LowerGpuOpsToNVVMOps.cpp 33.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
//===- LowerGpuOpsToNVVMOps.cpp - MLIR GPU to NVVM lowering passes --------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to generate NVVMIR operations for higher-level
// GPU operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"

#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"

#include "llvm/Support/FormatVariadic.h"

#include "../GPUCommon/IndexIntrinsicsOpLowering.h"
#include "../GPUCommon/OpToFuncCallLowering.h"

using namespace mlir;

namespace {

/// Derived type converter for GPU to NVVM lowering. The GPU dialect uses memory
/// space 5 for private memory attributions, but NVVM represents private
/// memory allocations as local `alloca`s in the default address space. This
/// converter drops the private memory space to support the use case above.
class NVVMTypeConverter : public LLVMTypeConverter {
public:
  using LLVMTypeConverter::LLVMTypeConverter;

  Type convertType(Type type) override {
    auto memref = type.dyn_cast<MemRefType>();
    if (memref &&
        memref.getMemorySpace() == gpu::GPUDialect::getPrivateAddressSpace()) {
      type = MemRefType::get(memref.getShape(), memref.getElementType(),
                             memref.getAffineMaps());
    }

    return LLVMTypeConverter::convertType(type);
  }
};

/// Converts all_reduce op to LLVM/NVVM ops.
struct GPUAllReduceOpLowering : public LLVMOpLowering {
  using AccumulatorFactory =
      std::function<Value(Location, Value, Value, ConversionPatternRewriter &)>;

  explicit GPUAllReduceOpLowering(LLVMTypeConverter &lowering_)
      : LLVMOpLowering(gpu::AllReduceOp::getOperationName(),
                       lowering_.getDialect()->getContext(), lowering_),
        int32Type(LLVM::LLVMType::getInt32Ty(lowering_.getDialect())) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    Value operand = operands.front();

    // TODO(csigg): Generalize to other types of accumulation.
    assert(op->getOperand(0).getType().isIntOrFloat());

    // Create the reduction using an accumulator factory.
    AccumulatorFactory factory =
        getFactory(cast<gpu::AllReduceOp>(op), operand);
    assert(factory && "failed to create accumulator factory");
    Value result = createBlockReduce(loc, operand, factory, rewriter);

    rewriter.replaceOp(op, {result});
    return matchSuccess();
  }

private:
  /// Returns an accumulator factory using either the op attribute or the body
  /// region.
  AccumulatorFactory getFactory(gpu::AllReduceOp allReduce,
                                Value operand) const {
    if (!allReduce.body().empty()) {
      return getFactory(allReduce.body());
    }
    if (allReduce.op()) {
      auto type = operand.getType().cast<LLVM::LLVMType>();
      return getFactory(*allReduce.op(), type.getUnderlyingType());
    }
    return AccumulatorFactory();
  }

  /// Returns an accumulator factory that clones the body. The body's entry
  /// block is expected to have 2 arguments. The gpu.yield return the
  /// accumulated value of the same type.
  AccumulatorFactory getFactory(Region &body) const {
    return AccumulatorFactory([&](Location loc, Value lhs, Value rhs,
                                  ConversionPatternRewriter &rewriter) {
      Block *block = rewriter.getInsertionBlock();
      Block *split = rewriter.splitBlock(block, rewriter.getInsertionPoint());

      // Insert accumulator body between split block.
      BlockAndValueMapping mapping;
      mapping.map(body.front().getArgument(0), lhs);
      mapping.map(body.front().getArgument(1), rhs);
      rewriter.cloneRegionBefore(body, *split->getParent(),
                                 split->getIterator(), mapping);

      // Add branch before inserted body, into body.
      block = block->getNextNode();
      rewriter.create<LLVM::BrOp>(loc, ArrayRef<Value>{},
                                  llvm::makeArrayRef(block), ValueRange());

      // Replace all gpu.yield ops with branch out of body.
      for (; block != split; block = block->getNextNode()) {
        Operation *terminator = block->getTerminator();
        if (!llvm::isa<gpu::YieldOp>(terminator))
          continue;
        rewriter.setInsertionPointToEnd(block);
        rewriter.replaceOpWithNewOp<LLVM::BrOp>(
            terminator, ArrayRef<Value>{}, llvm::makeArrayRef(split),
            ValueRange(terminator->getOperand(0)));
      }

      // Return accumulator result.
      rewriter.setInsertionPointToStart(split);
      return split->addArgument(lhs.getType());
    });
  }

  /// Returns an accumulator factory that creates an op specified by opName.
  AccumulatorFactory getFactory(StringRef opName, llvm::Type *type) const {
    if (type->isVectorTy() || type->isArrayTy())
      return getFactory(opName, type->getSequentialElementType());

    bool isFloatingPoint = type->isFloatingPointTy();

    if (opName == "add") {
      return isFloatingPoint ? getFactory<LLVM::FAddOp>()
                             : getFactory<LLVM::AddOp>();
    }
    if (opName == "mul") {
      return isFloatingPoint ? getFactory<LLVM::FMulOp>()
                             : getFactory<LLVM::MulOp>();
    }

    return AccumulatorFactory();
  }

  /// Returns an accumulator factory that creates an op of type T.
  template <typename T> AccumulatorFactory getFactory() const {
    return [](Location loc, Value lhs, Value rhs,
              ConversionPatternRewriter &rewriter) {
      return rewriter.create<T>(loc, lhs.getType(), lhs, rhs);
    };
  }

  /// Creates an all_reduce across the block.
  ///
  /// First reduce the elements within a warp. The first thread of each warp
  /// writes the intermediate result to shared memory. After synchronizing the
  /// block, the first warp reduces the values from shared memory. The result
  /// is broadcasted to all threads through shared memory.
  ///
  ///     %warp_reduce = `createWarpReduce(%operand)`
  ///     %shared_mem_ptr = llvm.mlir.addressof @reduce_buffer
  ///     %zero = llvm.mlir.constant(0 : i32) : !llvm.i32
  ///     %lane_id = nvvm.read.ptx.sreg.laneid  : !llvm.i32
  ///     %is_first_lane = llvm.icmp "eq" %lane_id, %zero : !llvm.i1
  ///     %thread_idx = `getLinearThreadIndex()` : !llvm.i32
  ///     llvm.cond_br %is_first_lane, ^then1, ^continue1
  ///   ^then1:
  ///     %warp_id = `getWarpId()`
  ///     %store_dst = llvm.getelementptr %shared_mem_ptr[%zero, %warp_id]
  ///     llvm.store %store_dst, %warp_reduce
  ///     llvm.br ^continue1
  ///   ^continue1:
  ///     nvvm.barrier0
  ///     %num_warps = `getNumWarps()` : !llvm.i32
  ///     %is_valid_warp = llvm.icmp "slt" %thread_idx, %num_warps
  ///     %result_ptr = llvm.getelementptr %shared_mem_ptr[%zero, %zero]
  ///     llvm.cond_br %is_first_lane, ^then2, ^continue2
  ///   ^then2:
  ///     %load_src = llvm.getelementptr %shared_mem_ptr[%zero, %thread_idx]
  ///     %value = llvm.load %load_src
  ///     %result = `createWarpReduce(%value)`
  ///     llvm.store %result_ptr, %result
  ///     llvm.br ^continue2
  ///   ^continue2:
  ///     nvvm.barrier0
  ///     %result = llvm.load %result_ptr
  ///     return %result
  ///
  Value createBlockReduce(Location loc, Value operand,
                          AccumulatorFactory &accumFactory,
                          ConversionPatternRewriter &rewriter) const {
    auto type = operand.getType().cast<LLVM::LLVMType>();

    // Create shared memory array to store the warp reduction.
    auto module = operand.getDefiningOp()->getParentOfType<ModuleOp>();
    assert(module && "op must belong to a module");
    Value sharedMemPtr =
        createSharedMemoryArray(loc, module, type, kWarpSize, rewriter);

    Value zero = rewriter.create<LLVM::ConstantOp>(
        loc, int32Type, rewriter.getI32IntegerAttr(0u));
    Value laneId = rewriter.create<NVVM::LaneIdOp>(loc, int32Type);
    Value isFirstLane = rewriter.create<LLVM::ICmpOp>(
        loc, LLVM::ICmpPredicate::eq, laneId, zero);
    Value threadIdx = getLinearThreadIndex(loc, rewriter);
    Value blockSize = getBlockSize(loc, rewriter);
    Value activeWidth = getActiveWidth(loc, threadIdx, blockSize, rewriter);

    // Reduce elements within each warp to produce the intermediate results.
    Value warpReduce = createWarpReduce(loc, activeWidth, laneId, operand,
                                        accumFactory, rewriter);

    // Write the intermediate results to shared memory, using the first lane of
    // each warp.
    createPredicatedBlock(loc, rewriter, isFirstLane, [&] {
      Value warpId = getDivideByWarpSize(threadIdx, rewriter);
      Value storeDst = rewriter.create<LLVM::GEPOp>(
          loc, type, sharedMemPtr, ArrayRef<Value>({zero, warpId}));
      rewriter.create<LLVM::StoreOp>(loc, warpReduce, storeDst);
    });
    rewriter.create<NVVM::Barrier0Op>(loc);

    Value numWarps = getNumWarps(loc, blockSize, rewriter);
    Value isValidWarp = rewriter.create<LLVM::ICmpOp>(
        loc, LLVM::ICmpPredicate::slt, threadIdx, numWarps);
    Value resultPtr = rewriter.create<LLVM::GEPOp>(
        loc, type, sharedMemPtr, ArrayRef<Value>({zero, zero}));

    // Use the first numWarps threads to reduce the intermediate results from
    // shared memory. The final result is written to shared memory again.
    createPredicatedBlock(loc, rewriter, isValidWarp, [&] {
      Value loadSrc = rewriter.create<LLVM::GEPOp>(
          loc, type, sharedMemPtr, ArrayRef<Value>({zero, threadIdx}));
      Value value = rewriter.create<LLVM::LoadOp>(loc, type, loadSrc);
      Value result = createWarpReduce(loc, numWarps, laneId, value,
                                      accumFactory, rewriter);
      rewriter.create<LLVM::StoreOp>(loc, result, resultPtr);
    });
    rewriter.create<NVVM::Barrier0Op>(loc);

    // Load and return result from shared memory.
    Value result = rewriter.create<LLVM::LoadOp>(loc, type, resultPtr);
    return result;
  }

  /// Creates an if-block skeleton and calls the two factories to generate the
  /// ops in the `then` and `else` block..
  ///
  ///     llvm.cond_br %condition, ^then, ^continue
  ///   ^then:
  ///     %then_operands = `thenOpsFactory()`
  ///     llvm.br ^continue(%then_operands)
  ///   ^else:
  ///     %else_operands = `elseOpsFactory()`
  ///     llvm.br ^continue(%else_operands)
  ///   ^continue(%block_operands):
  ///
  template <typename ThenOpsFactory, typename ElseOpsFactory>
  void createIf(Location loc, ConversionPatternRewriter &rewriter,
                Value condition, ThenOpsFactory &&thenOpsFactory,
                ElseOpsFactory &&elseOpsFactory) const {
    Block *currentBlock = rewriter.getInsertionBlock();
    auto currentPoint = rewriter.getInsertionPoint();

    Block *thenBlock = rewriter.splitBlock(currentBlock, currentPoint);
    Block *elseBlock = rewriter.splitBlock(thenBlock, thenBlock->begin());
    Block *continueBlock = rewriter.splitBlock(elseBlock, elseBlock->begin());

    rewriter.setInsertionPointToEnd(currentBlock);
    rewriter.create<LLVM::CondBrOp>(loc, llvm::makeArrayRef(condition),
                                    ArrayRef<Block *>{thenBlock, elseBlock});

    auto addBranch = [&](ValueRange operands) {
      rewriter.create<LLVM::BrOp>(loc, ArrayRef<Value>{},
                                  llvm::makeArrayRef(continueBlock),
                                  llvm::makeArrayRef(operands));
    };

    rewriter.setInsertionPointToStart(thenBlock);
    auto thenOperands = thenOpsFactory();
    addBranch(thenOperands);

    rewriter.setInsertionPointToStart(elseBlock);
    auto elseOperands = elseOpsFactory();
    addBranch(elseOperands);

    assert(thenOperands.size() == elseOperands.size());
    rewriter.setInsertionPointToStart(continueBlock);
    for (auto operand : thenOperands)
      continueBlock->addArgument(operand.getType());
  }

  /// Shortcut for createIf with empty else block and no block operands.
  template <typename Factory>
  void createPredicatedBlock(Location loc, ConversionPatternRewriter &rewriter,
                             Value condition,
                             Factory &&predicatedOpsFactory) const {
    createIf(
        loc, rewriter, condition,
        [&] {
          predicatedOpsFactory();
          return ArrayRef<Value>();
        },
        [&] { return ArrayRef<Value>(); });
  }

  /// Creates a reduction across the first activeWidth lanes of a warp.
  /// The first lane returns the result, all others return values are undefined.
  Value createWarpReduce(Location loc, Value activeWidth, Value laneId,
                         Value operand, AccumulatorFactory accumFactory,
                         ConversionPatternRewriter &rewriter) const {
    Value warpSize = rewriter.create<LLVM::ConstantOp>(
        loc, int32Type, rewriter.getI32IntegerAttr(kWarpSize));
    Value isPartialWarp = rewriter.create<LLVM::ICmpOp>(
        loc, LLVM::ICmpPredicate::slt, activeWidth, warpSize);
    auto type = operand.getType().cast<LLVM::LLVMType>();

    createIf(
        loc, rewriter, isPartialWarp,
        // Generate reduction over a (potentially) partial warp.
        [&] {
          Value value = operand;
          Value one = rewriter.create<LLVM::ConstantOp>(
              loc, int32Type, rewriter.getI32IntegerAttr(1));
          // Bit mask of active lanes: `(1 << activeWidth) - 1`.
          Value activeMask = rewriter.create<LLVM::SubOp>(
              loc, int32Type,
              rewriter.create<LLVM::ShlOp>(loc, int32Type, one, activeWidth),
              one);
          // Clamp lane: `activeWidth - 1`
          Value maskAndClamp =
              rewriter.create<LLVM::SubOp>(loc, int32Type, activeWidth, one);
          auto dialect = lowering.getDialect();
          auto predTy = LLVM::LLVMType::getInt1Ty(dialect);
          auto shflTy = LLVM::LLVMType::getStructTy(dialect, {type, predTy});
          auto returnValueAndIsValidAttr = rewriter.getUnitAttr();

          // Repeatedly shuffle value from 'laneId ^ i' and accumulate if source
          // lane is within the active range. All lanes contain the final
          // result, but only the first lane's result is used.
          for (int i = 1; i < kWarpSize; i <<= 1) {
            Value offset = rewriter.create<LLVM::ConstantOp>(
                loc, int32Type, rewriter.getI32IntegerAttr(i));
            Value shfl = rewriter.create<NVVM::ShflBflyOp>(
                loc, shflTy, activeMask, value, offset, maskAndClamp,
                returnValueAndIsValidAttr);
            Value isActiveSrcLane = rewriter.create<LLVM::ExtractValueOp>(
                loc, predTy, shfl, rewriter.getIndexArrayAttr(1));
            // Skip the accumulation if the shuffle op read from a lane outside
            // of the active range.
            createIf(
                loc, rewriter, isActiveSrcLane,
                [&] {
                  Value shflValue = rewriter.create<LLVM::ExtractValueOp>(
                      loc, type, shfl, rewriter.getIndexArrayAttr(0));
                  return SmallVector<Value, 1>{
                      accumFactory(loc, value, shflValue, rewriter)};
                },
                [&] { return llvm::makeArrayRef(value); });
            value = rewriter.getInsertionBlock()->getArgument(0);
          }
          return SmallVector<Value, 1>{value};
        },
        // Generate a reduction over the entire warp. This is a specialization
        // of the above reduction with unconditional accumulation.
        [&] {
          Value value = operand;
          Value activeMask = rewriter.create<LLVM::ConstantOp>(
              loc, int32Type, rewriter.getI32IntegerAttr(~0u));
          Value maskAndClamp = rewriter.create<LLVM::ConstantOp>(
              loc, int32Type, rewriter.getI32IntegerAttr(kWarpSize - 1));
          for (int i = 1; i < kWarpSize; i <<= 1) {
            Value offset = rewriter.create<LLVM::ConstantOp>(
                loc, int32Type, rewriter.getI32IntegerAttr(i));
            Value shflValue = rewriter.create<NVVM::ShflBflyOp>(
                loc, type, activeMask, value, offset, maskAndClamp,
                /*return_value_and_is_valid=*/UnitAttr());
            value = accumFactory(loc, value, shflValue, rewriter);
          }
          return SmallVector<Value, 1>{value};
        });
    return rewriter.getInsertionBlock()->getArgument(0);
  }

  /// Creates a global array stored in shared memory.
  Value createSharedMemoryArray(Location loc, ModuleOp module,
                                LLVM::LLVMType elementType, int numElements,
                                ConversionPatternRewriter &rewriter) const {
    OpBuilder builder(module.getBodyRegion());

    auto arrayType = LLVM::LLVMType::getArrayTy(elementType, numElements);
    StringRef name = "reduce_buffer";
    auto globalOp = builder.create<LLVM::GlobalOp>(
        loc, arrayType.cast<LLVM::LLVMType>(),
        /*isConstant=*/false, LLVM::Linkage::Internal, name,
        /*value=*/Attribute(), gpu::GPUDialect::getWorkgroupAddressSpace());

    return rewriter.create<LLVM::AddressOfOp>(loc, globalOp);
  }

  /// Returns the index of the thread within the block.
  Value getLinearThreadIndex(Location loc,
                             ConversionPatternRewriter &rewriter) const {
    Value dimX = rewriter.create<NVVM::BlockDimXOp>(loc, int32Type);
    Value dimY = rewriter.create<NVVM::BlockDimYOp>(loc, int32Type);
    Value idX = rewriter.create<NVVM::ThreadIdXOp>(loc, int32Type);
    Value idY = rewriter.create<NVVM::ThreadIdYOp>(loc, int32Type);
    Value idZ = rewriter.create<NVVM::ThreadIdZOp>(loc, int32Type);
    Value tmp1 = rewriter.create<LLVM::MulOp>(loc, int32Type, idZ, dimY);
    Value tmp2 = rewriter.create<LLVM::AddOp>(loc, int32Type, tmp1, idY);
    Value tmp3 = rewriter.create<LLVM::MulOp>(loc, int32Type, tmp2, dimX);
    return rewriter.create<LLVM::AddOp>(loc, int32Type, tmp3, idX);
  }

  /// Returns the number of threads in the block.
  Value getBlockSize(Location loc, ConversionPatternRewriter &rewriter) const {
    Value dimX = rewriter.create<NVVM::BlockDimXOp>(loc, int32Type);
    Value dimY = rewriter.create<NVVM::BlockDimYOp>(loc, int32Type);
    Value dimZ = rewriter.create<NVVM::BlockDimZOp>(loc, int32Type);
    Value dimXY = rewriter.create<LLVM::MulOp>(loc, int32Type, dimX, dimY);
    return rewriter.create<LLVM::MulOp>(loc, int32Type, dimXY, dimZ);
  }

  /// Returns the number of warps in the block.
  Value getNumWarps(Location loc, Value blockSize,
                    ConversionPatternRewriter &rewriter) const {
    auto warpSizeMinusOne = rewriter.create<LLVM::ConstantOp>(
        loc, int32Type, rewriter.getI32IntegerAttr(kWarpSize - 1));
    auto biasedBlockSize = rewriter.create<LLVM::AddOp>(
        loc, int32Type, blockSize, warpSizeMinusOne);
    return getDivideByWarpSize(biasedBlockSize, rewriter);
  }

  /// Returns the number of active threads in the warp, not clamped to 32.
  Value getActiveWidth(Location loc, Value threadIdx, Value blockSize,
                       ConversionPatternRewriter &rewriter) const {
    Value threadIdxMask = rewriter.create<LLVM::ConstantOp>(
        loc, int32Type, rewriter.getI32IntegerAttr(~(kWarpSize - 1)));
    Value numThreadsWithSmallerWarpId =
        rewriter.create<LLVM::AndOp>(loc, threadIdx, threadIdxMask);
    return rewriter.create<LLVM::SubOp>(loc, blockSize,
                                        numThreadsWithSmallerWarpId);
  }

  /// Returns value divided by the warp size (i.e. 32).
  Value getDivideByWarpSize(Value value,
                            ConversionPatternRewriter &rewriter) const {
    auto loc = value.getLoc();
    auto warpSize = rewriter.create<LLVM::ConstantOp>(
        loc, int32Type, rewriter.getI32IntegerAttr(kWarpSize));
    return rewriter.create<LLVM::SDivOp>(loc, int32Type, value, warpSize);
  }

  LLVM::LLVMType int32Type;

  static constexpr int kWarpSize = 32;
};

struct GPUShuffleOpLowering : public LLVMOpLowering {
  explicit GPUShuffleOpLowering(LLVMTypeConverter &lowering_)
      : LLVMOpLowering(gpu::ShuffleOp::getOperationName(),
                       lowering_.getDialect()->getContext(), lowering_) {}

  /// Lowers a shuffle to the corresponding NVVM op.
  ///
  /// Convert the `width` argument into an activeMask (a bitmask which specifies
  /// which threads participate in the shuffle) and a maskAndClamp (specifying
  /// the highest lane which participates in the shuffle).
  ///
  ///     %one = llvm.constant(1 : i32) : !llvm.i32
  ///     %shl = llvm.shl %one, %width : !llvm.i32
  ///     %active_mask = llvm.sub %shl, %one : !llvm.i32
  ///     %mask_and_clamp = llvm.sub %width, %one : !llvm.i32
  ///     %shfl = nvvm.shfl.sync.bfly %active_mask, %value, %offset,
  ///         %mask_and_clamp : !llvm<"{ float, i1 }">
  ///     %shfl_value = llvm.extractvalue %shfl[0 : index] :
  ///         !llvm<"{ float, i1 }">
  ///     %shfl_pred = llvm.extractvalue %shfl[1 : index] :
  ///         !llvm<"{ float, i1 }">
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    gpu::ShuffleOpOperandAdaptor adaptor(operands);

    auto dialect = lowering.getDialect();
    auto valueTy = adaptor.value().getType().cast<LLVM::LLVMType>();
    auto int32Type = LLVM::LLVMType::getInt32Ty(dialect);
    auto predTy = LLVM::LLVMType::getInt1Ty(dialect);
    auto resultTy = LLVM::LLVMType::getStructTy(dialect, {valueTy, predTy});

    Value one = rewriter.create<LLVM::ConstantOp>(
        loc, int32Type, rewriter.getI32IntegerAttr(1));
    // Bit mask of active lanes: `(1 << activeWidth) - 1`.
    Value activeMask = rewriter.create<LLVM::SubOp>(
        loc, int32Type,
        rewriter.create<LLVM::ShlOp>(loc, int32Type, one, adaptor.width()),
        one);
    // Clamp lane: `activeWidth - 1`
    Value maskAndClamp =
        rewriter.create<LLVM::SubOp>(loc, int32Type, adaptor.width(), one);

    auto returnValueAndIsValidAttr = rewriter.getUnitAttr();
    Value shfl = rewriter.create<NVVM::ShflBflyOp>(
        loc, resultTy, activeMask, adaptor.value(), adaptor.offset(),
        maskAndClamp, returnValueAndIsValidAttr);
    Value shflValue = rewriter.create<LLVM::ExtractValueOp>(
        loc, valueTy, shfl, rewriter.getIndexArrayAttr(0));
    Value isActiveSrcLane = rewriter.create<LLVM::ExtractValueOp>(
        loc, predTy, shfl, rewriter.getIndexArrayAttr(1));

    rewriter.replaceOp(op, {shflValue, isActiveSrcLane});
    return matchSuccess();
  }
};

struct GPUFuncOpLowering : LLVMOpLowering {
  explicit GPUFuncOpLowering(LLVMTypeConverter &typeConverter)
      : LLVMOpLowering(gpu::GPUFuncOp::getOperationName(),
                       typeConverter.getDialect()->getContext(),
                       typeConverter) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    assert(operands.empty() && "func op is not expected to have operands");
    auto gpuFuncOp = cast<gpu::GPUFuncOp>(op);
    Location loc = gpuFuncOp.getLoc();

    SmallVector<LLVM::GlobalOp, 3> workgroupBuffers;
    workgroupBuffers.reserve(gpuFuncOp.getNumWorkgroupAttributions());
    for (auto en : llvm::enumerate(gpuFuncOp.getWorkgroupAttributions())) {
      Value attribution = en.value();

      auto type = attribution.getType().dyn_cast<MemRefType>();
      assert(type && type.hasStaticShape() && "unexpected type in attribution");

      uint64_t numElements = type.getNumElements();

      auto elementType =
          lowering.convertType(type.getElementType()).cast<LLVM::LLVMType>();
      auto arrayType = LLVM::LLVMType::getArrayTy(elementType, numElements);
      std::string name =
          llvm::formatv("__wg_{0}_{1}", gpuFuncOp.getName(), en.index());
      auto globalOp = rewriter.create<LLVM::GlobalOp>(
          gpuFuncOp.getLoc(), arrayType, /*isConstant=*/false,
          LLVM::Linkage::Internal, name, /*value=*/Attribute(),
          gpu::GPUDialect::getWorkgroupAddressSpace());
      workgroupBuffers.push_back(globalOp);
    }

    // Rewrite the original GPU function to an LLVM function.
    auto funcType = lowering.convertType(gpuFuncOp.getType())
                        .cast<LLVM::LLVMType>()
                        .getPointerElementTy();

    // Remap proper input types.
    TypeConverter::SignatureConversion signatureConversion(
        gpuFuncOp.front().getNumArguments());
    for (unsigned i = 0, e = funcType.getFunctionNumParams(); i < e; ++i)
      signatureConversion.addInputs(i, funcType.getFunctionParamType(i));

    // Create the new function operation. Only copy those attributes that are
    // not specific to function modeling.
    SmallVector<NamedAttribute, 4> attributes;
    for (const auto &attr : gpuFuncOp.getAttrs()) {
      if (attr.first.is(SymbolTable::getSymbolAttrName()) ||
          attr.first.is(impl::getTypeAttrName()) ||
          attr.first.is(gpu::GPUFuncOp::getNumWorkgroupAttributionsAttrName()))
        continue;
      attributes.push_back(attr);
    }
    auto llvmFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
        gpuFuncOp.getLoc(), gpuFuncOp.getName(), funcType,
        LLVM::Linkage::External, attributes);

    {
      // Insert operations that correspond to converted workgroup and private
      // memory attributions to the body of the function. This must operate on
      // the original function, before the body region is inlined in the new
      // function to maintain the relation between block arguments and the
      // parent operation that assigns their semantics.
      OpBuilder::InsertionGuard guard(rewriter);

      // Rewrite workgroup memory attributions to addresses of global buffers.
      rewriter.setInsertionPointToStart(&gpuFuncOp.front());
      unsigned numProperArguments = gpuFuncOp.getNumArguments();
      auto i32Type = LLVM::LLVMType::getInt32Ty(lowering.getDialect());

      Value zero = nullptr;
      if (!workgroupBuffers.empty())
        zero = rewriter.create<LLVM::ConstantOp>(loc, i32Type,
                                                 rewriter.getI32IntegerAttr(0));
      for (auto en : llvm::enumerate(workgroupBuffers)) {
        LLVM::GlobalOp global = en.value();
        Value address = rewriter.create<LLVM::AddressOfOp>(loc, global);
        auto elementType = global.getType().getArrayElementType();
        Value memory = rewriter.create<LLVM::GEPOp>(
            loc, elementType.getPointerTo(global.addr_space().getZExtValue()),
            address, ArrayRef<Value>{zero, zero});

        // Build a memref descriptor pointing to the buffer to plug with the
        // existing memref infrastructure. This may use more registers than
        // otherwise necessary given that memref sizes are fixed, but we can try
        // and canonicalize that away later.
        Value attribution = gpuFuncOp.getWorkgroupAttributions()[en.index()];
        auto type = attribution.getType().cast<MemRefType>();
        auto descr = MemRefDescriptor::fromStaticShape(rewriter, loc, lowering,
                                                       type, memory);
        signatureConversion.remapInput(numProperArguments + en.index(), descr);
      }

      // Rewrite private memory attributions to alloca'ed buffers.
      unsigned numWorkgroupAttributions =
          gpuFuncOp.getNumWorkgroupAttributions();
      auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
      for (auto en : llvm::enumerate(gpuFuncOp.getPrivateAttributions())) {
        Value attribution = en.value();
        auto type = attribution.getType().cast<MemRefType>();
        assert(type && type.hasStaticShape() &&
               "unexpected type in attribution");

        // Explicitly drop memory space when lowering private memory
        // attributions since NVVM models it as `alloca`s in the default
        // memory space and does not support `alloca`s with addrspace(5).
        auto ptrType = lowering.convertType(type.getElementType())
                           .cast<LLVM::LLVMType>()
                           .getPointerTo();
        Value numElements = rewriter.create<LLVM::ConstantOp>(
            gpuFuncOp.getLoc(), int64Ty,
            rewriter.getI64IntegerAttr(type.getNumElements()));
        Value allocated = rewriter.create<LLVM::AllocaOp>(
            gpuFuncOp.getLoc(), ptrType, numElements, /*alignment=*/0);
        auto descr = MemRefDescriptor::fromStaticShape(rewriter, loc, lowering,
                                                       type, allocated);
        signatureConversion.remapInput(
            numProperArguments + numWorkgroupAttributions + en.index(), descr);
      }
    }

    // Move the region to the new function, update the entry block signature.
    rewriter.inlineRegionBefore(gpuFuncOp.getBody(), llvmFuncOp.getBody(),
                                llvmFuncOp.end());
    rewriter.applySignatureConversion(&llvmFuncOp.getBody(),
                                      signatureConversion);

    {
      // For memref-typed arguments, insert the relevant loads in the beginning
      // of the block to comply with the LLVM dialect calling convention. This
      // needs to be done after signature conversion to get the right types.
      OpBuilder::InsertionGuard guard(rewriter);
      Block &block = llvmFuncOp.front();
      rewriter.setInsertionPointToStart(&block);

      for (auto en : llvm::enumerate(gpuFuncOp.getType().getInputs())) {
        if (!en.value().isa<MemRefType>() &&
            !en.value().isa<UnrankedMemRefType>())
          continue;

        BlockArgument arg = block.getArgument(en.index());
        Value loaded = rewriter.create<LLVM::LoadOp>(loc, arg);
        rewriter.replaceUsesOfBlockArgument(arg, loaded);
      }
    }

    rewriter.eraseOp(gpuFuncOp);
    return matchSuccess();
  }
};

struct GPUReturnOpLowering : public LLVMOpLowering {
  GPUReturnOpLowering(LLVMTypeConverter &typeConverter)
      : LLVMOpLowering(gpu::ReturnOp::getOperationName(),
                       typeConverter.getDialect()->getContext(),
                       typeConverter) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, operands,
                                                ArrayRef<Block *>());
    return matchSuccess();
  }
};

/// Import the GPU Ops to NVVM Patterns.
#include "GPUToNVVM.cpp.inc"

/// A pass that replaces all occurrences of GPU device operations with their
/// corresponding NVVM equivalent.
///
/// This pass only handles device code and is not meant to be run on GPU host
/// code.
class LowerGpuOpsToNVVMOpsPass : public ModulePass<LowerGpuOpsToNVVMOpsPass> {
public:
  void runOnModule() override {
    ModuleOp m = getModule();
    if (!m.getAttrOfType<UnitAttr>(gpu::GPUDialect::getKernelModuleAttrName()))
      return;

    OwningRewritePatternList patterns;
    NVVMTypeConverter converter(m.getContext());
    populateStdToLLVMConversionPatterns(converter, patterns);
    populateGpuToNVVMConversionPatterns(converter, patterns);
    ConversionTarget target(getContext());
    target.addIllegalDialect<gpu::GPUDialect>();
    target.addIllegalOp<LLVM::FAbsOp, LLVM::FCeilOp, LLVM::CosOp,
                        LLVM::ExpOp>();
    target.addIllegalOp<FuncOp>();
    target.addLegalDialect<LLVM::LLVMDialect>();
    target.addLegalDialect<NVVM::NVVMDialect>();
    // TODO(csigg): Remove once we support replacing non-root ops.
    target.addLegalOp<gpu::YieldOp>();
    if (failed(applyPartialConversion(m, target, patterns, &converter)))
      signalPassFailure();
  }
};

} // anonymous namespace

void mlir::populateGpuToNVVMConversionPatterns(
    LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
  populateWithGenerated(converter.getDialect()->getContext(), &patterns);
  patterns
      .insert<GPUIndexIntrinsicOpLowering<gpu::ThreadIdOp, NVVM::ThreadIdXOp,
                                          NVVM::ThreadIdYOp, NVVM::ThreadIdZOp>,
              GPUIndexIntrinsicOpLowering<gpu::BlockDimOp, NVVM::BlockDimXOp,
                                          NVVM::BlockDimYOp, NVVM::BlockDimZOp>,
              GPUIndexIntrinsicOpLowering<gpu::BlockIdOp, NVVM::BlockIdXOp,
                                          NVVM::BlockIdYOp, NVVM::BlockIdZOp>,
              GPUIndexIntrinsicOpLowering<gpu::GridDimOp, NVVM::GridDimXOp,
                                          NVVM::GridDimYOp, NVVM::GridDimZOp>,
              GPUAllReduceOpLowering, GPUShuffleOpLowering, GPUFuncOpLowering,
              GPUReturnOpLowering>(converter);
  patterns.insert<OpToFuncCallLowering<AbsFOp>>(converter, "__nv_fabsf",
                                               "__nv_fabs");
  patterns.insert<OpToFuncCallLowering<CeilFOp>>(converter, "__nv_ceilf",
                                               "__nv_ceil");
  patterns.insert<OpToFuncCallLowering<CosOp>>(converter, "__nv_cosf",
                                               "__nv_cos");
  patterns.insert<OpToFuncCallLowering<ExpOp>>(converter, "__nv_expf",
                                               "__nv_exp");
}

std::unique_ptr<OpPassBase<ModuleOp>> mlir::createLowerGpuOpsToNVVMOpsPass() {
  return std::make_unique<LowerGpuOpsToNVVMOpsPass>();
}

static PassRegistration<LowerGpuOpsToNVVMOpsPass>
    pass("convert-gpu-to-nvvm", "Generate NVVM operations for gpu operations");