CompactUnwindPass.cpp 21.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
//===- lib/ReaderWriter/MachO/CompactUnwindPass.cpp -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file A pass to convert MachO's __compact_unwind sections into the final
/// __unwind_info format used during runtime. See
/// mach-o/compact_unwind_encoding.h for more details on the formats involved.
///
//===----------------------------------------------------------------------===//

#include "ArchHandler.h"
#include "File.h"
#include "MachONormalizedFileBinaryUtils.h"
#include "MachOPasses.h"
#include "lld/Common/LLVM.h"
#include "lld/Core/DefinedAtom.h"
#include "lld/Core/File.h"
#include "lld/Core/Reference.h"
#include "lld/Core/Simple.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"

#define DEBUG_TYPE "macho-compact-unwind"

namespace lld {
namespace mach_o {

namespace {
struct CompactUnwindEntry {
  const Atom *rangeStart;
  const Atom *personalityFunction;
  const Atom *lsdaLocation;
  const Atom *ehFrame;

  uint32_t rangeLength;

  // There are 3 types of compact unwind entry, distinguished by the encoding
  // value: 0 indicates a function with no unwind info;
  // _archHandler.dwarfCompactUnwindType() indicates that the entry defers to
  // __eh_frame, and that the ehFrame entry will be valid; any other value is a
  // real compact unwind entry -- personalityFunction will be set and
  // lsdaLocation may be.
  uint32_t encoding;

  CompactUnwindEntry(const DefinedAtom *function)
      : rangeStart(function), personalityFunction(nullptr),
        lsdaLocation(nullptr), ehFrame(nullptr), rangeLength(function->size()),
        encoding(0) {}

  CompactUnwindEntry()
      : rangeStart(nullptr), personalityFunction(nullptr),
        lsdaLocation(nullptr), ehFrame(nullptr), rangeLength(0), encoding(0) {}
};

struct UnwindInfoPage {
  ArrayRef<CompactUnwindEntry> entries;
};
}

class UnwindInfoAtom : public SimpleDefinedAtom {
public:
  UnwindInfoAtom(ArchHandler &archHandler, const File &file, bool isBig,
                 std::vector<const Atom *> &personalities,
                 std::vector<uint32_t> &commonEncodings,
                 std::vector<UnwindInfoPage> &pages, uint32_t numLSDAs)
      : SimpleDefinedAtom(file), _archHandler(archHandler),
        _commonEncodingsOffset(7 * sizeof(uint32_t)),
        _personalityArrayOffset(_commonEncodingsOffset +
                                commonEncodings.size() * sizeof(uint32_t)),
        _topLevelIndexOffset(_personalityArrayOffset +
                             personalities.size() * sizeof(uint32_t)),
        _lsdaIndexOffset(_topLevelIndexOffset +
                         3 * (pages.size() + 1) * sizeof(uint32_t)),
        _firstPageOffset(_lsdaIndexOffset + 2 * numLSDAs * sizeof(uint32_t)),
        _isBig(isBig) {

    addHeader(commonEncodings.size(), personalities.size(), pages.size());
    addCommonEncodings(commonEncodings);
    addPersonalityFunctions(personalities);
    addTopLevelIndexes(pages);
    addLSDAIndexes(pages, numLSDAs);
    addSecondLevelPages(pages);
  }

  ~UnwindInfoAtom() override = default;

  ContentType contentType() const override {
    return DefinedAtom::typeProcessedUnwindInfo;
  }

  Alignment alignment() const override { return 4; }

  uint64_t size() const override { return _contents.size(); }

  ContentPermissions permissions() const override {
    return DefinedAtom::permR__;
  }

  ArrayRef<uint8_t> rawContent() const override { return _contents; }

  void addHeader(uint32_t numCommon, uint32_t numPersonalities,
                 uint32_t numPages) {
    using normalized::write32;

    uint32_t headerSize = 7 * sizeof(uint32_t);
    _contents.resize(headerSize);

    uint8_t *headerEntries = _contents.data();
    // version
    write32(headerEntries, 1, _isBig);
    // commonEncodingsArraySectionOffset
    write32(headerEntries + sizeof(uint32_t), _commonEncodingsOffset, _isBig);
    // commonEncodingsArrayCount
    write32(headerEntries + 2 * sizeof(uint32_t), numCommon, _isBig);
    // personalityArraySectionOffset
    write32(headerEntries + 3 * sizeof(uint32_t), _personalityArrayOffset,
            _isBig);
    // personalityArrayCount
    write32(headerEntries + 4 * sizeof(uint32_t), numPersonalities, _isBig);
    // indexSectionOffset
    write32(headerEntries + 5 * sizeof(uint32_t), _topLevelIndexOffset, _isBig);
    // indexCount
    write32(headerEntries + 6 * sizeof(uint32_t), numPages + 1, _isBig);
  }

  /// Add the list of common encodings to the section; this is simply an array
  /// of uint32_t compact values. Size has already been specified in the header.
  void addCommonEncodings(std::vector<uint32_t> &commonEncodings) {
    using normalized::write32;

    _contents.resize(_commonEncodingsOffset +
                     commonEncodings.size() * sizeof(uint32_t));
    uint8_t *commonEncodingsArea =
        reinterpret_cast<uint8_t *>(_contents.data() + _commonEncodingsOffset);

    for (uint32_t encoding : commonEncodings) {
      write32(commonEncodingsArea, encoding, _isBig);
      commonEncodingsArea += sizeof(uint32_t);
    }
  }

  void addPersonalityFunctions(std::vector<const Atom *> personalities) {
    _contents.resize(_personalityArrayOffset +
                     personalities.size() * sizeof(uint32_t));

    for (unsigned i = 0; i < personalities.size(); ++i)
      addImageReferenceIndirect(_personalityArrayOffset + i * sizeof(uint32_t),
                                personalities[i]);
  }

  void addTopLevelIndexes(std::vector<UnwindInfoPage> &pages) {
    using normalized::write32;

    uint32_t numIndexes = pages.size() + 1;
    _contents.resize(_topLevelIndexOffset + numIndexes * 3 * sizeof(uint32_t));

    uint32_t pageLoc = _firstPageOffset;

    // The most difficult job here is calculating the LSDAs; everything else
    // follows fairly naturally, but we can't state where the first
    uint8_t *indexData = &_contents[_topLevelIndexOffset];
    uint32_t numLSDAs = 0;
    for (unsigned i = 0; i < pages.size(); ++i) {
      // functionOffset
      addImageReference(_topLevelIndexOffset + 3 * i * sizeof(uint32_t),
                        pages[i].entries[0].rangeStart);
      // secondLevelPagesSectionOffset
      write32(indexData + (3 * i + 1) * sizeof(uint32_t), pageLoc, _isBig);
      write32(indexData + (3 * i + 2) * sizeof(uint32_t),
              _lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t), _isBig);

      for (auto &entry : pages[i].entries)
        if (entry.lsdaLocation)
          ++numLSDAs;
    }

    // Finally, write out the final sentinel index
    auto &finalEntry = pages[pages.size() - 1].entries.back();
    addImageReference(_topLevelIndexOffset +
                          3 * pages.size() * sizeof(uint32_t),
                      finalEntry.rangeStart, finalEntry.rangeLength);
    // secondLevelPagesSectionOffset => 0
    write32(indexData + (3 * pages.size() + 2) * sizeof(uint32_t),
            _lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t), _isBig);
  }

  void addLSDAIndexes(std::vector<UnwindInfoPage> &pages, uint32_t numLSDAs) {
    _contents.resize(_lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t));

    uint32_t curOffset = _lsdaIndexOffset;
    for (auto &page : pages) {
      for (auto &entry : page.entries) {
        if (!entry.lsdaLocation)
          continue;

        addImageReference(curOffset, entry.rangeStart);
        addImageReference(curOffset + sizeof(uint32_t), entry.lsdaLocation);
        curOffset += 2 * sizeof(uint32_t);
      }
    }
  }

  void addSecondLevelPages(std::vector<UnwindInfoPage> &pages) {
    for (auto &page : pages) {
      addRegularSecondLevelPage(page);
    }
  }

  void addRegularSecondLevelPage(const UnwindInfoPage &page) {
    uint32_t curPageOffset = _contents.size();
    const int16_t headerSize = sizeof(uint32_t) + 2 * sizeof(uint16_t);
    uint32_t curPageSize =
        headerSize + 2 * page.entries.size() * sizeof(uint32_t);
    _contents.resize(curPageOffset + curPageSize);

    using normalized::write32;
    using normalized::write16;
    // 2 => regular page
    write32(&_contents[curPageOffset], 2, _isBig);
    // offset of 1st entry
    write16(&_contents[curPageOffset + 4], headerSize, _isBig);
    write16(&_contents[curPageOffset + 6], page.entries.size(), _isBig);

    uint32_t pagePos = curPageOffset + headerSize;
    for (auto &entry : page.entries) {
      addImageReference(pagePos, entry.rangeStart);

      write32(_contents.data() + pagePos + sizeof(uint32_t), entry.encoding,
              _isBig);
      if ((entry.encoding & 0x0f000000U) ==
          _archHandler.dwarfCompactUnwindType())
        addEhFrameReference(pagePos + sizeof(uint32_t), entry.ehFrame);

      pagePos += 2 * sizeof(uint32_t);
    }
  }

  void addEhFrameReference(uint32_t offset, const Atom *dest,
                           Reference::Addend addend = 0) {
    addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
                 _archHandler.unwindRefToEhFrameKind(), offset, dest, addend);
  }

  void addImageReference(uint32_t offset, const Atom *dest,
                         Reference::Addend addend = 0) {
    addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
                 _archHandler.imageOffsetKind(), offset, dest, addend);
  }

  void addImageReferenceIndirect(uint32_t offset, const Atom *dest) {
    addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
                 _archHandler.imageOffsetKindIndirect(), offset, dest, 0);
  }

private:
  mach_o::ArchHandler &_archHandler;
  std::vector<uint8_t> _contents;
  uint32_t _commonEncodingsOffset;
  uint32_t _personalityArrayOffset;
  uint32_t _topLevelIndexOffset;
  uint32_t _lsdaIndexOffset;
  uint32_t _firstPageOffset;
  bool _isBig;
};

/// Pass for instantiating and optimizing GOT slots.
///
class CompactUnwindPass : public Pass {
public:
  CompactUnwindPass(const MachOLinkingContext &context)
      : _ctx(context), _archHandler(_ctx.archHandler()),
        _file(*_ctx.make_file<MachOFile>("<mach-o Compact Unwind Pass>")),
        _isBig(MachOLinkingContext::isBigEndian(_ctx.arch())) {
    _file.setOrdinal(_ctx.getNextOrdinalAndIncrement());
  }

private:
  llvm::Error perform(SimpleFile &mergedFile) override {
    LLVM_DEBUG(llvm::dbgs() << "MachO Compact Unwind pass\n");

    std::map<const Atom *, CompactUnwindEntry> unwindLocs;
    std::map<const Atom *, const Atom *> dwarfFrames;
    std::vector<const Atom *> personalities;
    uint32_t numLSDAs = 0;

    // First collect all __compact_unwind and __eh_frame entries, addressable by
    // the function referred to.
    collectCompactUnwindEntries(mergedFile, unwindLocs, personalities,
                                numLSDAs);

    collectDwarfFrameEntries(mergedFile, dwarfFrames);

    // Skip rest of pass if no unwind info.
    if (unwindLocs.empty() && dwarfFrames.empty())
      return llvm::Error::success();

    // FIXME: if there are more than 4 personality functions then we need to
    // defer to DWARF info for the ones we don't put in the list. They should
    // also probably be sorted by frequency.
    assert(personalities.size() <= 4);

    // TODO: Find common encodings for use by compressed pages.
    std::vector<uint32_t> commonEncodings;

    // Now sort the entries by final address and fixup the compact encoding to
    // its final form (i.e. set personality function bits & create DWARF
    // references where needed).
    std::vector<CompactUnwindEntry> unwindInfos = createUnwindInfoEntries(
        mergedFile, unwindLocs, personalities, dwarfFrames);

    // Remove any unused eh-frame atoms.
    pruneUnusedEHFrames(mergedFile, unwindInfos, unwindLocs, dwarfFrames);

    // Finally, we can start creating pages based on these entries.

    LLVM_DEBUG(llvm::dbgs() << "  Splitting entries into pages\n");
    // FIXME: we split the entries into pages naively: lots of 4k pages followed
    // by a small one. ld64 tried to minimize space and align them to real 4k
    // boundaries. That might be worth doing, or perhaps we could perform some
    // minor balancing for expected number of lookups.
    std::vector<UnwindInfoPage> pages;
    auto remainingInfos = llvm::makeArrayRef(unwindInfos);
    do {
      pages.push_back(UnwindInfoPage());

      // FIXME: we only create regular pages at the moment. These can hold up to
      // 1021 entries according to the documentation.
      unsigned entriesInPage = std::min(1021U, (unsigned)remainingInfos.size());

      pages.back().entries = remainingInfos.slice(0, entriesInPage);
      remainingInfos = remainingInfos.slice(entriesInPage);

      LLVM_DEBUG(llvm::dbgs()
                 << "    Page from "
                 << pages.back().entries[0].rangeStart->name() << " to "
                 << pages.back().entries.back().rangeStart->name() << " + "
                 << llvm::format("0x%x",
                                 pages.back().entries.back().rangeLength)
                 << " has " << entriesInPage << " entries\n");
    } while (!remainingInfos.empty());

    auto *unwind = new (_file.allocator())
        UnwindInfoAtom(_archHandler, _file, _isBig, personalities,
                       commonEncodings, pages, numLSDAs);
    mergedFile.addAtom(*unwind);

    // Finally, remove all __compact_unwind atoms now that we've processed them.
    mergedFile.removeDefinedAtomsIf([](const DefinedAtom *atom) {
      return atom->contentType() == DefinedAtom::typeCompactUnwindInfo;
    });

    return llvm::Error::success();
  }

  void collectCompactUnwindEntries(
      const SimpleFile &mergedFile,
      std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
      std::vector<const Atom *> &personalities, uint32_t &numLSDAs) {
    LLVM_DEBUG(llvm::dbgs() << "  Collecting __compact_unwind entries\n");

    for (const DefinedAtom *atom : mergedFile.defined()) {
      if (atom->contentType() != DefinedAtom::typeCompactUnwindInfo)
        continue;

      auto unwindEntry = extractCompactUnwindEntry(atom);
      unwindLocs.insert(std::make_pair(unwindEntry.rangeStart, unwindEntry));

      LLVM_DEBUG(llvm::dbgs() << "    Entry for "
                              << unwindEntry.rangeStart->name() << ", encoding="
                              << llvm::format("0x%08x", unwindEntry.encoding));
      if (unwindEntry.personalityFunction)
        LLVM_DEBUG(llvm::dbgs()
                   << ", personality="
                   << unwindEntry.personalityFunction->name()
                   << ", lsdaLoc=" << unwindEntry.lsdaLocation->name());
      LLVM_DEBUG(llvm::dbgs() << '\n');

      // Count number of LSDAs we see, since we need to know how big the index
      // will be while laying out the section.
      if (unwindEntry.lsdaLocation)
        ++numLSDAs;

      // Gather the personality functions now, so that they're in deterministic
      // order (derived from the DefinedAtom order).
      if (unwindEntry.personalityFunction &&
          !llvm::count(personalities, unwindEntry.personalityFunction))
        personalities.push_back(unwindEntry.personalityFunction);
    }
  }

  CompactUnwindEntry extractCompactUnwindEntry(const DefinedAtom *atom) {
    CompactUnwindEntry entry;

    for (const Reference *ref : *atom) {
      switch (ref->offsetInAtom()) {
      case 0:
        // FIXME: there could legitimately be functions with multiple encoding
        // entries. However, nothing produces them at the moment.
        assert(ref->addend() == 0 && "unexpected offset into function");
        entry.rangeStart = ref->target();
        break;
      case 0x10:
        assert(ref->addend() == 0 && "unexpected offset into personality fn");
        entry.personalityFunction = ref->target();
        break;
      case 0x18:
        assert(ref->addend() == 0 && "unexpected offset into LSDA atom");
        entry.lsdaLocation = ref->target();
        break;
      }
    }

    if (atom->rawContent().size() < 4 * sizeof(uint32_t))
      return entry;

    using normalized::read32;
    entry.rangeLength =
        read32(atom->rawContent().data() + 2 * sizeof(uint32_t), _isBig);
    entry.encoding =
        read32(atom->rawContent().data() + 3 * sizeof(uint32_t), _isBig);
    return entry;
  }

  void
  collectDwarfFrameEntries(const SimpleFile &mergedFile,
                           std::map<const Atom *, const Atom *> &dwarfFrames) {
    for (const DefinedAtom *ehFrameAtom : mergedFile.defined()) {
      if (ehFrameAtom->contentType() != DefinedAtom::typeCFI)
        continue;
      if (ArchHandler::isDwarfCIE(_isBig, ehFrameAtom))
        continue;

      if (const Atom *function = _archHandler.fdeTargetFunction(ehFrameAtom))
        dwarfFrames[function] = ehFrameAtom;
    }
  }

  /// Every atom defined in __TEXT,__text needs an entry in the final
  /// __unwind_info section (in order). These comes from two sources:
  ///   + Input __compact_unwind sections where possible (after adding the
  ///      personality function offset which is only known now).
  ///   + A synthesised reference to __eh_frame if there's no __compact_unwind
  ///     or too many personality functions to be accommodated.
  std::vector<CompactUnwindEntry> createUnwindInfoEntries(
      const SimpleFile &mergedFile,
      const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
      const std::vector<const Atom *> &personalities,
      const std::map<const Atom *, const Atom *> &dwarfFrames) {
    std::vector<CompactUnwindEntry> unwindInfos;

    LLVM_DEBUG(llvm::dbgs() << "  Creating __unwind_info entries\n");
    // The final order in the __unwind_info section must be derived from the
    // order of typeCode atoms, since that's how they'll be put into the object
    // file eventually (yuck!).
    for (const DefinedAtom *atom : mergedFile.defined()) {
      if (atom->contentType() != DefinedAtom::typeCode)
        continue;

      unwindInfos.push_back(finalizeUnwindInfoEntryForAtom(
          atom, unwindLocs, personalities, dwarfFrames));

      LLVM_DEBUG(llvm::dbgs()
                 << "    Entry for " << atom->name() << ", final encoding="
                 << llvm::format("0x%08x", unwindInfos.back().encoding)
                 << '\n');
    }

    return unwindInfos;
  }

  /// Remove unused EH frames.
  ///
  /// An EH frame is considered unused if there is a corresponding compact
  /// unwind atom that doesn't require the EH frame.
  void pruneUnusedEHFrames(
                   SimpleFile &mergedFile,
                   const std::vector<CompactUnwindEntry> &unwindInfos,
                   const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
                   const std::map<const Atom *, const Atom *> &dwarfFrames) {

    // Worklist of all 'used' FDEs.
    std::vector<const DefinedAtom *> usedDwarfWorklist;

    // We have to check two conditions when building the worklist:
    // (1) EH frames used by compact unwind entries.
    for (auto &entry : unwindInfos)
      if (entry.ehFrame)
        usedDwarfWorklist.push_back(cast<DefinedAtom>(entry.ehFrame));

    // (2) EH frames that reference functions with no corresponding compact
    //     unwind info.
    for (auto &entry : dwarfFrames)
      if (!unwindLocs.count(entry.first))
        usedDwarfWorklist.push_back(cast<DefinedAtom>(entry.second));

    // Add all transitively referenced CFI atoms by processing the worklist.
    std::set<const Atom *> usedDwarfFrames;
    while (!usedDwarfWorklist.empty()) {
      const DefinedAtom *cfiAtom = usedDwarfWorklist.back();
      usedDwarfWorklist.pop_back();
      usedDwarfFrames.insert(cfiAtom);
      for (const auto *ref : *cfiAtom) {
        const DefinedAtom *cfiTarget = dyn_cast<DefinedAtom>(ref->target());
        if (cfiTarget->contentType() == DefinedAtom::typeCFI)
          usedDwarfWorklist.push_back(cfiTarget);
      }
    }

    // Finally, delete all unreferenced CFI atoms.
    mergedFile.removeDefinedAtomsIf([&](const DefinedAtom *atom) {
      if ((atom->contentType() == DefinedAtom::typeCFI) &&
          !usedDwarfFrames.count(atom))
        return true;
      return false;
    });
  }

  CompactUnwindEntry finalizeUnwindInfoEntryForAtom(
      const DefinedAtom *function,
      const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
      const std::vector<const Atom *> &personalities,
      const std::map<const Atom *, const Atom *> &dwarfFrames) {
    auto unwindLoc = unwindLocs.find(function);

    CompactUnwindEntry entry;
    if (unwindLoc == unwindLocs.end()) {
      // Default entry has correct encoding (0 => no unwind), but we need to
      // synthesise the function.
      entry.rangeStart = function;
      entry.rangeLength = function->size();
    } else
      entry = unwindLoc->second;


    // If there's no __compact_unwind entry, or it explicitly says to use
    // __eh_frame, we need to try and fill in the correct DWARF atom.
    if (entry.encoding == _archHandler.dwarfCompactUnwindType() ||
        entry.encoding == 0) {
      auto dwarfFrame = dwarfFrames.find(function);
      if (dwarfFrame != dwarfFrames.end()) {
        entry.encoding = _archHandler.dwarfCompactUnwindType();
        entry.ehFrame = dwarfFrame->second;
      }
    }

    auto personality = llvm::find(personalities, entry.personalityFunction);
    uint32_t personalityIdx = personality == personalities.end()
                                  ? 0
                                  : personality - personalities.begin() + 1;

    // FIXME: We should also use DWARF when there isn't enough room for the
    // personality function in the compact encoding.
    assert(personalityIdx < 4 && "too many personality functions");

    entry.encoding |= personalityIdx << 28;

    if (entry.lsdaLocation)
      entry.encoding |= 1U << 30;

    return entry;
  }

  const MachOLinkingContext &_ctx;
  mach_o::ArchHandler &_archHandler;
  MachOFile &_file;
  bool _isBig;
};

void addCompactUnwindPass(PassManager &pm, const MachOLinkingContext &ctx) {
  assert(ctx.needsCompactUnwindPass());
  pm.add(std::make_unique<CompactUnwindPass>(ctx));
}

} // end namesapce mach_o
} // end namesapce lld