had some location information about types.

  QualType CharPP =
    Context.getPointerType(Context.getPointerType(Context.CharTy));
  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };

  for (unsigned i = 0; i < nparams; ++i) {
    QualType AT = FTP->getParamType(i);

    bool mismatch = true;

    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
      mismatch = false;
    else if (Expected[i] == CharPP) {
      // As an extension, the following forms are okay:
      //   char const **
      //   char const * const *
      //   char * const *

      QualifierCollector qs;
      const PointerType* PT;
      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
                              Context.CharTy)) {
        qs.removeConst();
        mismatch = !qs.empty();
      }
    }

    if (mismatch) {
      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
      // TODO: suggest replacing given type with expected type
      FD->setInvalidDecl(true);
    }
  }

  if (nparams == 1 && !FD->isInvalidDecl()) {
    Diag(FD->getLocation(), diag::warn_main_one_arg);
  }

  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
    FD->setInvalidDecl();
  }
}

void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
  QualType T = FD->getType();
  assert(T->isFunctionType() && "function decl is not of function type");
  const FunctionType *FT = T->castAs<FunctionType>();

  // Set an implicit return of 'zero' if the function can return some integral,
  // enumeration, pointer or nullptr type.
  if (FT->getReturnType()->isIntegralOrEnumerationType() ||
      FT->getReturnType()->isAnyPointerType() ||
      FT->getReturnType()->isNullPtrType())
    // DllMain is exempt because a return value of zero means it failed.
    if (FD->getName() != "DllMain")
      FD->setHasImplicitReturnZero(true);

  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
    FD->setInvalidDecl();
  }
}

bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
  // FIXME: Need strict checking.  In C89, we need to check for
  // any assignment, increment, decrement, function-calls, or
  // commas outside of a sizeof.  In C99, it's the same list,
  // except that the aforementioned are allowed in unevaluated
  // expressions.  Everything else falls under the
  // "may accept other forms of constant expressions" exception.
  // (We never end up here for C++, so the constant expression
  // rules there don't matter.)
  const Expr *Culprit;
  if (Init->isConstantInitializer(Context, false, &Culprit))
    return false;
  Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
    << Culprit->getSourceRange();
  return true;
}

namespace {
  // Visits an initialization expression to see if OrigDecl is evaluated in
  // its own initialization and throws a warning if it does.
  class SelfReferenceChecker
      : public EvaluatedExprVisitor<SelfReferenceChecker> {
    Sema &S;
    Decl *OrigDecl;
    bool isRecordType;
    bool isPODType;
    bool isReferenceType;

    bool isInitList;
    llvm::SmallVector<unsigned, 4> InitFieldIndex;

  public:
    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;

    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
                                                    S(S), OrigDecl(OrigDecl) {
      isPODType = false;
      isRecordType = false;
      isReferenceType = false;
      isInitList = false;
      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
        isPODType = VD->getType().isPODType(S.Context);
        isRecordType = VD->getType()->isRecordType();
        isReferenceType = VD->getType()->isReferenceType();
      }
    }

    // For most expressions, just call the visitor.  For initializer lists,
    // track the index of the field being initialized since fields are
    // initialized in order allowing use of previously initialized fields.
    void CheckExpr(Expr *E) {
      InitListExpr *InitList = dyn_cast<InitListExpr>(E);
      if (!InitList) {
        Visit(E);
        return;
      }

      // Track and increment the index here.
      isInitList = true;
      InitFieldIndex.push_back(0);
      for (auto Child : InitList->children()) {
        CheckExpr(cast<Expr>(Child));
        ++InitFieldIndex.back();
      }
      InitFieldIndex.pop_back();
    }

    // Returns true if MemberExpr is checked and no further checking is needed.
    // Returns false if additional checking is required.
    bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
      llvm::SmallVector<FieldDecl*, 4> Fields;
      Expr *Base = E;
      bool ReferenceField = false;

      // Get the field members used.
      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
        FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
        if (!FD)
          return false;
        Fields.push_back(FD);
        if (FD->getType()->isReferenceType())
          ReferenceField = true;
        Base = ME->getBase()->IgnoreParenImpCasts();
      }

      // Keep checking only if the base Decl is the same.
      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
      if (!DRE || DRE->getDecl() != OrigDecl)
        return false;

      // A reference field can be bound to an unininitialized field.
      if (CheckReference && !ReferenceField)
        return true;

      // Convert FieldDecls to their index number.
      llvm::SmallVector<unsigned, 4> UsedFieldIndex;
      for (const FieldDecl *I : llvm::reverse(Fields))
        UsedFieldIndex.push_back(I->getFieldIndex());

      // See if a warning is needed by checking the first difference in index
      // numbers.  If field being used has index less than the field being
      // initialized, then the use is safe.
      for (auto UsedIter = UsedFieldIndex.begin(),
                UsedEnd = UsedFieldIndex.end(),
                OrigIter = InitFieldIndex.begin(),
                OrigEnd = InitFieldIndex.end();
           UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
        if (*UsedIter < *OrigIter)
          return true;
        if (*UsedIter > *OrigIter)
          break;
      }

      // TODO: Add a different warning which will print the field names.
      HandleDeclRefExpr(DRE);
      return true;
    }

    // For most expressions, the cast is directly above the DeclRefExpr.
    // For conditional operators, the cast can be outside the conditional
    // operator if both expressions are DeclRefExpr's.
    void HandleValue(Expr *E) {
      E = E->IgnoreParens();
      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
        HandleDeclRefExpr(DRE);
        return;
      }

      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
        Visit(CO->getCond());
        HandleValue(CO->getTrueExpr());
        HandleValue(CO->getFalseExpr());
        return;
      }

      if (BinaryConditionalOperator *BCO =
              dyn_cast<BinaryConditionalOperator>(E)) {
        Visit(BCO->getCond());
        HandleValue(BCO->getFalseExpr());
        return;
      }

      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
        HandleValue(OVE->getSourceExpr());
        return;
      }

      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
        if (BO->getOpcode() == BO_Comma) {
          Visit(BO->getLHS());
          HandleValue(BO->getRHS());
          return;
        }
      }

      if (isa<MemberExpr>(E)) {
        if (isInitList) {
          if (CheckInitListMemberExpr(cast<MemberExpr>(E),
                                      false /*CheckReference*/))
            return;
        }

        Expr *Base = E->IgnoreParenImpCasts();
        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
          // Check for static member variables and don't warn on them.
          if (!isa<FieldDecl>(ME->getMemberDecl()))
            return;
          Base = ME->getBase()->IgnoreParenImpCasts();
        }
        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
          HandleDeclRefExpr(DRE);
        return;
      }

      Visit(E);
    }

    // Reference types not handled in HandleValue are handled here since all
    // uses of references are bad, not just r-value uses.
    void VisitDeclRefExpr(DeclRefExpr *E) {
      if (isReferenceType)
        HandleDeclRefExpr(E);
    }

    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
      if (E->getCastKind() == CK_LValueToRValue) {
        HandleValue(E->getSubExpr());
        return;
      }

      Inherited::VisitImplicitCastExpr(E);
    }

    void VisitMemberExpr(MemberExpr *E) {
      if (isInitList) {
        if (CheckInitListMemberExpr(E, true /*CheckReference*/))
          return;
      }

      // Don't warn on arrays since they can be treated as pointers.
      if (E->getType()->canDecayToPointerType()) return;

      // Warn when a non-static method call is followed by non-static member
      // field accesses, which is followed by a DeclRefExpr.
      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
      bool Warn = (MD && !MD->isStatic());
      Expr *Base = E->getBase()->IgnoreParenImpCasts();
      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
        if (!isa<FieldDecl>(ME->getMemberDecl()))
          Warn = false;
        Base = ME->getBase()->IgnoreParenImpCasts();
      }

      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
        if (Warn)
          HandleDeclRefExpr(DRE);
        return;
      }

      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
      // Visit that expression.
      Visit(Base);
    }

    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
      Expr *Callee = E->getCallee();

      if (isa<UnresolvedLookupExpr>(Callee))
        return Inherited::VisitCXXOperatorCallExpr(E);

      Visit(Callee);
      for (auto Arg: E->arguments())
        HandleValue(Arg->IgnoreParenImpCasts());
    }

    void VisitUnaryOperator(UnaryOperator *E) {
      // For POD record types, addresses of its own members are well-defined.
      if (E->getOpcode() == UO_AddrOf && isRecordType &&
          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
        if (!isPODType)
          HandleValue(E->getSubExpr());
        return;
      }

      if (E->isIncrementDecrementOp()) {
        HandleValue(E->getSubExpr());
        return;
      }

      Inherited::VisitUnaryOperator(E);
    }

    void VisitObjCMessageExpr(ObjCMessageExpr *E) {}

    void VisitCXXConstructExpr(CXXConstructExpr *E) {
      if (E->getConstructor()->isCopyConstructor()) {
        Expr *ArgExpr = E->getArg(0);
        if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
          if (ILE->getNumInits() == 1)
            ArgExpr = ILE->getInit(0);
        if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
          if (ICE->getCastKind() == CK_NoOp)
            ArgExpr = ICE->getSubExpr();
        HandleValue(ArgExpr);
        return;
      }
      Inherited::VisitCXXConstructExpr(E);
    }

    void VisitCallExpr(CallExpr *E) {
      // Treat std::move as a use.
      if (E->isCallToStdMove()) {
        HandleValue(E->getArg(0));
        return;
      }

      Inherited::VisitCallExpr(E);
    }

    void VisitBinaryOperator(BinaryOperator *E) {
      if (E->isCompoundAssignmentOp()) {
        HandleValue(E->getLHS());
        Visit(E->getRHS());
        return;
      }

      Inherited::VisitBinaryOperator(E);
    }

    // A custom visitor for BinaryConditionalOperator is needed because the
    // regular visitor would check the condition and true expression separately
    // but both point to the same place giving duplicate diagnostics.
    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
      Visit(E->getCond());
      Visit(E->getFalseExpr());
    }

    void HandleDeclRefExpr(DeclRefExpr *DRE) {
      Decl* ReferenceDecl = DRE->getDecl();
      if (OrigDecl != ReferenceDecl) return;
      unsigned diag;
      if (isReferenceType) {
        diag = diag::warn_uninit_self_reference_in_reference_init;
      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
        diag = diag::warn_static_self_reference_in_init;
      } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
                 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
                 DRE->getDecl()->getType()->isRecordType()) {
        diag = diag::warn_uninit_self_reference_in_init;
      } else {
        // Local variables will be handled by the CFG analysis.
        return;
      }

      S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
                            S.PDiag(diag)
                                << DRE->getDecl() << OrigDecl->getLocation()
                                << DRE->getSourceRange());
    }
  };

  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
                                 bool DirectInit) {
    // Parameters arguments are occassionially constructed with itself,
    // for instance, in recursive functions.  Skip them.
    if (isa<ParmVarDecl>(OrigDecl))
      return;

    E = E->IgnoreParens();

    // Skip checking T a = a where T is not a record or reference type.
    // Doing so is a way to silence uninitialized warnings.
    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
        if (ICE->getCastKind() == CK_LValueToRValue)
          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
            if (DRE->getDecl() == OrigDecl)
              return;

    SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
  }
} // end anonymous namespace

namespace {
  // Simple wrapper to add the name of a variable or (if no variable is
  // available) a DeclarationName into a diagnostic.
  struct VarDeclOrName {
    VarDecl *VDecl;
    DeclarationName Name;

    friend const Sema::SemaDiagnosticBuilder &
    operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
      return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
    }
  };
} // end anonymous namespace

QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
                                            DeclarationName Name, QualType Type,
                                            TypeSourceInfo *TSI,
                                            SourceRange Range, bool DirectInit,
                                            Expr *Init) {
  bool IsInitCapture = !VDecl;
  assert((!VDecl || !VDecl->isInitCapture()) &&
         "init captures are expected to be deduced prior to initialization");

  VarDeclOrName VN{VDecl, Name};

  DeducedType *Deduced = Type->getContainedDeducedType();
  assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");

  // C++11 [dcl.spec.auto]p3
  if (!Init) {
    assert(VDecl && "no init for init capture deduction?");

    // Except for class argument deduction, and then for an initializing
    // declaration only, i.e. no static at class scope or extern.
    if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
        VDecl->hasExternalStorage() ||
        VDecl->isStaticDataMember()) {
      Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
        << VDecl->getDeclName() << Type;
      return QualType();
    }
  }

  ArrayRef<Expr*> DeduceInits;
  if (Init)
    DeduceInits = Init;

  if (DirectInit) {
    if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
      DeduceInits = PL->exprs();
  }

  if (isa<DeducedTemplateSpecializationType>(Deduced)) {
    assert(VDecl && "non-auto type for init capture deduction?");
    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
    InitializationKind Kind = InitializationKind::CreateForInit(
        VDecl->getLocation(), DirectInit, Init);
    // FIXME: Initialization should not be taking a mutable list of inits.
    SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
    return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
                                                       InitsCopy);
  }

  if (DirectInit) {
    if (auto *IL = dyn_cast<InitListExpr>(Init))
      DeduceInits = IL->inits();
  }

  // Deduction only works if we have exactly one source expression.
  if (DeduceInits.empty()) {
    // It isn't possible to write this directly, but it is possible to
    // end up in this situation with "auto x(some_pack...);"
    Diag(Init->getBeginLoc(), IsInitCapture
                                  ? diag::err_init_capture_no_expression
                                  : diag::err_auto_var_init_no_expression)
        << VN << Type << Range;
    return QualType();
  }

  if (DeduceInits.size() > 1) {
    Diag(DeduceInits[1]->getBeginLoc(),
         IsInitCapture ? diag::err_init_capture_multiple_expressions
                       : diag::err_auto_var_init_multiple_expressions)
        << VN << Type << Range;
    return QualType();
  }

  Expr *DeduceInit = DeduceInits[0];
  if (DirectInit && isa<InitListExpr>(DeduceInit)) {
    Diag(Init->getBeginLoc(), IsInitCapture
                                  ? diag::err_init_capture_paren_braces
                                  : diag::err_auto_var_init_paren_braces)
        << isa<InitListExpr>(Init) << VN << Type << Range;
    return QualType();
  }

  // Expressions default to 'id' when we're in a debugger.
  bool DefaultedAnyToId = false;
  if (getLangOpts().DebuggerCastResultToId &&
      Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
    if (Result.isInvalid()) {
      return QualType();
    }
    Init = Result.get();
    DefaultedAnyToId = true;
  }

  // C++ [dcl.decomp]p1:
  //   If the assignment-expression [...] has array type A and no ref-qualifier
  //   is present, e has type cv A
  if (VDecl && isa<DecompositionDecl>(VDecl) &&
      Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
      DeduceInit->getType()->isConstantArrayType())
    return Context.getQualifiedType(DeduceInit->getType(),
                                    Type.getQualifiers());

  QualType DeducedType;
  if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
    if (!IsInitCapture)
      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
    else if (isa<InitListExpr>(Init))
      Diag(Range.getBegin(),
           diag::err_init_capture_deduction_failure_from_init_list)
          << VN
          << (DeduceInit->getType().isNull() ? TSI->getType()
                                             : DeduceInit->getType())
          << DeduceInit->getSourceRange();
    else
      Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
          << VN << TSI->getType()
          << (DeduceInit->getType().isNull() ? TSI->getType()
                                             : DeduceInit->getType())
          << DeduceInit->getSourceRange();
  }

  // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
  // 'id' instead of a specific object type prevents most of our usual
  // checks.
  // We only want to warn outside of template instantiations, though:
  // inside a template, the 'id' could have come from a parameter.
  if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
      !DeducedType.isNull() && DeducedType->isObjCIdType()) {
    SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
    Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
  }

  return DeducedType;
}

bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
                                         Expr *Init) {
  QualType DeducedType = deduceVarTypeFromInitializer(
      VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
      VDecl->getSourceRange(), DirectInit, Init);
  if (DeducedType.isNull()) {
    VDecl->setInvalidDecl();
    return true;
  }

  VDecl->setType(DeducedType);
  assert(VDecl->isLinkageValid());

  // In ARC, infer lifetime.
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
    VDecl->setInvalidDecl();

  if (getLangOpts().OpenCL)
    deduceOpenCLAddressSpace(VDecl);

  // If this is a redeclaration, check that the type we just deduced matches
  // the previously declared type.
  if (VarDecl *Old = VDecl->getPreviousDecl()) {
    // We never need to merge the type, because we cannot form an incomplete
    // array of auto, nor deduce such a type.
    MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
  }

  // Check the deduced type is valid for a variable declaration.
  CheckVariableDeclarationType(VDecl);
  return VDecl->isInvalidDecl();
}

void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
                                              SourceLocation Loc) {
  if (auto *CE = dyn_cast<ConstantExpr>(Init))
    Init = CE->getSubExpr();

  QualType InitType = Init->getType();
  assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
          InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
         "shouldn't be called if type doesn't have a non-trivial C struct");
  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
    for (auto I : ILE->inits()) {
      if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
          !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
        continue;
      SourceLocation SL = I->getExprLoc();
      checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
    }
    return;
  }

  if (isa<ImplicitValueInitExpr>(Init)) {
    if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
      checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
                            NTCUK_Init);
  } else {
    // Assume all other explicit initializers involving copying some existing
    // object.
    // TODO: ignore any explicit initializers where we can guarantee
    // copy-elision.
    if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
      checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
  }
}

namespace {

bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
  // Ignore unavailable fields. A field can be marked as unavailable explicitly
  // in the source code or implicitly by the compiler if it is in a union
  // defined in a system header and has non-trivial ObjC ownership
  // qualifications. We don't want those fields to participate in determining
  // whether the containing union is non-trivial.
  return FD->hasAttr<UnavailableAttr>();
}

struct DiagNonTrivalCUnionDefaultInitializeVisitor
    : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
                                    void> {
  using Super =
      DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
                                    void>;

  DiagNonTrivalCUnionDefaultInitializeVisitor(
      QualType OrigTy, SourceLocation OrigLoc,
      Sema::NonTrivialCUnionContext UseContext, Sema &S)
      : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}

  void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
                     const FieldDecl *FD, bool InNonTrivialUnion) {
    if (const auto *AT = S.Context.getAsArrayType(QT))
      return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
                                     InNonTrivialUnion);
    return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
  }

  void visitARCStrong(QualType QT, const FieldDecl *FD,
                      bool InNonTrivialUnion) {
    if (InNonTrivialUnion)
      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
          << 1 << 0 << QT << FD->getName();
  }

  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
    if (InNonTrivialUnion)
      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
          << 1 << 0 << QT << FD->getName();
  }

  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
    const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
    if (RD->isUnion()) {
      if (OrigLoc.isValid()) {
        bool IsUnion = false;
        if (auto *OrigRD = OrigTy->getAsRecordDecl())
          IsUnion = OrigRD->isUnion();
        S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
            << 0 << OrigTy << IsUnion << UseContext;
        // Reset OrigLoc so that this diagnostic is emitted only once.
        OrigLoc = SourceLocation();
      }
      InNonTrivialUnion = true;
    }

    if (InNonTrivialUnion)
      S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
          << 0 << 0 << QT.getUnqualifiedType() << "";

    for (const FieldDecl *FD : RD->fields())
      if (!shouldIgnoreForRecordTriviality(FD))
        asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
  }

  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}

  // The non-trivial C union type or the struct/union type that contains a
  // non-trivial C union.
  QualType OrigTy;
  SourceLocation OrigLoc;
  Sema::NonTrivialCUnionContext UseContext;
  Sema &S;
};

struct DiagNonTrivalCUnionDestructedTypeVisitor
    : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
  using Super =
      DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;

  DiagNonTrivalCUnionDestructedTypeVisitor(
      QualType OrigTy, SourceLocation OrigLoc,
      Sema::NonTrivialCUnionContext UseContext, Sema &S)
      : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}

  void visitWithKind(QualType::DestructionKind DK, QualType QT,
                     const FieldDecl *FD, bool InNonTrivialUnion) {
    if (const auto *AT = S.Context.getAsArrayType(QT))
      return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
                                     InNonTrivialUnion);
    return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
  }

  void visitARCStrong(QualType QT, const FieldDecl *FD,
                      bool InNonTrivialUnion) {
    if (InNonTrivialUnion)
      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
          << 1 << 1 << QT << FD->getName();
  }

  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
    if (InNonTrivialUnion)
      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
          << 1 << 1 << QT << FD->getName();
  }

  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
    const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
    if (RD->isUnion()) {
      if (OrigLoc.isValid()) {
        bool IsUnion = false;
        if (auto *OrigRD = OrigTy->getAsRecordDecl())
          IsUnion = OrigRD->isUnion();
        S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
            << 1 << OrigTy << IsUnion << UseContext;
        // Reset OrigLoc so that this diagnostic is emitted only once.
        OrigLoc = SourceLocation();
      }
      InNonTrivialUnion = true;
    }

    if (InNonTrivialUnion)
      S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
          << 0 << 1 << QT.getUnqualifiedType() << "";

    for (const FieldDecl *FD : RD->fields())
      if (!shouldIgnoreForRecordTriviality(FD))
        asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
  }

  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
  void visitCXXDestructor(QualType QT, const FieldDecl *FD,
                          bool InNonTrivialUnion) {}

  // The non-trivial C union type or the struct/union type that contains a
  // non-trivial C union.
  QualType OrigTy;
  SourceLocation OrigLoc;
  Sema::NonTrivialCUnionContext UseContext;
  Sema &S;
};

struct DiagNonTrivalCUnionCopyVisitor
    : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
  using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;

  DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
                                 Sema::NonTrivialCUnionContext UseContext,
                                 Sema &S)
      : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}

  void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
                     const FieldDecl *FD, bool InNonTrivialUnion) {
    if (const auto *AT = S.Context.getAsArrayType(QT))
      return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
                                     InNonTrivialUnion);
    return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
  }

  void visitARCStrong(QualType QT, const FieldDecl *FD,
                      bool InNonTrivialUnion) {
    if (InNonTrivialUnion)
      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
          << 1 << 2 << QT << FD->getName();
  }

  void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
    if (InNonTrivialUnion)
      S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
          << 1 << 2 << QT << FD->getName();
  }

  void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
    const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
    if (RD->isUnion()) {
      if (OrigLoc.isValid()) {
        bool IsUnion = false;
        if (auto *OrigRD = OrigTy->getAsRecordDecl())
          IsUnion = OrigRD->isUnion();
        S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
            << 2 << OrigTy << IsUnion << UseContext;
        // Reset OrigLoc so that this diagnostic is emitted only once.
        OrigLoc = SourceLocation();
      }
      InNonTrivialUnion = true;
    }

    if (InNonTrivialUnion)
      S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
          << 0 << 2 << QT.getUnqualifiedType() << "";

    for (const FieldDecl *FD : RD->fields())
      if (!shouldIgnoreForRecordTriviality(FD))
        asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
  }

  void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
                const FieldDecl *FD, bool InNonTrivialUnion) {}
  void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
  void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
                            bool InNonTrivialUnion) {}

  // The non-trivial C union type or the struct/union type that contains a
  // non-trivial C union.
  QualType OrigTy;
  SourceLocation OrigLoc;
  Sema::NonTrivialCUnionContext UseContext;
  Sema &S;
};

} // namespace

void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
                                 NonTrivialCUnionContext UseContext,
                                 unsigned NonTrivialKind) {
  assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
          QT.hasNonTrivialToPrimitiveDestructCUnion() ||
          QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
         "shouldn't be called if type doesn't have a non-trivial C union");

  if ((NonTrivialKind & NTCUK_Init) &&
      QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
    DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
        .visit(QT, nullptr, false);
  if ((NonTrivialKind & NTCUK_Destruct) &&
      QT.hasNonTrivialToPrimitiveDestructCUnion())
    DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
        .visit(QT, nullptr, false);
  if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
    DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
        .visit(QT, nullptr, false);
}

/// AddInitializerToDecl - Adds the initializer Init to the
/// declaration dcl. If DirectInit is true, this is C++ direct
/// initialization rather than copy initialization.
void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
  // If there is no declaration, there was an error parsing it.  Just ignore
  // the initializer.
  if (!RealDecl || RealDecl->isInvalidDecl()) {
    CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
    return;
  }

  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
    // Pure-specifiers are handled in ActOnPureSpecifier.
    Diag(Method->getLocation(), diag::err_member_function_initialization)
      << Method->getDeclName() << Init->getSourceRange();
    Method->setInvalidDecl();
    return;
  }

  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
  if (!VDecl) {
    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
    RealDecl->setInvalidDecl();
    return;
  }

  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
  if (VDecl->getType()->isUndeducedType()) {
    // Attempt typo correction early so that the type of the init expression can
    // be deduced based on the chosen correction if the original init contains a
    // TypoExpr.
    ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
    if (!Res.isUsable()) {
      RealDecl->setInvalidDecl();
      return;
    }
    Init = Res.get();

    if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
      return;
  }

  // dllimport cannot be used on variable definitions.
  if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
    Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
    VDecl->setInvalidDecl();
    return;
  }

  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
    VDecl->setInvalidDecl();
    return;
  }

  if (!VDecl->getType()->isDependentType()) {
    // A definition must end up with a complete type, which means it must be
    // complete with the restriction that an array type might be completed by
    // the initializer; note that later code assumes this restriction.
    QualType BaseDeclType = VDecl->getType();
    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
      BaseDeclType = Array->getElementType();
    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
                            diag::err_typecheck_decl_incomplete_type)) {
      RealDecl->setInvalidDecl();
      return;
    }

    // The variable can not have an abstract class type.
    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
                               diag::err_abstract_type_in_decl,
                               AbstractVariableType))
      VDecl->setInvalidDecl();
  }

  // If adding the initializer will turn this declaration into a definition,
  // and we already have a definition for this variable, diagnose or otherwise
  // handle the situation.
  VarDecl *Def;
  if ((Def = VDecl->getDefinition()) && Def != VDecl &&
      (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
      !VDecl->isThisDeclarationADemotedDefinition() &&
      checkVarDeclRedefinition(Def, VDecl))
    return;

  if (getLangOpts().CPlusPlus) {
    // C++ [class.static.data]p4
    //   If a static data member is of const integral or const
    //   enumeration type, its declaration in the class definition can
    //   specify a constant-initializer which shall be an integral
    //   constant expression (5.19). In that case, the member can appear
    //   in integral constant expressions. The member shall still be
    //   defined in a namespace scope if it is used in the program and the
    //   namespace scope definition shall not contain an initializer.
    //
    // We already performed a redefinition check above, but for static
    // data members we also need to check whether there was an in-class
    // declaration with an initializer.
    if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
      Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
          << VDecl->getDeclName();
      Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
           diag::note_previous_initializer)
          << 0;
      return;
    }

    if (VDecl->hasLocalStorage())
      setFunctionHasBranchProtectedScope();

    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
      VDecl->setInvalidDecl();
      return;
    }
  }

  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
  // a kernel function cannot be initialized."
  if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
    Diag(VDecl->getLocation(), diag::err_local_cant_init);
    VDecl->setInvalidDecl();
    return;
  }

  // Get the decls type and save a reference for later, since
  // CheckInitializerTypes may change it.
  QualType DclT = VDecl->getType(), SavT = DclT;

  // Expressions default to 'id' when we're in a debugger
  // and we are assigning it to a variable of Objective-C pointer type.
  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
      Init->getType() == Context.UnknownAnyTy) {
    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
    if (Result.isInvalid()) {
      VDecl->setInvalidDecl();
      return;
    }
    Init = Result.get();
  }

  // Perform the initialization.
  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
  if (!VDecl->isInvalidDecl()) {
    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
    InitializationKind Kind = InitializationKind::CreateForInit(
        VDecl->getLocation(), DirectInit, Init);

    MultiExprArg Args = Init;
    if (CXXDirectInit)
      Args = MultiExprArg(CXXDirectInit->getExprs(),
                          CXXDirectInit->getNumExprs());

    // Try to correct any TypoExprs in the initialization arguments.
    for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
      ExprResult Res = CorrectDelayedTyposInExpr(
          Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
            InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
            return Init.Failed() ? ExprError() : E;
          });
      if (Res.isInvalid()) {
        VDecl->setInvalidDecl();
      } else if (Res.get() != Args[Idx]) {
        Args[Idx] = Res.get();
      }
    }
    if (VDecl->isInvalidDecl())
      return;

    InitializationSequence InitSeq(*this, Entity, Kind, Args,
                                   /*TopLevelOfInitList=*/false,
                                   /*TreatUnavailableAsInvalid=*/false);
    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
    if (Result.isInvalid()) {
      VDecl->setInvalidDecl();
      return;
    }

    Init = Result.getAs<Expr>();
  }

  // Check for self-references within variable initializers.
  // Variables declared within a function/method body (except for references)
  // are handled by a dataflow analysis.
  // This is undefined behavior in C++, but valid in C.
  if (getLangOpts().CPlusPlus) {
    if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
        VDecl->getType()->isReferenceType()) {
      CheckSelfReference(*this, RealDecl, Init, DirectInit);
    }
  }

  // If the type changed, it means we had an incomplete type that was
  // completed by the initializer. For example:
  //   int ary[] = { 1, 3, 5 };
  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
  if (!VDecl->isInvalidDecl() && (DclT != SavT))
    VDecl->setType(DclT);

  if (!VDecl->isInvalidDecl()) {
    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);

    if (VDecl->hasAttr<BlocksAttr>())
      checkRetainCycles(VDecl, Init);

    // It is safe to assign a weak reference into a strong variable.
    // Although this code can still have problems:
    //   id x = self.weakProp;
    //   id y = self.weakProp;
    // we do not warn to warn spuriously when 'x' and 'y' are on separate
    // paths through the function. This should be revisited if
    // -Wrepeated-use-of-weak is made flow-sensitive.
    if (FunctionScopeInfo *FSI = getCurFunction())
      if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
           VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
          !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
                           Init->getBeginLoc()))
        FSI->markSafeWeakUse(Init);
  }

  // The initialization is usually a full-expression.
  //
  // FIXME: If this is a braced initialization of an aggregate, it is not
  // an expression, and each individual field initializer is a separate
  // full-expression. For instance, in:
  //
  //   struct Temp { ~Temp(); };
  //   struct S { S(Temp); };
  //   struct T { S a, b; } t = { Temp(), Temp() }
  //
  // we should destroy the first Temp before constructing the second.
  ExprResult Result =
      ActOnFinishFullExpr(Init, VDecl->getLocation(),
                          /*DiscardedValue*/ false, VDecl->isConstexpr());
  if (Result.isInvalid()) {
    VDecl->setInvalidDecl();
    return;
  }
  Init = Result.get();

  // Attach the initializer to the decl.
  VDecl->setInit(Init);

  if (VDecl->isLocalVarDecl()) {
    // Don't check the initializer if the declaration is malformed.
    if (VDecl->isInvalidDecl()) {
      // do nothing

    // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
    // This is true even in C++ for OpenCL.
    } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
      CheckForConstantInitializer(Init, DclT);

    // Otherwise, C++ does not restrict the initializer.
    } else if (getLangOpts().CPlusPlus) {
      // do nothing

    // C99 6.7.8p4: All the expressions in an initializer for an object that has
    // static storage duration shall be constant expressions or string literals.
    } else if (VDecl->getStorageClass() == SC_Static) {
      CheckForConstantInitializer(Init, DclT);

    // C89 is stricter than C99 for aggregate initializers.
    // C89 6.5.7p3: All the expressions [...] in an initializer list
    // for an object that has aggregate or union type shall be
    // constant expressions.
    } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
               isa<InitListExpr>(Init)) {
      const Expr *Culprit;
      if (!Init->isConstantInitializer(Context, false, &Culprit)) {
        Diag(Culprit->getExprLoc(),
             diag::ext_aggregate_init_not_constant)
          << Culprit->getSourceRange();
      }
    }

    if (auto *E = dyn_cast<ExprWithCleanups>(Init))
      if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
        if (VDecl->hasLocalStorage())
          BE->getBlockDecl()->setCanAvoidCopyToHeap();
  } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
             VDecl->getLexicalDeclContext()->isRecord()) {
    // This is an in-class initialization for a static data member, e.g.,
    //
    // struct S {
    //   static const int value = 17;
    // };

    // C++ [class.mem]p4:
    //   A member-declarator can contain a constant-initializer only
    //   if it declares a static member (9.4) of const integral or
    //   const enumeration type, see 9.4.2.
    //
    // C++11 [class.static.data]p3:
    //   If a non-volatile non-inline const static data member is of integral
    //   or enumeration type, its declaration in the class definition can
    //   specify a brace-or-equal-initializer in which every initializer-clause
    //   that is an assignment-expression is a constant expression. A static
    //   data member of literal type can be declared in the class definition
    //   with the constexpr specifier; if so, its declaration shall specify a
    //   brace-or-equal-initializer in which every initializer-clause that is
    //   an assignment-expression is a constant expression.

    // Do nothing on dependent types.
    if (DclT->isDependentType()) {

    // Allow any 'static constexpr' members, whether or not they are of literal
    // type. We separately check that every constexpr variable is of literal
    // type.
    } else if (VDecl->isConstexpr()) {

    // Require constness.
    } else if (!DclT.isConstQualified()) {
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
        << Init->getSourceRange();
      VDecl->setInvalidDecl();

    // We allow integer constant expressions in all cases.
    } else if (DclT->isIntegralOrEnumerationType()) {
      // Check whether the expression is a constant expression.
      SourceLocation Loc;
      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
        // In C++11, a non-constexpr const static data member with an
        // in-class initializer cannot be volatile.
        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
      else if (Init->isValueDependent())
        ; // Nothing to check.
      else if (Init->isIntegerConstantExpr(Context, &Loc))
        ; // Ok, it's an ICE!
      else if (Init->getType()->isScopedEnumeralType() &&
               Init->isCXX11ConstantExpr(Context))
        ; // Ok, it is a scoped-enum constant expression.
      else if (Init->isEvaluatable(Context)) {
        // If we can constant fold the initializer through heroics, accept it,
        // but report this as a use of an extension for -pedantic.
        Diag(Loc, diag::ext_in_class_initializer_non_constant)
          << Init->getSourceRange();
      } else {
        // Otherwise, this is some crazy unknown case.  Report the issue at the
        // location provided by the isIntegerConstantExpr failed check.
        Diag(Loc, diag::err_in_class_initializer_non_constant)
          << Init->getSourceRange();
        VDecl->setInvalidDecl();
      }

    // We allow foldable floating-point constants as an extension.
    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
      // In C++98, this is a GNU extension. In C++11, it is not, but we support
      // it anyway and provide a fixit to add the 'constexpr'.
      if (getLangOpts().CPlusPlus11) {
        Diag(VDecl->getLocation(),
             diag::ext_in_class_initializer_float_type_cxx11)
            << DclT << Init->getSourceRange();
        Diag(VDecl->getBeginLoc(),
             diag::note_in_class_initializer_float_type_cxx11)
            << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
      } else {
        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
          << DclT << Init->getSourceRange();

        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
            << Init->getSourceRange();
          VDecl->setInvalidDecl();
        }
      }

    // Suggest adding 'constexpr' in C++11 for literal types.
    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
          << DclT << Init->getSourceRange()
          << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
      VDecl->setConstexpr(true);

    } else {
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
        << DclT << Init->getSourceRange();
      VDecl->setInvalidDecl();
    }
  } else if (VDecl->isFileVarDecl()) {
    // In C, extern is typically used to avoid tentative definitions when
    // declaring variables in headers, but adding an intializer makes it a
    // definition. This is somewhat confusing, so GCC and Clang both warn on it.
    // In C++, extern is often used to give implictly static const variables
    // external linkage, so don't warn in that case. If selectany is present,
    // this might be header code intended for C and C++ inclusion, so apply the
    // C++ rules.
    if (VDecl->getStorageClass() == SC_Extern &&
        ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
         !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
        !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
        !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
      Diag(VDecl->getLocation(), diag::warn_extern_init);

    // In Microsoft C++ mode, a const variable defined in namespace scope has
    // external linkage by default if the variable is declared with
    // __declspec(dllexport).
    if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
        getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
        VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
      VDecl->setStorageClass(SC_Extern);

    // C99 6.7.8p4. All file scoped initializers need to be constant.
    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
      CheckForConstantInitializer(Init, DclT);
  }

  QualType InitType = Init->getType();
  if (!InitType.isNull() &&
      (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
       InitType.hasNonTrivialToPrimitiveCopyCUnion()))
    checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());

  // We will represent direct-initialization similarly to copy-initialization:
  //    int x(1);  -as-> int x = 1;
  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
  //
  // Clients that want to distinguish between the two forms, can check for
  // direct initializer using VarDecl::getInitStyle().
  // A major benefit is that clients that don't particularly care about which
  // exactly form was it (like the CodeGen) can handle both cases without
  // special case code.

  // C++ 8.5p11:
  // The form of initialization (using parentheses or '=') is generally
  // insignificant, but does matter when the entity being initialized has a
  // class type.
  if (CXXDirectInit) {
    assert(DirectInit && "Call-style initializer must be direct init.");
    VDecl->setInitStyle(VarDecl::CallInit);
  } else if (DirectInit) {
    // This must be list-initialization. No other way is direct-initialization.
    VDecl->setInitStyle(VarDecl::ListInit);
  }

  CheckCompleteVariableDeclaration(VDecl);
}

/// ActOnInitializerError - Given that there was an error parsing an
/// initializer for the given declaration, try to return to some form
/// of sanity.
void Sema::ActOnInitializerError(Decl *D) {
  // Our main concern here is re-establishing invariants like "a
  // variable's type is either dependent or complete".
  if (!D || D->isInvalidDecl()) return;

  VarDecl *VD = dyn_cast<VarDecl>(D);
  if (!VD) return;

  // Bindings are not usable if we can't make sense of the initializer.
  if (auto *DD = dyn_cast<DecompositionDecl>(D))
    for (auto *BD : DD->bindings())
      BD->setInvalidDecl();

  // Auto types are meaningless if we can't make sense of the initializer.
  if (ParsingInitForAutoVars.count(D)) {
    D->setInvalidDecl();
    return;
  }

  QualType Ty = VD->getType();
  if (Ty->isDependentType()) return;

  // Require a complete type.
  if (RequireCompleteType(VD->getLocation(),
                          Context.getBaseElementType(Ty),
                          diag::err_typecheck_decl_incomplete_type)) {
    VD->setInvalidDecl();
    return;
  }

  // Require a non-abstract type.
  if (RequireNonAbstractType(VD->getLocation(), Ty,
                             diag::err_abstract_type_in_decl,
                             AbstractVariableType)) {
    VD->setInvalidDecl();
    return;
  }

  // Don't bother complaining about constructors or destructors,
  // though.
}

void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
  // If there is no declaration, there was an error parsing it. Just ignore it.
  if (!RealDecl)
    return;

  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
    QualType Type = Var->getType();

    // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
    if (isa<DecompositionDecl>(RealDecl)) {
      Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
      Var->setInvalidDecl();
      return;
    }

    if (Type->isUndeducedType() &&
        DeduceVariableDeclarationType(Var, false, nullptr))
      return;

    // C++11 [class.static.data]p3: A static data member can be declared with
    // the constexpr specifier; if so, its declaration shall specify
    // a brace-or-equal-initializer.
    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
    // the definition of a variable [...] or the declaration of a static data
    // member.
    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
        !Var->isThisDeclarationADemotedDefinition()) {
      if (Var->isStaticDataMember()) {
        // C++1z removes the relevant rule; the in-class declaration is always
        // a definition there.
        if (!getLangOpts().CPlusPlus17 &&
            !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
          Diag(Var->getLocation(),
               diag::err_constexpr_static_mem_var_requires_init)
            << Var->getDeclName();
          Var->setInvalidDecl();
          return;
        }
      } else {
        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
        Var->setInvalidDecl();
        return;
      }
    }

    // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
    // be initialized.
    if (!Var->isInvalidDecl() &&
        Var->getType().getAddressSpace() == LangAS::opencl_constant &&
        Var->getStorageClass() != SC_Extern && !Var->getInit()) {
      Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
      Var->setInvalidDecl();
      return;
    }

    VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
    if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
        Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
      checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
                            NTCUC_DefaultInitializedObject, NTCUK_Init);


    switch (DefKind) {
    case VarDecl::Definition:
      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
        break;

      // We have an out-of-line definition of a static data member
      // that has an in-class initializer, so we type-check this like
      // a declaration.
      //
      LLVM_FALLTHROUGH;

    case VarDecl::DeclarationOnly:
      // It's only a declaration.

      // Block scope. C99 6.7p7: If an identifier for an object is
      // declared with no linkage (C99 6.2.2p6), the type for the
      // object shall be complete.
      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
          !Var->hasLinkage() && !Var->isInvalidDecl() &&
          RequireCompleteType(Var->getLocation(), Type,
                              diag::err_typecheck_decl_incomplete_type))
        Var->setInvalidDecl();

      // Make sure that the type is not abstract.
      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
          RequireNonAbstractType(Var->getLocation(), Type,
                                 diag::err_abstract_type_in_decl,
                                 AbstractVariableType))
        Var->setInvalidDecl();
      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
          Var->getStorageClass() == SC_PrivateExtern) {
        Diag(Var->getLocation(), diag::warn_private_extern);
        Diag(Var->getLocation(), diag::note_private_extern);
      }

      if (Context.getTargetInfo().allowDebugInfoForExternalVar() &&
          !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
        ExternalDeclarations.push_back(Var);

      return;

    case VarDecl::TentativeDefinition:
      // File scope. C99 6.9.2p2: A declaration of an identifier for an
      // object that has file scope without an initializer, and without a
      // storage-class specifier or with the storage-class specifier "static",
      // constitutes a tentative definition. Note: A tentative definition with
      // external linkage is valid (C99 6.2.2p5).
      if (!Var->isInvalidDecl()) {
        if (const IncompleteArrayType *ArrayT
                                    = Context.getAsIncompleteArrayType(Type)) {
          if (RequireCompleteType(Var->getLocation(),
                                  ArrayT->getElementType(),
                                  diag::err_illegal_decl_array_incomplete_type))
            Var->setInvalidDecl();
        } else if (Var->getStorageClass() == SC_Static) {
          // C99 6.9.2p3: If the declaration of an identifier for an object is
          // a tentative definition and has internal linkage (C99 6.2.2p3), the
          // declared type shall not be an incomplete type.
          // NOTE: code such as the following
          //     static struct s;
          //     struct s { int a; };
          // is accepted by gcc. Hence here we issue a warning instead of
          // an error and we do not invalidate the static declaration.
          // NOTE: to avoid multiple warnings, only check the first declaration.
          if (Var->isFirstDecl())
            RequireCompleteType(Var->getLocation(), Type,
                                diag::ext_typecheck_decl_incomplete_type);
        }
      }

      // Record the tentative definition; we're done.
      if (!Var->isInvalidDecl())
        TentativeDefinitions.push_back(Var);
      return;
    }

    // Provide a specific diagnostic for uninitialized variable
    // definitions with incomplete array type.
    if (Type->isIncompleteArrayType()) {
      Diag(Var->getLocation(),
           diag::err_typecheck_incomplete_array_needs_initializer);
      Var->setInvalidDecl();
      return;
    }

    // Provide a specific diagnostic for uninitialized variable
    // definitions with reference type.
    if (Type->isReferenceType()) {
      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
        << Var->getDeclName()
        << SourceRange(Var->getLocation(), Var->getLocation());
      Var->setInvalidDecl();
      return;
    }

    // Do not attempt to type-check the default initializer for a
    // variable with dependent type.
    if (Type->isDependentType())
      return;

    if (Var->isInvalidDecl())
      return;

    if (!Var->hasAttr<AliasAttr>()) {
      if (RequireCompleteType(Var->getLocation(),
                              Context.getBaseElementType(Type),
                              diag::err_typecheck_decl_incomplete_type)) {
        Var->setInvalidDecl();
        return;
      }
    } else {
      return;
    }

    // The variable can not have an abstract class type.
    if (RequireNonAbstractType(Var->getLocation(), Type,
                               diag::err_abstract_type_in_decl,
                               AbstractVariableType)) {
      Var->setInvalidDecl();
      return;
    }

    // Check for jumps past the implicit initializer.  C++0x
    // clarifies that this applies to a "variable with automatic
    // storage duration", not a "local variable".
    // C++11 [stmt.dcl]p3
    //   A program that jumps from a point where a variable with automatic
    //   storage duration is not in scope to a point where it is in scope is
    //   ill-formed unless the variable has scalar type, class type with a
    //   trivial default constructor and a trivial destructor, a cv-qualified
    //   version of one of these types, or an array of one of the preceding
    //   types and is declared without an initializer.
    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
      if (const RecordType *Record
            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
        // Mark the function (if we're in one) for further checking even if the
        // looser rules of C++11 do not require such checks, so that we can
        // diagnose incompatibilities with C++98.
        if (!CXXRecord->isPOD())
          setFunctionHasBranchProtectedScope();
      }
    }
    // In OpenCL, we can't initialize objects in the __local address space,
    // even implicitly, so don't synthesize an implicit initializer.
    if (getLangOpts().OpenCL &&
        Var->getType().getAddressSpace() == LangAS::opencl_local)
      return;
    // C++03 [dcl.init]p9:
    //   If no initializer is specified for an object, and the
    //   object is of (possibly cv-qualified) non-POD class type (or
    //   array thereof), the object shall be default-initialized; if
    //   the object is of const-qualified type, the underlying class
    //   type shall have a user-declared default
    //   constructor. Otherwise, if no initializer is specified for
    //   a non- static object, the object and its subobjects, if
    //   any, have an indeterminate initial value); if the object
    //   or any of its subobjects are of const-qualified type, the
    //   program is ill-formed.
    // C++0x [dcl.init]p11:
    //   If no initializer is specified for an object, the object is
    //   default-initialized; [...].
    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
    InitializationKind Kind
      = InitializationKind::CreateDefault(Var->getLocation());

    InitializationSequence InitSeq(*this, Entity, Kind, None);
    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
    if (Init.isInvalid())
      Var->setInvalidDecl();
    else if (Init.get()) {
      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
      // This is important for template substitution.
      Var->setInitStyle(VarDecl::CallInit);
    }

    CheckCompleteVariableDeclaration(Var);
  }
}

void Sema::ActOnCXXForRangeDecl(Decl *D) {
  // If there is no declaration, there was an error parsing it. Ignore it.
  if (!D)
    return;

  VarDecl *VD = dyn_cast<VarDecl>(D);
  if (!VD) {
    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
    D->setInvalidDecl();
    return;
  }

  VD->setCXXForRangeDecl(true);

  // for-range-declaration cannot be given a storage class specifier.
  int Error = -1;
  switch (VD->getStorageClass()) {
  case SC_None:
    break;
  case SC_Extern:
    Error = 0;
    break;
  case SC_Static:
    Error = 1;
    break;
  case SC_PrivateExtern:
    Error = 2;
    break;
  case SC_Auto:
    Error = 3;
    break;
  case SC_Register:
    Error = 4;
    break;
  }
  if (Error != -1) {
    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
      << VD->getDeclName() << Error;
    D->setInvalidDecl();
  }
}

StmtResult
Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
                                 IdentifierInfo *Ident,
                                 ParsedAttributes &Attrs,
                                 SourceLocation AttrEnd) {
  // C++1y [stmt.iter]p1:
  //   A range-based for statement of the form
  //      for ( for-range-identifier : for-range-initializer ) statement
  //   is equivalent to
  //      for ( auto&& for-range-identifier : for-range-initializer ) statement
  DeclSpec DS(Attrs.getPool().getFactory());

  const char *PrevSpec;
  unsigned DiagID;
  DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
                     getPrintingPolicy());

  Declarator D(DS, DeclaratorContext::ForContext);
  D.SetIdentifier(Ident, IdentLoc);
  D.takeAttributes(Attrs, AttrEnd);

  D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
                IdentLoc);
  Decl *Var = ActOnDeclarator(S, D);
  cast<VarDecl>(Var)->setCXXForRangeDecl(true);
  FinalizeDeclaration(Var);
  return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
                       AttrEnd.isValid() ? AttrEnd : IdentLoc);
}

void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
  if (var->isInvalidDecl()) return;

  if (getLangOpts().OpenCL) {
    // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
    // initialiser
    if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
        !var->hasInit()) {
      Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
          << 1 /*Init*/;
      var->setInvalidDecl();
      return;
    }
  }

  // In Objective-C, don't allow jumps past the implicit initialization of a
  // local retaining variable.
  if (getLangOpts().ObjC &&
      var->hasLocalStorage()) {
    switch (var->getType().getObjCLifetime()) {
    case Qualifiers::OCL_None:
    case Qualifiers::OCL_ExplicitNone:
    case Qualifiers::OCL_Autoreleasing:
      break;

    case Qualifiers::OCL_Weak:
    case Qualifiers::OCL_Strong:
      setFunctionHasBranchProtectedScope();
      break;
    }
  }

  if (var->hasLocalStorage() &&
      var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
    setFunctionHasBranchProtectedScope();

  // Warn about externally-visible variables being defined without a
  // prior declaration.  We only want to do this for global
  // declarations, but we also specifically need to avoid doing it for
  // class members because the linkage of an anonymous class can
  // change if it's later given a typedef name.
  if (var->isThisDeclarationADefinition() &&
      var->getDeclContext()->getRedeclContext()->isFileContext() &&
      var->isExternallyVisible() && var->hasLinkage() &&
      !var->isInline() && !var->getDescribedVarTemplate() &&
      !isa<VarTemplatePartialSpecializationDecl>(var) &&
      !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
      !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
                                  var->getLocation())) {
    // Find a previous declaration that's not a definition.
    VarDecl *prev = var->getPreviousDecl();
    while (prev && prev->isThisDeclarationADefinition())
      prev = prev->getPreviousDecl();

    if (!prev) {
      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
      Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
          << /* variable */ 0;
    }
  }

  // Cache the result of checking for constant initialization.
  Optional<bool> CacheHasConstInit;
  const Expr *CacheCulprit = nullptr;
  auto checkConstInit = [&]() mutable {
    if (!CacheHasConstInit)
      CacheHasConstInit = var->getInit()->isConstantInitializer(
            Context, var->getType()->isReferenceType(), &CacheCulprit);
    return *CacheHasConstInit;
  };

  if (var->getTLSKind() == VarDecl::TLS_Static) {
    if (var->getType().isDestructedType()) {
      // GNU C++98 edits for __thread, [basic.start.term]p3:
      //   The type of an object with thread storage duration shall not
      //   have a non-trivial destructor.
      Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
      if (getLangOpts().CPlusPlus11)
        Diag(var->getLocation(), diag::note_use_thread_local);
    } else if (getLangOpts().CPlusPlus && var->hasInit()) {
      if (!checkConstInit()) {
        // GNU C++98 edits for __thread, [basic.start.init]p4:
        //   An object of thread storage duration shall not require dynamic
        //   initialization.
        // FIXME: Need strict checking here.
        Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
          << CacheCulprit->getSourceRange();
        if (getLangOpts().CPlusPlus11)
          Diag(var->getLocation(), diag::note_use_thread_local);
      }
    }
  }

  // Apply section attributes and pragmas to global variables.
  bool GlobalStorage = var->hasGlobalStorage();
  if (GlobalStorage && var->isThisDeclarationADefinition() &&
      !inTemplateInstantiation()) {
    PragmaStack<StringLiteral *> *Stack = nullptr;
    int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
    if (var->getType().isConstQualified())
      Stack = &ConstSegStack;
    else if (!var->getInit()) {
      Stack = &BSSSegStack;
      SectionFlags |= ASTContext::PSF_Write;
    } else {
      Stack = &DataSegStack;
      SectionFlags |= ASTContext::PSF_Write;
    }
    if (Stack->CurrentValue && !var->hasAttr<SectionAttr>())
      var->addAttr(SectionAttr::CreateImplicit(
          Context, Stack->CurrentValue->getString(),
          Stack->CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
          SectionAttr::Declspec_allocate));
    if (const SectionAttr *SA = var->getAttr<SectionAttr>())
      if (UnifySection(SA->getName(), SectionFlags, var))
        var->dropAttr<SectionAttr>();

    // Apply the init_seg attribute if this has an initializer.  If the
    // initializer turns out to not be dynamic, we'll end up ignoring this
    // attribute.
    if (CurInitSeg && var->getInit())
      var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
                                               CurInitSegLoc,
                                               AttributeCommonInfo::AS_Pragma));
  }

  // All the following checks are C++ only.
  if (!getLangOpts().CPlusPlus) {
      // If this variable must be emitted, add it as an initializer for the
      // current module.
     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
       Context.addModuleInitializer(ModuleScopes.back().Module, var);
     return;
  }

  if (auto *DD = dyn_cast<DecompositionDecl>(var))
    CheckCompleteDecompositionDeclaration(DD);

  QualType type = var->getType();
  if (type->isDependentType()) return;

  if (var->hasAttr<BlocksAttr>())
    getCurFunction()->addByrefBlockVar(var);

  Expr *Init = var->getInit();
  bool IsGlobal = GlobalStorage && !var->isStaticLocal();
  QualType baseType = Context.getBaseElementType(type);

  if (Init && !Init->isValueDependent()) {
    if (var->isConstexpr()) {
      SmallVector<PartialDiagnosticAt, 8> Notes;
      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
        SourceLocation DiagLoc = var->getLocation();
        // If the note doesn't add any useful information other than a source
        // location, fold it into the primary diagnostic.
        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
              diag::note_invalid_subexpr_in_const_expr) {
          DiagLoc = Notes[0].first;
          Notes.clear();
        }
        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
          << var << Init->getSourceRange();
        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
          Diag(Notes[I].first, Notes[I].second);
      }
    } else if (var->mightBeUsableInConstantExpressions(Context)) {
      // Check whether the initializer of a const variable of integral or
      // enumeration type is an ICE now, since we can't tell whether it was
      // initialized by a constant expression if we check later.
      var->checkInitIsICE();
    }

    // Don't emit further diagnostics about constexpr globals since they
    // were just diagnosed.
    if (!var->isConstexpr() && GlobalStorage && var->hasAttr<ConstInitAttr>()) {
      // FIXME: Need strict checking in C++03 here.
      bool DiagErr = getLangOpts().CPlusPlus11
          ? !var->checkInitIsICE() : !checkConstInit();
      if (DiagErr) {
        auto *Attr = var->getAttr<ConstInitAttr>();
        Diag(var->getLocation(), diag::err_require_constant_init_failed)
          << Init->getSourceRange();
        Diag(Attr->getLocation(),
             diag::note_declared_required_constant_init_here)
            << Attr->getRange() << Attr->isConstinit();
        if (getLangOpts().CPlusPlus11) {
          APValue Value;
          SmallVector<PartialDiagnosticAt, 8> Notes;
          Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
          for (auto &it : Notes)
            Diag(it.first, it.second);
        } else {
          Diag(CacheCulprit->getExprLoc(),
               diag::note_invalid_subexpr_in_const_expr)
              << CacheCulprit->getSourceRange();
        }
      }
    }
    else if (!var->isConstexpr() && IsGlobal &&
             !getDiagnostics().isIgnored(diag::warn_global_constructor,
                                    var->getLocation())) {
      // Warn about globals which don't have a constant initializer.  Don't
      // warn about globals with a non-trivial destructor because we already
      // warned about them.
      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
      if (!(RD && !RD->hasTrivialDestructor())) {
        if (!checkConstInit())
          Diag(var->getLocation(), diag::warn_global_constructor)
            << Init->getSourceRange();
      }
    }
  }

  // Require the destructor.
  if (const RecordType *recordType = baseType->getAs<RecordType>())
    FinalizeVarWithDestructor(var, recordType);

  // If this variable must be emitted, add it as an initializer for the current
  // module.
  if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
    Context.addModuleInitializer(ModuleScopes.back().Module, var);
}

/// Determines if a variable's alignment is dependent.
static bool hasDependentAlignment(VarDecl *VD) {
  if (VD->getType()->isDependentType())
    return true;
  for (auto *I : VD->specific_attrs<AlignedAttr>())
    if (I->isAlignmentDependent())
      return true;
  return false;
}

/// Check if VD needs to be dllexport/dllimport due to being in a
/// dllexport/import function.
void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
  assert(VD->isStaticLocal());

  auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());

  // Find outermost function when VD is in lambda function.
  while (FD && !getDLLAttr(FD) &&
         !FD->hasAttr<DLLExportStaticLocalAttr>() &&
         !FD->hasAttr<DLLImportStaticLocalAttr>()) {
    FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
  }

  if (!FD)
    return;

  // Static locals inherit dll attributes from their function.
  if (Attr *A = getDLLAttr(FD)) {
    auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
    NewAttr->setInherited(true);
    VD->addAttr(NewAttr);
  } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
    auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
    NewAttr->setInherited(true);
    VD->addAttr(NewAttr);

    // Export this function to enforce exporting this static variable even
    // if it is not used in this compilation unit.
    if (!FD->hasAttr<DLLExportAttr>())
      FD->addAttr(NewAttr);

  } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
    auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
    NewAttr->setInherited(true);
    VD->addAttr(NewAttr);
  }
}

/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
/// any semantic actions necessary after any initializer has been attached.
void Sema::FinalizeDeclaration(Decl *ThisDecl) {
  // Note that we are no longer parsing the initializer for this declaration.
  ParsingInitForAutoVars.erase(ThisDecl);

  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
  if (!VD)
    return;

  // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
  if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
      !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
    if (PragmaClangBSSSection.Valid)
      VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
          Context, PragmaClangBSSSection.SectionName,
          PragmaClangBSSSection.PragmaLocation,
          AttributeCommonInfo::AS_Pragma));
    if (PragmaClangDataSection.Valid)
      VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
          Context, PragmaClangDataSection.SectionName,
          PragmaClangDataSection.PragmaLocation,
          AttributeCommonInfo::AS_Pragma));
    if (PragmaClangRodataSection.Valid)
      VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
          Context, PragmaClangRodataSection.SectionName,
          PragmaClangRodataSection.PragmaLocation,
          AttributeCommonInfo::AS_Pragma));
    if (PragmaClangRelroSection.Valid)
      VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
          Context, PragmaClangRelroSection.SectionName,
          PragmaClangRelroSection.PragmaLocation,
          AttributeCommonInfo::AS_Pragma));
  }

  if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
    for (auto *BD : DD->bindings()) {
      FinalizeDeclaration(BD);
    }
  }

  checkAttributesAfterMerging(*this, *VD);

  // Perform TLS alignment check here after attributes attached to the variable
  // which may affect the alignment have been processed. Only perform the check
  // if the target has a maximum TLS alignment (zero means no constraints).
  if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
    // Protect the check so that it's not performed on dependent types and
    // dependent alignments (we can't determine the alignment in that case).
    if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
        !VD->isInvalidDecl()) {
      CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
      if (Context.getDeclAlign(VD) > MaxAlignChars) {
        Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
          << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
          << (unsigned)MaxAlignChars.getQuantity();
      }
    }
  }

  if (VD->isStaticLocal()) {
    CheckStaticLocalForDllExport(VD);

    if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
      // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
      // function, only __shared__ variables or variables without any device
      // memory qualifiers may be declared with static storage class.
      // Note: It is unclear how a function-scope non-const static variable
      // without device memory qualifier is implemented, therefore only static
      // const variable without device memory qualifier is allowed.
      [&]() {
        if (!getLangOpts().CUDA)
          return;
        if (VD->hasAttr<CUDASharedAttr>())
          return;
        if (VD->getType().isConstQualified() &&
            !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
          return;
        if (CUDADiagIfDeviceCode(VD->getLocation(),
                                 diag::err_device_static_local_var)
            << CurrentCUDATarget())
          VD->setInvalidDecl();
      }();
    }
  }

  // Perform check for initializers of device-side global variables.
  // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
  // 7.5). We must also apply the same checks to all __shared__
  // variables whether they are local or not. CUDA also allows
  // constant initializers for __constant__ and __device__ variables.
  if (getLangOpts().CUDA)
    checkAllowedCUDAInitializer(VD);

  // Grab the dllimport or dllexport attribute off of the VarDecl.
  const InheritableAttr *DLLAttr = getDLLAttr(VD);

  // Imported static data members cannot be defined out-of-line.
  if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
    if (VD->isStaticDataMember() && VD->isOutOfLine() &&
        VD->isThisDeclarationADefinition()) {
      // We allow definitions of dllimport class template static data members
      // with a warning.
      CXXRecordDecl *Context =
        cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
      bool IsClassTemplateMember =
          isa<ClassTemplatePartialSpecializationDecl>(Context) ||
          Context->getDescribedClassTemplate();

      Diag(VD->getLocation(),
           IsClassTemplateMember
               ? diag::warn_attribute_dllimport_static_field_definition
               : diag::err_attribute_dllimport_static_field_definition);
      Diag(IA->getLocation(), diag::note_attribute);
      if (!IsClassTemplateMember)
        VD->setInvalidDecl();
    }
  }

  // dllimport/dllexport variables cannot be thread local, their TLS index
  // isn't exported with the variable.
  if (DLLAttr && VD->getTLSKind()) {
    auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
    if (F && getDLLAttr(F)) {
      assert(VD->isStaticLocal());
      // But if this is a static local in a dlimport/dllexport function, the
      // function will never be inlined, which means the var would never be
      // imported, so having it marked import/export is safe.
    } else {
      Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
                                                                    << DLLAttr;
      VD->setInvalidDecl();
    }
  }

  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
    if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
      Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
      VD->dropAttr<UsedAttr>();
    }
  }

  const DeclContext *DC = VD->getDeclContext();
  // If there's a #pragma GCC visibility in scope, and this isn't a class
  // member, set the visibility of this variable.
  if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
    AddPushedVisibilityAttribute(VD);

  // FIXME: Warn on unused var template partial specializations.
  if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
    MarkUnusedFileScopedDecl(VD);

  // Now we have parsed the initializer and can update the table of magic
  // tag values.
  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
      !VD->getType()->isIntegralOrEnumerationType())
    return;

  for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
    const Expr *MagicValueExpr = VD->getInit();
    if (!MagicValueExpr) {
      continue;
    }
    llvm::APSInt MagicValueInt;
    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
      Diag(I->getRange().getBegin(),
           diag::err_type_tag_for_datatype_not_ice)
        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
      continue;
    }
    if (MagicValueInt.getActiveBits() > 64) {
      Diag(I->getRange().getBegin(),
           diag::err_type_tag_for_datatype_too_large)
        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
      continue;
    }
    uint64_t MagicValue = MagicValueInt.getZExtValue();
    RegisterTypeTagForDatatype(I->getArgumentKind(),
                               MagicValue,
                               I->getMatchingCType(),
                               I->getLayoutCompatible(),
                               I->getMustBeNull());
  }
}

static bool hasDeducedAuto(DeclaratorDecl *DD) {
  auto *VD = dyn_cast<VarDecl>(DD);
  return VD && !VD->getType()->hasAutoForTrailingReturnType();
}

Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
                                                   ArrayRef<Decl *> Group) {
  SmallVector<Decl*, 8> Decls;

  if (DS.isTypeSpecOwned())
    Decls.push_back(DS.getRepAsDecl());

  DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
  DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
  bool DiagnosedMultipleDecomps = false;
  DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
  bool DiagnosedNonDeducedAuto = false;

  for (unsigned i = 0, e = Group.size(); i != e; ++i) {
    if (Decl *D = Group[i]) {
      // For declarators, there are some additional syntactic-ish checks we need
      // to perform.
      if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
        if (!FirstDeclaratorInGroup)
          FirstDeclaratorInGroup = DD;
        if (!FirstDecompDeclaratorInGroup)
          FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
        if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
            !hasDeducedAuto(DD))
          FirstNonDeducedAutoInGroup = DD;

        if (FirstDeclaratorInGroup != DD) {
          // A decomposition declaration cannot be combined with any other
          // declaration in the same group.
          if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
            Diag(FirstDecompDeclaratorInGroup->getLocation(),
                 diag::err_decomp_decl_not_alone)
                << FirstDeclaratorInGroup->getSourceRange()
                << DD->getSourceRange();
            DiagnosedMultipleDecomps = true;
          }

          // A declarator that uses 'auto' in any way other than to declare a
          // variable with a deduced type cannot be combined with any other
          // declarator in the same group.
          if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
            Diag(FirstNonDeducedAutoInGroup->getLocation(),
                 diag::err_auto_non_deduced_not_alone)
                << FirstNonDeducedAutoInGroup->getType()
                       ->hasAutoForTrailingReturnType()
                << FirstDeclaratorInGroup->getSourceRange()
                << DD->getSourceRange();
            DiagnosedNonDeducedAuto = true;
          }
        }
      }

      Decls.push_back(D);
    }
  }

  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
    if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
      handleTagNumbering(Tag, S);
      if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
          getLangOpts().CPlusPlus)
        Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
    }
  }

  return BuildDeclaratorGroup(Decls);
}

/// BuildDeclaratorGroup - convert a list of declarations into a declaration
/// group, performing any necessary semantic checking.
Sema::DeclGroupPtrTy
Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
  // C++14 [dcl.spec.auto]p7: (DR1347)
  //   If the type that replaces the placeholder type is not the same in each
  //   deduction, the program is ill-formed.
  if (Group.size() > 1) {
    QualType Deduced;
    VarDecl *DeducedDecl = nullptr;
    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
      VarDecl *D = dyn_cast<VarDecl>(Group[i]);
      if (!D || D->isInvalidDecl())
        break;
      DeducedType *DT = D->getType()->getContainedDeducedType();
      if (!DT || DT->getDeducedType().isNull())
        continue;
      if (Deduced.isNull()) {
        Deduced = DT->getDeducedType();
        DeducedDecl = D;
      } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
        auto *AT = dyn_cast<AutoType>(DT);
        Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
             diag::err_auto_different_deductions)
          << (AT ? (unsigned)AT->getKeyword() : 3)
          << Deduced << DeducedDecl->getDeclName()
          << DT->getDeducedType() << D->getDeclName()
          << DeducedDecl->getInit()->getSourceRange()
          << D->getInit()->getSourceRange();
        D->setInvalidDecl();
        break;
      }
    }
  }

  ActOnDocumentableDecls(Group);

  return DeclGroupPtrTy::make(
      DeclGroupRef::Create(Context, Group.data(), Group.size()));
}

void Sema::ActOnDocumentableDecl(Decl *D) {
  ActOnDocumentableDecls(D);
}

void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
  // Don't parse the comment if Doxygen diagnostics are ignored.
  if (Group.empty() || !Group[0])
    return;

  if (Diags.isIgnored(diag::warn_doc_param_not_found,
                      Group[0]->getLocation()) &&
      Diags.isIgnored(diag::warn_unknown_comment_command_name,
                      Group[0]->getLocation()))
    return;

  if (Group.size() >= 2) {
    // This is a decl group.  Normally it will contain only declarations
    // produced from declarator list.  But in case we have any definitions or
    // additional declaration references:
    //   'typedef struct S {} S;'
    //   'typedef struct S *S;'
    //   'struct S *pS;'
    // FinalizeDeclaratorGroup adds these as separate declarations.
    Decl *MaybeTagDecl = Group[0];
    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
      Group = Group.slice(1);
    }
  }

  // FIMXE: We assume every Decl in the group is in the same file.
  // This is false when preprocessor constructs the group from decls in
  // different files (e. g. macros or #include).
  Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
}

/// Common checks for a parameter-declaration that should apply to both function
/// parameters and non-type template parameters.
void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
  // Check that there are no default arguments inside the type of this
  // parameter.
  if (getLangOpts().CPlusPlus)
    CheckExtraCXXDefaultArguments(D);

  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
  if (D.getCXXScopeSpec().isSet()) {
    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
      << D.getCXXScopeSpec().getRange();
  }

  // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
  // simple identifier except [...irrelevant cases...].
  switch (D.getName().getKind()) {
  case UnqualifiedIdKind::IK_Identifier:
    break;

  case UnqualifiedIdKind::IK_OperatorFunctionId:
  case UnqualifiedIdKind::IK_ConversionFunctionId:
  case UnqualifiedIdKind::IK_LiteralOperatorId:
  case UnqualifiedIdKind::IK_ConstructorName:
  case UnqualifiedIdKind::IK_DestructorName:
  case UnqualifiedIdKind::IK_ImplicitSelfParam:
  case UnqualifiedIdKind::IK_DeductionGuideName:
    Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
      << GetNameForDeclarator(D).getName();
    break;

  case UnqualifiedIdKind::IK_TemplateId:
  case UnqualifiedIdKind::IK_ConstructorTemplateId:
    // GetNameForDeclarator would not produce a useful name in this case.
    Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
    break;
  }
}

/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
/// to introduce parameters into function prototype scope.
Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
  const DeclSpec &DS = D.getDeclSpec();

  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.

  // C++03 [dcl.stc]p2 also permits 'auto'.
  StorageClass SC = SC_None;
  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
    SC = SC_Register;
    // In C++11, the 'register' storage class specifier is deprecated.
    // In C++17, it is not allowed, but we tolerate it as an extension.
    if (getLangOpts().CPlusPlus11) {
      Diag(DS.getStorageClassSpecLoc(),
           getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
                                     : diag::warn_deprecated_register)
        << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
    }
  } else if (getLangOpts().CPlusPlus &&
             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
    SC = SC_Auto;
  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
    Diag(DS.getStorageClassSpecLoc(),
         diag::err_invalid_storage_class_in_func_decl);
    D.getMutableDeclSpec().ClearStorageClassSpecs();
  }

  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
      << DeclSpec::getSpecifierName(TSCS);
  if (DS.isInlineSpecified())
    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
        << getLangOpts().CPlusPlus17;
  if (DS.hasConstexprSpecifier())
    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
        << 0 << D.getDeclSpec().getConstexprSpecifier();

  DiagnoseFunctionSpecifiers(DS);

  CheckFunctionOrTemplateParamDeclarator(S, D);

  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
  QualType parmDeclType = TInfo->getType();

  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
  IdentifierInfo *II = D.getIdentifier();
  if (II) {
    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
                   ForVisibleRedeclaration);
    LookupName(R, S);
    if (R.isSingleResult()) {
      NamedDecl *PrevDecl = R.getFoundDecl();
      if (PrevDecl->isTemplateParameter()) {
        // Maybe we will complain about the shadowed template parameter.
        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
        // Just pretend that we didn't see the previous declaration.
        PrevDecl = nullptr;
      } else if (S->isDeclScope(PrevDecl)) {
        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);

        // Recover by removing the name
        II = nullptr;
        D.SetIdentifier(nullptr, D.getIdentifierLoc());
        D.setInvalidType(true);
      }
    }
  }

  // Temporarily put parameter variables in the translation unit, not
  // the enclosing context.  This prevents them from accidentally
  // looking like class members in C++.
  ParmVarDecl *New =
      CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
                     D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);

  if (D.isInvalidType())
    New->setInvalidDecl();

  assert(S->isFunctionPrototypeScope());
  assert(S->getFunctionPrototypeDepth() >= 1);
  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
                    S->getNextFunctionPrototypeIndex());

  // Add the parameter declaration into this scope.
  S->AddDecl(New);
  if (II)
    IdResolver.AddDecl(New);

  ProcessDeclAttributes(S, New, D);

  if (D.getDeclSpec().isModulePrivateSpecified())
    Diag(New->getLocation(), diag::err_module_private_local)
      << 1 << New->getDeclName()
      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());

  if (New->hasAttr<BlocksAttr>()) {
    Diag(New->getLocation(), diag::err_block_on_nonlocal);
  }

  if (getLangOpts().OpenCL)
    deduceOpenCLAddressSpace(New);

  return New;
}

/// Synthesizes a variable for a parameter arising from a
/// typedef.
ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
                                              SourceLocation Loc,
                                              QualType T) {
  /* FIXME: setting StartLoc == Loc.
     Would it be worth to modify callers so as to provide proper source
     location for the unnamed parameters, embedding the parameter's type? */
  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
                                T, Context.getTrivialTypeSourceInfo(T, Loc),
                                           SC_None, nullptr);
  Param->setImplicit();
  return Param;
}

void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
  // Don't diagnose unused-parameter errors in template instantiations; we
  // will already have done so in the template itself.
  if (inTemplateInstantiation())
    return;

  for (const ParmVarDecl *Parameter : Parameters) {
    if (!Parameter->isReferenced() && Parameter->getDeclName() &&
        !Parameter->hasAttr<UnusedAttr>()) {
      Diag(Parameter->getLocation(), diag::warn_unused_parameter)
        << Parameter->getDeclName();
    }
  }
}

void Sema::DiagnoseSizeOfParametersAndReturnValue(
    ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
  if (LangOpts.NumLargeByValueCopy == 0) // No check.
    return;

  // Warn if the return value is pass-by-value and larger than the specified
  // threshold.
  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
    if (Size > LangOpts.NumLargeByValueCopy)
      Diag(D->getLocation(), diag::warn_return_value_size)
          << D->getDeclName() << Size;
  }

  // Warn if any parameter is pass-by-value and larger than the specified
  // threshold.
  for (const ParmVarDecl *Parameter : Parameters) {
    QualType T = Parameter->getType();
    if (T->isDependentType() || !T.isPODType(Context))
      continue;
    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
    if (Size > LangOpts.NumLargeByValueCopy)
      Diag(Parameter->getLocation(), diag::warn_parameter_size)
          << Parameter->getDeclName() << Size;
  }
}

ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
                                  SourceLocation NameLoc, IdentifierInfo *Name,
                                  QualType T, TypeSourceInfo *TSInfo,
                                  StorageClass SC) {
  // In ARC, infer a lifetime qualifier for appropriate parameter types.
  if (getLangOpts().ObjCAutoRefCount &&
      T.getObjCLifetime() == Qualifiers::OCL_None &&
      T->isObjCLifetimeType()) {

    Qualifiers::ObjCLifetime lifetime;

    // Special cases for arrays:
    //   - if it's const, use __unsafe_unretained
    //   - otherwise, it's an error
    if (T->isArrayType()) {
      if (!T.isConstQualified()) {
        if (DelayedDiagnostics.shouldDelayDiagnostics())
          DelayedDiagnostics.add(
              sema::DelayedDiagnostic::makeForbiddenType(
              NameLoc, diag::err_arc_array_param_no_ownership, T, false));
        else
          Diag(NameLoc, diag::err_arc_array_param_no_ownership)
              << TSInfo->getTypeLoc().getSourceRange();
      }
      lifetime = Qualifiers::OCL_ExplicitNone;
    } else {
      lifetime = T->getObjCARCImplicitLifetime();
    }
    T = Context.getLifetimeQualifiedType(T, lifetime);
  }

  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
                                         Context.getAdjustedParameterType(T),
                                         TSInfo, SC, nullptr);

  // Make a note if we created a new pack in the scope of a lambda, so that
  // we know that references to that pack must also be expanded within the
  // lambda scope.
  if (New->isParameterPack())
    if (auto *LSI = getEnclosingLambda())
      LSI->LocalPacks.push_back(New);

  if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
      New->getType().hasNonTrivialToPrimitiveCopyCUnion())
    checkNonTrivialCUnion(New->getType(), New->getLocation(),
                          NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);

  // Parameters can not be abstract class types.
  // For record types, this is done by the AbstractClassUsageDiagnoser once
  // the class has been completely parsed.
  if (!CurContext->isRecord() &&
      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
                             AbstractParamType))
    New->setInvalidDecl();

  // Parameter declarators cannot be interface types. All ObjC objects are
  // passed by reference.
  if (T->isObjCObjectType()) {
    SourceLocation TypeEndLoc =
        getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
    Diag(NameLoc,
         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
      << FixItHint::CreateInsertion(TypeEndLoc, "*");
    T = Context.getObjCObjectPointerType(T);
    New->setType(T);
  }

  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
  // duration shall not be qualified by an address-space qualifier."
  // Since all parameters have automatic store duration, they can not have
  // an address space.
  if (T.getAddressSpace() != LangAS::Default &&
      // OpenCL allows function arguments declared to be an array of a type
      // to be qualified with an address space.
      !(getLangOpts().OpenCL &&
        (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
    Diag(NameLoc, diag::err_arg_with_address_space);
    New->setInvalidDecl();
  }

  return New;
}

void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
                                           SourceLocation LocAfterDecls) {
  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();

  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
  // for a K&R function.
  if (!FTI.hasPrototype) {
    for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
      --i;
      if (FTI.Params[i].Param == nullptr) {
        SmallString<256> Code;
        llvm::raw_svector_ostream(Code)
            << "  int " << FTI.Params[i].Ident->getName() << ";\n";
        Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
            << FTI.Params[i].Ident
            << FixItHint::CreateInsertion(LocAfterDecls, Code);

        // Implicitly declare the argument as type 'int' for lack of a better
        // type.
        AttributeFactory attrs;
        DeclSpec DS(attrs);
        const char* PrevSpec; // unused
        unsigned DiagID; // unused
        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
                           DiagID, Context.getPrintingPolicy());
        // Use the identifier location for the type source range.
        DS.SetRangeStart(FTI.Params[i].IdentLoc);
        DS.SetRangeEnd(FTI.Params[i].IdentLoc);
        Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
        ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
        FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
      }
    }
  }
}

Decl *
Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
                              MultiTemplateParamsArg TemplateParameterLists,
                              SkipBodyInfo *SkipBody) {
  assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
  assert(D.isFunctionDeclarator() && "Not a function declarator!");
  Scope *ParentScope = FnBodyScope->getParent();

  D.setFunctionDefinitionKind(FDK_Definition);
  Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
  return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
}

void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
  Consumer.HandleInlineFunctionDefinition(D);
}

static bool
ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
                                const FunctionDecl *&PossiblePrototype) {
  // Don't warn about invalid declarations.
  if (FD->isInvalidDecl())
    return false;

  // Or declarations that aren't global.
  if (!FD->isGlobal())
    return false;

  // Don't warn about C++ member functions.
  if (isa<CXXMethodDecl>(FD))
    return false;

  // Don't warn about 'main'.
  if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
    if (IdentifierInfo *II = FD->getIdentifier())
      if (II->isStr("main"))
        return false;

  // Don't warn about inline functions.
  if (FD->isInlined())
    return false;

  // Don't warn about function templates.
  if (FD->getDescribedFunctionTemplate())
    return false;

  // Don't warn about function template specializations.
  if (FD->isFunctionTemplateSpecialization())
    return false;

  // Don't warn for OpenCL kernels.
  if (FD->hasAttr<OpenCLKernelAttr>())
    return false;

  // Don't warn on explicitly deleted functions.
  if (FD->isDeleted())
    return false;

  for (const FunctionDecl *Prev = FD->getPreviousDecl();
       Prev; Prev = Prev->getPreviousDecl()) {
    // Ignore any declarations that occur in function or method
    // scope, because they aren't visible from the header.
    if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
      continue;

    PossiblePrototype = Prev;
    return Prev->getType()->isFunctionNoProtoType();
  }

  return true;
}

void
Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
                                   const FunctionDecl *EffectiveDefinition,
                                   SkipBodyInfo *SkipBody) {
  const FunctionDecl *Definition = EffectiveDefinition;
  if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
    // If this is a friend function defined in a class template, it does not
    // have a body until it is used, nevertheless it is a definition, see
    // [temp.inst]p2:
    //
    // ... for the purpose of determining whether an instantiated redeclaration
    // is valid according to [basic.def.odr] and [class.mem], a declaration that
    // corresponds to a definition in the template is considered to be a
    // definition.
    //
    // The following code must produce redefinition error:
    //
    //     template<typename T> struct C20 { friend void func_20() {} };
    //     C20<int> c20i;
    //     void func_20() {}
    //
    for (auto I : FD->redecls()) {
      if (I != FD && !I->isInvalidDecl() &&
          I->getFriendObjectKind() != Decl::FOK_None) {
        if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
          if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
            // A merged copy of the same function, instantiated as a member of
            // the same class, is OK.
            if (declaresSameEntity(OrigFD, Original) &&
                declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
                                   cast<Decl>(FD->getLexicalDeclContext())))
              continue;
          }

          if (Original->isThisDeclarationADefinition()) {
            Definition = I;
            break;
          }
        }
      }
    }
  }

  if (!Definition)
    // Similar to friend functions a friend function template may be a
    // definition and do not have a body if it is instantiated in a class
    // template.
    if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
      for (auto I : FTD->redecls()) {
        auto D = cast<FunctionTemplateDecl>(I);
        if (D != FTD) {
          assert(!D->isThisDeclarationADefinition() &&
                 "More than one definition in redeclaration chain");
          if (D->getFriendObjectKind() != Decl::FOK_None)
            if (FunctionTemplateDecl *FT =
                                       D->getInstantiatedFromMemberTemplate()) {
              if (FT->isThisDeclarationADefinition()) {
                Definition = D->getTemplatedDecl();
                break;
              }
            }
        }
      }
    }

  if (!Definition)
    return;

  if (canRedefineFunction(Definition, getLangOpts()))
    return;

  // Don't emit an error when this is redefinition of a typo-corrected
  // definition.
  if (TypoCorrectedFunctionDefinitions.count(Definition))
    return;

  // If we don't have a visible definition of the function, and it's inline or
  // a template, skip the new definition.
  if (SkipBody && !hasVisibleDefinition(Definition) &&
      (Definition->getFormalLinkage() == InternalLinkage ||
       Definition->isInlined() ||
       Definition->getDescribedFunctionTemplate() ||
       Definition->getNumTemplateParameterLists())) {
    SkipBody->ShouldSkip = true;
    SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
    if (auto *TD = Definition->getDescribedFunctionTemplate())
      makeMergedDefinitionVisible(TD);
    makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
    return;
  }

  if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
      Definition->getStorageClass() == SC_Extern)
    Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
        << FD->getDeclName() << getLangOpts().CPlusPlus;
  else
    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();

  Diag(Definition->getLocation(), diag::note_previous_definition);
  FD->setInvalidDecl();
}

static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
                                   Sema &S) {
  CXXRecordDecl *const LambdaClass = CallOperator->getParent();

  LambdaScopeInfo *LSI = S.PushLambdaScope();
  LSI->CallOperator = CallOperator;
  LSI->Lambda = LambdaClass;
  LSI->ReturnType = CallOperator->getReturnType();
  const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();

  if (LCD == LCD_None)
    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
  else if (LCD == LCD_ByCopy)
    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
  else if (LCD == LCD_ByRef)
    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
  DeclarationNameInfo DNI = CallOperator->getNameInfo();

  LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
  LSI->Mutable = !CallOperator->isConst();

  // Add the captures to the LSI so they can be noted as already
  // captured within tryCaptureVar.
  auto I = LambdaClass->field_begin();
  for (const auto &C : LambdaClass->captures()) {
    if (C.capturesVariable()) {
      VarDecl *VD = C.getCapturedVar();
      if (VD->isInitCapture())
        S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
      QualType CaptureType = VD->getType();
      const bool ByRef = C.getCaptureKind() == LCK_ByRef;
      LSI->addCapture(VD, /*IsBlock*/false, ByRef,
          /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
          /*EllipsisLoc*/C.isPackExpansion()
                         ? C.getEllipsisLoc() : SourceLocation(),
          CaptureType, /*Invalid*/false);

    } else if (C.capturesThis()) {
      LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
                          C.getCaptureKind() == LCK_StarThis);
    } else {
      LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
                             I->getType());
    }
    ++I;
  }
}

Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
                                    SkipBodyInfo *SkipBody) {
  if (!D) {
    // Parsing the function declaration failed in some way. Push on a fake scope
    // anyway so we can try to parse the function body.
    PushFunctionScope();
    PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
    return D;
  }

  FunctionDecl *FD = nullptr;

  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
    FD = FunTmpl->getTemplatedDecl();
  else
    FD = cast<FunctionDecl>(D);

  // Do not push if it is a lambda because one is already pushed when building
  // the lambda in ActOnStartOfLambdaDefinition().
  if (!isLambdaCallOperator(FD))
    PushExpressionEvaluationContext(ExprEvalContexts.back().Context);

  // Check for defining attributes before the check for redefinition.
  if (const auto *Attr = FD->getAttr<AliasAttr>()) {
    Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
    FD->dropAttr<AliasAttr>();
    FD->setInvalidDecl();
  }
  if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
    Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
    FD->dropAttr<IFuncAttr>();
    FD->setInvalidDecl();
  }

  // See if this is a redefinition. If 'will have body' is already set, then
  // these checks were already performed when it was set.
  if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
    CheckForFunctionRedefinition(FD, nullptr, SkipBody);

    // If we're skipping the body, we're done. Don't enter the scope.
    if (SkipBody && SkipBody->ShouldSkip)
      return D;
  }

  // Mark this function as "will have a body eventually".  This lets users to
  // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
  // this function.
  FD->setWillHaveBody();

  // If we are instantiating a generic lambda call operator, push
  // a LambdaScopeInfo onto the function stack.  But use the information
  // that's already been calculated (ActOnLambdaExpr) to prime the current
  // LambdaScopeInfo.
  // When the template operator is being specialized, the LambdaScopeInfo,
  // has to be properly restored so that tryCaptureVariable doesn't try
  // and capture any new variables. In addition when calculating potential
  // captures during transformation of nested lambdas, it is necessary to
  // have the LSI properly restored.
  if (isGenericLambdaCallOperatorSpecialization(FD)) {
    assert(inTemplateInstantiation() &&
           "There should be an active template instantiation on the stack "
           "when instantiating a generic lambda!");
    RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
  } else {
    // Enter a new function scope
    PushFunctionScope();
  }

  // Builtin functions cannot be defined.
  if (unsigned BuiltinID = FD->getBuiltinID()) {
    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
      FD->setInvalidDecl();
    }
  }

  // The return type of a function definition must be complete
  // (C99 6.9.1p3, C++ [dcl.fct]p6).
  QualType ResultType = FD->getReturnType();
  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
      !FD->isInvalidDecl() &&
      RequireCompleteType(FD->getLocation(), ResultType,
                          diag::err_func_def_incomplete_result))
    FD->setInvalidDecl();

  if (FnBodyScope)
    PushDeclContext(FnBodyScope, FD);

  // Check the validity of our function parameters
  CheckParmsForFunctionDef(FD->parameters(),
                           /*CheckParameterNames=*/true);

  // Add non-parameter declarations already in the function to the current
  // scope.
  if (FnBodyScope) {
    for (Decl *NPD : FD->decls()) {
      auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
      if (!NonParmDecl)
        continue;
      assert(!isa<ParmVarDecl>(NonParmDecl) &&
             "parameters should not be in newly created FD yet");

      // If the decl has a name, make it accessible in the current scope.
      if (NonParmDecl->getDeclName())
        PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);

      // Similarly, dive into enums and fish their constants out, making them
      // accessible in this scope.
      if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
        for (auto *EI : ED->enumerators())
          PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
      }
    }
  }

  // Introduce our parameters into the function scope
  for (auto Param : FD->parameters()) {
    Param->setOwningFunction(FD);

    // If this has an identifier, add it to the scope stack.
    if (Param->getIdentifier() && FnBodyScope) {
      CheckShadow(FnBodyScope, Param);

      PushOnScopeChains(Param, FnBodyScope);
    }
  }

  // Ensure that the function's exception specification is instantiated.
  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
    ResolveExceptionSpec(D->getLocation(), FPT);

  // dllimport cannot be applied to non-inline function definitions.
  if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
      !FD->isTemplateInstantiation()) {
    assert(!FD->hasAttr<DLLExportAttr>());
    Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
    FD->setInvalidDecl();
    return D;
  }
  // We want to attach documentation to original Decl (which might be
  // a function template).
  ActOnDocumentableDecl(D);
  if (getCurLexicalContext()->isObjCContainer() &&
      getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
      getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
    Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);

  return D;
}

/// Given the set of return statements within a function body,
/// compute the variables that are subject to the named return value
/// optimization.
///
/// Each of the variables that is subject to the named return value
/// optimization will be marked as NRVO variables in the AST, and any
/// return statement that has a marked NRVO variable as its NRVO candidate can
/// use the named return value optimization.
///
/// This function applies a very simplistic algorithm for NRVO: if every return
/// statement in the scope of a variable has the same NRVO candidate, that
/// candidate is an NRVO variable.
void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
  ReturnStmt **Returns = Scope->Returns.data();

  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
    if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
      if (!NRVOCandidate->isNRVOVariable())
        Returns[I]->setNRVOCandidate(nullptr);
    }
  }
}

bool Sema::canDelayFunctionBody(const Declarator &D) {
  // We can't delay parsing the body of a constexpr function template (yet).
  if (D.getDeclSpec().hasConstexprSpecifier())
    return false;

  // We can't delay parsing the body of a function template with a deduced
  // return type (yet).
  if (D.getDeclSpec().hasAutoTypeSpec()) {
    // If the placeholder introduces a non-deduced trailing return type,
    // we can still delay parsing it.
    if (D.getNumTypeObjects()) {
      const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
      if (Outer.Kind == DeclaratorChunk::Function &&
          Outer.Fun.hasTrailingReturnType()) {
        QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
        return Ty.isNull() || !Ty->isUndeducedType();
      }
    }
    return false;
  }

  return true;
}

bool Sema::canSkipFunctionBody(Decl *D) {
  // We cannot skip the body of a function (or function template) which is
  // constexpr, since we may need to evaluate its body in order to parse the
  // rest of the file.
  // We cannot skip the body of a function with an undeduced return type,
  // because any callers of that function need to know the type.
  if (const FunctionDecl *FD = D->getAsFunction()) {
    if (FD->isConstexpr())
      return false;
    // We can't simply call Type::isUndeducedType here, because inside template
    // auto can be deduced to a dependent type, which is not considered
    // "undeduced".
    if (FD->getReturnType()->getContainedDeducedType())
      return false;
  }
  return Consumer.shouldSkipFunctionBody(D);
}

Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
  if (!Decl)
    return nullptr;
  if (FunctionDecl *FD = Decl->getAsFunction())
    FD->setHasSkippedBody();
  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
    MD->setHasSkippedBody();
  return Decl;
}

Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
  return ActOnFinishFunctionBody(D, BodyArg, false);
}

/// RAII object that pops an ExpressionEvaluationContext when exiting a function
/// body.
class ExitFunctionBodyRAII {
public:
  ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
  ~ExitFunctionBodyRAII() {
    if (!IsLambda)
      S.PopExpressionEvaluationContext();
  }

private:
  Sema &S;
  bool IsLambda = false;
};

static void diagnoseImplicitlyRetainedSelf(Sema &S) {
  llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;

  auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
    if (EscapeInfo.count(BD))
      return EscapeInfo[BD];

    bool R = false;
    const BlockDecl *CurBD = BD;

    do {
      R = !CurBD->doesNotEscape();
      if (R)
        break;
      CurBD = CurBD->getParent()->getInnermostBlockDecl();
    } while (CurBD);

    return EscapeInfo[BD] = R;
  };

  // If the location where 'self' is implicitly retained is inside a escaping
  // block, emit a diagnostic.
  for (const std::pair<SourceLocation, const BlockDecl *> &P :
       S.ImplicitlyRetainedSelfLocs)
    if (IsOrNestedInEscapingBlock(P.second))
      S.Diag(P.first, diag::warn_implicitly_retains_self)
          << FixItHint::CreateInsertion(P.first, "self->");
}

Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
                                    bool IsInstantiation) {
  FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;

  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
  sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;

  if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
    CheckCompletedCoroutineBody(FD, Body);

  // Do not call PopExpressionEvaluationContext() if it is a lambda because one
  // is already popped when finishing the lambda in BuildLambdaExpr(). This is
  // meant to pop the context added in ActOnStartOfFunctionDef().
  ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));

  if (FD) {
    FD->setBody(Body);
    FD->setWillHaveBody(false);

    if (getLangOpts().CPlusPlus14) {
      if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
          FD->getReturnType()->isUndeducedType()) {
        // If the function has a deduced result type but contains no 'return'
        // statements, the result type as written must be exactly 'auto', and
        // the deduced result type is 'void'.
        if (!FD->getReturnType()->getAs<AutoType>()) {
          Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
              << FD->getReturnType();
          FD->setInvalidDecl();
        } else {
          // Substitute 'void' for the 'auto' in the type.
          TypeLoc ResultType = getReturnTypeLoc(FD);
          Context.adjustDeducedFunctionResultType(
              FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
        }
      }
    } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
      // In C++11, we don't use 'auto' deduction rules for lambda call
      // operators because we don't support return type deduction.
      auto *LSI = getCurLambda();
      if (LSI->HasImplicitReturnType) {
        deduceClosureReturnType(*LSI);

        // C++11 [expr.prim.lambda]p4:
        //   [...] if there are no return statements in the compound-statement
        //   [the deduced type is] the type void
        QualType RetType =
            LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;

        // Update the return type to the deduced type.
        const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
        FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
                                            Proto->getExtProtoInfo()));
      }
    }

    // If the function implicitly returns zero (like 'main') or is naked,
    // don't complain about missing return statements.
    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
      WP.disableCheckFallThrough();

    // MSVC permits the use of pure specifier (=0) on function definition,
    // defined at class scope, warn about this non-standard construct.
    if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
      Diag(FD->getLocation(), diag::ext_pure_function_definition);

    if (!FD->isInvalidDecl()) {
      // Don't diagnose unused parameters of defaulted or deleted functions.
      if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
        DiagnoseUnusedParameters(FD->parameters());
      DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
                                             FD->getReturnType(), FD);

      // If this is a structor, we need a vtable.
      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
      else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
        MarkVTableUsed(FD->getLocation(), Destructor->getParent());

      // Try to apply the named return value optimization. We have to check
      // if we can do this here because lambdas keep return statements around
      // to deduce an implicit return type.
      if (FD->getReturnType()->isRecordType() &&
          (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
        computeNRVO(Body, getCurFunction());
    }

    // GNU warning -Wmissing-prototypes:
    //   Warn if a global function is defined without a previous
    //   prototype declaration. This warning is issued even if the
    //   definition itself provides a prototype. The aim is to detect
    //   global functions that fail to be declared in header files.
    const FunctionDecl *PossiblePrototype = nullptr;
    if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;

      if (PossiblePrototype) {
        // We found a declaration that is not a prototype,
        // but that could be a zero-parameter prototype
        if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
          TypeLoc TL = TI->getTypeLoc();
          if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
            Diag(PossiblePrototype->getLocation(),
                 diag::note_declaration_not_a_prototype)
                << (FD->getNumParams() != 0)
                << (FD->getNumParams() == 0
                        ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
                        : FixItHint{});
        }
      } else {
        Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
            << /* function */ 1
            << (FD->getStorageClass() == SC_None
                    ? FixItHint::CreateInsertion(FD->getTypeSpecStartLoc(),
                                                 "static ")
                    : FixItHint{});
      }

      // GNU warning -Wstrict-prototypes
      //   Warn if K&R function is defined without a previous declaration.
      //   This warning is issued only if the definition itself does not provide
      //   a prototype. Only K&R definitions do not provide a prototype.
      //   An empty list in a function declarator that is part of a definition
      //   of that function specifies that the function has no parameters
      //   (C99 6.7.5.3p14)
      if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
          !LangOpts.CPlusPlus) {
        TypeSourceInfo *TI = FD->getTypeSourceInfo();
        TypeLoc TL = TI->getTypeLoc();
        FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
        Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
      }
    }

    // Warn on CPUDispatch with an actual body.
    if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
      if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
        if (!CmpndBody->body_empty())
          Diag(CmpndBody->body_front()->getBeginLoc(),
               diag::warn_dispatch_body_ignored);

    if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
      const CXXMethodDecl *KeyFunction;
      if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
          MD->isVirtual() &&
          (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
          MD == KeyFunction->getCanonicalDecl()) {
        // Update the key-function state if necessary for this ABI.
        if (FD->isInlined() &&
            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
          Context.setNonKeyFunction(MD);

          // If the newly-chosen key function is already defined, then we
          // need to mark the vtable as used retroactively.
          KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
          const FunctionDecl *Definition;
          if (KeyFunction && KeyFunction->isDefined(Definition))
            MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
        } else {
          // We just defined they key function; mark the vtable as used.
          MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
        }
      }
    }

    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
           "Function parsing confused");
  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
    assert(MD == getCurMethodDecl() && "Method parsing confused");
    MD->setBody(Body);
    if (!MD->isInvalidDecl()) {
      DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
                                             MD->getReturnType(), MD);

      if (Body)
        computeNRVO(Body, getCurFunction());
    }
    if (getCurFunction()->ObjCShouldCallSuper) {
      Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
          << MD->getSelector().getAsString();
      getCurFunction()->ObjCShouldCallSuper = false;
    }
    if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
      const ObjCMethodDecl *InitMethod = nullptr;
      bool isDesignated =
          MD->isDesignatedInitializerForTheInterface(&InitMethod);
      assert(isDesignated && InitMethod);
      (void)isDesignated;

      auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
        auto IFace = MD->getClassInterface();
        if (!IFace)
          return false;
        auto SuperD = IFace->getSuperClass();
        if (!SuperD)
          return false;
        return SuperD->getIdentifier() ==
            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
      };
      // Don't issue this warning for unavailable inits or direct subclasses
      // of NSObject.
      if (!MD->isUnavailable() && !superIsNSObject(MD)) {
        Diag(MD->getLocation(),
             diag::warn_objc_designated_init_missing_super_call);
        Diag(InitMethod->getLocation(),
             diag::note_objc_designated_init_marked_here);
      }
      getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
    }
    if (getCurFunction()->ObjCWarnForNoInitDelegation) {
      // Don't issue this warning for unavaialable inits.
      if (!MD->isUnavailable())
        Diag(MD->getLocation(),
             diag::warn_objc_secondary_init_missing_init_call);
      getCurFunction()->ObjCWarnForNoInitDelegation = false;
    }

    diagnoseImplicitlyRetainedSelf(*this);
  } else {
    // Parsing the function declaration failed in some way. Pop the fake scope
    // we pushed on.
    PopFunctionScopeInfo(ActivePolicy, dcl);
    return nullptr;
  }

  if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
    DiagnoseUnguardedAvailabilityViolations(dcl);

  assert(!getCurFunction()->ObjCShouldCallSuper &&
         "This should only be set for ObjC methods, which should have been "
         "handled in the block above.");

  // Verify and clean out per-function state.
  if (Body && (!FD || !FD->isDefaulted())) {
    // C++ constructors that have function-try-blocks can't have return
    // statements in the handlers of that block. (C++ [except.handle]p14)
    // Verify this.
    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));

    // Verify that gotos and switch cases don't jump into scopes illegally.
    if (getCurFunction()->NeedsScopeChecking() &&
        !PP.isCodeCompletionEnabled())
      DiagnoseInvalidJumps(Body);

    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
      if (!Destructor->getParent()->isDependentType())
        CheckDestructor(Destructor);

      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
                                             Destructor->getParent());
    }

    // If any errors have occurred, clear out any temporaries that may have
    // been leftover. This ensures that these temporaries won't be picked up for
    // deletion in some later function.
    if (getDiagnostics().hasErrorOccurred() ||
        getDiagnostics().getSuppressAllDiagnostics()) {
      DiscardCleanupsInEvaluationContext();
    }
    if (!getDiagnostics().hasUncompilableErrorOccurred() &&
        !isa<FunctionTemplateDecl>(dcl)) {
      // Since the body is valid, issue any analysis-based warnings that are
      // enabled.
      ActivePolicy = &WP;
    }

    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
        !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
      FD->setInvalidDecl();

    if (FD && FD->hasAttr<NakedAttr>()) {
      for (const Stmt *S : Body->children()) {
        // Allow local register variables without initializer as they don't
        // require prologue.
        bool RegisterVariables = false;
        if (auto *DS = dyn_cast<DeclStmt>(S)) {
          for (const auto *Decl : DS->decls()) {
            if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
              RegisterVariables =
                  Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
              if (!RegisterVariables)
                break;
            }
          }
        }
        if (RegisterVariables)
          continue;
        if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
          Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
          Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
          FD->setInvalidDecl();
          break;
        }
      }
    }

    assert(ExprCleanupObjects.size() ==
               ExprEvalContexts.back().NumCleanupObjects &&
           "Leftover temporaries in function");
    assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
    assert(MaybeODRUseExprs.empty() &&
           "Leftover expressions for odr-use checking");
  }

  if (!IsInstantiation)
    PopDeclContext();

  PopFunctionScopeInfo(ActivePolicy, dcl);
  // If any errors have occurred, clear out any temporaries that may have
  // been leftover. This ensures that these temporaries won't be picked up for
  // deletion in some later function.
  if (getDiagnostics().hasErrorOccurred()) {
    DiscardCleanupsInEvaluationContext();
  }

  return dcl;
}

/// When we finish delayed parsing of an attribute, we must attach it to the
/// relevant Decl.
void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
                                       ParsedAttributes &Attrs) {
  // Always attach attributes to the underlying decl.
  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
    D = TD->getTemplatedDecl();
  ProcessDeclAttributeList(S, D, Attrs);

  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
    if (Method->isStatic())
      checkThisInStaticMemberFunctionAttributes(Method);
}

/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
                                          IdentifierInfo &II, Scope *S) {
  // Find the scope in which the identifier is injected and the corresponding
  // DeclContext.
  // FIXME: C89 does not say what happens if there is no enclosing block scope.
  // In that case, we inject the declaration into the translation unit scope
  // instead.
  Scope *BlockScope = S;
  while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
    BlockScope = BlockScope->getParent();

  Scope *ContextScope = BlockScope;
  while (!ContextScope->getEntity())
    ContextScope = ContextScope->getParent();
  ContextRAII SavedContext(*this, ContextScope->getEntity());

  // Before we produce a declaration for an implicitly defined
  // function, see whether there was a locally-scoped declaration of
  // this name as a function or variable. If so, use that
  // (non-visible) declaration, and complain about it.
  NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
  if (ExternCPrev) {
    // We still need to inject the function into the enclosing block scope so
    // that later (non-call) uses can see it.
    PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);

    // C89 footnote 38:
    //   If in fact it is not defined as having type "function returning int",
    //   the behavior is undefined.
    if (!isa<FunctionDecl>(ExternCPrev) ||
        !Context.typesAreCompatible(
            cast<FunctionDecl>(ExternCPrev)->getType(),
            Context.getFunctionNoProtoType(Context.IntTy))) {
      Diag(Loc, diag::ext_use_out_of_scope_declaration)
          << ExternCPrev << !getLangOpts().C99;
      Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
      return ExternCPrev;
    }
  }

  // Extension in C99.  Legal in C90, but warn about it.
  unsigned diag_id;
  if (II.getName().startswith("__builtin_"))
    diag_id = diag::warn_builtin_unknown;
  // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
  else if (getLangOpts().OpenCL)
    diag_id = diag::err_opencl_implicit_function_decl;
  else if (getLangOpts().C99)
    diag_id = diag::ext_implicit_function_decl;
  else
    diag_id = diag::warn_implicit_function_decl;
  Diag(Loc, diag_id) << &II;

  // If we found a prior declaration of this function, don't bother building
  // another one. We've already pushed that one into scope, so there's nothing
  // more to do.
  if (ExternCPrev)
    return ExternCPrev;

  // Because typo correction is expensive, only do it if the implicit
  // function declaration is going to be treated as an error.
  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
    TypoCorrection Corrected;
    DeclFilterCCC<FunctionDecl> CCC{};
    if (S && (Corrected =
                  CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
                              S, nullptr, CCC, CTK_NonError)))
      diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
                   /*ErrorRecovery*/false);
  }

  // Set a Declarator for the implicit definition: int foo();
  const char *Dummy;
  AttributeFactory attrFactory;
  DeclSpec DS(attrFactory);
  unsigned DiagID;
  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
                                  Context.getPrintingPolicy());
  (void)Error; // Silence warning.
  assert(!Error && "Error setting up implicit decl!");
  SourceLocation NoLoc;
  Declarator D(DS, DeclaratorContext::BlockContext);
  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
                                             /*IsAmbiguous=*/false,
                                             /*LParenLoc=*/NoLoc,
                                             /*Params=*/nullptr,
                                             /*NumParams=*/0,
                                             /*EllipsisLoc=*/NoLoc,
                                             /*RParenLoc=*/NoLoc,
                                             /*RefQualifierIsLvalueRef=*/true,
                                             /*RefQualifierLoc=*/NoLoc,
                                             /*MutableLoc=*/NoLoc, EST_None,
                                             /*ESpecRange=*/SourceRange(),
                                             /*Exceptions=*/nullptr,
                                             /*ExceptionRanges=*/nullptr,
                                             /*NumExceptions=*/0,
                                             /*NoexceptExpr=*/nullptr,
                                             /*ExceptionSpecTokens=*/nullptr,
                                             /*DeclsInPrototype=*/None, Loc,
                                             Loc, D),
                std::move(DS.getAttributes()), SourceLocation());
  D.SetIdentifier(&II, Loc);

  // Insert this function into the enclosing block scope.
  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
  FD->setImplicit();

  AddKnownFunctionAttributes(FD);

  return FD;
}

/// Adds any function attributes that we know a priori based on
/// the declaration of this function.
///
/// These attributes can apply both to implicitly-declared builtins
/// (like __builtin___printf_chk) or to library-declared functions
/// like NSLog or printf.
///
/// We need to check for duplicate attributes both here and where user-written
/// attributes are applied to declarations.
void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
  if (FD->isInvalidDecl())
    return;

  // If this is a built-in function, map its builtin attributes to
  // actual attributes.
  if (unsigned BuiltinID = FD->getBuiltinID()) {
    // Handle printf-formatting attributes.
    unsigned FormatIdx;
    bool HasVAListArg;
    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
      if (!FD->hasAttr<FormatAttr>()) {
        const char *fmt = "printf";
        unsigned int NumParams = FD->getNumParams();
        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
          fmt = "NSString";
        FD->addAttr(FormatAttr::CreateImplicit(Context,
                                               &Context.Idents.get(fmt),
                                               FormatIdx+1,
                                               HasVAListArg ? 0 : FormatIdx+2,
                                               FD->getLocation()));
      }
    }
    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
                                             HasVAListArg)) {
     if (!FD->hasAttr<FormatAttr>())
       FD->addAttr(FormatAttr::CreateImplicit(Context,
                                              &Context.Idents.get("scanf"),
                                              FormatIdx+1,
                                              HasVAListArg ? 0 : FormatIdx+2,
                                              FD->getLocation()));
    }

    // Handle automatically recognized callbacks.
    SmallVector<int, 4> Encoding;
    if (!FD->hasAttr<CallbackAttr>() &&
        Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
      FD->addAttr(CallbackAttr::CreateImplicit(
          Context, Encoding.data(), Encoding.size(), FD->getLocation()));

    // Mark const if we don't care about errno and that is the only thing
    // preventing the function from being const. This allows IRgen to use LLVM
    // intrinsics for such functions.
    if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
      FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));

    // We make "fma" on some platforms const because we know it does not set
    // errno in those environments even though it could set errno based on the
    // C standard.
    const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
    if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
        !FD->hasAttr<ConstAttr>()) {
      switch (BuiltinID) {
      case Builtin::BI__builtin_fma:
      case Builtin::BI__builtin_fmaf:
      case Builtin::BI__builtin_fmal:
      case Builtin::BIfma:
      case Builtin::BIfmaf:
      case Builtin::BIfmal:
        FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
        break;
      default:
        break;
      }
    }

    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
        !FD->hasAttr<ReturnsTwiceAttr>())
      FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
                                         FD->getLocation()));
    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
      FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
    if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
      FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
      FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
    if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
        !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
      // Add the appropriate attribute, depending on the CUDA compilation mode
      // and which target the builtin belongs to. For example, during host
      // compilation, aux builtins are __device__, while the rest are __host__.
      if (getLangOpts().CUDAIsDevice !=
          Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
        FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
      else
        FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
    }
  }

  // If C++ exceptions are enabled but we are told extern "C" functions cannot
  // throw, add an implicit nothrow attribute to any extern "C" function we come
  // across.
  if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
      FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
    const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
    if (!FPT || FPT->getExceptionSpecType() == EST_None)
      FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
  }

  IdentifierInfo *Name = FD->getIdentifier();
  if (!Name)
    return;
  if ((!getLangOpts().CPlusPlus &&
       FD->getDeclContext()->isTranslationUnit()) ||
      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
       LinkageSpecDecl::lang_c)) {
    // Okay: this could be a libc/libm/Objective-C function we know
    // about.
  } else
    return;

  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
    // target-specific builtins, perhaps?
    if (!FD->hasAttr<FormatAttr>())
      FD->addAttr(FormatAttr::CreateImplicit(Context,
                                             &Context.Idents.get("printf"), 2,
                                             Name->isStr("vasprintf") ? 0 : 3,
                                             FD->getLocation()));
  }

  if (Name->isStr("__CFStringMakeConstantString")) {
    // We already have a __builtin___CFStringMakeConstantString,
    // but builds that use -fno-constant-cfstrings don't go through that.
    if (!FD->hasAttr<FormatArgAttr>())
      FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
                                                FD->getLocation()));
  }
}

TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
                                    TypeSourceInfo *TInfo) {
  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");

  if (!TInfo) {
    assert(D.isInvalidType() && "no declarator info for valid type");
    TInfo = Context.getTrivialTypeSourceInfo(T);
  }

  // Scope manipulation handled by caller.
  TypedefDecl *NewTD =
      TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
                          D.getIdentifierLoc(), D.getIdentifier(), TInfo);

  // Bail out immediately if we have an invalid declaration.
  if (D.isInvalidType()) {
    NewTD->setInvalidDecl();
    return NewTD;
  }

  if (D.getDeclSpec().isModulePrivateSpecified()) {
    if (CurContext->isFunctionOrMethod())
      Diag(NewTD->getLocation(), diag::err_module_private_local)
        << 2 << NewTD->getDeclName()
        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
    else
      NewTD->setModulePrivate();
  }

  // C++ [dcl.typedef]p8:
  //   If the typedef declaration defines an unnamed class (or
  //   enum), the first typedef-name declared by the declaration
  //   to be that class type (or enum type) is used to denote the
  //   class type (or enum type) for linkage purposes only.
  // We need to check whether the type was declared in the declaration.
  switch (D.getDeclSpec().getTypeSpecType()) {
  case TST_enum:
  case TST_struct:
  case TST_interface:
  case TST_union:
  case TST_class: {
    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
    setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
    break;
  }

  default:
    break;
  }

  return NewTD;
}

/// Check that this is a valid underlying type for an enum declaration.
bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
  QualType T = TI->getType();

  if (T->isDependentType())
    return false;

  if (const BuiltinType *BT = T->getAs<BuiltinType>())
    if (BT->isInteger())
      return false;

  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
  return true;
}

/// Check whether this is a valid redeclaration of a previous enumeration.
/// \return true if the redeclaration was invalid.
bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
                                  QualType EnumUnderlyingTy, bool IsFixed,
                                  const EnumDecl *Prev) {
  if (IsScoped != Prev->isScoped()) {
    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
      << Prev->isScoped();
    Diag(Prev->getLocation(), diag::note_previous_declaration);
    return true;
  }

  if (IsFixed && Prev->isFixed()) {
    if (!EnumUnderlyingTy->isDependentType() &&
        !Prev->getIntegerType()->isDependentType() &&
        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
                                        Prev->getIntegerType())) {
      // TODO: Highlight the underlying type of the redeclaration.
      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
        << EnumUnderlyingTy << Prev->getIntegerType();
      Diag(Prev->getLocation(), diag::note_previous_declaration)
          << Prev->getIntegerTypeRange();
      return true;
    }
  } else if (IsFixed != Prev->isFixed()) {
    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
      << Prev->isFixed();
    Diag(Prev->getLocation(), diag::note_previous_declaration);
    return true;
  }

  return false;
}

/// Get diagnostic %select index for tag kind for
/// redeclaration diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
  switch (Tag) {
  case TTK_Struct: return 0;
  case TTK_Interface: return 1;
  case TTK_Class:  return 2;
  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
  }
}

/// Determine if tag kind is a class-key compatible with
/// class for redeclaration (class, struct, or __interface).
///
/// \returns true iff the tag kind is compatible.
static bool isClassCompatTagKind(TagTypeKind Tag)
{
  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
}

Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
                                             TagTypeKind TTK) {
  if (isa<TypedefDecl>(PrevDecl))
    return NTK_Typedef;
  else if (isa<TypeAliasDecl>(PrevDecl))
    return NTK_TypeAlias;
  else if (isa<ClassTemplateDecl>(PrevDecl))
    return NTK_Template;
  else if (isa<TypeAliasTemplateDecl>(PrevDecl))
    return NTK_TypeAliasTemplate;
  else if (isa<TemplateTemplateParmDecl>(PrevDecl))
    return NTK_TemplateTemplateArgument;
  switch (TTK) {
  case TTK_Struct:
  case TTK_Interface:
  case TTK_Class:
    return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
  case TTK_Union:
    return NTK_NonUnion;
  case TTK_Enum:
    return NTK_NonEnum;
  }
  llvm_unreachable("invalid TTK");
}

/// Determine whether a tag with a given kind is acceptable
/// as a redeclaration of the given tag declaration.
///
/// \returns true if the new tag kind is acceptable, false otherwise.
bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
                                        TagTypeKind NewTag, bool isDefinition,
                                        SourceLocation NewTagLoc,
                                        const IdentifierInfo *Name) {
  // C++ [dcl.type.elab]p3:
  //   The class-key or enum keyword present in the
  //   elaborated-type-specifier shall agree in kind with the
  //   declaration to which the name in the elaborated-type-specifier
  //   refers. This rule also applies to the form of
  //   elaborated-type-specifier that declares a class-name or
  //   friend class since it can be construed as referring to the
  //   definition of the class. Thus, in any
  //   elaborated-type-specifier, the enum keyword shall be used to
  //   refer to an enumeration (7.2), the union class-key shall be
  //   used to refer to a union (clause 9), and either the class or
  //   struct class-key shall be used to refer to a class (clause 9)
  //   declared using the class or struct class-key.
  TagTypeKind OldTag = Previous->getTagKind();
  if (OldTag != NewTag &&
      !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
    return false;

  // Tags are compatible, but we might still want to warn on mismatched tags.
  // Non-class tags can't be mismatched at this point.
  if (!isClassCompatTagKind(NewTag))
    return true;

  // Declarations for which -Wmismatched-tags is disabled are entirely ignored
  // by our warning analysis. We don't want to warn about mismatches with (eg)
  // declarations in system headers that are designed to be specialized, but if
  // a user asks us to warn, we should warn if their code contains mismatched
  // declarations.
  auto IsIgnoredLoc = [&](SourceLocation Loc) {
    return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
                                      Loc);
  };
  if (IsIgnoredLoc(NewTagLoc))
    return true;

  auto IsIgnored = [&](const TagDecl *Tag) {
    return IsIgnoredLoc(Tag->getLocation());
  };
  while (IsIgnored(Previous)) {
    Previous = Previous->getPreviousDecl();
    if (!Previous)
      return true;
    OldTag = Previous->getTagKind();
  }

  bool isTemplate = false;
  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
    isTemplate = Record->getDescribedClassTemplate();

  if (inTemplateInstantiation()) {
    if (OldTag != NewTag) {
      // In a template instantiation, do not offer fix-its for tag mismatches
      // since they usually mess up the template instead of fixing the problem.
      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
        << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
        << getRedeclDiagFromTagKind(OldTag);
      // FIXME: Note previous location?
    }
    return true;
  }

  if (isDefinition) {
    // On definitions, check all previous tags and issue a fix-it for each
    // one that doesn't match the current tag.
    if (Previous->getDefinition()) {
      // Don't suggest fix-its for redefinitions.
      return true;
    }

    bool previousMismatch = false;
    for (const TagDecl *I : Previous->redecls()) {
      if (I->getTagKind() != NewTag) {
        // Ignore previous declarations for which the warning was disabled.
        if (IsIgnored(I))
          continue;

        if (!previousMismatch) {
          previousMismatch = true;
          Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
            << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
            << getRedeclDiagFromTagKind(I->getTagKind());
        }
        Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
          << getRedeclDiagFromTagKind(NewTag)
          << FixItHint::CreateReplacement(I->getInnerLocStart(),
               TypeWithKeyword::getTagTypeKindName(NewTag));
      }
    }
    return true;
  }

  // Identify the prevailing tag kind: this is the kind of the definition (if
  // there is a non-ignored definition), or otherwise the kind of the prior
  // (non-ignored) declaration.
  const TagDecl *PrevDef = Previous->getDefinition();
  if (PrevDef && IsIgnored(PrevDef))
    PrevDef = nullptr;
  const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
  if (Redecl->getTagKind() != NewTag) {
    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
      << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
      << getRedeclDiagFromTagKind(OldTag);
    Diag(Redecl->getLocation(), diag::note_previous_use);

    // If there is a previous definition, suggest a fix-it.
    if (PrevDef) {
      Diag(NewTagLoc, diag::note_struct_class_suggestion)
        << getRedeclDiagFromTagKind(Redecl->getTagKind())
        << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
             TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
    }
  }

  return true;
}

/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
/// from an outer enclosing namespace or file scope inside a friend declaration.
/// This should provide the commented out code in the following snippet:
///   namespace N {
///     struct X;
///     namespace M {
///       struct Y { friend struct /*N::*/ X; };
///     }
///   }
static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
                                         SourceLocation NameLoc) {
  // While the decl is in a namespace, do repeated lookup of that name and see
  // if we get the same namespace back.  If we do not, continue until
  // translation unit scope, at which point we have a fully qualified NNS.
  SmallVector<IdentifierInfo *, 4> Namespaces;
  DeclContext *DC = ND->getDeclContext()->getRedeclContext();
  for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
    // This tag should be declared in a namespace, which can only be enclosed by
    // other namespaces.  Bail if there's an anonymous namespace in the chain.
    NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
    if (!Namespace || Namespace->isAnonymousNamespace())
      return FixItHint();
    IdentifierInfo *II = Namespace->getIdentifier();
    Namespaces.push_back(II);
    NamedDecl *Lookup = SemaRef.LookupSingleName(
        S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
    if (Lookup == Namespace)
      break;
  }

  // Once we have all the namespaces, reverse them to go outermost first, and
  // build an NNS.
  SmallString<64> Insertion;
  llvm::raw_svector_ostream OS(Insertion);
  if (DC->isTranslationUnit())
    OS << "::";
  std::reverse(Namespaces.begin(), Namespaces.end());
  for (auto *II : Namespaces)
    OS << II->getName() << "::";
  return FixItHint::CreateInsertion(NameLoc, Insertion);
}

/// Determine whether a tag originally declared in context \p OldDC can
/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
/// found a declaration in \p OldDC as a previous decl, perhaps through a
/// using-declaration).
static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
                                         DeclContext *NewDC) {
  OldDC = OldDC->getRedeclContext();
  NewDC = NewDC->getRedeclContext();

  if (OldDC->Equals(NewDC))
    return true;

  // In MSVC mode, we allow a redeclaration if the contexts are related (either
  // encloses the other).
  if (S.getLangOpts().MSVCCompat &&
      (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
    return true;

  return false;
}

/// This is invoked when we see 'struct foo' or 'struct {'.  In the
/// former case, Name will be non-null.  In the later case, Name will be null.
/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
/// reference/declaration/definition of a tag.
///
/// \param IsTypeSpecifier \c true if this is a type-specifier (or
/// trailing-type-specifier) other than one in an alias-declaration.
///
/// \param SkipBody If non-null, will be set to indicate if the caller should
/// skip the definition of this tag and treat it as if it were a declaration.
Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
                     SourceLocation KWLoc, CXXScopeSpec &SS,
                     IdentifierInfo *Name, SourceLocation NameLoc,
                     const ParsedAttributesView &Attrs, AccessSpecifier AS,
                     SourceLocation ModulePrivateLoc,
                     MultiTemplateParamsArg TemplateParameterLists,
                     bool &OwnedDecl, bool &IsDependent,
                     SourceLocation ScopedEnumKWLoc,
                     bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
                     bool IsTypeSpecifier, bool IsTemplateParamOrArg,
                     SkipBodyInfo *SkipBody) {
  // If this is not a definition, it must have a name.
  IdentifierInfo *OrigName = Name;
  assert((Name != nullptr || TUK == TUK_Definition) &&
         "Nameless record must be a definition!");
  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);

  OwnedDecl = false;
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
  bool ScopedEnum = ScopedEnumKWLoc.isValid();

  // FIXME: Check member specializations more carefully.
  bool isMemberSpecialization = false;
  bool Invalid = false;

  // We only need to do this matching if we have template parameters
  // or a scope specifier, which also conveniently avoids this work
  // for non-C++ cases.
  if (TemplateParameterLists.size() > 0 ||
      (SS.isNotEmpty() && TUK != TUK_Reference)) {
    if (TemplateParameterList *TemplateParams =
            MatchTemplateParametersToScopeSpecifier(
                KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
                TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
      if (Kind == TTK_Enum) {
        Diag(KWLoc, diag::err_enum_template);
        return nullptr;
      }

      if (TemplateParams->size() > 0) {
        // This is a declaration or definition of a class template (which may
        // be a member of another template).

        if (Invalid)
          return nullptr;

        OwnedDecl = false;
        DeclResult Result = CheckClassTemplate(
            S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
            AS, ModulePrivateLoc,
            /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
            TemplateParameterLists.data(), SkipBody);
        return Result.get();
      } else {
        // The "template<>" header is extraneous.
        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
        isMemberSpecialization = true;
      }
    }
  }

  // Figure out the underlying type if this a enum declaration. We need to do
  // this early, because it's needed to detect if this is an incompatible
  // redeclaration.
  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
  bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;

  if (Kind == TTK_Enum) {
    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
      // No underlying type explicitly specified, or we failed to parse the
      // type, default to int.
      EnumUnderlying = Context.IntTy.getTypePtr();
    } else if (UnderlyingType.get()) {
      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
      // integral type; any cv-qualification is ignored.
      TypeSourceInfo *TI = nullptr;
      GetTypeFromParser(UnderlyingType.get(), &TI);
      EnumUnderlying = TI;

      if (CheckEnumUnderlyingType(TI))
        // Recover by falling back to int.
        EnumUnderlying = Context.IntTy.getTypePtr();

      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
                                          UPPC_FixedUnderlyingType))
        EnumUnderlying = Context.IntTy.getTypePtr();

    } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
      // For MSVC ABI compatibility, unfixed enums must use an underlying type
      // of 'int'. However, if this is an unfixed forward declaration, don't set
      // the underlying type unless the user enables -fms-compatibility. This
      // makes unfixed forward declared enums incomplete and is more conforming.
      if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
        EnumUnderlying = Context.IntTy.getTypePtr();
    }
  }

  DeclContext *SearchDC = CurContext;
  DeclContext *DC = CurContext;
  bool isStdBadAlloc = false;
  bool isStdAlignValT = false;

  RedeclarationKind Redecl = forRedeclarationInCurContext();
  if (TUK == TUK_Friend || TUK == TUK_Reference)
    Redecl = NotForRedeclaration;

  /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
  /// implemented asks for structural equivalence checking, the returned decl
  /// here is passed back to the parser, allowing the tag body to be parsed.
  auto createTagFromNewDecl = [&]() -> TagDecl * {
    assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
    // If there is an identifier, use the location of the identifier as the
    // location of the decl, otherwise use the location of the struct/union
    // keyword.
    SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
    TagDecl *New = nullptr;

    if (Kind == TTK_Enum) {
      New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
                             ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
      // If this is an undefined enum, bail.
      if (TUK != TUK_Definition && !Invalid)
        return nullptr;
      if (EnumUnderlying) {
        EnumDecl *ED = cast<EnumDecl>(New);
        if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
          ED->setIntegerTypeSourceInfo(TI);
        else
          ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
        ED->setPromotionType(ED->getIntegerType());
      }
    } else { // struct/union
      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
                               nullptr);
    }

    if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
      // Add alignment attributes if necessary; these attributes are checked
      // when the ASTContext lays out the structure.
      //
      // It is important for implementing the correct semantics that this
      // happen here (in ActOnTag). The #pragma pack stack is
      // maintained as a result of parser callbacks which can occur at
      // many points during the parsing of a struct declaration (because
      // the #pragma tokens are effectively skipped over during the
      // parsing of the struct).
      if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
        AddAlignmentAttributesForRecord(RD);
        AddMsStructLayoutForRecord(RD);
      }
    }
    New->setLexicalDeclContext(CurContext);
    return New;
  };

  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
  if (Name && SS.isNotEmpty()) {
    // We have a nested-name tag ('struct foo::bar').

    // Check for invalid 'foo::'.
    if (SS.isInvalid()) {
      Name = nullptr;
      goto CreateNewDecl;
    }

    // If this is a friend or a reference to a class in a dependent
    // context, don't try to make a decl for it.
    if (TUK == TUK_Friend || TUK == TUK_Reference) {
      DC = computeDeclContext(SS, false);
      if (!DC) {
        IsDependent = true;
        return nullptr;
      }
    } else {
      DC = computeDeclContext(SS, true);
      if (!DC) {
        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
          << SS.getRange();
        return nullptr;
      }
    }

    if (RequireCompleteDeclContext(SS, DC))
      return nullptr;

    SearchDC = DC;
    // Look-up name inside 'foo::'.
    LookupQualifiedName(Previous, DC);

    if (Previous.isAmbiguous())
      return nullptr;

    if (Previous.empty()) {
      // Name lookup did not find anything. However, if the
      // nested-name-specifier refers to the current instantiation,
      // and that current instantiation has any dependent base
      // classes, we might find something at instantiation time: treat
      // this as a dependent elaborated-type-specifier.
      // But this only makes any sense for reference-like lookups.
      if (Previous.wasNotFoundInCurrentInstantiation() &&
          (TUK == TUK_Reference || TUK == TUK_Friend)) {
        IsDependent = true;
        return nullptr;
      }

      // A tag 'foo::bar' must already exist.
      Diag(NameLoc, diag::err_not_tag_in_scope)
        << Kind << Name << DC << SS.getRange();
      Name = nullptr;
      Invalid = true;
      goto CreateNewDecl;
    }
  } else if (Name) {
    // C++14 [class.mem]p14:
    //   If T is the name of a class, then each of the following shall have a
    //   name different from T:
    //    -- every member of class T that is itself a type
    if (TUK != TUK_Reference && TUK != TUK_Friend &&
        DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
      return nullptr;

    // If this is a named struct, check to see if there was a previous forward
    // declaration or definition.
    // FIXME: We're looking into outer scopes here, even when we
    // shouldn't be. Doing so can result in ambiguities that we
    // shouldn't be diagnosing.
    LookupName(Previous, S);

    // When declaring or defining a tag, ignore ambiguities introduced
    // by types using'ed into this scope.
    if (Previous.isAmbiguous() &&
        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
      LookupResult::Filter F = Previous.makeFilter();
      while (F.hasNext()) {
        NamedDecl *ND = F.next();
        if (!ND->getDeclContext()->getRedeclContext()->Equals(
                SearchDC->getRedeclContext()))
          F.erase();
      }
      F.done();
    }

    // C++11 [namespace.memdef]p3:
    //   If the name in a friend declaration is neither qualified nor
    //   a template-id and the declaration is a function or an
    //   elaborated-type-specifier, the lookup to determine whether
    //   the entity has been previously declared shall not consider
    //   any scopes outside the innermost enclosing namespace.
    //
    // MSVC doesn't implement the above rule for types, so a friend tag
    // declaration may be a redeclaration of a type declared in an enclosing
    // scope.  They do implement this rule for friend functions.
    //
    // Does it matter that this should be by scope instead of by
    // semantic context?
    if (!Previous.empty() && TUK == TUK_Friend) {
      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
      LookupResult::Filter F = Previous.makeFilter();
      bool FriendSawTagOutsideEnclosingNamespace = false;
      while (F.hasNext()) {
        NamedDecl *ND = F.next();
        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
        if (DC->isFileContext() &&
            !EnclosingNS->Encloses(ND->getDeclContext())) {
          if (getLangOpts().MSVCCompat)
            FriendSawTagOutsideEnclosingNamespace = true;
          else
            F.erase();
        }
      }
      F.done();

      // Diagnose this MSVC extension in the easy case where lookup would have
      // unambiguously found something outside the enclosing namespace.
      if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
        NamedDecl *ND = Previous.getFoundDecl();
        Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
            << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
      }
    }

    // Note:  there used to be some attempt at recovery here.
    if (Previous.isAmbiguous())
      return nullptr;

    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
      // FIXME: This makes sure that we ignore the contexts associated
      // with C structs, unions, and enums when looking for a matching
      // tag declaration or definition. See the similar lookup tweak
      // in Sema::LookupName; is there a better way to deal with this?
      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
        SearchDC = SearchDC->getParent();
    }
  }

  if (Previous.isSingleResult() &&
      Previous.getFoundDecl()->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
    // Just pretend that we didn't see the previous declaration.
    Previous.clear();
  }

  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
      DC->Equals(getStdNamespace())) {
    if (Name->isStr("bad_alloc")) {
      // This is a declaration of or a reference to "std::bad_alloc".
      isStdBadAlloc = true;

      // If std::bad_alloc has been implicitly declared (but made invisible to
      // name lookup), fill in this implicit declaration as the previous
      // declaration, so that the declarations get chained appropriately.
      if (Previous.empty() && StdBadAlloc)
        Previous.addDecl(getStdBadAlloc());
    } else if (Name->isStr("align_val_t")) {
      isStdAlignValT = true;
      if (Previous.empty() && StdAlignValT)
        Previous.addDecl(getStdAlignValT());
    }
  }

  // If we didn't find a previous declaration, and this is a reference
  // (or friend reference), move to the correct scope.  In C++, we
  // also need to do a redeclaration lookup there, just in case
  // there's a shadow friend decl.
  if (Name && Previous.empty() &&
      (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
    if (Invalid) goto CreateNewDecl;
    assert(SS.isEmpty());

    if (TUK == TUK_Reference || IsTemplateParamOrArg) {
      // C++ [basic.scope.pdecl]p5:
      //   -- for an elaborated-type-specifier of the form
      //
      //          class-key identifier
      //
      //      if the elaborated-type-specifier is used in the
      //      decl-specifier-seq or parameter-declaration-clause of a
      //      function defined in namespace scope, the identifier is
      //      declared as a class-name in the namespace that contains
      //      the declaration; otherwise, except as a friend
      //      declaration, the identifier is declared in the smallest
      //      non-class, non-function-prototype scope that contains the
      //      declaration.
      //
      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
      // C structs and unions.
      //
      // It is an error in C++ to declare (rather than define) an enum
      // type, including via an elaborated type specifier.  We'll
      // diagnose that later; for now, declare the enum in the same
      // scope as we would have picked for any other tag type.
      //
      // GNU C also supports this behavior as part of its incomplete
      // enum types extension, while GNU C++ does not.
      //
      // Find the context where we'll be declaring the tag.
      // FIXME: We would like to maintain the current DeclContext as the
      // lexical context,
      SearchDC = getTagInjectionContext(SearchDC);

      // Find the scope where we'll be declaring the tag.
      S = getTagInjectionScope(S, getLangOpts());
    } else {
      assert(TUK == TUK_Friend);
      // C++ [namespace.memdef]p3:
      //   If a friend declaration in a non-local class first declares a
      //   class or function, the friend class or function is a member of
      //   the innermost enclosing namespace.
      SearchDC = SearchDC->getEnclosingNamespaceContext();
    }

    // In C++, we need to do a redeclaration lookup to properly
    // diagnose some problems.
    // FIXME: redeclaration lookup is also used (with and without C++) to find a
    // hidden declaration so that we don't get ambiguity errors when using a
    // type declared by an elaborated-type-specifier.  In C that is not correct
    // and we should instead merge compatible types found by lookup.
    if (getLangOpts().CPlusPlus) {
      Previous.setRedeclarationKind(forRedeclarationInCurContext());
      LookupQualifiedName(Previous, SearchDC);
    } else {
      Previous.setRedeclarationKind(forRedeclarationInCurContext());
      LookupName(Previous, S);
    }
  }

  // If we have a known previous declaration to use, then use it.
  if (Previous.empty() && SkipBody && SkipBody->Previous)
    Previous.addDecl(SkipBody->Previous);

  if (!Previous.empty()) {
    NamedDecl *PrevDecl = Previous.getFoundDecl();
    NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();

    // It's okay to have a tag decl in the same scope as a typedef
    // which hides a tag decl in the same scope.  Finding this
    // insanity with a redeclaration lookup can only actually happen
    // in C++.
    //
    // This is also okay for elaborated-type-specifiers, which is
    // technically forbidden by the current standard but which is
    // okay according to the likely resolution of an open issue;
    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
    if (getLangOpts().CPlusPlus) {
      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
          TagDecl *Tag = TT->getDecl();
          if (Tag->getDeclName() == Name &&
              Tag->getDeclContext()->getRedeclContext()
                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
            PrevDecl = Tag;
            Previous.clear();
            Previous.addDecl(Tag);
            Previous.resolveKind();
          }
        }
      }
    }

    // If this is a redeclaration of a using shadow declaration, it must
    // declare a tag in the same context. In MSVC mode, we allow a
    // redefinition if either context is within the other.
    if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
      auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
      if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
          isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
          !(OldTag && isAcceptableTagRedeclContext(
                          *this, OldTag->getDeclContext(), SearchDC))) {
        Diag(KWLoc, diag::err_using_decl_conflict_reverse);
        Diag(Shadow->getTargetDecl()->getLocation(),
             diag::note_using_decl_target);
        Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
            << 0;
        // Recover by ignoring the old declaration.
        Previous.clear();
        goto CreateNewDecl;
      }
    }

    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
      // If this is a use of a previous tag, or if the tag is already declared
      // in the same scope (so that the definition/declaration completes or
      // rementions the tag), reuse the decl.
      if (TUK == TUK_Reference || TUK == TUK_Friend ||
          isDeclInScope(DirectPrevDecl, SearchDC, S,
                        SS.isNotEmpty() || isMemberSpecialization)) {
        // Make sure that this wasn't declared as an enum and now used as a
        // struct or something similar.
        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
                                          TUK == TUK_Definition, KWLoc,
                                          Name)) {
          bool SafeToContinue
            = (PrevTagDecl->getTagKind() != TTK_Enum &&
               Kind != TTK_Enum);
          if (SafeToContinue)
            Diag(KWLoc, diag::err_use_with_wrong_tag)
              << Name
              << FixItHint::CreateReplacement(SourceRange(KWLoc),
                                              PrevTagDecl->getKindName());
          else
            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);

          if (SafeToContinue)
            Kind = PrevTagDecl->getTagKind();
          else {
            // Recover by making this an anonymous redefinition.
            Name = nullptr;
            Previous.clear();
            Invalid = true;
          }
        }

        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);

          // If this is an elaborated-type-specifier for a scoped enumeration,
          // the 'class' keyword is not necessary and not permitted.
          if (TUK == TUK_Reference || TUK == TUK_Friend) {
            if (ScopedEnum)
              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
                << PrevEnum->isScoped()
                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
            return PrevTagDecl;
          }

          QualType EnumUnderlyingTy;
          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
            EnumUnderlyingTy = TI->getType().getUnqualifiedType();
          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
            EnumUnderlyingTy = QualType(T, 0);

          // All conflicts with previous declarations are recovered by
          // returning the previous declaration, unless this is a definition,
          // in which case we want the caller to bail out.
          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
                                     ScopedEnum, EnumUnderlyingTy,
                                     IsFixed, PrevEnum))
            return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
        }

        // C++11 [class.mem]p1:
        //   A member shall not be declared twice in the member-specification,
        //   except that a nested class or member class template can be declared
        //   and then later defined.
        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
            S->isDeclScope(PrevDecl)) {
          Diag(NameLoc, diag::ext_member_redeclared);
          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
        }

        if (!Invalid) {
          // If this is a use, just return the declaration we found, unless
          // we have attributes.
          if (TUK == TUK_Reference || TUK == TUK_Friend) {
            if (!Attrs.empty()) {
              // FIXME: Diagnose these attributes. For now, we create a new
              // declaration to hold them.
            } else if (TUK == TUK_Reference &&
                       (PrevTagDecl->getFriendObjectKind() ==
                            Decl::FOK_Undeclared ||
                        PrevDecl->getOwningModule() != getCurrentModule()) &&
                       SS.isEmpty()) {
              // This declaration is a reference to an existing entity, but
              // has different visibility from that entity: it either makes
              // a friend visible or it makes a type visible in a new module.
              // In either case, create a new declaration. We only do this if
              // the declaration would have meant the same thing if no prior
              // declaration were found, that is, if it was found in the same
              // scope where we would have injected a declaration.
              if (!getTagInjectionContext(CurContext)->getRedeclContext()
                       ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
                return PrevTagDecl;
              // This is in the injected scope, create a new declaration in
              // that scope.
              S = getTagInjectionScope(S, getLangOpts());
            } else {
              return PrevTagDecl;
            }
          }

          // Diagnose attempts to redefine a tag.
          if (TUK == TUK_Definition) {
            if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
              // If we're defining a specialization and the previous definition
              // is from an implicit instantiation, don't emit an error
              // here; we'll catch this in the general case below.
              bool IsExplicitSpecializationAfterInstantiation = false;
              if (isMemberSpecialization) {
                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
                  IsExplicitSpecializationAfterInstantiation =
                    RD->getTemplateSpecializationKind() !=
                    TSK_ExplicitSpecialization;
                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
                  IsExplicitSpecializationAfterInstantiation =
                    ED->getTemplateSpecializationKind() !=
                    TSK_ExplicitSpecialization;
              }

              // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
              // not keep more that one definition around (merge them). However,
              // ensure the decl passes the structural compatibility check in
              // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
              NamedDecl *Hidden = nullptr;
              if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
                // There is a definition of this tag, but it is not visible. We
                // explicitly make use of C++'s one definition rule here, and
                // assume that this definition is identical to the hidden one
                // we already have. Make the existing definition visible and
                // use it in place of this one.
                if (!getLangOpts().CPlusPlus) {
                  // Postpone making the old definition visible until after we
                  // complete parsing the new one and do the structural
                  // comparison.
                  SkipBody->CheckSameAsPrevious = true;
                  SkipBody->New = createTagFromNewDecl();
                  SkipBody->Previous = Def;
                  return Def;
                } else {
                  SkipBody->ShouldSkip = true;
                  SkipBody->Previous = Def;
                  makeMergedDefinitionVisible(Hidden);
                  // Carry on and handle it like a normal definition. We'll
                  // skip starting the definitiion later.
                }
              } else if (!IsExplicitSpecializationAfterInstantiation) {
                // A redeclaration in function prototype scope in C isn't
                // visible elsewhere, so merely issue a warning.
                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
                else
                  Diag(NameLoc, diag::err_redefinition) << Name;
                notePreviousDefinition(Def,
                                       NameLoc.isValid() ? NameLoc : KWLoc);
                // If this is a redefinition, recover by making this
                // struct be anonymous, which will make any later
                // references get the previous definition.
                Name = nullptr;
                Previous.clear();
                Invalid = true;
              }
            } else {
              // If the type is currently being defined, complain
              // about a nested redefinition.
              auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
              if (TD->isBeingDefined()) {
                Diag(NameLoc, diag::err_nested_redefinition) << Name;
                Diag(PrevTagDecl->getLocation(),
                     diag::note_previous_definition);
                Name = nullptr;
                Previous.clear();
                Invalid = true;
              }
            }

            // Okay, this is definition of a previously declared or referenced
            // tag. We're going to create a new Decl for it.
          }

          // Okay, we're going to make a redeclaration.  If this is some kind
          // of reference, make sure we build the redeclaration in the same DC
          // as the original, and ignore the current access specifier.
          if (TUK == TUK_Friend || TUK == TUK_Reference) {
            SearchDC = PrevTagDecl->getDeclContext();
            AS = AS_none;
          }
        }
        // If we get here we have (another) forward declaration or we
        // have a definition.  Just create a new decl.

      } else {
        // If we get here, this is a definition of a new tag type in a nested
        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
        // new decl/type.  We set PrevDecl to NULL so that the entities
        // have distinct types.
        Previous.clear();
      }
      // If we get here, we're going to create a new Decl. If PrevDecl
      // is non-NULL, it's a definition of the tag declared by
      // PrevDecl. If it's NULL, we have a new definition.

    // Otherwise, PrevDecl is not a tag, but was found with tag
    // lookup.  This is only actually possible in C++, where a few
    // things like templates still live in the tag namespace.
    } else {
      // Use a better diagnostic if an elaborated-type-specifier
      // found the wrong kind of type on the first
      // (non-redeclaration) lookup.
      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
          !Previous.isForRedeclaration()) {
        NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
        Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
                                                       << Kind;
        Diag(PrevDecl->getLocation(), diag::note_declared_at);
        Invalid = true;

      // Otherwise, only diagnose if the declaration is in scope.
      } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
                                SS.isNotEmpty() || isMemberSpecialization)) {
        // do nothing

      // Diagnose implicit declarations introduced by elaborated types.
      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
        NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
        Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
        Invalid = true;

      // Otherwise it's a declaration.  Call out a particularly common
      // case here.
      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
        unsigned Kind = 0;
        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
        Diag(NameLoc, diag::err_tag_definition_of_typedef)
          << Name << Kind << TND->getUnderlyingType();
        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
        Invalid = true;

      // Otherwise, diagnose.
      } else {
        // The tag name clashes with something else in the target scope,
        // issue an error and recover by making this tag be anonymous.
        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
        notePreviousDefinition(PrevDecl, NameLoc);
        Name = nullptr;
        Invalid = true;
      }

      // The existing declaration isn't relevant to us; we're in a
      // new scope, so clear out the previous declaration.
      Previous.clear();
    }
  }

CreateNewDecl:

  TagDecl *PrevDecl = nullptr;
  if (Previous.isSingleResult())
    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());

  // If there is an identifier, use the location of the identifier as the
  // location of the decl, otherwise use the location of the struct/union
  // keyword.
  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;

  // Otherwise, create a new declaration. If there is a previous
  // declaration of the same entity, the two will be linked via
  // PrevDecl.
  TagDecl *New;

  if (Kind == TTK_Enum) {
    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
    // enum X { A, B, C } D;    D should chain to X.
    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
                           ScopedEnumUsesClassTag, IsFixed);

    if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
      StdAlignValT = cast<EnumDecl>(New);

    // If this is an undefined enum, warn.
    if (TUK != TUK_Definition && !Invalid) {
      TagDecl *Def;
      if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
        // C++0x: 7.2p2: opaque-enum-declaration.
        // Conflicts are diagnosed above. Do nothing.
      }
      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
        Diag(Loc, diag::ext_forward_ref_enum_def)
          << New;
        Diag(Def->getLocation(), diag::note_previous_definition);
      } else {
        unsigned DiagID = diag::ext_forward_ref_enum;
        if (getLangOpts().MSVCCompat)
          DiagID = diag::ext_ms_forward_ref_enum;
        else if (getLangOpts().CPlusPlus)
          DiagID = diag::err_forward_ref_enum;
        Diag(Loc, DiagID);
      }
    }

    if (EnumUnderlying) {
      EnumDecl *ED = cast<EnumDecl>(New);
      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
        ED->setIntegerTypeSourceInfo(TI);
      else
        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
      ED->setPromotionType(ED->getIntegerType());
      assert(ED->isComplete() && "enum with type should be complete");
    }
  } else {
    // struct/union/class

    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
    // struct X { int A; } D;    D should chain to X.
    if (getLangOpts().CPlusPlus) {
      // FIXME: Look for a way to use RecordDecl for simple structs.
      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
                                  cast_or_null<CXXRecordDecl>(PrevDecl));

      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
        StdBadAlloc = cast<CXXRecordDecl>(New);
    } else
      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
                               cast_or_null<RecordDecl>(PrevDecl));
  }

  // C++11 [dcl.type]p3:
  //   A type-specifier-seq shall not define a class or enumeration [...].
  if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
      TUK == TUK_Definition) {
    Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
      << Context.getTagDeclType(New);
    Invalid = true;
  }

  if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
      DC->getDeclKind() == Decl::Enum) {
    Diag(New->getLocation(), diag::err_type_defined_in_enum)
      << Context.getTagDeclType(New);
    Invalid = true;
  }

  // Maybe add qualifier info.
  if (SS.isNotEmpty()) {
    if (SS.isSet()) {
      // If this is either a declaration or a definition, check the
      // nested-name-specifier against the current context.
      if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
          diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
                                       isMemberSpecialization))
        Invalid = true;

      New->setQualifierInfo(SS.getWithLocInContext(Context));
      if (TemplateParameterLists.size() > 0) {
        New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
      }
    }
    else
      Invalid = true;
  }

  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
    // Add alignment attributes if necessary; these attributes are checked when
    // the ASTContext lays out the structure.
    //
    // It is important for implementing the correct semantics that this
    // happen here (in ActOnTag). The #pragma pack stack is
    // maintained as a result of parser callbacks which can occur at
    // many points during the parsing of a struct declaration (because
    // the #pragma tokens are effectively skipped over during the
    // parsing of the struct).
    if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
      AddAlignmentAttributesForRecord(RD);
      AddMsStructLayoutForRecord(RD);
    }
  }

  if (ModulePrivateLoc.isValid()) {
    if (isMemberSpecialization)
      Diag(New->getLocation(), diag::err_module_private_specialization)
        << 2
        << FixItHint::CreateRemoval(ModulePrivateLoc);
    // __module_private__ does not apply to local classes. However, we only
    // diagnose this as an error when the declaration specifiers are
    // freestanding. Here, we just ignore the __module_private__.
    else if (!SearchDC->isFunctionOrMethod())
      New->setModulePrivate();
  }

  // If this is a specialization of a member class (of a class template),
  // check the specialization.
  if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
    Invalid = true;

  // If we're declaring or defining a tag in function prototype scope in C,
  // note that this type can only be used within the function and add it to
  // the list of decls to inject into the function definition scope.
  if ((Name || Kind == TTK_Enum) &&
      getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
    if (getLangOpts().CPlusPlus) {
      // C++ [dcl.fct]p6:
      //   Types shall not be defined in return or parameter types.
      if (TUK == TUK_Definition && !IsTypeSpecifier) {
        Diag(Loc, diag::err_type_defined_in_param_type)
            << Name;
        Invalid = true;
      }
    } else if (!PrevDecl) {
      Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
    }
  }

  if (Invalid)
    New->setInvalidDecl();

  // Set the lexical context. If the tag has a C++ scope specifier, the
  // lexical context will be different from the semantic context.
  New->setLexicalDeclContext(CurContext);

  // Mark this as a friend decl if applicable.
  // In Microsoft mode, a friend declaration also acts as a forward
  // declaration so we always pass true to setObjectOfFriendDecl to make
  // the tag name visible.
  if (TUK == TUK_Friend)
    New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);

  // Set the access specifier.
  if (!Invalid && SearchDC->isRecord())
    SetMemberAccessSpecifier(New, PrevDecl, AS);

  if (PrevDecl)
    CheckRedeclarationModuleOwnership(New, PrevDecl);

  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
    New->startDefinition();

  ProcessDeclAttributeList(S, New, Attrs);
  AddPragmaAttributes(S, New);

  // If this has an identifier, add it to the scope stack.
  if (TUK == TUK_Friend) {
    // We might be replacing an existing declaration in the lookup tables;
    // if so, borrow its access specifier.
    if (PrevDecl)
      New->setAccess(PrevDecl->getAccess());

    DeclContext *DC = New->getDeclContext()->getRedeclContext();
    DC->makeDeclVisibleInContext(New);
    if (Name) // can be null along some error paths
      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
  } else if (Name) {
    S = getNonFieldDeclScope(S);
    PushOnScopeChains(New, S, true);
  } else {
    CurContext->addDecl(New);
  }

  // If this is the C FILE type, notify the AST context.
  if (IdentifierInfo *II = New->getIdentifier())
    if (!New->isInvalidDecl() &&
        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
        II->isStr("FILE"))
      Context.setFILEDecl(New);

  if (PrevDecl)
    mergeDeclAttributes(New, PrevDecl);

  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
    inferGslOwnerPointerAttribute(CXXRD);

  // If there's a #pragma GCC visibility in scope, set the visibility of this
  // record.
  AddPushedVisibilityAttribute(New);

  if (isMemberSpecialization && !New->isInvalidDecl())
    CompleteMemberSpecialization(New, Previous);

  OwnedDecl = true;
  // In C++, don't return an invalid declaration. We can't recover well from
  // the cases where we make the type anonymous.
  if (Invalid && getLangOpts().CPlusPlus) {
    if (New->isBeingDefined())
      if (auto RD = dyn_cast<RecordDecl>(New))
        RD->completeDefinition();
    return nullptr;
  } else if (SkipBody && SkipBody->ShouldSkip) {
    return SkipBody->Previous;
  } else {
    return New;
  }
}

void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
  AdjustDeclIfTemplate(TagD);
  TagDecl *Tag = cast<TagDecl>(TagD);

  // Enter the tag context.
  PushDeclContext(S, Tag);

  ActOnDocumentableDecl(TagD);

  // If there's a #pragma GCC visibility in scope, set the visibility of this
  // record.
  AddPushedVisibilityAttribute(Tag);
}

bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
                                    SkipBodyInfo &SkipBody) {
  if (!hasStructuralCompatLayout(Prev, SkipBody.New))
    return false;

  // Make the previous decl visible.
  makeMergedDefinitionVisible(SkipBody.Previous);
  return true;
}

Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
  assert(isa<ObjCContainerDecl>(IDecl) &&
         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
  DeclContext *OCD = cast<DeclContext>(IDecl);
  assert(getContainingDC(OCD) == CurContext &&
      "The next DeclContext should be lexically contained in the current one.");
  CurContext = OCD;
  return IDecl;
}

void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
                                           SourceLocation FinalLoc,
                                           bool IsFinalSpelledSealed,
                                           SourceLocation LBraceLoc) {
  AdjustDeclIfTemplate(TagD);
  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);

  FieldCollector->StartClass();

  if (!Record->getIdentifier())
    return;

  if (FinalLoc.isValid())
    Record->addAttr(FinalAttr::Create(
        Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
        static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));

  // C++ [class]p2:
  //   [...] The class-name is also inserted into the scope of the
  //   class itself; this is known as the injected-class-name. For
  //   purposes of access checking, the injected-class-name is treated
  //   as if it were a public member name.
  CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
      Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
      Record->getLocation(), Record->getIdentifier(),
      /*PrevDecl=*/nullptr,
      /*DelayTypeCreation=*/true);
  Context.getTypeDeclType(InjectedClassName, Record);
  InjectedClassName->setImplicit();
  InjectedClassName->setAccess(AS_public);
  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
      InjectedClassName->setDescribedClassTemplate(Template);
  PushOnScopeChains(InjectedClassName, S);
  assert(InjectedClassName->isInjectedClassName() &&
         "Broken injected-class-name");
}

void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
                                    SourceRange BraceRange) {
  AdjustDeclIfTemplate(TagD);
  TagDecl *Tag = cast<TagDecl>(TagD);
  Tag->setBraceRange(BraceRange);

  // Make sure we "complete" the definition even it is invalid.
  if (Tag->isBeingDefined()) {
    assert(Tag->isInvalidDecl() && "We should already have completed it");
    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
      RD->completeDefinition();
  }

  if (isa<CXXRecordDecl>(Tag)) {
    FieldCollector->FinishClass();
  }

  // Exit this scope of this tag's definition.
  PopDeclContext();

  if (getCurLexicalContext()->isObjCContainer() &&
      Tag->getDeclContext()->isFileContext())
    Tag->setTopLevelDeclInObjCContainer();

  // Notify the consumer that we've defined a tag.
  if (!Tag->isInvalidDecl())
    Consumer.HandleTagDeclDefinition(Tag);
}

void Sema::ActOnObjCContainerFinishDefinition() {
  // Exit this scope of this interface definition.
  PopDeclContext();
}

void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
  assert(DC == CurContext && "Mismatch of container contexts");
  OriginalLexicalContext = DC;
  ActOnObjCContainerFinishDefinition();
}

void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
  OriginalLexicalContext = nullptr;
}

void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
  AdjustDeclIfTemplate(TagD);
  TagDecl *Tag = cast<TagDecl>(TagD);
  Tag->setInvalidDecl();

  // Make sure we "complete" the definition even it is invalid.
  if (Tag->isBeingDefined()) {
    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
      RD->completeDefinition();
  }

  // We're undoing ActOnTagStartDefinition here, not
  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
  // the FieldCollector.

  PopDeclContext();
}

// Note that FieldName may be null for anonymous bitfields.
ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
                                IdentifierInfo *FieldName,
                                QualType FieldTy, bool IsMsStruct,
                                Expr *BitWidth, bool *ZeroWidth) {
  // Default to true; that shouldn't confuse checks for emptiness
  if (ZeroWidth)
    *ZeroWidth = true;

  // C99 6.7.2.1p4 - verify the field type.
  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
    // Handle incomplete types with specific error.
    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
      return ExprError();
    if (FieldName)
      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
        << FieldName << FieldTy << BitWidth->getSourceRange();
    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
      << FieldTy << BitWidth->getSourceRange();
  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
                                             UPPC_BitFieldWidth))
    return ExprError();

  // If the bit-width is type- or value-dependent, don't try to check
  // it now.
  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
    return BitWidth;

  llvm::APSInt Value;
  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
  if (ICE.isInvalid())
    return ICE;
  BitWidth = ICE.get();

  if (Value != 0 && ZeroWidth)
    *ZeroWidth = false;

  // Zero-width bitfield is ok for anonymous field.
  if (Value == 0 && FieldName)
    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;

  if (Value.isSigned() && Value.isNegative()) {
    if (FieldName)
      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
               << FieldName << Value.toString(10);
    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
      << Value.toString(10);
  }

  if (!FieldTy->isDependentType()) {
    uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
    uint64_t TypeWidth = Context.getIntWidth(FieldTy);
    bool BitfieldIsOverwide = Value.ugt(TypeWidth);

    // Over-wide bitfields are an error in C or when using the MSVC bitfield
    // ABI.
    bool CStdConstraintViolation =
        BitfieldIsOverwide && !getLangOpts().CPlusPlus;
    bool MSBitfieldViolation =
        Value.ugt(TypeStorageSize) &&
        (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
    if (CStdConstraintViolation || MSBitfieldViolation) {
      unsigned DiagWidth =
          CStdConstraintViolation ? TypeWidth : TypeStorageSize;
      if (FieldName)
        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
               << FieldName << (unsigned)Value.getZExtValue()
               << !CStdConstraintViolation << DiagWidth;

      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
             << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
             << DiagWidth;
    }

    // Warn on types where the user might conceivably expect to get all
    // specified bits as value bits: that's all integral types other than
    // 'bool'.
    if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
      if (FieldName)
        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
            << FieldName << (unsigned)Value.getZExtValue()
            << (unsigned)TypeWidth;
      else
        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
            << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
    }
  }

  return BitWidth;
}

/// ActOnField - Each field of a C struct/union is passed into this in order
/// to create a FieldDecl object for it.
Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
                       Declarator &D, Expr *BitfieldWidth) {
  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
                               /*InitStyle=*/ICIS_NoInit, AS_public);
  return Res;
}

/// HandleField - Analyze a field of a C struct or a C++ data member.
///
FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
                             SourceLocation DeclStart,
                             Declarator &D, Expr *BitWidth,
                             InClassInitStyle InitStyle,
                             AccessSpecifier AS) {
  if (D.isDecompositionDeclarator()) {
    const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
    Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
      << Decomp.getSourceRange();
    return nullptr;
  }

  IdentifierInfo *II = D.getIdentifier();
  SourceLocation Loc = DeclStart;
  if (II) Loc = D.getIdentifierLoc();

  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
  QualType T = TInfo->getType();
  if (getLangOpts().CPlusPlus) {
    CheckExtraCXXDefaultArguments(D);

    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
                                        UPPC_DataMemberType)) {
      D.setInvalidType();
      T = Context.IntTy;
      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
    }
  }

  DiagnoseFunctionSpecifiers(D.getDeclSpec());

  if (D.getDeclSpec().isInlineSpecified())
    Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
        << getLangOpts().CPlusPlus17;
  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
         diag::err_invalid_thread)
      << DeclSpec::getSpecifierName(TSCS);

  // Check to see if this name was declared as a member previously
  NamedDecl *PrevDecl = nullptr;
  LookupResult Previous(*this, II, Loc, LookupMemberName,
                        ForVisibleRedeclaration);
  LookupName(Previous, S);
  switch (Previous.getResultKind()) {
    case LookupResult::Found:
    case LookupResult::FoundUnresolvedValue:
      PrevDecl = Previous.getAsSingle<NamedDecl>();
      break;

    case LookupResult::FoundOverloaded:
      PrevDecl = Previous.getRepresentativeDecl();
      break;

    case LookupResult::NotFound:
    case LookupResult::NotFoundInCurrentInstantiation:
    case LookupResult::Ambiguous:
      break;
  }
  Previous.suppressDiagnostics();

  if (PrevDecl && PrevDecl->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
    // Just pretend that we didn't see the previous declaration.
    PrevDecl = nullptr;
  }

  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
    PrevDecl = nullptr;

  bool Mutable
    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
  SourceLocation TSSL = D.getBeginLoc();
  FieldDecl *NewFD
    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
                     TSSL, AS, PrevDecl, &D);

  if (NewFD->isInvalidDecl())
    Record->setInvalidDecl();

  if (D.getDeclSpec().isModulePrivateSpecified())
    NewFD->setModulePrivate();

  if (NewFD->isInvalidDecl() && PrevDecl) {
    // Don't introduce NewFD into scope; there's already something
    // with the same name in the same scope.
  } else if (II) {
    PushOnScopeChains(NewFD, S);
  } else
    Record->addDecl(NewFD);

  return NewFD;
}

/// Build a new FieldDecl and check its well-formedness.
///
/// This routine builds a new FieldDecl given the fields name, type,
/// record, etc. \p PrevDecl should refer to any previous declaration
/// with the same name and in the same scope as the field to be
/// created.
///
/// \returns a new FieldDecl.
///
/// \todo The Declarator argument is a hack. It will be removed once
FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
                                TypeSourceInfo *TInfo,
                                RecordDecl *Record, SourceLocation Loc,
                                bool Mutable, Expr *BitWidth,
                                InClassInitStyle InitStyle,
                                SourceLocation TSSL,
                                AccessSpecifier AS, NamedDecl *PrevDecl,
                                Declarator *D) {
  IdentifierInfo *II = Name.getAsIdentifierInfo();
  bool InvalidDecl = false;
  if (D) InvalidDecl = D->isInvalidType();

  // If we receive a broken type, recover by assuming 'int' and
  // marking this declaration as invalid.
  if (T.isNull()) {
    InvalidDecl = true;
    T = Context.IntTy;
  }

  QualType EltTy = Context.getBaseElementType(T);
  if (!EltTy->isDependentType()) {
    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
      // Fields of incomplete type force their record to be invalid.
      Record->setInvalidDecl();
      InvalidDecl = true;
    } else {
      NamedDecl *Def;
      EltTy->isIncompleteType(&Def);
      if (Def && Def->isInvalidDecl()) {
        Record->setInvalidDecl();
        InvalidDecl = true;
      }
    }
  }

  // TR 18037 does not allow fields to be declared with address space
  if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
      T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
    Diag(Loc, diag::err_field_with_address_space);
    Record->setInvalidDecl();
    InvalidDecl = true;
  }

  if (LangOpts.OpenCL) {
    // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
    // used as structure or union field: image, sampler, event or block types.
    if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
        T->isBlockPointerType()) {
      Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
      Record->setInvalidDecl();
      InvalidDecl = true;
    }
    // OpenCL v1.2 s6.9.c: bitfields are not supported.
    if (BitWidth) {
      Diag(Loc, diag::err_opencl_bitfields);
      InvalidDecl = true;
    }
  }

  // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
  if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
      T.hasQualifiers()) {
    InvalidDecl = true;
    Diag(Loc, diag::err_anon_bitfield_qualifiers);
  }

  // C99 6.7.2.1p8: A member of a structure or union may have any type other
  // than a variably modified type.
  if (!InvalidDecl && T->isVariablyModifiedType()) {
    bool SizeIsNegative;
    llvm::APSInt Oversized;

    TypeSourceInfo *FixedTInfo =
      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
                                                    SizeIsNegative,
                                                    Oversized);
    if (FixedTInfo) {
      Diag(Loc, diag::warn_illegal_constant_array_size);
      TInfo = FixedTInfo;
      T = FixedTInfo->getType();
    } else {
      if (SizeIsNegative)
        Diag(Loc, diag::err_typecheck_negative_array_size);
      else if (Oversized.getBoolValue())
        Diag(Loc, diag::err_array_too_large)
          << Oversized.toString(10);
      else
        Diag(Loc, diag::err_typecheck_field_variable_size);
      InvalidDecl = true;
    }
  }

  // Fields can not have abstract class types
  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
                                             diag::err_abstract_type_in_decl,
                                             AbstractFieldType))
    InvalidDecl = true;

  bool ZeroWidth = false;
  if (InvalidDecl)
    BitWidth = nullptr;
  // If this is declared as a bit-field, check the bit-field.
  if (BitWidth) {
    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
                              &ZeroWidth).get();
    if (!BitWidth) {
      InvalidDecl = true;
      BitWidth = nullptr;
      ZeroWidth = false;
    }
  }

  // Check that 'mutable' is consistent with the type of the declaration.
  if (!InvalidDecl && Mutable) {
    unsigned DiagID = 0;
    if (T->isReferenceType())
      DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
                                        : diag::err_mutable_reference;
    else if (T.isConstQualified())
      DiagID = diag::err_mutable_const;

    if (DiagID) {
      SourceLocation ErrLoc = Loc;
      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
      Diag(ErrLoc, DiagID);
      if (DiagID != diag::ext_mutable_reference) {
        Mutable = false;
        InvalidDecl = true;
      }
    }
  }

  // C++11 [class.union]p8 (DR1460):
  //   At most one variant member of a union may have a
  //   brace-or-equal-initializer.
  if (InitStyle != ICIS_NoInit)
    checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);

  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
                                       BitWidth, Mutable, InitStyle);
  if (InvalidDecl)
    NewFD->setInvalidDecl();

  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
    Diag(Loc, diag::err_duplicate_member) << II;
    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
    NewFD->setInvalidDecl();
  }

  if (!InvalidDecl && getLangOpts().CPlusPlus) {
    if (Record->isUnion()) {
      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
        if (RDecl->getDefinition()) {
          // C++ [class.union]p1: An object of a class with a non-trivial
          // constructor, a non-trivial copy constructor, a non-trivial
          // destructor, or a non-trivial copy assignment operator
          // cannot be a member of a union, nor can an array of such
          // objects.
          if (CheckNontrivialField(NewFD))
            NewFD->setInvalidDecl();
        }
      }

      // C++ [class.union]p1: If a union contains a member of reference type,
      // the program is ill-formed, except when compiling with MSVC extensions
      // enabled.
      if (EltTy->isReferenceType()) {
        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
                                    diag::ext_union_member_of_reference_type :
                                    diag::err_union_member_of_reference_type)
          << NewFD->getDeclName() << EltTy;
        if (!getLangOpts().MicrosoftExt)
          NewFD->setInvalidDecl();
      }
    }
  }

  // FIXME: We need to pass in the attributes given an AST
  // representation, not a parser representation.
  if (D) {
    // FIXME: The current scope is almost... but not entirely... correct here.
    ProcessDeclAttributes(getCurScope(), NewFD, *D);

    if (NewFD->hasAttrs())
      CheckAlignasUnderalignment(NewFD);
  }

  // In auto-retain/release, infer strong retension for fields of
  // retainable type.
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
    NewFD->setInvalidDecl();

  if (T.isObjCGCWeak())
    Diag(Loc, diag::warn_attribute_weak_on_field);

  NewFD->setAccess(AS);
  return NewFD;
}

bool Sema::CheckNontrivialField(FieldDecl *FD) {
  assert(FD);
  assert(getLangOpts().CPlusPlus && "valid check only for C++");

  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
    return false;

  QualType EltTy = Context.getBaseElementType(FD->getType());
  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
    if (RDecl->getDefinition()) {
      // We check for copy constructors before constructors
      // because otherwise we'll never get complaints about
      // copy constructors.

      CXXSpecialMember member = CXXInvalid;
      // We're required to check for any non-trivial constructors. Since the
      // implicit default constructor is suppressed if there are any
      // user-declared constructors, we just need to check that there is a
      // trivial default constructor and a trivial copy constructor. (We don't
      // worry about move constructors here, since this is a C++98 check.)
      if (RDecl->hasNonTrivialCopyConstructor())
        member = CXXCopyConstructor;
      else if (!RDecl->hasTrivialDefaultConstructor())
        member = CXXDefaultConstructor;
      else if (RDecl->hasNonTrivialCopyAssignment())
        member = CXXCopyAssignment;
      else if (RDecl->hasNonTrivialDestructor())
        member = CXXDestructor;

      if (member != CXXInvalid) {
        if (!getLangOpts().CPlusPlus11 &&
            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
          // Objective-C++ ARC: it is an error to have a non-trivial field of
          // a union. However, system headers in Objective-C programs
          // occasionally have Objective-C lifetime objects within unions,
          // and rather than cause the program to fail, we make those
          // members unavailable.
          SourceLocation Loc = FD->getLocation();
          if (getSourceManager().isInSystemHeader(Loc)) {
            if (!FD->hasAttr<UnavailableAttr>())
              FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
                            UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
            return false;
          }
        }

        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
               diag::err_illegal_union_or_anon_struct_member)
          << FD->getParent()->isUnion() << FD->getDeclName() << member;
        DiagnoseNontrivial(RDecl, member);
        return !getLangOpts().CPlusPlus11;
      }
    }
  }

  return false;
}

/// TranslateIvarVisibility - Translate visibility from a token ID to an
///  AST enum value.
static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
  switch (ivarVisibility) {
  default: llvm_unreachable("Unknown visitibility kind");
  case tok::objc_private: return ObjCIvarDecl::Private;
  case tok::objc_public: return ObjCIvarDecl::Public;
  case tok::objc_protected: return ObjCIvarDecl::Protected;
  case tok::objc_package: return ObjCIvarDecl::Package;
  }
}

/// ActOnIvar - Each ivar field of an objective-c class is passed into this
/// in order to create an IvarDecl object for it.
Decl *Sema::ActOnIvar(Scope *S,
                                SourceLocation DeclStart,
                                Declarator &D, Expr *BitfieldWidth,
                                tok::ObjCKeywordKind Visibility) {

  IdentifierInfo *II = D.getIdentifier();
  Expr *BitWidth = (Expr*)BitfieldWidth;
  SourceLocation Loc = DeclStart;
  if (II) Loc = D.getIdentifierLoc();

  // FIXME: Unnamed fields can be handled in various different ways, for
  // example, unnamed unions inject all members into the struct namespace!

  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
  QualType T = TInfo->getType();

  if (BitWidth) {
    // 6.7.2.1p3, 6.7.2.1p4
    BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
    if (!BitWidth)
      D.setInvalidType();
  } else {
    // Not a bitfield.

    // validate II.

  }
  if (T->isReferenceType()) {
    Diag(Loc, diag::err_ivar_reference_type);
    D.setInvalidType();
  }
  // C99 6.7.2.1p8: A member of a structure or union may have any type other
  // than a variably modified type.
  else if (T->isVariablyModifiedType()) {
    Diag(Loc, diag::err_typecheck_ivar_variable_size);
    D.setInvalidType();
  }

  // Get the visibility (access control) for this ivar.
  ObjCIvarDecl::AccessControl ac =
    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
                                        : ObjCIvarDecl::None;
  // Must set ivar's DeclContext to its enclosing interface.
  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
    return nullptr;
  ObjCContainerDecl *EnclosingContext;
  if (ObjCImplementationDecl *IMPDecl =
      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
    if (LangOpts.ObjCRuntime.isFragile()) {
    // Case of ivar declared in an implementation. Context is that of its class.
      EnclosingContext = IMPDecl->getClassInterface();
      assert(EnclosingContext && "Implementation has no class interface!");
    }
    else
      EnclosingContext = EnclosingDecl;
  } else {
    if (ObjCCategoryDecl *CDecl =
        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
        return nullptr;
      }
    }
    EnclosingContext = EnclosingDecl;
  }

  // Construct the decl.
  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
                                             DeclStart, Loc, II, T,
                                             TInfo, ac, (Expr *)BitfieldWidth);

  if (II) {
    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
                                           ForVisibleRedeclaration);
    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
        && !isa<TagDecl>(PrevDecl)) {
      Diag(Loc, diag::err_duplicate_member) << II;
      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
      NewID->setInvalidDecl();
    }
  }

  // Process attributes attached to the ivar.
  ProcessDeclAttributes(S, NewID, D);

  if (D.isInvalidType())
    NewID->setInvalidDecl();

  // In ARC, infer 'retaining' for ivars of retainable type.
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
    NewID->setInvalidDecl();

  if (D.getDeclSpec().isModulePrivateSpecified())
    NewID->setModulePrivate();

  if (II) {
    // FIXME: When interfaces are DeclContexts, we'll need to add
    // these to the interface.
    S->AddDecl(NewID);
    IdResolver.AddDecl(NewID);
  }

  if (LangOpts.ObjCRuntime.isNonFragile() &&
      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
    Diag(Loc, diag::warn_ivars_in_interface);

  return NewID;
}

/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
/// class and class extensions. For every class \@interface and class
/// extension \@interface, if the last ivar is a bitfield of any type,
/// then add an implicit `char :0` ivar to the end of that interface.
void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
                             SmallVectorImpl<Decl *> &AllIvarDecls) {
  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
    return;

  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);

  if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
    return;
  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
  if (!ID) {
    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
      if (!CD->IsClassExtension())
        return;
    }
    // No need to add this to end of @implementation.
    else
      return;
  }
  // All conditions are met. Add a new bitfield to the tail end of ivars.
  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);

  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
                              DeclLoc, DeclLoc, nullptr,
                              Context.CharTy,
                              Context.getTrivialTypeSourceInfo(Context.CharTy,
                                                               DeclLoc),
                              ObjCIvarDecl::Private, BW,
                              true);
  AllIvarDecls.push_back(Ivar);
}

void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
                       SourceLocation RBrac,
                       const ParsedAttributesView &Attrs) {
  assert(EnclosingDecl && "missing record or interface decl");

  // If this is an Objective-C @implementation or category and we have
  // new fields here we should reset the layout of the interface since
  // it will now change.
  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
    switch (DC->getKind()) {
    default: break;
    case Decl::ObjCCategory:
      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
      break;
    case Decl::ObjCImplementation:
      Context.
        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
      break;
    }
  }

  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
  CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);

  // Start counting up the number of named members; make sure to include
  // members of anonymous structs and unions in the total.
  unsigned NumNamedMembers = 0;
  if (Record) {
    for (const auto *I : Record->decls()) {
      if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
        if (IFD->getDeclName())
          ++NumNamedMembers;
    }
  }

  // Verify that all the fields are okay.
  SmallVector<FieldDecl*, 32> RecFields;

  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
       i != end; ++i) {
    FieldDecl *FD = cast<FieldDecl>(*i);

    // Get the type for the field.
    const Type *FDTy = FD->getType().getTypePtr();

    if (!FD->isAnonymousStructOrUnion()) {
      // Remember all fields written by the user.
      RecFields.push_back(FD);
    }

    // If the field is already invalid for some reason, don't emit more
    // diagnostics about it.
    if (FD->isInvalidDecl()) {
      EnclosingDecl->setInvalidDecl();
      continue;
    }

    // C99 6.7.2.1p2:
    //   A structure or union shall not contain a member with
    //   incomplete or function type (hence, a structure shall not
    //   contain an instance of itself, but may contain a pointer to
    //   an instance of itself), except that the last member of a
    //   structure with more than one named member may have incomplete
    //   array type; such a structure (and any union containing,
    //   possibly recursively, a member that is such a structure)
    //   shall not be a member of a structure or an element of an
    //   array.
    bool IsLastField = (i + 1 == Fields.end());
    if (FDTy->isFunctionType()) {
      // Field declared as a function.
      Diag(FD->getLocation(), diag::err_field_declared_as_function)
        << FD->getDeclName();
      FD->setInvalidDecl();
      EnclosingDecl->setInvalidDecl();
      continue;
    } else if (FDTy->isIncompleteArrayType() &&
               (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
      if (Record) {
        // Flexible array member.
        // Microsoft and g++ is more permissive regarding flexible array.
        // It will accept flexible array in union and also
        // as the sole element of a struct/class.
        unsigned DiagID = 0;
        if (!Record->isUnion() && !IsLastField) {
          Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
            << FD->getDeclName() << FD->getType() << Record->getTagKind();
          Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
          FD->setInvalidDecl();
          EnclosingDecl->setInvalidDecl();
          continue;
        } else if (Record->isUnion())
          DiagID = getLangOpts().MicrosoftExt
                       ? diag::ext_flexible_array_union_ms
                       : getLangOpts().CPlusPlus
                             ? diag::ext_flexible_array_union_gnu
                             : diag::err_flexible_array_union;
        else if (NumNamedMembers < 1)
          DiagID = getLangOpts().MicrosoftExt
                       ? diag::ext_flexible_array_empty_aggregate_ms
                       : getLangOpts().CPlusPlus
                             ? diag::ext_flexible_array_empty_aggregate_gnu
                             : diag::err_flexible_array_empty_aggregate;

        if (DiagID)
          Diag(FD->getLocation(), DiagID) << FD->getDeclName()
                                          << Record->getTagKind();
        // While the layout of types that contain virtual bases is not specified
        // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
        // virtual bases after the derived members.  This would make a flexible
        // array member declared at the end of an object not adjacent to the end
        // of the type.
        if (CXXRecord && CXXRecord->getNumVBases() != 0)
          Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
              << FD->getDeclName() << Record->getTagKind();
        if (!getLangOpts().C99)
          Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
            << FD->getDeclName() << Record->getTagKind();

        // If the element type has a non-trivial destructor, we would not
        // implicitly destroy the elements, so disallow it for now.
        //
        // FIXME: GCC allows this. We should probably either implicitly delete
        // the destructor of the containing class, or just allow this.
        QualType BaseElem = Context.getBaseElementType(FD->getType());
        if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
          Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
            << FD->getDeclName() << FD->getType();
          FD->setInvalidDecl();
          EnclosingDecl->setInvalidDecl();
          continue;
        }
        // Okay, we have a legal flexible array member at the end of the struct.
        Record->setHasFlexibleArrayMember(true);
      } else {
        // In ObjCContainerDecl ivars with incomplete array type are accepted,
        // unless they are followed by another ivar. That check is done
        // elsewhere, after synthesized ivars are known.
      }
    } else if (!FDTy->isDependentType() &&
               RequireCompleteType(FD->getLocation(), FD->getType(),
                                   diag::err_field_incomplete)) {
      // Incomplete type
      FD->setInvalidDecl();
      EnclosingDecl->setInvalidDecl();
      continue;
    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
      if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
        // A type which contains a flexible array member is considered to be a
        // flexible array member.
        Record->setHasFlexibleArrayMember(true);
        if (!Record->isUnion()) {
          // If this is a struct/class and this is not the last element, reject
          // it.  Note that GCC supports variable sized arrays in the middle of
          // structures.
          if (!IsLastField)
            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
              << FD->getDeclName() << FD->getType();
          else {
            // We support flexible arrays at the end of structs in
            // other structs as an extension.
            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
              << FD->getDeclName();
          }
        }
      }
      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
          RequireNonAbstractType(FD->getLocation(), FD->getType(),
                                 diag::err_abstract_type_in_decl,
                                 AbstractIvarType)) {
        // Ivars can not have abstract class types
        FD->setInvalidDecl();
      }
      if (Record && FDTTy->getDecl()->hasObjectMember())
        Record->setHasObjectMember(true);
      if (Record && FDTTy->getDecl()->hasVolatileMember())
        Record->setHasVolatileMember(true);
    } else if (FDTy->isObjCObjectType()) {
      /// A field cannot be an Objective-c object
      Diag(FD->getLocation(), diag::err_statically_allocated_object)
        << FixItHint::CreateInsertion(FD->getLocation(), "*");
      QualType T = Context.getObjCObjectPointerType(FD->getType());
      FD->setType(T);
    } else if (Record && Record->isUnion() &&
               FD->getType().hasNonTrivialObjCLifetime() &&
               getSourceManager().isInSystemHeader(FD->getLocation()) &&
               !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
               (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
                !Context.hasDirectOwnershipQualifier(FD->getType()))) {
      // For backward compatibility, fields of C unions declared in system
      // headers that have non-trivial ObjC ownership qualifications are marked
      // as unavailable unless the qualifier is explicit and __strong. This can
      // break ABI compatibility between programs compiled with ARC and MRR, but
      // is a better option than rejecting programs using those unions under
      // ARC.
      FD->addAttr(UnavailableAttr::CreateImplicit(
          Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
          FD->getLocation()));
    } else if (getLangOpts().ObjC &&
               getLangOpts().getGC() != LangOptions::NonGC &&
               Record && !Record->hasObjectMember()) {
      if (FD->getType()->isObjCObjectPointerType() ||
          FD->getType().isObjCGCStrong())
        Record->setHasObjectMember(true);
      else if (Context.getAsArrayType(FD->getType())) {
        QualType BaseType = Context.getBaseElementType(FD->getType());
        if (BaseType->isRecordType() &&
            BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
          Record->setHasObjectMember(true);
        else if (BaseType->isObjCObjectPointerType() ||
                 BaseType.isObjCGCStrong())
               Record->setHasObjectMember(true);
      }
    }

    if (Record && !getLangOpts().CPlusPlus &&
        !shouldIgnoreForRecordTriviality(FD)) {
      QualType FT = FD->getType();
      if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
        Record->setNonTrivialToPrimitiveDefaultInitialize(true);
        if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
            Record->isUnion())
          Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
      }
      QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
      if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
        Record->setNonTrivialToPrimitiveCopy(true);
        if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
          Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
      }
      if (FT.isDestructedType()) {
        Record->setNonTrivialToPrimitiveDestroy(true);
        Record->setParamDestroyedInCallee(true);
        if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
          Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
      }

      if (const auto *RT = FT->getAs<RecordType>()) {
        if (RT->getDecl()->getArgPassingRestrictions() ==
            RecordDecl::APK_CanNeverPassInRegs)
          Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
      } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
        Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
    }

    if (Record && FD->getType().isVolatileQualified())
      Record->setHasVolatileMember(true);
    // Keep track of the number of named members.
    if (FD->getIdentifier())
      ++NumNamedMembers;
  }

  // Okay, we successfully defined 'Record'.
  if (Record) {
    bool Completed = false;
    if (CXXRecord) {
      if (!CXXRecord->isInvalidDecl()) {
        // Set access bits correctly on the directly-declared conversions.
        for (CXXRecordDecl::conversion_iterator
               I = CXXRecord->conversion_begin(),
               E = CXXRecord->conversion_end(); I != E; ++I)
          I.setAccess((*I)->getAccess());
      }

      if (!CXXRecord->isDependentType()) {
        // Add any implicitly-declared members to this class.
        AddImplicitlyDeclaredMembersToClass(CXXRecord);

        if (!CXXRecord->isInvalidDecl()) {
          // If we have virtual base classes, we may end up finding multiple
          // final overriders for a given virtual function. Check for this
          // problem now.
          if (CXXRecord->getNumVBases()) {
            CXXFinalOverriderMap FinalOverriders;
            CXXRecord->getFinalOverriders(FinalOverriders);

            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
                                             MEnd = FinalOverriders.end();
                 M != MEnd; ++M) {
              for (OverridingMethods::iterator SO = M->second.begin(),
                                            SOEnd = M->second.end();
                   SO != SOEnd; ++SO) {
                assert(SO->second.size() > 0 &&
                       "Virtual function without overriding functions?");
                if (SO->second.size() == 1)
                  continue;

                // C++ [class.virtual]p2:
                //   In a derived class, if a virtual member function of a base
                //   class subobject has more than one final overrider the
                //   program is ill-formed.
                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
                  << (const NamedDecl *)M->first << Record;
                Diag(M->first->getLocation(),
                     diag::note_overridden_virtual_function);
                for (OverridingMethods::overriding_iterator
                          OM = SO->second.begin(),
                       OMEnd = SO->second.end();
                     OM != OMEnd; ++OM)
                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
                    << (const NamedDecl *)M->first << OM->Method->getParent();

                Record->setInvalidDecl();
              }
            }
            CXXRecord->completeDefinition(&FinalOverriders);
            Completed = true;
          }
        }
      }
    }

    if (!Completed)
      Record->completeDefinition();

    // Handle attributes before checking the layout.
    ProcessDeclAttributeList(S, Record, Attrs);

    // We may have deferred checking for a deleted destructor. Check now.
    if (CXXRecord) {
      auto *Dtor = CXXRecord->getDestructor();
      if (Dtor && Dtor->isImplicit() &&
          ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
        CXXRecord->setImplicitDestructorIsDeleted();
        SetDeclDeleted(Dtor, CXXRecord->getLocation());
      }
    }

    if (Record->hasAttrs()) {
      CheckAlignasUnderalignment(Record);

      if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
        checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
                                           IA->getRange(), IA->getBestCase(),
                                           IA->getInheritanceModel());
    }

    // Check if the structure/union declaration is a type that can have zero
    // size in C. For C this is a language extension, for C++ it may cause
    // compatibility problems.
    bool CheckForZeroSize;
    if (!getLangOpts().CPlusPlus) {
      CheckForZeroSize = true;
    } else {
      // For C++ filter out types that cannot be referenced in C code.
      CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
      CheckForZeroSize =
          CXXRecord->getLexicalDeclContext()->isExternCContext() &&
          !CXXRecord->isDependentType() &&
          CXXRecord->isCLike();
    }
    if (CheckForZeroSize) {
      bool ZeroSize = true;
      bool IsEmpty = true;
      unsigned NonBitFields = 0;
      for (RecordDecl::field_iterator I = Record->field_begin(),
                                      E = Record->field_end();
           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
        IsEmpty = false;
        if (I->isUnnamedBitfield()) {
          if (!I->isZeroLengthBitField(Context))
            ZeroSize = false;
        } else {
          ++NonBitFields;
          QualType FieldType = I->getType();
          if (FieldType->isIncompleteType() ||
              !Context.getTypeSizeInChars(FieldType).isZero())
            ZeroSize = false;
        }
      }

      // Empty structs are an extension in C (C99 6.7.2.1p7). They are
      // allowed in C++, but warn if its declaration is inside
      // extern "C" block.
      if (ZeroSize) {
        Diag(RecLoc, getLangOpts().CPlusPlus ?
                         diag::warn_zero_size_struct_union_in_extern_c :
                         diag::warn_zero_size_struct_union_compat)
          << IsEmpty << Record->isUnion() << (NonBitFields > 1);
      }

      // Structs without named members are extension in C (C99 6.7.2.1p7),
      // but are accepted by GCC.
      if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
        Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
                               diag::ext_no_named_members_in_struct_union)
          << Record->isUnion();
      }
    }
  } else {
    ObjCIvarDecl **ClsFields =
      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
      ID->setEndOfDefinitionLoc(RBrac);
      // Add ivar's to class's DeclContext.
      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
        ClsFields[i]->setLexicalDeclContext(ID);
        ID->addDecl(ClsFields[i]);
      }
      // Must enforce the rule that ivars in the base classes may not be
      // duplicates.
      if (ID->getSuperClass())
        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
    } else if (ObjCImplementationDecl *IMPDecl =
                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
        // Ivar declared in @implementation never belongs to the implementation.
        // Only it is in implementation's lexical context.
        ClsFields[I]->setLexicalDeclContext(IMPDecl);
      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
      IMPDecl->setIvarLBraceLoc(LBrac);
      IMPDecl->setIvarRBraceLoc(RBrac);
    } else if (ObjCCategoryDecl *CDecl =
                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
      // case of ivars in class extension; all other cases have been
      // reported as errors elsewhere.
      // FIXME. Class extension does not have a LocEnd field.
      // CDecl->setLocEnd(RBrac);
      // Add ivar's to class extension's DeclContext.
      // Diagnose redeclaration of private ivars.
      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
        if (IDecl) {
          if (const ObjCIvarDecl *ClsIvar =
              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
            Diag(ClsFields[i]->getLocation(),
                 diag::err_duplicate_ivar_declaration);
            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
            continue;
          }
          for (const auto *Ext : IDecl->known_extensions()) {
            if (const ObjCIvarDecl *ClsExtIvar
                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
              Diag(ClsFields[i]->getLocation(),
                   diag::err_duplicate_ivar_declaration);
              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
              continue;
            }
          }
        }
        ClsFields[i]->setLexicalDeclContext(CDecl);
        CDecl->addDecl(ClsFields[i]);
      }
      CDecl->setIvarLBraceLoc(LBrac);
      CDecl->setIvarRBraceLoc(RBrac);
    }
  }
}

/// Determine whether the given integral value is representable within
/// the given type T.
static bool isRepresentableIntegerValue(ASTContext &Context,
                                        llvm::APSInt &Value,
                                        QualType T) {
  assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
         "Integral type required!");
  unsigned BitWidth = Context.getIntWidth(T);

  if (Value.isUnsigned() || Value.isNonNegative()) {
    if (T->isSignedIntegerOrEnumerationType())
      --BitWidth;
    return Value.getActiveBits() <= BitWidth;
  }
  return Value.getMinSignedBits() <= BitWidth;
}

// Given an integral type, return the next larger integral type
// (or a NULL type of no such type exists).
static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
  // FIXME: Int128/UInt128 support, which also needs to be introduced into
  // enum checking below.
  assert((T->isIntegralType(Context) ||
         T->isEnumeralType()) && "Integral type required!");
  const unsigned NumTypes = 4;
  QualType SignedIntegralTypes[NumTypes] = {
    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
  };
  QualType UnsignedIntegralTypes[NumTypes] = {
    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
    Context.UnsignedLongLongTy
  };

  unsigned BitWidth = Context.getTypeSize(T);
  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
                                                        : UnsignedIntegralTypes;
  for (unsigned I = 0; I != NumTypes; ++I)
    if (Context.getTypeSize(Types[I]) > BitWidth)
      return Types[I];

  return QualType();
}

EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
                                          EnumConstantDecl *LastEnumConst,
                                          SourceLocation IdLoc,
                                          IdentifierInfo *Id,
                                          Expr *Val) {
  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
  llvm::APSInt EnumVal(IntWidth);
  QualType EltTy;

  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
    Val = nullptr;

  if (Val)
    Val = DefaultLvalueConversion(Val).get();

  if (Val) {
    if (Enum->isDependentType() || Val->isTypeDependent())
      EltTy = Context.DependentTy;
    else {
      if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
        // constant-expression in the enumerator-definition shall be a converted
        // constant expression of the underlying type.
        EltTy = Enum->getIntegerType();
        ExprResult Converted =
          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
                                           CCEK_Enumerator);
        if (Converted.isInvalid())
          Val = nullptr;
        else
          Val = Converted.get();
      } else if (!Val->isValueDependent() &&
                 !(Val = VerifyIntegerConstantExpression(Val,
                                                         &EnumVal).get())) {
        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
      } else {
        if (Enum->isComplete()) {
          EltTy = Enum->getIntegerType();

          // In Obj-C and Microsoft mode, require the enumeration value to be
          // representable in the underlying type of the enumeration. In C++11,
          // we perform a non-narrowing conversion as part of converted constant
          // expression checking.
          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
            if (Context.getTargetInfo()
                    .getTriple()
                    .isWindowsMSVCEnvironment()) {
              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
            } else {
              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
            }
          }

          // Cast to the underlying type.
          Val = ImpCastExprToType(Val, EltTy,
                                  EltTy->isBooleanType() ? CK_IntegralToBoolean
                                                         : CK_IntegralCast)
                    .get();
        } else if (getLangOpts().CPlusPlus) {
          // C++11 [dcl.enum]p5:
          //   If the underlying type is not fixed, the type of each enumerator
          //   is the type of its initializing value:
          //     - If an initializer is specified for an enumerator, the
          //       initializing value has the same type as the expression.
          EltTy = Val->getType();
        } else {
          // C99 6.7.2.2p2:
          //   The expression that defines the value of an enumeration constant
          //   shall be an integer constant expression that has a value
          //   representable as an int.

          // Complain if the value is not representable in an int.
          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
            Diag(IdLoc, diag::ext_enum_value_not_int)
              << EnumVal.toString(10) << Val->getSourceRange()
              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
            // Force the type of the expression to 'int'.
            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
          }
          EltTy = Val->getType();
        }
      }
    }
  }

  if (!Val) {
    if (Enum->isDependentType())
      EltTy = Context.DependentTy;
    else if (!LastEnumConst) {
      // C++0x [dcl.enum]p5:
      //   If the underlying type is not fixed, the type of each enumerator
      //   is the type of its initializing value:
      //     - If no initializer is specified for the first enumerator, the
      //       initializing value has an unspecified integral type.
      //
      // GCC uses 'int' for its unspecified integral type, as does
      // C99 6.7.2.2p3.
      if (Enum->isFixed()) {
        EltTy = Enum->getIntegerType();
      }
      else {
        EltTy = Context.IntTy;
      }
    } else {
      // Assign the last value + 1.
      EnumVal = LastEnumConst->getInitVal();
      ++EnumVal;
      EltTy = LastEnumConst->getType();

      // Check for overflow on increment.
      if (EnumVal < LastEnumConst->getInitVal()) {
        // C++0x [dcl.enum]p5:
        //   If the underlying type is not fixed, the type of each enumerator
        //   is the type of its initializing value:
        //
        //     - Otherwise the type of the initializing value is the same as
        //       the type of the initializing value of the preceding enumerator
        //       unless the incremented value is not representable in that type,
        //       in which case the type is an unspecified integral type
        //       sufficient to contain the incremented value. If no such type
        //       exists, the program is ill-formed.
        QualType T = getNextLargerIntegralType(Context, EltTy);
        if (T.isNull() || Enum->isFixed()) {
          // There is no integral type larger enough to represent this
          // value. Complain, then allow the value to wrap around.
          EnumVal = LastEnumConst->getInitVal();
          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
          ++EnumVal;
          if (Enum->isFixed())
            // When the underlying type is fixed, this is ill-formed.
            Diag(IdLoc, diag::err_enumerator_wrapped)
              << EnumVal.toString(10)
              << EltTy;
          else
            Diag(IdLoc, diag::ext_enumerator_increment_too_large)
              << EnumVal.toString(10);
        } else {
          EltTy = T;
        }

        // Retrieve the last enumerator's value, extent that type to the
        // type that is supposed to be large enough to represent the incremented
        // value, then increment.
        EnumVal = LastEnumConst->getInitVal();
        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
        ++EnumVal;

        // If we're not in C++, diagnose the overflow of enumerator values,
        // which in C99 means that the enumerator value is not representable in
        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
        // permits enumerator values that are representable in some larger
        // integral type.
        if (!getLangOpts().CPlusPlus && !T.isNull())
          Diag(IdLoc, diag::warn_enum_value_overflow);
      } else if (!getLangOpts().CPlusPlus &&
                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
        // Enforce C99 6.7.2.2p2 even when we compute the next value.
        Diag(IdLoc, diag::ext_enum_value_not_int)
          << EnumVal.toString(10) << 1;
      }
    }
  }

  if (!EltTy->isDependentType()) {
    // Make the enumerator value match the signedness and size of the
    // enumerator's type.
    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
  }

  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
                                  Val, EnumVal);
}

Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
                                                SourceLocation IILoc) {
  if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
      !getLangOpts().CPlusPlus)
    return SkipBodyInfo();

  // We have an anonymous enum definition. Look up the first enumerator to
  // determine if we should merge the definition with an existing one and
  // skip the body.
  NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
                                         forRedeclarationInCurContext());
  auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
  if (!PrevECD)
    return SkipBodyInfo();

  EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
  NamedDecl *Hidden;
  if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
    SkipBodyInfo Skip;
    Skip.Previous = Hidden;
    return Skip;
  }

  return SkipBodyInfo();
}

Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
                              SourceLocation IdLoc, IdentifierInfo *Id,
                              const ParsedAttributesView &Attrs,
                              SourceLocation EqualLoc, Expr *Val) {
  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
  EnumConstantDecl *LastEnumConst =
    cast_or_null<EnumConstantDecl>(lastEnumConst);

  // The scope passed in may not be a decl scope.  Zip up the scope tree until
  // we find one that is.
  S = getNonFieldDeclScope(S);

  // Verify that there isn't already something declared with this name in this
  // scope.
  LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
  LookupName(R, S);
  NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();

  if (PrevDecl && PrevDecl->isTemplateParameter()) {
    // Maybe we will complain about the shadowed template parameter.
    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
    // Just pretend that we didn't see the previous declaration.
    PrevDecl = nullptr;
  }

  // C++ [class.mem]p15:
  // If T is the name of a class, then each of the following shall have a name
  // different from T:
  // - every enumerator of every member of class T that is an unscoped
  // enumerated type
  if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
    DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
                            DeclarationNameInfo(Id, IdLoc));

  EnumConstantDecl *New =
    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
  if (!New)
    return nullptr;

  if (PrevDecl) {
    if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
      // Check for other kinds of shadowing not already handled.
      CheckShadow(New, PrevDecl, R);
    }

    // When in C++, we may get a TagDecl with the same name; in this case the
    // enum constant will 'hide' the tag.
    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
           "Received TagDecl when not in C++!");
    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
      if (isa<EnumConstantDecl>(PrevDecl))
        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
      else
        Diag(IdLoc, diag::err_redefinition) << Id;
      notePreviousDefinition(PrevDecl, IdLoc);
      return nullptr;
    }
  }

  // Process attributes.
  ProcessDeclAttributeList(S, New, Attrs);
  AddPragmaAttributes(S, New);

  // Register this decl in the current scope stack.
  New->setAccess(TheEnumDecl->getAccess());
  PushOnScopeChains(New, S);

  ActOnDocumentableDecl(New);

  return New;
}

// Returns true when the enum initial expression does not trigger the
// duplicate enum warning.  A few common cases are exempted as follows:
// Element2 = Element1
// Element2 = Element1 + 1
// Element2 = Element1 - 1
// Where Element2 and Element1 are from the same enum.
static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
  Expr *InitExpr = ECD->getInitExpr();
  if (!InitExpr)
    return true;
  InitExpr = InitExpr->IgnoreImpCasts();

  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
    if (!BO->isAdditiveOp())
      return true;
    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
    if (!IL)
      return true;
    if (IL->getValue() != 1)
      return true;

    InitExpr = BO->getLHS();
  }

  // This checks if the elements are from the same enum.
  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
  if (!DRE)
    return true;

  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
  if (!EnumConstant)
    return true;

  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
      Enum)
    return true;

  return false;
}

// Emits a warning when an element is implicitly set a value that
// a previous element has already been set to.
static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
                                        EnumDecl *Enum, QualType EnumType) {
  // Avoid anonymous enums
  if (!Enum->getIdentifier())
    return;

  // Only check for small enums.
  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
    return;

  if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
    return;

  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
  typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;

  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
  typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;

  // Use int64_t as a key to avoid needing special handling for DenseMap keys.
  auto EnumConstantToKey = [](const EnumConstantDecl *D) {
    llvm::APSInt Val = D->getInitVal();
    return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
  };

  DuplicatesVector DupVector;
  ValueToVectorMap EnumMap;

  // Populate the EnumMap with all values represented by enum constants without
  // an initializer.
  for (auto *Element : Elements) {
    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);

    // Null EnumConstantDecl means a previous diagnostic has been emitted for
    // this constant.  Skip this enum since it may be ill-formed.
    if (!ECD) {
      return;
    }

    // Constants with initalizers are handled in the next loop.
    if (ECD->getInitExpr())
      continue;

    // Duplicate values are handled in the next loop.
    EnumMap.insert({EnumConstantToKey(ECD), ECD});
  }

  if (EnumMap.size() == 0)
    return;

  // Create vectors for any values that has duplicates.
  for (auto *Element : Elements) {
    // The last loop returned if any constant was null.
    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
    if (!ValidDuplicateEnum(ECD, Enum))
      continue;

    auto Iter = EnumMap.find(EnumConstantToKey(ECD));
    if (Iter == EnumMap.end())
      continue;

    DeclOrVector& Entry = Iter->second;
    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
      // Ensure constants are different.
      if (D == ECD)
        continue;

      // Create new vector and push values onto it.
      auto Vec = std::make_unique<ECDVector>();
      Vec->push_back(D);
      Vec->push_back(ECD);

      // Update entry to point to the duplicates vector.
      Entry = Vec.get();

      // Store the vector somewhere we can consult later for quick emission of
      // diagnostics.
      DupVector.emplace_back(std::move(Vec));
      continue;
    }

    ECDVector *Vec = Entry.get<ECDVector*>();
    // Make sure constants are not added more than once.
    if (*Vec->begin() == ECD)
      continue;

    Vec->push_back(ECD);
  }

  // Emit diagnostics.
  for (const auto &Vec : DupVector) {
    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");

    // Emit warning for one enum constant.
    auto *FirstECD = Vec->front();
    S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
      << FirstECD << FirstECD->getInitVal().toString(10)
      << FirstECD->getSourceRange();

    // Emit one note for each of the remaining enum constants with
    // the same value.
    for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
      S.Diag(ECD->getLocation(), diag::note_duplicate_element)
        << ECD << ECD->getInitVal().toString(10)
        << ECD->getSourceRange();
  }
}

bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
                             bool AllowMask) const {
  assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
  assert(ED->isCompleteDefinition() && "expected enum definition");

  auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
  llvm::APInt &FlagBits = R.first->second;

  if (R.second) {
    for (auto *E : ED->enumerators()) {
      const auto &EVal = E->getInitVal();
      // Only single-bit enumerators introduce new flag values.
      if (EVal.isPowerOf2())
        FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
    }
  }

  // A value is in a flag enum if either its bits are a subset of the enum's
  // flag bits (the first condition) or we are allowing masks and the same is
  // true of its complement (the second condition). When masks are allowed, we
  // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
  //
  // While it's true that any value could be used as a mask, the assumption is
  // that a mask will have all of the insignificant bits set. Anything else is
  // likely a logic error.
  llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
  return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
}

void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
                         Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
                         const ParsedAttributesView &Attrs) {
  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
  QualType EnumType = Context.getTypeDeclType(Enum);

  ProcessDeclAttributeList(S, Enum, Attrs);

  if (Enum->isDependentType()) {
    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
      EnumConstantDecl *ECD =
        cast_or_null<EnumConstantDecl>(Elements[i]);
      if (!ECD) continue;

      ECD->setType(EnumType);
    }

    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
    return;
  }

  // TODO: If the result value doesn't fit in an int, it must be a long or long
  // long value.  ISO C does not support this, but GCC does as an extension,
  // emit a warning.
  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();

  // Verify that all the values are okay, compute the size of the values, and
  // reverse the list.
  unsigned NumNegativeBits = 0;
  unsigned NumPositiveBits = 0;

  // Keep track of whether all elements have type int.
  bool AllElementsInt = true;

  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
    EnumConstantDecl *ECD =
      cast_or_null<EnumConstantDecl>(Elements[i]);
    if (!ECD) continue;  // Already issued a diagnostic.

    const llvm::APSInt &InitVal = ECD->getInitVal();

    // Keep track of the size of positive and negative values.
    if (InitVal.isUnsigned() || InitVal.isNonNegative())
      NumPositiveBits = std::max(NumPositiveBits,
                                 (unsigned)InitVal.getActiveBits());
    else
      NumNegativeBits = std::max(NumNegativeBits,
                                 (unsigned)InitVal.getMinSignedBits());

    // Keep track of whether every enum element has type int (very common).
    if (AllElementsInt)
      AllElementsInt = ECD->getType() == Context.IntTy;
  }

  // Figure out the type that should be used for this enum.
  QualType BestType;
  unsigned BestWidth;

  // C++0x N3000 [conv.prom]p3:
  //   An rvalue of an unscoped enumeration type whose underlying
  //   type is not fixed can be converted to an rvalue of the first
  //   of the following types that can represent all the values of
  //   the enumeration: int, unsigned int, long int, unsigned long
  //   int, long long int, or unsigned long long int.
  // C99 6.4.4.3p2:
  //   An identifier declared as an enumeration constant has type int.
  // The C99 rule is modified by a gcc extension
  QualType BestPromotionType;

  bool Packed = Enum->hasAttr<PackedAttr>();
  // -fshort-enums is the equivalent to specifying the packed attribute on all
  // enum definitions.
  if (LangOpts.ShortEnums)
    Packed = true;

  // If the enum already has a type because it is fixed or dictated by the
  // target, promote that type instead of analyzing the enumerators.
  if (Enum->isComplete()) {
    BestType = Enum->getIntegerType();
    if (BestType->isPromotableIntegerType())
      BestPromotionType = Context.getPromotedIntegerType(BestType);
    else
      BestPromotionType = BestType;

    BestWidth = Context.getIntWidth(BestType);
  }
  else if (NumNegativeBits) {
    // If there is a negative value, figure out the smallest integer type (of
    // int/long/longlong) that fits.
    // If it's packed, check also if it fits a char or a short.
    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
      BestType = Context.SignedCharTy;
      BestWidth = CharWidth;
    } else if (Packed && NumNegativeBits <= ShortWidth &&
               NumPositiveBits < ShortWidth) {
      BestType = Context.ShortTy;
      BestWidth = ShortWidth;
    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
      BestType = Context.IntTy;
      BestWidth = IntWidth;
    } else {
      BestWidth = Context.getTargetInfo().getLongWidth();

      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
        BestType = Context.LongTy;
      } else {
        BestWidth = Context.getTargetInfo().getLongLongWidth();

        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
          Diag(Enum->getLocation(), diag::ext_enum_too_large);
        BestType = Context.LongLongTy;
      }
    }
    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
  } else {
    // If there is no negative value, figure out the smallest type that fits
    // all of the enumerator values.
    // If it's packed, check also if it fits a char or a short.
    if (Packed && NumPositiveBits <= CharWidth) {
      BestType = Context.UnsignedCharTy;
      BestPromotionType = Context.IntTy;
      BestWidth = CharWidth;
    } else if (Packed && NumPositiveBits <= ShortWidth) {
      BestType = Context.UnsignedShortTy;
      BestPromotionType = Context.IntTy;
      BestWidth = ShortWidth;
    } else if (NumPositiveBits <= IntWidth) {
      BestType = Context.UnsignedIntTy;
      BestWidth = IntWidth;
      BestPromotionType
        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
                           ? Context.UnsignedIntTy : Context.IntTy;
    } else if (NumPositiveBits <=
               (BestWidth = Context.getTargetInfo().getLongWidth())) {
      BestType = Context.UnsignedLongTy;
      BestPromotionType
        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
                           ? Context.UnsignedLongTy : Context.LongTy;
    } else {
      BestWidth = Context.getTargetInfo().getLongLongWidth();
      assert(NumPositiveBits <= BestWidth &&
             "How could an initializer get larger than ULL?");
      BestType = Context.UnsignedLongLongTy;
      BestPromotionType
        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
    }
  }

  // Loop over all of the enumerator constants, changing their types to match
  // the type of the enum if needed.
  for (auto *D : Elements) {
    auto *ECD = cast_or_null<EnumConstantDecl>(D);
    if (!ECD) continue;  // Already issued a diagnostic.

    // Standard C says the enumerators have int type, but we allow, as an
    // extension, the enumerators to be larger than int size.  If each
    // enumerator value fits in an int, type it as an int, otherwise type it the
    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
    // that X has type 'int', not 'unsigned'.

    // Determine whether the value fits into an int.
    llvm::APSInt InitVal = ECD->getInitVal();

    // If it fits into an integer type, force it.  Otherwise force it to match
    // the enum decl type.
    QualType NewTy;
    unsigned NewWidth;
    bool NewSign;
    if (!getLangOpts().CPlusPlus &&
        !Enum->isFixed() &&
        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
      NewTy = Context.IntTy;
      NewWidth = IntWidth;
      NewSign = true;
    } else if (ECD->getType() == BestType) {
      // Already the right type!
      if (getLangOpts().CPlusPlus)
        // C++ [dcl.enum]p4: Following the closing brace of an
        // enum-specifier, each enumerator has the type of its
        // enumeration.
        ECD->setType(EnumType);
      continue;
    } else {
      NewTy = BestType;
      NewWidth = BestWidth;
      NewSign = BestType->isSignedIntegerOrEnumerationType();
    }

    // Adjust the APSInt value.
    InitVal = InitVal.extOrTrunc(NewWidth);
    InitVal.setIsSigned(NewSign);
    ECD->setInitVal(InitVal);

    // Adjust the Expr initializer and type.
    if (ECD->getInitExpr() &&
        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
                                                CK_IntegralCast,
                                                ECD->getInitExpr(),
                                                /*base paths*/ nullptr,
                                                VK_RValue));
    if (getLangOpts().CPlusPlus)
      // C++ [dcl.enum]p4: Following the closing brace of an
      // enum-specifier, each enumerator has the type of its
      // enumeration.
      ECD->setType(EnumType);
    else
      ECD->setType(NewTy);
  }

  Enum->completeDefinition(BestType, BestPromotionType,
                           NumPositiveBits, NumNegativeBits);

  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);

  if (Enum->isClosedFlag()) {
    for (Decl *D : Elements) {
      EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
      if (!ECD) continue;  // Already issued a diagnostic.

      llvm::APSInt InitVal = ECD->getInitVal();
      if (InitVal != 0 && !InitVal.isPowerOf2() &&
          !IsValueInFlagEnum(Enum, InitVal, true))
        Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
          << ECD << Enum;
    }
  }

  // Now that the enum type is defined, ensure it's not been underaligned.
  if (Enum->hasAttrs())
    CheckAlignasUnderalignment(Enum);
}

Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
                                  SourceLocation StartLoc,
                                  SourceLocation EndLoc) {
  StringLiteral *AsmString = cast<StringLiteral>(expr);

  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
                                                   AsmString, StartLoc,
                                                   EndLoc);
  CurContext->addDecl(New);
  return New;
}

void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
                                      IdentifierInfo* AliasName,
                                      SourceLocation PragmaLoc,
                                      SourceLocation NameLoc,
                                      SourceLocation AliasNameLoc) {
  NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
                                         LookupOrdinaryName);
  AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
                           AttributeCommonInfo::AS_Pragma);
  AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
      Context, AliasName->getName(), /*LiteralLabel=*/true, Info);

  // If a declaration that:
  // 1) declares a function or a variable
  // 2) has external linkage
  // already exists, add a label attribute to it.
  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
    if (isDeclExternC(PrevDecl))
      PrevDecl->addAttr(Attr);
    else
      Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
          << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
  // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
  } else
    (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
}

void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
                             SourceLocation PragmaLoc,
                             SourceLocation NameLoc) {
  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);

  if (PrevDecl) {
    PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
  } else {
    (void)WeakUndeclaredIdentifiers.insert(
      std::pair<IdentifierInfo*,WeakInfo>
        (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
  }
}

void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
                                IdentifierInfo* AliasName,
                                SourceLocation PragmaLoc,
                                SourceLocation NameLoc,
                                SourceLocation AliasNameLoc) {
  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
                                    LookupOrdinaryName);
  WeakInfo W = WeakInfo(Name, NameLoc);

  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
    if (!PrevDecl->hasAttr<AliasAttr>())
      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
        DeclApplyPragmaWeak(TUScope, ND, W);
  } else {
    (void)WeakUndeclaredIdentifiers.insert(
      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
  }
}

Decl *Sema::getObjCDeclContext() const {
  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
}

Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD) {
  // Templates are emitted when they're instantiated.
  if (FD->isDependentContext())
    return FunctionEmissionStatus::TemplateDiscarded;

  FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown;
  if (LangOpts.OpenMPIsDevice) {
    Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
        OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
    if (DevTy.hasValue()) {
      if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
        OMPES = FunctionEmissionStatus::OMPDiscarded;
      else if (DeviceKnownEmittedFns.count(FD) > 0)
        OMPES = FunctionEmissionStatus::Emitted;
    }
  } else if (LangOpts.OpenMP) {
    // In OpenMP 4.5 all the functions are host functions.
    if (LangOpts.OpenMP <= 45) {
      OMPES = FunctionEmissionStatus::Emitted;
    } else {
      Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
          OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
      // In OpenMP 5.0 or above, DevTy may be changed later by
      // #pragma omp declare target to(*) device_type(*). Therefore DevTy
      // having no value does not imply host. The emission status will be
      // checked again at the end of compilation unit.
      if (DevTy.hasValue()) {
        if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) {
          OMPES = FunctionEmissionStatus::OMPDiscarded;
        } else if (DeviceKnownEmittedFns.count(FD) > 0) {
          OMPES = FunctionEmissionStatus::Emitted;
        }
      }
    }
  }
  if (OMPES == FunctionEmissionStatus::OMPDiscarded ||
      (OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA))
    return OMPES;

  if (LangOpts.CUDA) {
    // When compiling for device, host functions are never emitted.  Similarly,
    // when compiling for host, device and global functions are never emitted.
    // (Technically, we do emit a host-side stub for global functions, but this
    // doesn't count for our purposes here.)
    Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
    if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
      return FunctionEmissionStatus::CUDADiscarded;
    if (!LangOpts.CUDAIsDevice &&
        (T == Sema::CFT_Device || T == Sema::CFT_Global))
      return FunctionEmissionStatus::CUDADiscarded;

    // Check whether this function is externally visible -- if so, it's
    // known-emitted.
    //
    // We have to check the GVA linkage of the function's *definition* -- if we
    // only have a declaration, we don't know whether or not the function will
    // be emitted, because (say) the definition could include "inline".
    FunctionDecl *Def = FD->getDefinition();

    if (Def &&
        !isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def))
        && (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted))
      return FunctionEmissionStatus::Emitted;
  }

  // Otherwise, the function is known-emitted if it's in our set of
  // known-emitted functions.
  return (DeviceKnownEmittedFns.count(FD) > 0)
             ? FunctionEmissionStatus::Emitted
             : FunctionEmissionStatus::Unknown;
}

bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
  // Host-side references to a __global__ function refer to the stub, so the
  // function itself is never emitted and therefore should not be marked.
  // If we have host fn calls kernel fn calls host+device, the HD function
  // does not get instantiated on the host. We model this by omitting at the
  // call to the kernel from the callgraph. This ensures that, when compiling
  // for host, only HD functions actually called from the host get marked as
  // known-emitted.
  return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
         IdentifyCUDATarget(Callee) == CFT_Global;
}