SemaAccess.cpp 70 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
//===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides Sema routines for C++ access control semantics.
//
//===----------------------------------------------------------------------===//

#include "clang/Basic/Specifiers.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DependentDiagnostic.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"

using namespace clang;
using namespace sema;

/// A copy of Sema's enum without AR_delayed.
enum AccessResult {
  AR_accessible,
  AR_inaccessible,
  AR_dependent
};

/// SetMemberAccessSpecifier - Set the access specifier of a member.
/// Returns true on error (when the previous member decl access specifier
/// is different from the new member decl access specifier).
bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
                                    NamedDecl *PrevMemberDecl,
                                    AccessSpecifier LexicalAS) {
  if (!PrevMemberDecl) {
    // Use the lexical access specifier.
    MemberDecl->setAccess(LexicalAS);
    return false;
  }

  // C++ [class.access.spec]p3: When a member is redeclared its access
  // specifier must be same as its initial declaration.
  if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
    Diag(MemberDecl->getLocation(),
         diag::err_class_redeclared_with_different_access)
      << MemberDecl << LexicalAS;
    Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
      << PrevMemberDecl << PrevMemberDecl->getAccess();

    MemberDecl->setAccess(LexicalAS);
    return true;
  }

  MemberDecl->setAccess(PrevMemberDecl->getAccess());
  return false;
}

static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
  DeclContext *DC = D->getDeclContext();

  // This can only happen at top: enum decls only "publish" their
  // immediate members.
  if (isa<EnumDecl>(DC))
    DC = cast<EnumDecl>(DC)->getDeclContext();

  CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
  while (DeclaringClass->isAnonymousStructOrUnion())
    DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
  return DeclaringClass;
}

namespace {
struct EffectiveContext {
  EffectiveContext() : Inner(nullptr), Dependent(false) {}

  explicit EffectiveContext(DeclContext *DC)
    : Inner(DC),
      Dependent(DC->isDependentContext()) {

    // C++11 [class.access.nest]p1:
    //   A nested class is a member and as such has the same access
    //   rights as any other member.
    // C++11 [class.access]p2:
    //   A member of a class can also access all the names to which
    //   the class has access.  A local class of a member function
    //   may access the same names that the member function itself
    //   may access.
    // This almost implies that the privileges of nesting are transitive.
    // Technically it says nothing about the local classes of non-member
    // functions (which can gain privileges through friendship), but we
    // take that as an oversight.
    while (true) {
      // We want to add canonical declarations to the EC lists for
      // simplicity of checking, but we need to walk up through the
      // actual current DC chain.  Otherwise, something like a local
      // extern or friend which happens to be the canonical
      // declaration will really mess us up.

      if (isa<CXXRecordDecl>(DC)) {
        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
        Records.push_back(Record->getCanonicalDecl());
        DC = Record->getDeclContext();
      } else if (isa<FunctionDecl>(DC)) {
        FunctionDecl *Function = cast<FunctionDecl>(DC);
        Functions.push_back(Function->getCanonicalDecl());
        if (Function->getFriendObjectKind())
          DC = Function->getLexicalDeclContext();
        else
          DC = Function->getDeclContext();
      } else if (DC->isFileContext()) {
        break;
      } else {
        DC = DC->getParent();
      }
    }
  }

  bool isDependent() const { return Dependent; }

  bool includesClass(const CXXRecordDecl *R) const {
    R = R->getCanonicalDecl();
    return llvm::find(Records, R) != Records.end();
  }

  /// Retrieves the innermost "useful" context.  Can be null if we're
  /// doing access-control without privileges.
  DeclContext *getInnerContext() const {
    return Inner;
  }

  typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;

  DeclContext *Inner;
  SmallVector<FunctionDecl*, 4> Functions;
  SmallVector<CXXRecordDecl*, 4> Records;
  bool Dependent;
};

/// Like sema::AccessedEntity, but kindly lets us scribble all over
/// it.
struct AccessTarget : public AccessedEntity {
  AccessTarget(const AccessedEntity &Entity)
    : AccessedEntity(Entity) {
    initialize();
  }

  AccessTarget(ASTContext &Context,
               MemberNonce _,
               CXXRecordDecl *NamingClass,
               DeclAccessPair FoundDecl,
               QualType BaseObjectType)
    : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
                     FoundDecl, BaseObjectType) {
    initialize();
  }

  AccessTarget(ASTContext &Context,
               BaseNonce _,
               CXXRecordDecl *BaseClass,
               CXXRecordDecl *DerivedClass,
               AccessSpecifier Access)
    : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
                     Access) {
    initialize();
  }

  bool isInstanceMember() const {
    return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
  }

  bool hasInstanceContext() const {
    return HasInstanceContext;
  }

  class SavedInstanceContext {
  public:
    SavedInstanceContext(SavedInstanceContext &&S)
        : Target(S.Target), Has(S.Has) {
      S.Target = nullptr;
    }
    ~SavedInstanceContext() {
      if (Target)
        Target->HasInstanceContext = Has;
    }

  private:
    friend struct AccessTarget;
    explicit SavedInstanceContext(AccessTarget &Target)
        : Target(&Target), Has(Target.HasInstanceContext) {}
    AccessTarget *Target;
    bool Has;
  };

  SavedInstanceContext saveInstanceContext() {
    return SavedInstanceContext(*this);
  }

  void suppressInstanceContext() {
    HasInstanceContext = false;
  }

  const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
    assert(HasInstanceContext);
    if (CalculatedInstanceContext)
      return InstanceContext;

    CalculatedInstanceContext = true;
    DeclContext *IC = S.computeDeclContext(getBaseObjectType());
    InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
                          : nullptr);
    return InstanceContext;
  }

  const CXXRecordDecl *getDeclaringClass() const {
    return DeclaringClass;
  }

  /// The "effective" naming class is the canonical non-anonymous
  /// class containing the actual naming class.
  const CXXRecordDecl *getEffectiveNamingClass() const {
    const CXXRecordDecl *namingClass = getNamingClass();
    while (namingClass->isAnonymousStructOrUnion())
      namingClass = cast<CXXRecordDecl>(namingClass->getParent());
    return namingClass->getCanonicalDecl();
  }

private:
  void initialize() {
    HasInstanceContext = (isMemberAccess() &&
                          !getBaseObjectType().isNull() &&
                          getTargetDecl()->isCXXInstanceMember());
    CalculatedInstanceContext = false;
    InstanceContext = nullptr;

    if (isMemberAccess())
      DeclaringClass = FindDeclaringClass(getTargetDecl());
    else
      DeclaringClass = getBaseClass();
    DeclaringClass = DeclaringClass->getCanonicalDecl();
  }

  bool HasInstanceContext : 1;
  mutable bool CalculatedInstanceContext : 1;
  mutable const CXXRecordDecl *InstanceContext;
  const CXXRecordDecl *DeclaringClass;
};

}

/// Checks whether one class might instantiate to the other.
static bool MightInstantiateTo(const CXXRecordDecl *From,
                               const CXXRecordDecl *To) {
  // Declaration names are always preserved by instantiation.
  if (From->getDeclName() != To->getDeclName())
    return false;

  const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
  const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
  if (FromDC == ToDC) return true;
  if (FromDC->isFileContext() || ToDC->isFileContext()) return false;

  // Be conservative.
  return true;
}

/// Checks whether one class is derived from another, inclusively.
/// Properly indicates when it couldn't be determined due to
/// dependence.
///
/// This should probably be donated to AST or at least Sema.
static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
                                           const CXXRecordDecl *Target) {
  assert(Derived->getCanonicalDecl() == Derived);
  assert(Target->getCanonicalDecl() == Target);

  if (Derived == Target) return AR_accessible;

  bool CheckDependent = Derived->isDependentContext();
  if (CheckDependent && MightInstantiateTo(Derived, Target))
    return AR_dependent;

  AccessResult OnFailure = AR_inaccessible;
  SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack

  while (true) {
    if (Derived->isDependentContext() && !Derived->hasDefinition() &&
        !Derived->isLambda())
      return AR_dependent;

    for (const auto &I : Derived->bases()) {
      const CXXRecordDecl *RD;

      QualType T = I.getType();
      if (const RecordType *RT = T->getAs<RecordType>()) {
        RD = cast<CXXRecordDecl>(RT->getDecl());
      } else if (const InjectedClassNameType *IT
                   = T->getAs<InjectedClassNameType>()) {
        RD = IT->getDecl();
      } else {
        assert(T->isDependentType() && "non-dependent base wasn't a record?");
        OnFailure = AR_dependent;
        continue;
      }

      RD = RD->getCanonicalDecl();
      if (RD == Target) return AR_accessible;
      if (CheckDependent && MightInstantiateTo(RD, Target))
        OnFailure = AR_dependent;

      Queue.push_back(RD);
    }

    if (Queue.empty()) break;

    Derived = Queue.pop_back_val();
  }

  return OnFailure;
}


static bool MightInstantiateTo(Sema &S, DeclContext *Context,
                               DeclContext *Friend) {
  if (Friend == Context)
    return true;

  assert(!Friend->isDependentContext() &&
         "can't handle friends with dependent contexts here");

  if (!Context->isDependentContext())
    return false;

  if (Friend->isFileContext())
    return false;

  // TODO: this is very conservative
  return true;
}

// Asks whether the type in 'context' can ever instantiate to the type
// in 'friend'.
static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
  if (Friend == Context)
    return true;

  if (!Friend->isDependentType() && !Context->isDependentType())
    return false;

  // TODO: this is very conservative.
  return true;
}

static bool MightInstantiateTo(Sema &S,
                               FunctionDecl *Context,
                               FunctionDecl *Friend) {
  if (Context->getDeclName() != Friend->getDeclName())
    return false;

  if (!MightInstantiateTo(S,
                          Context->getDeclContext(),
                          Friend->getDeclContext()))
    return false;

  CanQual<FunctionProtoType> FriendTy
    = S.Context.getCanonicalType(Friend->getType())
         ->getAs<FunctionProtoType>();
  CanQual<FunctionProtoType> ContextTy
    = S.Context.getCanonicalType(Context->getType())
         ->getAs<FunctionProtoType>();

  // There isn't any way that I know of to add qualifiers
  // during instantiation.
  if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
    return false;

  if (FriendTy->getNumParams() != ContextTy->getNumParams())
    return false;

  if (!MightInstantiateTo(S, ContextTy->getReturnType(),
                          FriendTy->getReturnType()))
    return false;

  for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
    if (!MightInstantiateTo(S, ContextTy->getParamType(I),
                            FriendTy->getParamType(I)))
      return false;

  return true;
}

static bool MightInstantiateTo(Sema &S,
                               FunctionTemplateDecl *Context,
                               FunctionTemplateDecl *Friend) {
  return MightInstantiateTo(S,
                            Context->getTemplatedDecl(),
                            Friend->getTemplatedDecl());
}

static AccessResult MatchesFriend(Sema &S,
                                  const EffectiveContext &EC,
                                  const CXXRecordDecl *Friend) {
  if (EC.includesClass(Friend))
    return AR_accessible;

  if (EC.isDependent()) {
    for (const CXXRecordDecl *Context : EC.Records) {
      if (MightInstantiateTo(Context, Friend))
        return AR_dependent;
    }
  }

  return AR_inaccessible;
}

static AccessResult MatchesFriend(Sema &S,
                                  const EffectiveContext &EC,
                                  CanQualType Friend) {
  if (const RecordType *RT = Friend->getAs<RecordType>())
    return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));

  // TODO: we can do better than this
  if (Friend->isDependentType())
    return AR_dependent;

  return AR_inaccessible;
}

/// Determines whether the given friend class template matches
/// anything in the effective context.
static AccessResult MatchesFriend(Sema &S,
                                  const EffectiveContext &EC,
                                  ClassTemplateDecl *Friend) {
  AccessResult OnFailure = AR_inaccessible;

  // Check whether the friend is the template of a class in the
  // context chain.
  for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
    CXXRecordDecl *Record = *I;

    // Figure out whether the current class has a template:
    ClassTemplateDecl *CTD;

    // A specialization of the template...
    if (isa<ClassTemplateSpecializationDecl>(Record)) {
      CTD = cast<ClassTemplateSpecializationDecl>(Record)
        ->getSpecializedTemplate();

    // ... or the template pattern itself.
    } else {
      CTD = Record->getDescribedClassTemplate();
      if (!CTD) continue;
    }

    // It's a match.
    if (Friend == CTD->getCanonicalDecl())
      return AR_accessible;

    // If the context isn't dependent, it can't be a dependent match.
    if (!EC.isDependent())
      continue;

    // If the template names don't match, it can't be a dependent
    // match.
    if (CTD->getDeclName() != Friend->getDeclName())
      continue;

    // If the class's context can't instantiate to the friend's
    // context, it can't be a dependent match.
    if (!MightInstantiateTo(S, CTD->getDeclContext(),
                            Friend->getDeclContext()))
      continue;

    // Otherwise, it's a dependent match.
    OnFailure = AR_dependent;
  }

  return OnFailure;
}

/// Determines whether the given friend function matches anything in
/// the effective context.
static AccessResult MatchesFriend(Sema &S,
                                  const EffectiveContext &EC,
                                  FunctionDecl *Friend) {
  AccessResult OnFailure = AR_inaccessible;

  for (SmallVectorImpl<FunctionDecl*>::const_iterator
         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
    if (Friend == *I)
      return AR_accessible;

    if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
      OnFailure = AR_dependent;
  }

  return OnFailure;
}

/// Determines whether the given friend function template matches
/// anything in the effective context.
static AccessResult MatchesFriend(Sema &S,
                                  const EffectiveContext &EC,
                                  FunctionTemplateDecl *Friend) {
  if (EC.Functions.empty()) return AR_inaccessible;

  AccessResult OnFailure = AR_inaccessible;

  for (SmallVectorImpl<FunctionDecl*>::const_iterator
         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {

    FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
    if (!FTD)
      FTD = (*I)->getDescribedFunctionTemplate();
    if (!FTD)
      continue;

    FTD = FTD->getCanonicalDecl();

    if (Friend == FTD)
      return AR_accessible;

    if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
      OnFailure = AR_dependent;
  }

  return OnFailure;
}

/// Determines whether the given friend declaration matches anything
/// in the effective context.
static AccessResult MatchesFriend(Sema &S,
                                  const EffectiveContext &EC,
                                  FriendDecl *FriendD) {
  // Whitelist accesses if there's an invalid or unsupported friend
  // declaration.
  if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
    return AR_accessible;

  if (TypeSourceInfo *T = FriendD->getFriendType())
    return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());

  NamedDecl *Friend
    = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());

  // FIXME: declarations with dependent or templated scope.

  if (isa<ClassTemplateDecl>(Friend))
    return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));

  if (isa<FunctionTemplateDecl>(Friend))
    return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));

  if (isa<CXXRecordDecl>(Friend))
    return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));

  assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
  return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
}

static AccessResult GetFriendKind(Sema &S,
                                  const EffectiveContext &EC,
                                  const CXXRecordDecl *Class) {
  AccessResult OnFailure = AR_inaccessible;

  // Okay, check friends.
  for (auto *Friend : Class->friends()) {
    switch (MatchesFriend(S, EC, Friend)) {
    case AR_accessible:
      return AR_accessible;

    case AR_inaccessible:
      continue;

    case AR_dependent:
      OnFailure = AR_dependent;
      break;
    }
  }

  // That's it, give up.
  return OnFailure;
}

namespace {

/// A helper class for checking for a friend which will grant access
/// to a protected instance member.
struct ProtectedFriendContext {
  Sema &S;
  const EffectiveContext &EC;
  const CXXRecordDecl *NamingClass;
  bool CheckDependent;
  bool EverDependent;

  /// The path down to the current base class.
  SmallVector<const CXXRecordDecl*, 20> CurPath;

  ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
                         const CXXRecordDecl *InstanceContext,
                         const CXXRecordDecl *NamingClass)
    : S(S), EC(EC), NamingClass(NamingClass),
      CheckDependent(InstanceContext->isDependentContext() ||
                     NamingClass->isDependentContext()),
      EverDependent(false) {}

  /// Check classes in the current path for friendship, starting at
  /// the given index.
  bool checkFriendshipAlongPath(unsigned I) {
    assert(I < CurPath.size());
    for (unsigned E = CurPath.size(); I != E; ++I) {
      switch (GetFriendKind(S, EC, CurPath[I])) {
      case AR_accessible:   return true;
      case AR_inaccessible: continue;
      case AR_dependent:    EverDependent = true; continue;
      }
    }
    return false;
  }

  /// Perform a search starting at the given class.
  ///
  /// PrivateDepth is the index of the last (least derived) class
  /// along the current path such that a notional public member of
  /// the final class in the path would have access in that class.
  bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
    // If we ever reach the naming class, check the current path for
    // friendship.  We can also stop recursing because we obviously
    // won't find the naming class there again.
    if (Cur == NamingClass)
      return checkFriendshipAlongPath(PrivateDepth);

    if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
      EverDependent = true;

    // Recurse into the base classes.
    for (const auto &I : Cur->bases()) {
      // If this is private inheritance, then a public member of the
      // base will not have any access in classes derived from Cur.
      unsigned BasePrivateDepth = PrivateDepth;
      if (I.getAccessSpecifier() == AS_private)
        BasePrivateDepth = CurPath.size() - 1;

      const CXXRecordDecl *RD;

      QualType T = I.getType();
      if (const RecordType *RT = T->getAs<RecordType>()) {
        RD = cast<CXXRecordDecl>(RT->getDecl());
      } else if (const InjectedClassNameType *IT
                   = T->getAs<InjectedClassNameType>()) {
        RD = IT->getDecl();
      } else {
        assert(T->isDependentType() && "non-dependent base wasn't a record?");
        EverDependent = true;
        continue;
      }

      // Recurse.  We don't need to clean up if this returns true.
      CurPath.push_back(RD);
      if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
        return true;
      CurPath.pop_back();
    }

    return false;
  }

  bool findFriendship(const CXXRecordDecl *Cur) {
    assert(CurPath.empty());
    CurPath.push_back(Cur);
    return findFriendship(Cur, 0);
  }
};
}

/// Search for a class P that EC is a friend of, under the constraint
///   InstanceContext <= P
/// if InstanceContext exists, or else
///   NamingClass <= P
/// and with the additional restriction that a protected member of
/// NamingClass would have some natural access in P, which implicitly
/// imposes the constraint that P <= NamingClass.
///
/// This isn't quite the condition laid out in the standard.
/// Instead of saying that a notional protected member of NamingClass
/// would have to have some natural access in P, it says the actual
/// target has to have some natural access in P, which opens up the
/// possibility that the target (which is not necessarily a member
/// of NamingClass) might be more accessible along some path not
/// passing through it.  That's really a bad idea, though, because it
/// introduces two problems:
///   - Most importantly, it breaks encapsulation because you can
///     access a forbidden base class's members by directly subclassing
///     it elsewhere.
///   - It also makes access substantially harder to compute because it
///     breaks the hill-climbing algorithm: knowing that the target is
///     accessible in some base class would no longer let you change
///     the question solely to whether the base class is accessible,
///     because the original target might have been more accessible
///     because of crazy subclassing.
/// So we don't implement that.
static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
                                           const CXXRecordDecl *InstanceContext,
                                           const CXXRecordDecl *NamingClass) {
  assert(InstanceContext == nullptr ||
         InstanceContext->getCanonicalDecl() == InstanceContext);
  assert(NamingClass->getCanonicalDecl() == NamingClass);

  // If we don't have an instance context, our constraints give us
  // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
  // This is just the usual friendship check.
  if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);

  ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
  if (PRC.findFriendship(InstanceContext)) return AR_accessible;
  if (PRC.EverDependent) return AR_dependent;
  return AR_inaccessible;
}

static AccessResult HasAccess(Sema &S,
                              const EffectiveContext &EC,
                              const CXXRecordDecl *NamingClass,
                              AccessSpecifier Access,
                              const AccessTarget &Target) {
  assert(NamingClass->getCanonicalDecl() == NamingClass &&
         "declaration should be canonicalized before being passed here");

  if (Access == AS_public) return AR_accessible;
  assert(Access == AS_private || Access == AS_protected);

  AccessResult OnFailure = AR_inaccessible;

  for (EffectiveContext::record_iterator
         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
    // All the declarations in EC have been canonicalized, so pointer
    // equality from this point on will work fine.
    const CXXRecordDecl *ECRecord = *I;

    // [B2] and [M2]
    if (Access == AS_private) {
      if (ECRecord == NamingClass)
        return AR_accessible;

      if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
        OnFailure = AR_dependent;

    // [B3] and [M3]
    } else {
      assert(Access == AS_protected);
      switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
      case AR_accessible: break;
      case AR_inaccessible: continue;
      case AR_dependent: OnFailure = AR_dependent; continue;
      }

      // C++ [class.protected]p1:
      //   An additional access check beyond those described earlier in
      //   [class.access] is applied when a non-static data member or
      //   non-static member function is a protected member of its naming
      //   class.  As described earlier, access to a protected member is
      //   granted because the reference occurs in a friend or member of
      //   some class C.  If the access is to form a pointer to member,
      //   the nested-name-specifier shall name C or a class derived from
      //   C. All other accesses involve a (possibly implicit) object
      //   expression. In this case, the class of the object expression
      //   shall be C or a class derived from C.
      //
      // We interpret this as a restriction on [M3].

      // In this part of the code, 'C' is just our context class ECRecord.

      // These rules are different if we don't have an instance context.
      if (!Target.hasInstanceContext()) {
        // If it's not an instance member, these restrictions don't apply.
        if (!Target.isInstanceMember()) return AR_accessible;

        // If it's an instance member, use the pointer-to-member rule
        // that the naming class has to be derived from the effective
        // context.

        // Emulate a MSVC bug where the creation of pointer-to-member
        // to protected member of base class is allowed but only from
        // static member functions.
        if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
          if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
            if (MD->isStatic()) return AR_accessible;

        // Despite the standard's confident wording, there is a case
        // where you can have an instance member that's neither in a
        // pointer-to-member expression nor in a member access:  when
        // it names a field in an unevaluated context that can't be an
        // implicit member.  Pending clarification, we just apply the
        // same naming-class restriction here.
        //   FIXME: we're probably not correctly adding the
        //   protected-member restriction when we retroactively convert
        //   an expression to being evaluated.

        // We know that ECRecord derives from NamingClass.  The
        // restriction says to check whether NamingClass derives from
        // ECRecord, but that's not really necessary: two distinct
        // classes can't be recursively derived from each other.  So
        // along this path, we just need to check whether the classes
        // are equal.
        if (NamingClass == ECRecord) return AR_accessible;

        // Otherwise, this context class tells us nothing;  on to the next.
        continue;
      }

      assert(Target.isInstanceMember());

      const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
      if (!InstanceContext) {
        OnFailure = AR_dependent;
        continue;
      }

      switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
      case AR_accessible: return AR_accessible;
      case AR_inaccessible: continue;
      case AR_dependent: OnFailure = AR_dependent; continue;
      }
    }
  }

  // [M3] and [B3] say that, if the target is protected in N, we grant
  // access if the access occurs in a friend or member of some class P
  // that's a subclass of N and where the target has some natural
  // access in P.  The 'member' aspect is easy to handle because P
  // would necessarily be one of the effective-context records, and we
  // address that above.  The 'friend' aspect is completely ridiculous
  // to implement because there are no restrictions at all on P
  // *unless* the [class.protected] restriction applies.  If it does,
  // however, we should ignore whether the naming class is a friend,
  // and instead rely on whether any potential P is a friend.
  if (Access == AS_protected && Target.isInstanceMember()) {
    // Compute the instance context if possible.
    const CXXRecordDecl *InstanceContext = nullptr;
    if (Target.hasInstanceContext()) {
      InstanceContext = Target.resolveInstanceContext(S);
      if (!InstanceContext) return AR_dependent;
    }

    switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
    case AR_accessible: return AR_accessible;
    case AR_inaccessible: return OnFailure;
    case AR_dependent: return AR_dependent;
    }
    llvm_unreachable("impossible friendship kind");
  }

  switch (GetFriendKind(S, EC, NamingClass)) {
  case AR_accessible: return AR_accessible;
  case AR_inaccessible: return OnFailure;
  case AR_dependent: return AR_dependent;
  }

  // Silence bogus warnings
  llvm_unreachable("impossible friendship kind");
}

/// Finds the best path from the naming class to the declaring class,
/// taking friend declarations into account.
///
/// C++0x [class.access.base]p5:
///   A member m is accessible at the point R when named in class N if
///   [M1] m as a member of N is public, or
///   [M2] m as a member of N is private, and R occurs in a member or
///        friend of class N, or
///   [M3] m as a member of N is protected, and R occurs in a member or
///        friend of class N, or in a member or friend of a class P
///        derived from N, where m as a member of P is public, private,
///        or protected, or
///   [M4] there exists a base class B of N that is accessible at R, and
///        m is accessible at R when named in class B.
///
/// C++0x [class.access.base]p4:
///   A base class B of N is accessible at R, if
///   [B1] an invented public member of B would be a public member of N, or
///   [B2] R occurs in a member or friend of class N, and an invented public
///        member of B would be a private or protected member of N, or
///   [B3] R occurs in a member or friend of a class P derived from N, and an
///        invented public member of B would be a private or protected member
///        of P, or
///   [B4] there exists a class S such that B is a base class of S accessible
///        at R and S is a base class of N accessible at R.
///
/// Along a single inheritance path we can restate both of these
/// iteratively:
///
/// First, we note that M1-4 are equivalent to B1-4 if the member is
/// treated as a notional base of its declaring class with inheritance
/// access equivalent to the member's access.  Therefore we need only
/// ask whether a class B is accessible from a class N in context R.
///
/// Let B_1 .. B_n be the inheritance path in question (i.e. where
/// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
/// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
/// closest accessible base in the path:
///   Access(a, b) = (* access on the base specifier from a to b *)
///   Merge(a, forbidden) = forbidden
///   Merge(a, private) = forbidden
///   Merge(a, b) = min(a,b)
///   Accessible(c, forbidden) = false
///   Accessible(c, private) = (R is c) || IsFriend(c, R)
///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
///   Accessible(c, public) = true
///   ACAB(n) = public
///   ACAB(i) =
///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
///     if Accessible(B_i, AccessToBase) then public else AccessToBase
///
/// B is an accessible base of N at R iff ACAB(1) = public.
///
/// \param FinalAccess the access of the "final step", or AS_public if
///   there is no final step.
/// \return null if friendship is dependent
static CXXBasePath *FindBestPath(Sema &S,
                                 const EffectiveContext &EC,
                                 AccessTarget &Target,
                                 AccessSpecifier FinalAccess,
                                 CXXBasePaths &Paths) {
  // Derive the paths to the desired base.
  const CXXRecordDecl *Derived = Target.getNamingClass();
  const CXXRecordDecl *Base = Target.getDeclaringClass();

  // FIXME: fail correctly when there are dependent paths.
  bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
                                          Paths);
  assert(isDerived && "derived class not actually derived from base");
  (void) isDerived;

  CXXBasePath *BestPath = nullptr;

  assert(FinalAccess != AS_none && "forbidden access after declaring class");

  bool AnyDependent = false;

  // Derive the friend-modified access along each path.
  for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
         PI != PE; ++PI) {
    AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();

    // Walk through the path backwards.
    AccessSpecifier PathAccess = FinalAccess;
    CXXBasePath::iterator I = PI->end(), E = PI->begin();
    while (I != E) {
      --I;

      assert(PathAccess != AS_none);

      // If the declaration is a private member of a base class, there
      // is no level of friendship in derived classes that can make it
      // accessible.
      if (PathAccess == AS_private) {
        PathAccess = AS_none;
        break;
      }

      const CXXRecordDecl *NC = I->Class->getCanonicalDecl();

      AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
      PathAccess = std::max(PathAccess, BaseAccess);

      switch (HasAccess(S, EC, NC, PathAccess, Target)) {
      case AR_inaccessible: break;
      case AR_accessible:
        PathAccess = AS_public;

        // Future tests are not against members and so do not have
        // instance context.
        Target.suppressInstanceContext();
        break;
      case AR_dependent:
        AnyDependent = true;
        goto Next;
      }
    }

    // Note that we modify the path's Access field to the
    // friend-modified access.
    if (BestPath == nullptr || PathAccess < BestPath->Access) {
      BestPath = &*PI;
      BestPath->Access = PathAccess;

      // Short-circuit if we found a public path.
      if (BestPath->Access == AS_public)
        return BestPath;
    }

  Next: ;
  }

  assert((!BestPath || BestPath->Access != AS_public) &&
         "fell out of loop with public path");

  // We didn't find a public path, but at least one path was subject
  // to dependent friendship, so delay the check.
  if (AnyDependent)
    return nullptr;

  return BestPath;
}

/// Given that an entity has protected natural access, check whether
/// access might be denied because of the protected member access
/// restriction.
///
/// \return true if a note was emitted
static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
                                       AccessTarget &Target) {
  // Only applies to instance accesses.
  if (!Target.isInstanceMember())
    return false;

  assert(Target.isMemberAccess());

  const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();

  for (EffectiveContext::record_iterator
         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
    const CXXRecordDecl *ECRecord = *I;
    switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
    case AR_accessible: break;
    case AR_inaccessible: continue;
    case AR_dependent: continue;
    }

    // The effective context is a subclass of the declaring class.
    // Check whether the [class.protected] restriction is limiting
    // access.

    // To get this exactly right, this might need to be checked more
    // holistically;  it's not necessarily the case that gaining
    // access here would grant us access overall.

    NamedDecl *D = Target.getTargetDecl();

    // If we don't have an instance context, [class.protected] says the
    // naming class has to equal the context class.
    if (!Target.hasInstanceContext()) {
      // If it does, the restriction doesn't apply.
      if (NamingClass == ECRecord) continue;

      // TODO: it would be great to have a fixit here, since this is
      // such an obvious error.
      S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
        << S.Context.getTypeDeclType(ECRecord);
      return true;
    }

    const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
    assert(InstanceContext && "diagnosing dependent access");

    switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
    case AR_accessible: continue;
    case AR_dependent: continue;
    case AR_inaccessible:
      break;
    }

    // Okay, the restriction seems to be what's limiting us.

    // Use a special diagnostic for constructors and destructors.
    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
        (isa<FunctionTemplateDecl>(D) &&
         isa<CXXConstructorDecl>(
                cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
      return S.Diag(D->getLocation(),
                    diag::note_access_protected_restricted_ctordtor)
             << isa<CXXDestructorDecl>(D->getAsFunction());
    }

    // Otherwise, use the generic diagnostic.
    return S.Diag(D->getLocation(),
                  diag::note_access_protected_restricted_object)
           << S.Context.getTypeDeclType(ECRecord);
  }

  return false;
}

/// We are unable to access a given declaration due to its direct
/// access control;  diagnose that.
static void diagnoseBadDirectAccess(Sema &S,
                                    const EffectiveContext &EC,
                                    AccessTarget &entity) {
  assert(entity.isMemberAccess());
  NamedDecl *D = entity.getTargetDecl();

  if (D->getAccess() == AS_protected &&
      TryDiagnoseProtectedAccess(S, EC, entity))
    return;

  // Find an original declaration.
  while (D->isOutOfLine()) {
    NamedDecl *PrevDecl = nullptr;
    if (VarDecl *VD = dyn_cast<VarDecl>(D))
      PrevDecl = VD->getPreviousDecl();
    else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
      PrevDecl = FD->getPreviousDecl();
    else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
      PrevDecl = TND->getPreviousDecl();
    else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
      if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
        break;
      PrevDecl = TD->getPreviousDecl();
    }
    if (!PrevDecl) break;
    D = PrevDecl;
  }

  CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
  Decl *ImmediateChild;
  if (D->getDeclContext() == DeclaringClass)
    ImmediateChild = D;
  else {
    DeclContext *DC = D->getDeclContext();
    while (DC->getParent() != DeclaringClass)
      DC = DC->getParent();
    ImmediateChild = cast<Decl>(DC);
  }

  // Check whether there's an AccessSpecDecl preceding this in the
  // chain of the DeclContext.
  bool isImplicit = true;
  for (const auto *I : DeclaringClass->decls()) {
    if (I == ImmediateChild) break;
    if (isa<AccessSpecDecl>(I)) {
      isImplicit = false;
      break;
    }
  }

  S.Diag(D->getLocation(), diag::note_access_natural)
    << (unsigned) (D->getAccess() == AS_protected)
    << isImplicit;
}

/// Diagnose the path which caused the given declaration or base class
/// to become inaccessible.
static void DiagnoseAccessPath(Sema &S,
                               const EffectiveContext &EC,
                               AccessTarget &entity) {
  // Save the instance context to preserve invariants.
  AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();

  // This basically repeats the main algorithm but keeps some more
  // information.

  // The natural access so far.
  AccessSpecifier accessSoFar = AS_public;

  // Check whether we have special rights to the declaring class.
  if (entity.isMemberAccess()) {
    NamedDecl *D = entity.getTargetDecl();
    accessSoFar = D->getAccess();
    const CXXRecordDecl *declaringClass = entity.getDeclaringClass();

    switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
    // If the declaration is accessible when named in its declaring
    // class, then we must be constrained by the path.
    case AR_accessible:
      accessSoFar = AS_public;
      entity.suppressInstanceContext();
      break;

    case AR_inaccessible:
      if (accessSoFar == AS_private ||
          declaringClass == entity.getEffectiveNamingClass())
        return diagnoseBadDirectAccess(S, EC, entity);
      break;

    case AR_dependent:
      llvm_unreachable("cannot diagnose dependent access");
    }
  }

  CXXBasePaths paths;
  CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
  assert(path.Access != AS_public);

  CXXBasePath::iterator i = path.end(), e = path.begin();
  CXXBasePath::iterator constrainingBase = i;
  while (i != e) {
    --i;

    assert(accessSoFar != AS_none && accessSoFar != AS_private);

    // Is the entity accessible when named in the deriving class, as
    // modified by the base specifier?
    const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
    const CXXBaseSpecifier *base = i->Base;

    // If the access to this base is worse than the access we have to
    // the declaration, remember it.
    AccessSpecifier baseAccess = base->getAccessSpecifier();
    if (baseAccess > accessSoFar) {
      constrainingBase = i;
      accessSoFar = baseAccess;
    }

    switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
    case AR_inaccessible: break;
    case AR_accessible:
      accessSoFar = AS_public;
      entity.suppressInstanceContext();
      constrainingBase = nullptr;
      break;
    case AR_dependent:
      llvm_unreachable("cannot diagnose dependent access");
    }

    // If this was private inheritance, but we don't have access to
    // the deriving class, we're done.
    if (accessSoFar == AS_private) {
      assert(baseAccess == AS_private);
      assert(constrainingBase == i);
      break;
    }
  }

  // If we don't have a constraining base, the access failure must be
  // due to the original declaration.
  if (constrainingBase == path.end())
    return diagnoseBadDirectAccess(S, EC, entity);

  // We're constrained by inheritance, but we want to say
  // "declared private here" if we're diagnosing a hierarchy
  // conversion and this is the final step.
  unsigned diagnostic;
  if (entity.isMemberAccess() ||
      constrainingBase + 1 != path.end()) {
    diagnostic = diag::note_access_constrained_by_path;
  } else {
    diagnostic = diag::note_access_natural;
  }

  const CXXBaseSpecifier *base = constrainingBase->Base;

  S.Diag(base->getSourceRange().getBegin(), diagnostic)
    << base->getSourceRange()
    << (base->getAccessSpecifier() == AS_protected)
    << (base->getAccessSpecifierAsWritten() == AS_none);

  if (entity.isMemberAccess())
    S.Diag(entity.getTargetDecl()->getLocation(),
           diag::note_member_declared_at);
}

static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
                              const EffectiveContext &EC,
                              AccessTarget &Entity) {
  const CXXRecordDecl *NamingClass = Entity.getNamingClass();
  const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
  NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);

  S.Diag(Loc, Entity.getDiag())
    << (Entity.getAccess() == AS_protected)
    << (D ? D->getDeclName() : DeclarationName())
    << S.Context.getTypeDeclType(NamingClass)
    << S.Context.getTypeDeclType(DeclaringClass);
  DiagnoseAccessPath(S, EC, Entity);
}

/// MSVC has a bug where if during an using declaration name lookup,
/// the declaration found is unaccessible (private) and that declaration
/// was bring into scope via another using declaration whose target
/// declaration is accessible (public) then no error is generated.
/// Example:
///   class A {
///   public:
///     int f();
///   };
///   class B : public A {
///   private:
///     using A::f;
///   };
///   class C : public B {
///   private:
///     using B::f;
///   };
///
/// Here, B::f is private so this should fail in Standard C++, but
/// because B::f refers to A::f which is public MSVC accepts it.
static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
                                                 SourceLocation AccessLoc,
                                                 AccessTarget &Entity) {
  if (UsingShadowDecl *Shadow =
                         dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
    const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
    if (Entity.getTargetDecl()->getAccess() == AS_private &&
        (OrigDecl->getAccess() == AS_public ||
         OrigDecl->getAccess() == AS_protected)) {
      S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
        << Shadow->getUsingDecl()->getQualifiedNameAsString()
        << OrigDecl->getQualifiedNameAsString();
      return true;
    }
  }
  return false;
}

/// Determines whether the accessed entity is accessible.  Public members
/// have been weeded out by this point.
static AccessResult IsAccessible(Sema &S,
                                 const EffectiveContext &EC,
                                 AccessTarget &Entity) {
  // Determine the actual naming class.
  const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();

  AccessSpecifier UnprivilegedAccess = Entity.getAccess();
  assert(UnprivilegedAccess != AS_public && "public access not weeded out");

  // Before we try to recalculate access paths, try to white-list
  // accesses which just trade in on the final step, i.e. accesses
  // which don't require [M4] or [B4]. These are by far the most
  // common forms of privileged access.
  if (UnprivilegedAccess != AS_none) {
    switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
    case AR_dependent:
      // This is actually an interesting policy decision.  We don't
      // *have* to delay immediately here: we can do the full access
      // calculation in the hope that friendship on some intermediate
      // class will make the declaration accessible non-dependently.
      // But that's not cheap, and odds are very good (note: assertion
      // made without data) that the friend declaration will determine
      // access.
      return AR_dependent;

    case AR_accessible: return AR_accessible;
    case AR_inaccessible: break;
    }
  }

  AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();

  // We lower member accesses to base accesses by pretending that the
  // member is a base class of its declaring class.
  AccessSpecifier FinalAccess;

  if (Entity.isMemberAccess()) {
    // Determine if the declaration is accessible from EC when named
    // in its declaring class.
    NamedDecl *Target = Entity.getTargetDecl();
    const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();

    FinalAccess = Target->getAccess();
    switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
    case AR_accessible:
      // Target is accessible at EC when named in its declaring class.
      // We can now hill-climb and simply check whether the declaring
      // class is accessible as a base of the naming class.  This is
      // equivalent to checking the access of a notional public
      // member with no instance context.
      FinalAccess = AS_public;
      Entity.suppressInstanceContext();
      break;
    case AR_inaccessible: break;
    case AR_dependent: return AR_dependent; // see above
    }

    if (DeclaringClass == NamingClass)
      return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
  } else {
    FinalAccess = AS_public;
  }

  assert(Entity.getDeclaringClass() != NamingClass);

  // Append the declaration's access if applicable.
  CXXBasePaths Paths;
  CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
  if (!Path)
    return AR_dependent;

  assert(Path->Access <= UnprivilegedAccess &&
         "access along best path worse than direct?");
  if (Path->Access == AS_public)
    return AR_accessible;
  return AR_inaccessible;
}

static void DelayDependentAccess(Sema &S,
                                 const EffectiveContext &EC,
                                 SourceLocation Loc,
                                 const AccessTarget &Entity) {
  assert(EC.isDependent() && "delaying non-dependent access");
  DeclContext *DC = EC.getInnerContext();
  assert(DC->isDependentContext() && "delaying non-dependent access");
  DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
                              Loc,
                              Entity.isMemberAccess(),
                              Entity.getAccess(),
                              Entity.getTargetDecl(),
                              Entity.getNamingClass(),
                              Entity.getBaseObjectType(),
                              Entity.getDiag());
}

/// Checks access to an entity from the given effective context.
static AccessResult CheckEffectiveAccess(Sema &S,
                                         const EffectiveContext &EC,
                                         SourceLocation Loc,
                                         AccessTarget &Entity) {
  assert(Entity.getAccess() != AS_public && "called for public access!");

  switch (IsAccessible(S, EC, Entity)) {
  case AR_dependent:
    DelayDependentAccess(S, EC, Loc, Entity);
    return AR_dependent;

  case AR_inaccessible:
    if (S.getLangOpts().MSVCCompat &&
        IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
      return AR_accessible;
    if (!Entity.isQuiet())
      DiagnoseBadAccess(S, Loc, EC, Entity);
    return AR_inaccessible;

  case AR_accessible:
    return AR_accessible;
  }

  // silence unnecessary warning
  llvm_unreachable("invalid access result");
}

static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
                                      AccessTarget &Entity) {
  // If the access path is public, it's accessible everywhere.
  if (Entity.getAccess() == AS_public)
    return Sema::AR_accessible;

  // If we're currently parsing a declaration, we may need to delay
  // access control checking, because our effective context might be
  // different based on what the declaration comes out as.
  //
  // For example, we might be parsing a declaration with a scope
  // specifier, like this:
  //   A::private_type A::foo() { ... }
  //
  // Or we might be parsing something that will turn out to be a friend:
  //   void foo(A::private_type);
  //   void B::foo(A::private_type);
  if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
    S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
    return Sema::AR_delayed;
  }

  EffectiveContext EC(S.CurContext);
  switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
  case AR_accessible: return Sema::AR_accessible;
  case AR_inaccessible: return Sema::AR_inaccessible;
  case AR_dependent: return Sema::AR_dependent;
  }
  llvm_unreachable("invalid access result");
}

void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
  // Access control for names used in the declarations of functions
  // and function templates should normally be evaluated in the context
  // of the declaration, just in case it's a friend of something.
  // However, this does not apply to local extern declarations.

  DeclContext *DC = D->getDeclContext();
  if (D->isLocalExternDecl()) {
    DC = D->getLexicalDeclContext();
  } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
    DC = FN;
  } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
    DC = cast<DeclContext>(TD->getTemplatedDecl());
  }

  EffectiveContext EC(DC);

  AccessTarget Target(DD.getAccessData());

  if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
    DD.Triggered = true;
}

void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
                        const MultiLevelTemplateArgumentList &TemplateArgs) {
  SourceLocation Loc = DD.getAccessLoc();
  AccessSpecifier Access = DD.getAccess();

  Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
                                       TemplateArgs);
  if (!NamingD) return;
  Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
                                       TemplateArgs);
  if (!TargetD) return;

  if (DD.isAccessToMember()) {
    CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
    NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
    QualType BaseObjectType = DD.getAccessBaseObjectType();
    if (!BaseObjectType.isNull()) {
      BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
                                 DeclarationName());
      if (BaseObjectType.isNull()) return;
    }

    AccessTarget Entity(Context,
                        AccessTarget::Member,
                        NamingClass,
                        DeclAccessPair::make(TargetDecl, Access),
                        BaseObjectType);
    Entity.setDiag(DD.getDiagnostic());
    CheckAccess(*this, Loc, Entity);
  } else {
    AccessTarget Entity(Context,
                        AccessTarget::Base,
                        cast<CXXRecordDecl>(TargetD),
                        cast<CXXRecordDecl>(NamingD),
                        Access);
    Entity.setDiag(DD.getDiagnostic());
    CheckAccess(*this, Loc, Entity);
  }
}

Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
                                                     DeclAccessPair Found) {
  if (!getLangOpts().AccessControl ||
      !E->getNamingClass() ||
      Found.getAccess() == AS_public)
    return AR_accessible;

  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
                      Found, QualType());
  Entity.setDiag(diag::err_access) << E->getSourceRange();

  return CheckAccess(*this, E->getNameLoc(), Entity);
}

/// Perform access-control checking on a previously-unresolved member
/// access which has now been resolved to a member.
Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
                                                     DeclAccessPair Found) {
  if (!getLangOpts().AccessControl ||
      Found.getAccess() == AS_public)
    return AR_accessible;

  QualType BaseType = E->getBaseType();
  if (E->isArrow())
    BaseType = BaseType->castAs<PointerType>()->getPointeeType();

  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
                      Found, BaseType);
  Entity.setDiag(diag::err_access) << E->getSourceRange();

  return CheckAccess(*this, E->getMemberLoc(), Entity);
}

/// Is the given member accessible for the purposes of deciding whether to
/// define a special member function as deleted?
bool Sema::isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
                                         DeclAccessPair Found,
                                         QualType ObjectType,
                                         SourceLocation Loc,
                                         const PartialDiagnostic &Diag) {
  // Fast path.
  if (Found.getAccess() == AS_public || !getLangOpts().AccessControl)
    return true;

  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
                      ObjectType);

  // Suppress diagnostics.
  Entity.setDiag(Diag);

  switch (CheckAccess(*this, Loc, Entity)) {
  case AR_accessible: return true;
  case AR_inaccessible: return false;
  case AR_dependent: llvm_unreachable("dependent for =delete computation");
  case AR_delayed: llvm_unreachable("cannot delay =delete computation");
  }
  llvm_unreachable("bad access result");
}

Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
                                               CXXDestructorDecl *Dtor,
                                               const PartialDiagnostic &PDiag,
                                               QualType ObjectTy) {
  if (!getLangOpts().AccessControl)
    return AR_accessible;

  // There's never a path involved when checking implicit destructor access.
  AccessSpecifier Access = Dtor->getAccess();
  if (Access == AS_public)
    return AR_accessible;

  CXXRecordDecl *NamingClass = Dtor->getParent();
  if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);

  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
                      DeclAccessPair::make(Dtor, Access),
                      ObjectTy);
  Entity.setDiag(PDiag); // TODO: avoid copy

  return CheckAccess(*this, Loc, Entity);
}

/// Checks access to a constructor.
Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
                                                CXXConstructorDecl *Constructor,
                                                DeclAccessPair Found,
                                                const InitializedEntity &Entity,
                                                bool IsCopyBindingRefToTemp) {
  if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
    return AR_accessible;

  PartialDiagnostic PD(PDiag());
  switch (Entity.getKind()) {
  default:
    PD = PDiag(IsCopyBindingRefToTemp
                 ? diag::ext_rvalue_to_reference_access_ctor
                 : diag::err_access_ctor);

    break;

  case InitializedEntity::EK_Base:
    PD = PDiag(diag::err_access_base_ctor);
    PD << Entity.isInheritedVirtualBase()
       << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
    break;

  case InitializedEntity::EK_Member: {
    const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
    PD = PDiag(diag::err_access_field_ctor);
    PD << Field->getType() << getSpecialMember(Constructor);
    break;
  }

  case InitializedEntity::EK_LambdaCapture: {
    StringRef VarName = Entity.getCapturedVarName();
    PD = PDiag(diag::err_access_lambda_capture);
    PD << VarName << Entity.getType() << getSpecialMember(Constructor);
    break;
  }

  }

  return CheckConstructorAccess(UseLoc, Constructor, Found, Entity, PD);
}

/// Checks access to a constructor.
Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
                                                CXXConstructorDecl *Constructor,
                                                DeclAccessPair Found,
                                                const InitializedEntity &Entity,
                                                const PartialDiagnostic &PD) {
  if (!getLangOpts().AccessControl ||
      Found.getAccess() == AS_public)
    return AR_accessible;

  CXXRecordDecl *NamingClass = Constructor->getParent();

  // Initializing a base sub-object is an instance method call on an
  // object of the derived class.  Otherwise, we have an instance method
  // call on an object of the constructed type.
  //
  // FIXME: If we have a parent, we're initializing the base class subobject
  // in aggregate initialization. It's not clear whether the object class
  // should be the base class or the derived class in that case.
  CXXRecordDecl *ObjectClass;
  if ((Entity.getKind() == InitializedEntity::EK_Base ||
       Entity.getKind() == InitializedEntity::EK_Delegating) &&
      !Entity.getParent()) {
    ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
  } else if (auto *Shadow =
                 dyn_cast<ConstructorUsingShadowDecl>(Found.getDecl())) {
    // If we're using an inheriting constructor to construct an object,
    // the object class is the derived class, not the base class.
    ObjectClass = Shadow->getParent();
  } else {
    ObjectClass = NamingClass;
  }

  AccessTarget AccessEntity(
      Context, AccessTarget::Member, NamingClass,
      DeclAccessPair::make(Constructor, Found.getAccess()),
      Context.getTypeDeclType(ObjectClass));
  AccessEntity.setDiag(PD);

  return CheckAccess(*this, UseLoc, AccessEntity);
}

/// Checks access to an overloaded operator new or delete.
Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
                                               SourceRange PlacementRange,
                                               CXXRecordDecl *NamingClass,
                                               DeclAccessPair Found,
                                               bool Diagnose) {
  if (!getLangOpts().AccessControl ||
      !NamingClass ||
      Found.getAccess() == AS_public)
    return AR_accessible;

  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
                      QualType());
  if (Diagnose)
    Entity.setDiag(diag::err_access)
      << PlacementRange;

  return CheckAccess(*this, OpLoc, Entity);
}

/// Checks access to a member.
Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
                                           CXXRecordDecl *NamingClass,
                                           DeclAccessPair Found) {
  if (!getLangOpts().AccessControl ||
      !NamingClass ||
      Found.getAccess() == AS_public)
    return AR_accessible;

  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
                      Found, QualType());

  return CheckAccess(*this, UseLoc, Entity);
}

/// Checks implicit access to a member in a structured binding.
Sema::AccessResult
Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
                                         CXXRecordDecl *DecomposedClass,
                                         DeclAccessPair Field) {
  if (!getLangOpts().AccessControl ||
      Field.getAccess() == AS_public)
    return AR_accessible;

  AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field,
                      Context.getRecordType(DecomposedClass));
  Entity.setDiag(diag::err_decomp_decl_inaccessible_field);

  return CheckAccess(*this, UseLoc, Entity);
}

/// Checks access to an overloaded member operator, including
/// conversion operators.
Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
                                                   Expr *ObjectExpr,
                                                   Expr *ArgExpr,
                                                   DeclAccessPair Found) {
  if (!getLangOpts().AccessControl ||
      Found.getAccess() == AS_public)
    return AR_accessible;

  const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
  CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());

  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
                      ObjectExpr->getType());
  Entity.setDiag(diag::err_access)
    << ObjectExpr->getSourceRange()
    << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());

  return CheckAccess(*this, OpLoc, Entity);
}

/// Checks access to the target of a friend declaration.
Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
  assert(isa<CXXMethodDecl>(target->getAsFunction()));

  // Friendship lookup is a redeclaration lookup, so there's never an
  // inheritance path modifying access.
  AccessSpecifier access = target->getAccess();

  if (!getLangOpts().AccessControl || access == AS_public)
    return AR_accessible;

  CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());

  AccessTarget entity(Context, AccessTarget::Member,
                      cast<CXXRecordDecl>(target->getDeclContext()),
                      DeclAccessPair::make(target, access),
                      /*no instance context*/ QualType());
  entity.setDiag(diag::err_access_friend_function)
      << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
                                 : method->getNameInfo().getSourceRange());

  // We need to bypass delayed-diagnostics because we might be called
  // while the ParsingDeclarator is active.
  EffectiveContext EC(CurContext);
  switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
  case ::AR_accessible: return Sema::AR_accessible;
  case ::AR_inaccessible: return Sema::AR_inaccessible;
  case ::AR_dependent: return Sema::AR_dependent;
  }
  llvm_unreachable("invalid access result");
}

Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
                                                    DeclAccessPair Found) {
  if (!getLangOpts().AccessControl ||
      Found.getAccess() == AS_none ||
      Found.getAccess() == AS_public)
    return AR_accessible;

  OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
  CXXRecordDecl *NamingClass = Ovl->getNamingClass();

  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
                      /*no instance context*/ QualType());
  Entity.setDiag(diag::err_access)
    << Ovl->getSourceRange();

  return CheckAccess(*this, Ovl->getNameLoc(), Entity);
}

/// Checks access for a hierarchy conversion.
///
/// \param ForceCheck true if this check should be performed even if access
///     control is disabled;  some things rely on this for semantics
/// \param ForceUnprivileged true if this check should proceed as if the
///     context had no special privileges
Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
                                              QualType Base,
                                              QualType Derived,
                                              const CXXBasePath &Path,
                                              unsigned DiagID,
                                              bool ForceCheck,
                                              bool ForceUnprivileged) {
  if (!ForceCheck && !getLangOpts().AccessControl)
    return AR_accessible;

  if (Path.Access == AS_public)
    return AR_accessible;

  CXXRecordDecl *BaseD, *DerivedD;
  BaseD = cast<CXXRecordDecl>(Base->castAs<RecordType>()->getDecl());
  DerivedD = cast<CXXRecordDecl>(Derived->castAs<RecordType>()->getDecl());

  AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
                      Path.Access);
  if (DiagID)
    Entity.setDiag(DiagID) << Derived << Base;

  if (ForceUnprivileged) {
    switch (CheckEffectiveAccess(*this, EffectiveContext(),
                                 AccessLoc, Entity)) {
    case ::AR_accessible: return Sema::AR_accessible;
    case ::AR_inaccessible: return Sema::AR_inaccessible;
    case ::AR_dependent: return Sema::AR_dependent;
    }
    llvm_unreachable("unexpected result from CheckEffectiveAccess");
  }
  return CheckAccess(*this, AccessLoc, Entity);
}

/// Checks access to all the declarations in the given result set.
void Sema::CheckLookupAccess(const LookupResult &R) {
  assert(getLangOpts().AccessControl
         && "performing access check without access control");
  assert(R.getNamingClass() && "performing access check without naming class");

  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    if (I.getAccess() != AS_public) {
      AccessTarget Entity(Context, AccessedEntity::Member,
                          R.getNamingClass(), I.getPair(),
                          R.getBaseObjectType());
      Entity.setDiag(diag::err_access);
      CheckAccess(*this, R.getNameLoc(), Entity);
    }
  }
}

/// Checks access to Target from the given class. The check will take access
/// specifiers into account, but no member access expressions and such.
///
/// \param Target the declaration to check if it can be accessed
/// \param NamingClass the class in which the lookup was started.
/// \param BaseType type of the left side of member access expression.
///        \p BaseType and \p NamingClass are used for C++ access control.
///        Depending on the lookup case, they should be set to the following:
///        - lhs.target (member access without a qualifier):
///          \p BaseType and \p NamingClass are both the type of 'lhs'.
///        - lhs.X::target (member access with a qualifier):
///          BaseType is the type of 'lhs', NamingClass is 'X'
///        - X::target (qualified lookup without member access):
///          BaseType is null, NamingClass is 'X'.
///        - target (unqualified lookup).
///          BaseType is null, NamingClass is the parent class of 'target'.
/// \return true if the Target is accessible from the Class, false otherwise.
bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass,
                              QualType BaseType) {
  // Perform the C++ accessibility checks first.
  if (Target->isCXXClassMember() && NamingClass) {
    if (!getLangOpts().CPlusPlus)
      return false;
    // The unprivileged access is AS_none as we don't know how the member was
    // accessed, which is described by the access in DeclAccessPair.
    // `IsAccessible` will examine the actual access of Target (i.e.
    // Decl->getAccess()) when calculating the access.
    AccessTarget Entity(Context, AccessedEntity::Member, NamingClass,
                        DeclAccessPair::make(Target, AS_none), BaseType);
    EffectiveContext EC(CurContext);
    return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
  }

  if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Target)) {
    // @public and @package ivars are always accessible.
    if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
        Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
      return true;

    // If we are inside a class or category implementation, determine the
    // interface we're in.
    ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
    if (ObjCMethodDecl *MD = getCurMethodDecl())
      ClassOfMethodDecl =  MD->getClassInterface();
    else if (FunctionDecl *FD = getCurFunctionDecl()) {
      if (ObjCImplDecl *Impl
            = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
        if (ObjCImplementationDecl *IMPD
              = dyn_cast<ObjCImplementationDecl>(Impl))
          ClassOfMethodDecl = IMPD->getClassInterface();
        else if (ObjCCategoryImplDecl* CatImplClass
                   = dyn_cast<ObjCCategoryImplDecl>(Impl))
          ClassOfMethodDecl = CatImplClass->getClassInterface();
      }
    }

    // If we're not in an interface, this ivar is inaccessible.
    if (!ClassOfMethodDecl)
      return false;

    // If we're inside the same interface that owns the ivar, we're fine.
    if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
      return true;

    // If the ivar is private, it's inaccessible.
    if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
      return false;

    return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
  }

  return true;
}