LowerGpuOpsToNVVMOps.cpp
33.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
//===- LowerGpuOpsToNVVMOps.cpp - MLIR GPU to NVVM lowering passes --------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to generate NVVMIR operations for higher-level
// GPU operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/FormatVariadic.h"
#include "../GPUCommon/IndexIntrinsicsOpLowering.h"
#include "../GPUCommon/OpToFuncCallLowering.h"
using namespace mlir;
namespace {
/// Derived type converter for GPU to NVVM lowering. The GPU dialect uses memory
/// space 5 for private memory attributions, but NVVM represents private
/// memory allocations as local `alloca`s in the default address space. This
/// converter drops the private memory space to support the use case above.
class NVVMTypeConverter : public LLVMTypeConverter {
public:
using LLVMTypeConverter::LLVMTypeConverter;
Type convertType(Type type) override {
auto memref = type.dyn_cast<MemRefType>();
if (memref &&
memref.getMemorySpace() == gpu::GPUDialect::getPrivateAddressSpace()) {
type = MemRefType::get(memref.getShape(), memref.getElementType(),
memref.getAffineMaps());
}
return LLVMTypeConverter::convertType(type);
}
};
/// Converts all_reduce op to LLVM/NVVM ops.
struct GPUAllReduceOpLowering : public LLVMOpLowering {
using AccumulatorFactory =
std::function<Value(Location, Value, Value, ConversionPatternRewriter &)>;
explicit GPUAllReduceOpLowering(LLVMTypeConverter &lowering_)
: LLVMOpLowering(gpu::AllReduceOp::getOperationName(),
lowering_.getDialect()->getContext(), lowering_),
int32Type(LLVM::LLVMType::getInt32Ty(lowering_.getDialect())) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value operand = operands.front();
// TODO(csigg): Generalize to other types of accumulation.
assert(op->getOperand(0).getType().isIntOrFloat());
// Create the reduction using an accumulator factory.
AccumulatorFactory factory =
getFactory(cast<gpu::AllReduceOp>(op), operand);
assert(factory && "failed to create accumulator factory");
Value result = createBlockReduce(loc, operand, factory, rewriter);
rewriter.replaceOp(op, {result});
return matchSuccess();
}
private:
/// Returns an accumulator factory using either the op attribute or the body
/// region.
AccumulatorFactory getFactory(gpu::AllReduceOp allReduce,
Value operand) const {
if (!allReduce.body().empty()) {
return getFactory(allReduce.body());
}
if (allReduce.op()) {
auto type = operand.getType().cast<LLVM::LLVMType>();
return getFactory(*allReduce.op(), type.getUnderlyingType());
}
return AccumulatorFactory();
}
/// Returns an accumulator factory that clones the body. The body's entry
/// block is expected to have 2 arguments. The gpu.yield return the
/// accumulated value of the same type.
AccumulatorFactory getFactory(Region &body) const {
return AccumulatorFactory([&](Location loc, Value lhs, Value rhs,
ConversionPatternRewriter &rewriter) {
Block *block = rewriter.getInsertionBlock();
Block *split = rewriter.splitBlock(block, rewriter.getInsertionPoint());
// Insert accumulator body between split block.
BlockAndValueMapping mapping;
mapping.map(body.front().getArgument(0), lhs);
mapping.map(body.front().getArgument(1), rhs);
rewriter.cloneRegionBefore(body, *split->getParent(),
split->getIterator(), mapping);
// Add branch before inserted body, into body.
block = block->getNextNode();
rewriter.create<LLVM::BrOp>(loc, ArrayRef<Value>{},
llvm::makeArrayRef(block), ValueRange());
// Replace all gpu.yield ops with branch out of body.
for (; block != split; block = block->getNextNode()) {
Operation *terminator = block->getTerminator();
if (!llvm::isa<gpu::YieldOp>(terminator))
continue;
rewriter.setInsertionPointToEnd(block);
rewriter.replaceOpWithNewOp<LLVM::BrOp>(
terminator, ArrayRef<Value>{}, llvm::makeArrayRef(split),
ValueRange(terminator->getOperand(0)));
}
// Return accumulator result.
rewriter.setInsertionPointToStart(split);
return split->addArgument(lhs.getType());
});
}
/// Returns an accumulator factory that creates an op specified by opName.
AccumulatorFactory getFactory(StringRef opName, llvm::Type *type) const {
if (type->isVectorTy() || type->isArrayTy())
return getFactory(opName, type->getSequentialElementType());
bool isFloatingPoint = type->isFloatingPointTy();
if (opName == "add") {
return isFloatingPoint ? getFactory<LLVM::FAddOp>()
: getFactory<LLVM::AddOp>();
}
if (opName == "mul") {
return isFloatingPoint ? getFactory<LLVM::FMulOp>()
: getFactory<LLVM::MulOp>();
}
return AccumulatorFactory();
}
/// Returns an accumulator factory that creates an op of type T.
template <typename T> AccumulatorFactory getFactory() const {
return [](Location loc, Value lhs, Value rhs,
ConversionPatternRewriter &rewriter) {
return rewriter.create<T>(loc, lhs.getType(), lhs, rhs);
};
}
/// Creates an all_reduce across the block.
///
/// First reduce the elements within a warp. The first thread of each warp
/// writes the intermediate result to shared memory. After synchronizing the
/// block, the first warp reduces the values from shared memory. The result
/// is broadcasted to all threads through shared memory.
///
/// %warp_reduce = `createWarpReduce(%operand)`
/// %shared_mem_ptr = llvm.mlir.addressof @reduce_buffer
/// %zero = llvm.mlir.constant(0 : i32) : !llvm.i32
/// %lane_id = nvvm.read.ptx.sreg.laneid : !llvm.i32
/// %is_first_lane = llvm.icmp "eq" %lane_id, %zero : !llvm.i1
/// %thread_idx = `getLinearThreadIndex()` : !llvm.i32
/// llvm.cond_br %is_first_lane, ^then1, ^continue1
/// ^then1:
/// %warp_id = `getWarpId()`
/// %store_dst = llvm.getelementptr %shared_mem_ptr[%zero, %warp_id]
/// llvm.store %store_dst, %warp_reduce
/// llvm.br ^continue1
/// ^continue1:
/// nvvm.barrier0
/// %num_warps = `getNumWarps()` : !llvm.i32
/// %is_valid_warp = llvm.icmp "slt" %thread_idx, %num_warps
/// %result_ptr = llvm.getelementptr %shared_mem_ptr[%zero, %zero]
/// llvm.cond_br %is_first_lane, ^then2, ^continue2
/// ^then2:
/// %load_src = llvm.getelementptr %shared_mem_ptr[%zero, %thread_idx]
/// %value = llvm.load %load_src
/// %result = `createWarpReduce(%value)`
/// llvm.store %result_ptr, %result
/// llvm.br ^continue2
/// ^continue2:
/// nvvm.barrier0
/// %result = llvm.load %result_ptr
/// return %result
///
Value createBlockReduce(Location loc, Value operand,
AccumulatorFactory &accumFactory,
ConversionPatternRewriter &rewriter) const {
auto type = operand.getType().cast<LLVM::LLVMType>();
// Create shared memory array to store the warp reduction.
auto module = operand.getDefiningOp()->getParentOfType<ModuleOp>();
assert(module && "op must belong to a module");
Value sharedMemPtr =
createSharedMemoryArray(loc, module, type, kWarpSize, rewriter);
Value zero = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(0u));
Value laneId = rewriter.create<NVVM::LaneIdOp>(loc, int32Type);
Value isFirstLane = rewriter.create<LLVM::ICmpOp>(
loc, LLVM::ICmpPredicate::eq, laneId, zero);
Value threadIdx = getLinearThreadIndex(loc, rewriter);
Value blockSize = getBlockSize(loc, rewriter);
Value activeWidth = getActiveWidth(loc, threadIdx, blockSize, rewriter);
// Reduce elements within each warp to produce the intermediate results.
Value warpReduce = createWarpReduce(loc, activeWidth, laneId, operand,
accumFactory, rewriter);
// Write the intermediate results to shared memory, using the first lane of
// each warp.
createPredicatedBlock(loc, rewriter, isFirstLane, [&] {
Value warpId = getDivideByWarpSize(threadIdx, rewriter);
Value storeDst = rewriter.create<LLVM::GEPOp>(
loc, type, sharedMemPtr, ArrayRef<Value>({zero, warpId}));
rewriter.create<LLVM::StoreOp>(loc, warpReduce, storeDst);
});
rewriter.create<NVVM::Barrier0Op>(loc);
Value numWarps = getNumWarps(loc, blockSize, rewriter);
Value isValidWarp = rewriter.create<LLVM::ICmpOp>(
loc, LLVM::ICmpPredicate::slt, threadIdx, numWarps);
Value resultPtr = rewriter.create<LLVM::GEPOp>(
loc, type, sharedMemPtr, ArrayRef<Value>({zero, zero}));
// Use the first numWarps threads to reduce the intermediate results from
// shared memory. The final result is written to shared memory again.
createPredicatedBlock(loc, rewriter, isValidWarp, [&] {
Value loadSrc = rewriter.create<LLVM::GEPOp>(
loc, type, sharedMemPtr, ArrayRef<Value>({zero, threadIdx}));
Value value = rewriter.create<LLVM::LoadOp>(loc, type, loadSrc);
Value result = createWarpReduce(loc, numWarps, laneId, value,
accumFactory, rewriter);
rewriter.create<LLVM::StoreOp>(loc, result, resultPtr);
});
rewriter.create<NVVM::Barrier0Op>(loc);
// Load and return result from shared memory.
Value result = rewriter.create<LLVM::LoadOp>(loc, type, resultPtr);
return result;
}
/// Creates an if-block skeleton and calls the two factories to generate the
/// ops in the `then` and `else` block..
///
/// llvm.cond_br %condition, ^then, ^continue
/// ^then:
/// %then_operands = `thenOpsFactory()`
/// llvm.br ^continue(%then_operands)
/// ^else:
/// %else_operands = `elseOpsFactory()`
/// llvm.br ^continue(%else_operands)
/// ^continue(%block_operands):
///
template <typename ThenOpsFactory, typename ElseOpsFactory>
void createIf(Location loc, ConversionPatternRewriter &rewriter,
Value condition, ThenOpsFactory &&thenOpsFactory,
ElseOpsFactory &&elseOpsFactory) const {
Block *currentBlock = rewriter.getInsertionBlock();
auto currentPoint = rewriter.getInsertionPoint();
Block *thenBlock = rewriter.splitBlock(currentBlock, currentPoint);
Block *elseBlock = rewriter.splitBlock(thenBlock, thenBlock->begin());
Block *continueBlock = rewriter.splitBlock(elseBlock, elseBlock->begin());
rewriter.setInsertionPointToEnd(currentBlock);
rewriter.create<LLVM::CondBrOp>(loc, llvm::makeArrayRef(condition),
ArrayRef<Block *>{thenBlock, elseBlock});
auto addBranch = [&](ValueRange operands) {
rewriter.create<LLVM::BrOp>(loc, ArrayRef<Value>{},
llvm::makeArrayRef(continueBlock),
llvm::makeArrayRef(operands));
};
rewriter.setInsertionPointToStart(thenBlock);
auto thenOperands = thenOpsFactory();
addBranch(thenOperands);
rewriter.setInsertionPointToStart(elseBlock);
auto elseOperands = elseOpsFactory();
addBranch(elseOperands);
assert(thenOperands.size() == elseOperands.size());
rewriter.setInsertionPointToStart(continueBlock);
for (auto operand : thenOperands)
continueBlock->addArgument(operand.getType());
}
/// Shortcut for createIf with empty else block and no block operands.
template <typename Factory>
void createPredicatedBlock(Location loc, ConversionPatternRewriter &rewriter,
Value condition,
Factory &&predicatedOpsFactory) const {
createIf(
loc, rewriter, condition,
[&] {
predicatedOpsFactory();
return ArrayRef<Value>();
},
[&] { return ArrayRef<Value>(); });
}
/// Creates a reduction across the first activeWidth lanes of a warp.
/// The first lane returns the result, all others return values are undefined.
Value createWarpReduce(Location loc, Value activeWidth, Value laneId,
Value operand, AccumulatorFactory accumFactory,
ConversionPatternRewriter &rewriter) const {
Value warpSize = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(kWarpSize));
Value isPartialWarp = rewriter.create<LLVM::ICmpOp>(
loc, LLVM::ICmpPredicate::slt, activeWidth, warpSize);
auto type = operand.getType().cast<LLVM::LLVMType>();
createIf(
loc, rewriter, isPartialWarp,
// Generate reduction over a (potentially) partial warp.
[&] {
Value value = operand;
Value one = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(1));
// Bit mask of active lanes: `(1 << activeWidth) - 1`.
Value activeMask = rewriter.create<LLVM::SubOp>(
loc, int32Type,
rewriter.create<LLVM::ShlOp>(loc, int32Type, one, activeWidth),
one);
// Clamp lane: `activeWidth - 1`
Value maskAndClamp =
rewriter.create<LLVM::SubOp>(loc, int32Type, activeWidth, one);
auto dialect = lowering.getDialect();
auto predTy = LLVM::LLVMType::getInt1Ty(dialect);
auto shflTy = LLVM::LLVMType::getStructTy(dialect, {type, predTy});
auto returnValueAndIsValidAttr = rewriter.getUnitAttr();
// Repeatedly shuffle value from 'laneId ^ i' and accumulate if source
// lane is within the active range. All lanes contain the final
// result, but only the first lane's result is used.
for (int i = 1; i < kWarpSize; i <<= 1) {
Value offset = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(i));
Value shfl = rewriter.create<NVVM::ShflBflyOp>(
loc, shflTy, activeMask, value, offset, maskAndClamp,
returnValueAndIsValidAttr);
Value isActiveSrcLane = rewriter.create<LLVM::ExtractValueOp>(
loc, predTy, shfl, rewriter.getIndexArrayAttr(1));
// Skip the accumulation if the shuffle op read from a lane outside
// of the active range.
createIf(
loc, rewriter, isActiveSrcLane,
[&] {
Value shflValue = rewriter.create<LLVM::ExtractValueOp>(
loc, type, shfl, rewriter.getIndexArrayAttr(0));
return SmallVector<Value, 1>{
accumFactory(loc, value, shflValue, rewriter)};
},
[&] { return llvm::makeArrayRef(value); });
value = rewriter.getInsertionBlock()->getArgument(0);
}
return SmallVector<Value, 1>{value};
},
// Generate a reduction over the entire warp. This is a specialization
// of the above reduction with unconditional accumulation.
[&] {
Value value = operand;
Value activeMask = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(~0u));
Value maskAndClamp = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(kWarpSize - 1));
for (int i = 1; i < kWarpSize; i <<= 1) {
Value offset = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(i));
Value shflValue = rewriter.create<NVVM::ShflBflyOp>(
loc, type, activeMask, value, offset, maskAndClamp,
/*return_value_and_is_valid=*/UnitAttr());
value = accumFactory(loc, value, shflValue, rewriter);
}
return SmallVector<Value, 1>{value};
});
return rewriter.getInsertionBlock()->getArgument(0);
}
/// Creates a global array stored in shared memory.
Value createSharedMemoryArray(Location loc, ModuleOp module,
LLVM::LLVMType elementType, int numElements,
ConversionPatternRewriter &rewriter) const {
OpBuilder builder(module.getBodyRegion());
auto arrayType = LLVM::LLVMType::getArrayTy(elementType, numElements);
StringRef name = "reduce_buffer";
auto globalOp = builder.create<LLVM::GlobalOp>(
loc, arrayType.cast<LLVM::LLVMType>(),
/*isConstant=*/false, LLVM::Linkage::Internal, name,
/*value=*/Attribute(), gpu::GPUDialect::getWorkgroupAddressSpace());
return rewriter.create<LLVM::AddressOfOp>(loc, globalOp);
}
/// Returns the index of the thread within the block.
Value getLinearThreadIndex(Location loc,
ConversionPatternRewriter &rewriter) const {
Value dimX = rewriter.create<NVVM::BlockDimXOp>(loc, int32Type);
Value dimY = rewriter.create<NVVM::BlockDimYOp>(loc, int32Type);
Value idX = rewriter.create<NVVM::ThreadIdXOp>(loc, int32Type);
Value idY = rewriter.create<NVVM::ThreadIdYOp>(loc, int32Type);
Value idZ = rewriter.create<NVVM::ThreadIdZOp>(loc, int32Type);
Value tmp1 = rewriter.create<LLVM::MulOp>(loc, int32Type, idZ, dimY);
Value tmp2 = rewriter.create<LLVM::AddOp>(loc, int32Type, tmp1, idY);
Value tmp3 = rewriter.create<LLVM::MulOp>(loc, int32Type, tmp2, dimX);
return rewriter.create<LLVM::AddOp>(loc, int32Type, tmp3, idX);
}
/// Returns the number of threads in the block.
Value getBlockSize(Location loc, ConversionPatternRewriter &rewriter) const {
Value dimX = rewriter.create<NVVM::BlockDimXOp>(loc, int32Type);
Value dimY = rewriter.create<NVVM::BlockDimYOp>(loc, int32Type);
Value dimZ = rewriter.create<NVVM::BlockDimZOp>(loc, int32Type);
Value dimXY = rewriter.create<LLVM::MulOp>(loc, int32Type, dimX, dimY);
return rewriter.create<LLVM::MulOp>(loc, int32Type, dimXY, dimZ);
}
/// Returns the number of warps in the block.
Value getNumWarps(Location loc, Value blockSize,
ConversionPatternRewriter &rewriter) const {
auto warpSizeMinusOne = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(kWarpSize - 1));
auto biasedBlockSize = rewriter.create<LLVM::AddOp>(
loc, int32Type, blockSize, warpSizeMinusOne);
return getDivideByWarpSize(biasedBlockSize, rewriter);
}
/// Returns the number of active threads in the warp, not clamped to 32.
Value getActiveWidth(Location loc, Value threadIdx, Value blockSize,
ConversionPatternRewriter &rewriter) const {
Value threadIdxMask = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(~(kWarpSize - 1)));
Value numThreadsWithSmallerWarpId =
rewriter.create<LLVM::AndOp>(loc, threadIdx, threadIdxMask);
return rewriter.create<LLVM::SubOp>(loc, blockSize,
numThreadsWithSmallerWarpId);
}
/// Returns value divided by the warp size (i.e. 32).
Value getDivideByWarpSize(Value value,
ConversionPatternRewriter &rewriter) const {
auto loc = value.getLoc();
auto warpSize = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(kWarpSize));
return rewriter.create<LLVM::SDivOp>(loc, int32Type, value, warpSize);
}
LLVM::LLVMType int32Type;
static constexpr int kWarpSize = 32;
};
struct GPUShuffleOpLowering : public LLVMOpLowering {
explicit GPUShuffleOpLowering(LLVMTypeConverter &lowering_)
: LLVMOpLowering(gpu::ShuffleOp::getOperationName(),
lowering_.getDialect()->getContext(), lowering_) {}
/// Lowers a shuffle to the corresponding NVVM op.
///
/// Convert the `width` argument into an activeMask (a bitmask which specifies
/// which threads participate in the shuffle) and a maskAndClamp (specifying
/// the highest lane which participates in the shuffle).
///
/// %one = llvm.constant(1 : i32) : !llvm.i32
/// %shl = llvm.shl %one, %width : !llvm.i32
/// %active_mask = llvm.sub %shl, %one : !llvm.i32
/// %mask_and_clamp = llvm.sub %width, %one : !llvm.i32
/// %shfl = nvvm.shfl.sync.bfly %active_mask, %value, %offset,
/// %mask_and_clamp : !llvm<"{ float, i1 }">
/// %shfl_value = llvm.extractvalue %shfl[0 : index] :
/// !llvm<"{ float, i1 }">
/// %shfl_pred = llvm.extractvalue %shfl[1 : index] :
/// !llvm<"{ float, i1 }">
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
gpu::ShuffleOpOperandAdaptor adaptor(operands);
auto dialect = lowering.getDialect();
auto valueTy = adaptor.value().getType().cast<LLVM::LLVMType>();
auto int32Type = LLVM::LLVMType::getInt32Ty(dialect);
auto predTy = LLVM::LLVMType::getInt1Ty(dialect);
auto resultTy = LLVM::LLVMType::getStructTy(dialect, {valueTy, predTy});
Value one = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(1));
// Bit mask of active lanes: `(1 << activeWidth) - 1`.
Value activeMask = rewriter.create<LLVM::SubOp>(
loc, int32Type,
rewriter.create<LLVM::ShlOp>(loc, int32Type, one, adaptor.width()),
one);
// Clamp lane: `activeWidth - 1`
Value maskAndClamp =
rewriter.create<LLVM::SubOp>(loc, int32Type, adaptor.width(), one);
auto returnValueAndIsValidAttr = rewriter.getUnitAttr();
Value shfl = rewriter.create<NVVM::ShflBflyOp>(
loc, resultTy, activeMask, adaptor.value(), adaptor.offset(),
maskAndClamp, returnValueAndIsValidAttr);
Value shflValue = rewriter.create<LLVM::ExtractValueOp>(
loc, valueTy, shfl, rewriter.getIndexArrayAttr(0));
Value isActiveSrcLane = rewriter.create<LLVM::ExtractValueOp>(
loc, predTy, shfl, rewriter.getIndexArrayAttr(1));
rewriter.replaceOp(op, {shflValue, isActiveSrcLane});
return matchSuccess();
}
};
struct GPUFuncOpLowering : LLVMOpLowering {
explicit GPUFuncOpLowering(LLVMTypeConverter &typeConverter)
: LLVMOpLowering(gpu::GPUFuncOp::getOperationName(),
typeConverter.getDialect()->getContext(),
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
assert(operands.empty() && "func op is not expected to have operands");
auto gpuFuncOp = cast<gpu::GPUFuncOp>(op);
Location loc = gpuFuncOp.getLoc();
SmallVector<LLVM::GlobalOp, 3> workgroupBuffers;
workgroupBuffers.reserve(gpuFuncOp.getNumWorkgroupAttributions());
for (auto en : llvm::enumerate(gpuFuncOp.getWorkgroupAttributions())) {
Value attribution = en.value();
auto type = attribution.getType().dyn_cast<MemRefType>();
assert(type && type.hasStaticShape() && "unexpected type in attribution");
uint64_t numElements = type.getNumElements();
auto elementType =
lowering.convertType(type.getElementType()).cast<LLVM::LLVMType>();
auto arrayType = LLVM::LLVMType::getArrayTy(elementType, numElements);
std::string name =
llvm::formatv("__wg_{0}_{1}", gpuFuncOp.getName(), en.index());
auto globalOp = rewriter.create<LLVM::GlobalOp>(
gpuFuncOp.getLoc(), arrayType, /*isConstant=*/false,
LLVM::Linkage::Internal, name, /*value=*/Attribute(),
gpu::GPUDialect::getWorkgroupAddressSpace());
workgroupBuffers.push_back(globalOp);
}
// Rewrite the original GPU function to an LLVM function.
auto funcType = lowering.convertType(gpuFuncOp.getType())
.cast<LLVM::LLVMType>()
.getPointerElementTy();
// Remap proper input types.
TypeConverter::SignatureConversion signatureConversion(
gpuFuncOp.front().getNumArguments());
for (unsigned i = 0, e = funcType.getFunctionNumParams(); i < e; ++i)
signatureConversion.addInputs(i, funcType.getFunctionParamType(i));
// Create the new function operation. Only copy those attributes that are
// not specific to function modeling.
SmallVector<NamedAttribute, 4> attributes;
for (const auto &attr : gpuFuncOp.getAttrs()) {
if (attr.first.is(SymbolTable::getSymbolAttrName()) ||
attr.first.is(impl::getTypeAttrName()) ||
attr.first.is(gpu::GPUFuncOp::getNumWorkgroupAttributionsAttrName()))
continue;
attributes.push_back(attr);
}
auto llvmFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
gpuFuncOp.getLoc(), gpuFuncOp.getName(), funcType,
LLVM::Linkage::External, attributes);
{
// Insert operations that correspond to converted workgroup and private
// memory attributions to the body of the function. This must operate on
// the original function, before the body region is inlined in the new
// function to maintain the relation between block arguments and the
// parent operation that assigns their semantics.
OpBuilder::InsertionGuard guard(rewriter);
// Rewrite workgroup memory attributions to addresses of global buffers.
rewriter.setInsertionPointToStart(&gpuFuncOp.front());
unsigned numProperArguments = gpuFuncOp.getNumArguments();
auto i32Type = LLVM::LLVMType::getInt32Ty(lowering.getDialect());
Value zero = nullptr;
if (!workgroupBuffers.empty())
zero = rewriter.create<LLVM::ConstantOp>(loc, i32Type,
rewriter.getI32IntegerAttr(0));
for (auto en : llvm::enumerate(workgroupBuffers)) {
LLVM::GlobalOp global = en.value();
Value address = rewriter.create<LLVM::AddressOfOp>(loc, global);
auto elementType = global.getType().getArrayElementType();
Value memory = rewriter.create<LLVM::GEPOp>(
loc, elementType.getPointerTo(global.addr_space().getZExtValue()),
address, ArrayRef<Value>{zero, zero});
// Build a memref descriptor pointing to the buffer to plug with the
// existing memref infrastructure. This may use more registers than
// otherwise necessary given that memref sizes are fixed, but we can try
// and canonicalize that away later.
Value attribution = gpuFuncOp.getWorkgroupAttributions()[en.index()];
auto type = attribution.getType().cast<MemRefType>();
auto descr = MemRefDescriptor::fromStaticShape(rewriter, loc, lowering,
type, memory);
signatureConversion.remapInput(numProperArguments + en.index(), descr);
}
// Rewrite private memory attributions to alloca'ed buffers.
unsigned numWorkgroupAttributions =
gpuFuncOp.getNumWorkgroupAttributions();
auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
for (auto en : llvm::enumerate(gpuFuncOp.getPrivateAttributions())) {
Value attribution = en.value();
auto type = attribution.getType().cast<MemRefType>();
assert(type && type.hasStaticShape() &&
"unexpected type in attribution");
// Explicitly drop memory space when lowering private memory
// attributions since NVVM models it as `alloca`s in the default
// memory space and does not support `alloca`s with addrspace(5).
auto ptrType = lowering.convertType(type.getElementType())
.cast<LLVM::LLVMType>()
.getPointerTo();
Value numElements = rewriter.create<LLVM::ConstantOp>(
gpuFuncOp.getLoc(), int64Ty,
rewriter.getI64IntegerAttr(type.getNumElements()));
Value allocated = rewriter.create<LLVM::AllocaOp>(
gpuFuncOp.getLoc(), ptrType, numElements, /*alignment=*/0);
auto descr = MemRefDescriptor::fromStaticShape(rewriter, loc, lowering,
type, allocated);
signatureConversion.remapInput(
numProperArguments + numWorkgroupAttributions + en.index(), descr);
}
}
// Move the region to the new function, update the entry block signature.
rewriter.inlineRegionBefore(gpuFuncOp.getBody(), llvmFuncOp.getBody(),
llvmFuncOp.end());
rewriter.applySignatureConversion(&llvmFuncOp.getBody(),
signatureConversion);
{
// For memref-typed arguments, insert the relevant loads in the beginning
// of the block to comply with the LLVM dialect calling convention. This
// needs to be done after signature conversion to get the right types.
OpBuilder::InsertionGuard guard(rewriter);
Block &block = llvmFuncOp.front();
rewriter.setInsertionPointToStart(&block);
for (auto en : llvm::enumerate(gpuFuncOp.getType().getInputs())) {
if (!en.value().isa<MemRefType>() &&
!en.value().isa<UnrankedMemRefType>())
continue;
BlockArgument arg = block.getArgument(en.index());
Value loaded = rewriter.create<LLVM::LoadOp>(loc, arg);
rewriter.replaceUsesOfBlockArgument(arg, loaded);
}
}
rewriter.eraseOp(gpuFuncOp);
return matchSuccess();
}
};
struct GPUReturnOpLowering : public LLVMOpLowering {
GPUReturnOpLowering(LLVMTypeConverter &typeConverter)
: LLVMOpLowering(gpu::ReturnOp::getOperationName(),
typeConverter.getDialect()->getContext(),
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, operands,
ArrayRef<Block *>());
return matchSuccess();
}
};
/// Import the GPU Ops to NVVM Patterns.
#include "GPUToNVVM.cpp.inc"
/// A pass that replaces all occurrences of GPU device operations with their
/// corresponding NVVM equivalent.
///
/// This pass only handles device code and is not meant to be run on GPU host
/// code.
class LowerGpuOpsToNVVMOpsPass : public ModulePass<LowerGpuOpsToNVVMOpsPass> {
public:
void runOnModule() override {
ModuleOp m = getModule();
if (!m.getAttrOfType<UnitAttr>(gpu::GPUDialect::getKernelModuleAttrName()))
return;
OwningRewritePatternList patterns;
NVVMTypeConverter converter(m.getContext());
populateStdToLLVMConversionPatterns(converter, patterns);
populateGpuToNVVMConversionPatterns(converter, patterns);
ConversionTarget target(getContext());
target.addIllegalDialect<gpu::GPUDialect>();
target.addIllegalOp<LLVM::FAbsOp, LLVM::FCeilOp, LLVM::CosOp,
LLVM::ExpOp>();
target.addIllegalOp<FuncOp>();
target.addLegalDialect<LLVM::LLVMDialect>();
target.addLegalDialect<NVVM::NVVMDialect>();
// TODO(csigg): Remove once we support replacing non-root ops.
target.addLegalOp<gpu::YieldOp>();
if (failed(applyPartialConversion(m, target, patterns, &converter)))
signalPassFailure();
}
};
} // anonymous namespace
void mlir::populateGpuToNVVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
populateWithGenerated(converter.getDialect()->getContext(), &patterns);
patterns
.insert<GPUIndexIntrinsicOpLowering<gpu::ThreadIdOp, NVVM::ThreadIdXOp,
NVVM::ThreadIdYOp, NVVM::ThreadIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::BlockDimOp, NVVM::BlockDimXOp,
NVVM::BlockDimYOp, NVVM::BlockDimZOp>,
GPUIndexIntrinsicOpLowering<gpu::BlockIdOp, NVVM::BlockIdXOp,
NVVM::BlockIdYOp, NVVM::BlockIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::GridDimOp, NVVM::GridDimXOp,
NVVM::GridDimYOp, NVVM::GridDimZOp>,
GPUAllReduceOpLowering, GPUShuffleOpLowering, GPUFuncOpLowering,
GPUReturnOpLowering>(converter);
patterns.insert<OpToFuncCallLowering<AbsFOp>>(converter, "__nv_fabsf",
"__nv_fabs");
patterns.insert<OpToFuncCallLowering<CeilFOp>>(converter, "__nv_ceilf",
"__nv_ceil");
patterns.insert<OpToFuncCallLowering<CosOp>>(converter, "__nv_cosf",
"__nv_cos");
patterns.insert<OpToFuncCallLowering<ExpOp>>(converter, "__nv_expf",
"__nv_exp");
}
std::unique_ptr<OpPassBase<ModuleOp>> mlir::createLowerGpuOpsToNVVMOpsPass() {
return std::make_unique<LowerGpuOpsToNVVMOpsPass>();
}
static PassRegistration<LowerGpuOpsToNVVMOpsPass>
pass("convert-gpu-to-nvvm", "Generate NVVM operations for gpu operations");