tsan_interceptors_mac.cpp 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
//===-- tsan_interceptors_mac.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Mac-specific interceptors.
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_MAC

#include "interception/interception.h"
#include "tsan_interceptors.h"
#include "tsan_interface.h"
#include "tsan_interface_ann.h"
#include "sanitizer_common/sanitizer_addrhashmap.h"

#include <errno.h>
#include <libkern/OSAtomic.h>
#include <objc/objc-sync.h>
#include <sys/ucontext.h>

#if defined(__has_include) && __has_include(<os/lock.h>)
#include <os/lock.h>
#endif

#if defined(__has_include) && __has_include(<xpc/xpc.h>)
#include <xpc/xpc.h>
#endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)

typedef long long_t;

extern "C" {
int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
int setcontext(const ucontext_t *ucp);
}

namespace __tsan {

// The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
// but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
// actually aliases of each other, and we cannot have different interceptors for
// them, because they're actually the same function.  Thus, we have to stay
// conservative and treat the non-barrier versions as mo_acq_rel.
static const morder kMacOrderBarrier = mo_acq_rel;
static const morder kMacOrderNonBarrier = mo_acq_rel;

#define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
  TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
    SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
    return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
  }

#define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
  TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
    SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
    return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
  }

#define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
  TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
    SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
    return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
  }

#define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
                                     mo)                                    \
  TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
    SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
    return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
  }

#define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
  m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
    kMacOrderNonBarrier)                                                       \
  m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
    kMacOrderBarrier)                                                          \
  m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
    kMacOrderNonBarrier)                                                       \
  m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
    kMacOrderBarrier)

#define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
  m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
    kMacOrderNonBarrier)                                                       \
  m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
    kMacOrderBarrier)                                                          \
  m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
    kMacOrderNonBarrier)                                                       \
  m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
    __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)

OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
                                 OSATOMIC_INTERCEPTOR_PLUS_X)
OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
                                 OSATOMIC_INTERCEPTOR_PLUS_1)
OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
                                 OSATOMIC_INTERCEPTOR_MINUS_1)
OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
                              OSATOMIC_INTERCEPTOR)
OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
                              OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
                              OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)

#define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
  TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
    SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
    return tsan_atomic_f##_compare_exchange_strong(                         \
        (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
        kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
  }                                                                         \
                                                                            \
  TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
                   t volatile *ptr) {                                       \
    SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
    return tsan_atomic_f##_compare_exchange_strong(                         \
        (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
        kMacOrderBarrier, kMacOrderNonBarrier);                             \
  }

OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
                          long_t)
OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
                          void *)
OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
                          int32_t)
OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
                          int64_t)

#define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
  TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
    SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
    volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
    char bit = 0x80u >> (n & 7);                                 \
    char mask = clear ? ~bit : bit;                              \
    char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
    return orig_byte & bit;                                      \
  }

#define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
  OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
  OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)

OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
                            true)

TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
                 size_t offset) {
  SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
  __tsan_release(item);
  REAL(OSAtomicEnqueue)(list, item, offset);
}

TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
  SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
  void *item = REAL(OSAtomicDequeue)(list, offset);
  if (item) __tsan_acquire(item);
  return item;
}

// OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
#if !SANITIZER_IOS

TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
                 size_t offset) {
  SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
  __tsan_release(item);
  REAL(OSAtomicFifoEnqueue)(list, item, offset);
}

TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
                 size_t offset) {
  SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
  void *item = REAL(OSAtomicFifoDequeue)(list, offset);
  if (item) __tsan_acquire(item);
  return item;
}

#endif

TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
  CHECK(!cur_thread()->is_dead);
  if (!cur_thread()->is_inited) {
    return REAL(OSSpinLockLock)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
  REAL(OSSpinLockLock)(lock);
  Acquire(thr, pc, (uptr)lock);
}

TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
  CHECK(!cur_thread()->is_dead);
  if (!cur_thread()->is_inited) {
    return REAL(OSSpinLockTry)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
  bool result = REAL(OSSpinLockTry)(lock);
  if (result)
    Acquire(thr, pc, (uptr)lock);
  return result;
}

TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
  CHECK(!cur_thread()->is_dead);
  if (!cur_thread()->is_inited) {
    return REAL(OSSpinLockUnlock)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
  Release(thr, pc, (uptr)lock);
  REAL(OSSpinLockUnlock)(lock);
}

TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
  CHECK(!cur_thread()->is_dead);
  if (!cur_thread()->is_inited) {
    return REAL(os_lock_lock)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
  REAL(os_lock_lock)(lock);
  Acquire(thr, pc, (uptr)lock);
}

TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
  CHECK(!cur_thread()->is_dead);
  if (!cur_thread()->is_inited) {
    return REAL(os_lock_trylock)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
  bool result = REAL(os_lock_trylock)(lock);
  if (result)
    Acquire(thr, pc, (uptr)lock);
  return result;
}

TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
  CHECK(!cur_thread()->is_dead);
  if (!cur_thread()->is_inited) {
    return REAL(os_lock_unlock)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
  Release(thr, pc, (uptr)lock);
  REAL(os_lock_unlock)(lock);
}

#if defined(__has_include) && __has_include(<os/lock.h>)

TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
    return REAL(os_unfair_lock_lock)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
  REAL(os_unfair_lock_lock)(lock);
  Acquire(thr, pc, (uptr)lock);
}

TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
                 u32 options) {
  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
    return REAL(os_unfair_lock_lock_with_options)(lock, options);
  }
  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
  REAL(os_unfair_lock_lock_with_options)(lock, options);
  Acquire(thr, pc, (uptr)lock);
}

TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
    return REAL(os_unfair_lock_trylock)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
  bool result = REAL(os_unfair_lock_trylock)(lock);
  if (result)
    Acquire(thr, pc, (uptr)lock);
  return result;
}

TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
    return REAL(os_unfair_lock_unlock)(lock);
  }
  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
  Release(thr, pc, (uptr)lock);
  REAL(os_unfair_lock_unlock)(lock);
}

#endif  // #if defined(__has_include) && __has_include(<os/lock.h>)

#if defined(__has_include) && __has_include(<xpc/xpc.h>)

TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
                 xpc_connection_t connection, xpc_handler_t handler) {
  SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
                          handler);
  Release(thr, pc, (uptr)connection);
  xpc_handler_t new_handler = ^(xpc_object_t object) {
    {
      SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
      Acquire(thr, pc, (uptr)connection);
    }
    handler(object);
  };
  REAL(xpc_connection_set_event_handler)(connection, new_handler);
}

TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
                 dispatch_block_t barrier) {
  SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
  Release(thr, pc, (uptr)connection);
  dispatch_block_t new_barrier = ^() {
    {
      SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
      Acquire(thr, pc, (uptr)connection);
    }
    barrier();
  };
  REAL(xpc_connection_send_barrier)(connection, new_barrier);
}

TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
                 xpc_connection_t connection, xpc_object_t message,
                 dispatch_queue_t replyq, xpc_handler_t handler) {
  SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
                          message, replyq, handler);
  Release(thr, pc, (uptr)connection);
  xpc_handler_t new_handler = ^(xpc_object_t object) {
    {
      SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
      Acquire(thr, pc, (uptr)connection);
    }
    handler(object);
  };
  REAL(xpc_connection_send_message_with_reply)
  (connection, message, replyq, new_handler);
}

TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
  SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
  Release(thr, pc, (uptr)connection);
  REAL(xpc_connection_cancel)(connection);
}

#endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)

// Determines whether the Obj-C object pointer is a tagged pointer. Tagged
// pointers encode the object data directly in their pointer bits and do not
// have an associated memory allocation. The Obj-C runtime uses tagged pointers
// to transparently optimize small objects.
static bool IsTaggedObjCPointer(id obj) {
  const uptr kPossibleTaggedBits = 0x8000000000000001ull;
  return ((uptr)obj & kPossibleTaggedBits) != 0;
}

// Returns an address which can be used to inform TSan about synchronization
// points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
// address in the process space. We do a small allocation here to obtain a
// stable address (the array backing the hash map can change). The memory is
// never free'd (leaked) and allocation and locking are slow, but this code only
// runs for @synchronized with tagged pointers, which is very rare.
static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
  typedef AddrHashMap<uptr, 5> Map;
  static Map Addresses;
  Map::Handle h(&Addresses, addr);
  if (h.created()) {
    ThreadIgnoreBegin(thr, pc);
    *h = (uptr) user_alloc(thr, pc, /*size=*/1);
    ThreadIgnoreEnd(thr, pc);
  }
  return *h;
}

// Returns an address on which we can synchronize given an Obj-C object pointer.
// For normal object pointers, this is just the address of the object in memory.
// Tagged pointers are not backed by an actual memory allocation, so we need to
// synthesize a valid address.
static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
  if (IsTaggedObjCPointer(obj))
    return GetOrCreateSyncAddress((uptr)obj, thr, pc);
  return (uptr)obj;
}

TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
  SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
  if (!obj) return REAL(objc_sync_enter)(obj);
  uptr addr = SyncAddressForObjCObject(obj, thr, pc);
  MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
  int result = REAL(objc_sync_enter)(obj);
  CHECK_EQ(result, OBJC_SYNC_SUCCESS);
  MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
  return result;
}

TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
  SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
  if (!obj) return REAL(objc_sync_exit)(obj);
  uptr addr = SyncAddressForObjCObject(obj, thr, pc);
  MutexUnlock(thr, pc, addr);
  int result = REAL(objc_sync_exit)(obj);
  if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
  return result;
}

TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
  {
    SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
  }
  // Bacause of swapcontext() semantics we have no option but to copy its
  // impementation here
  if (!oucp || !ucp) {
    errno = EINVAL;
    return -1;
  }
  ThreadState *thr = cur_thread();
  const int UCF_SWAPPED = 0x80000000;
  oucp->uc_onstack &= ~UCF_SWAPPED;
  thr->ignore_interceptors++;
  int ret = getcontext(oucp);
  if (!(oucp->uc_onstack & UCF_SWAPPED)) {
    thr->ignore_interceptors--;
    if (!ret) {
      oucp->uc_onstack |= UCF_SWAPPED;
      ret = setcontext(ucp);
    }
  }
  return ret;
}

// On macOS, libc++ is always linked dynamically, so intercepting works the
// usual way.
#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR

namespace {
struct fake_shared_weak_count {
  volatile a64 shared_owners;
  volatile a64 shared_weak_owners;
  virtual void _unused_0x0() = 0;
  virtual void _unused_0x8() = 0;
  virtual void on_zero_shared() = 0;
  virtual void _unused_0x18() = 0;
  virtual void on_zero_shared_weak() = 0;
};
}  // namespace

// The following code adds libc++ interceptors for:
//     void __shared_weak_count::__release_shared() _NOEXCEPT;
//     bool __shared_count::__release_shared() _NOEXCEPT;
// Shared and weak pointers in C++ maintain reference counts via atomics in
// libc++.dylib, which are TSan-invisible, and this leads to false positives in
// destructor code. These interceptors re-implements the whole functions so that
// the mo_acq_rel semantics of the atomic decrement are visible.
//
// Unfortunately, the interceptors cannot simply Acquire/Release some sync
// object and call the original function, because it would have a race between
// the sync and the destruction of the object.  Calling both under a lock will
// not work because the destructor can invoke this interceptor again (and even
// in a different thread, so recursive locks don't help).

STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
                   fake_shared_weak_count *o) {
  if (!flags()->shared_ptr_interceptor)
    return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);

  SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
                          o);
  if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
    Acquire(thr, pc, (uptr)&o->shared_owners);
    o->on_zero_shared();
    if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
        0) {
      Acquire(thr, pc, (uptr)&o->shared_weak_owners);
      o->on_zero_shared_weak();
    }
  }
}

STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
                   fake_shared_weak_count *o) {
  if (!flags()->shared_ptr_interceptor)
    return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);

  SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
  if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
    Acquire(thr, pc, (uptr)&o->shared_owners);
    o->on_zero_shared();
    return true;
  }
  return false;
}

namespace {
struct call_once_callback_args {
  void (*orig_func)(void *arg);
  void *orig_arg;
  void *flag;
};

void call_once_callback_wrapper(void *arg) {
  call_once_callback_args *new_args = (call_once_callback_args *)arg;
  new_args->orig_func(new_args->orig_arg);
  __tsan_release(new_args->flag);
}
}  // namespace

// This adds a libc++ interceptor for:
//     void __call_once(volatile unsigned long&, void*, void(*)(void*));
// C++11 call_once is implemented via an internal function __call_once which is
// inside libc++.dylib, and the atomic release store inside it is thus
// TSan-invisible. To avoid false positives, this interceptor wraps the callback
// function and performs an explicit Release after the user code has run.
STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
                   void *arg, void (*func)(void *arg)) {
  call_once_callback_args new_args = {func, arg, flag};
  REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
                                            call_once_callback_wrapper);
}

}  // namespace __tsan

#endif  // SANITIZER_MAC