forecastservice.d.ts
91.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
import {Request} from '../lib/request';
import {Response} from '../lib/response';
import {AWSError} from '../lib/error';
import {Service} from '../lib/service';
import {ServiceConfigurationOptions} from '../lib/service';
import {ConfigBase as Config} from '../lib/config';
interface Blob {}
declare class ForecastService extends Service {
/**
* Constructs a service object. This object has one method for each API operation.
*/
constructor(options?: ForecastService.Types.ClientConfiguration)
config: Config & ForecastService.Types.ClientConfiguration;
/**
* Creates an Amazon Forecast dataset. The information about the dataset that you provide helps Forecast understand how to consume the data for model training. This includes the following: DataFrequency - How frequently your historical time-series data is collected. Domain and DatasetType - Each dataset has an associated dataset domain and a type within the domain. Amazon Forecast provides a list of predefined domains and types within each domain. For each unique dataset domain and type within the domain, Amazon Forecast requires your data to include a minimum set of predefined fields. Schema - A schema specifies the fields in the dataset, including the field name and data type. After creating a dataset, you import your training data into it and add the dataset to a dataset group. You use the dataset group to create a predictor. For more information, see howitworks-datasets-groups. To get a list of all your datasets, use the ListDatasets operation. For example Forecast datasets, see the Amazon Forecast Sample GitHub repository. The Status of a dataset must be ACTIVE before you can import training data. Use the DescribeDataset operation to get the status.
*/
createDataset(params: ForecastService.Types.CreateDatasetRequest, callback?: (err: AWSError, data: ForecastService.Types.CreateDatasetResponse) => void): Request<ForecastService.Types.CreateDatasetResponse, AWSError>;
/**
* Creates an Amazon Forecast dataset. The information about the dataset that you provide helps Forecast understand how to consume the data for model training. This includes the following: DataFrequency - How frequently your historical time-series data is collected. Domain and DatasetType - Each dataset has an associated dataset domain and a type within the domain. Amazon Forecast provides a list of predefined domains and types within each domain. For each unique dataset domain and type within the domain, Amazon Forecast requires your data to include a minimum set of predefined fields. Schema - A schema specifies the fields in the dataset, including the field name and data type. After creating a dataset, you import your training data into it and add the dataset to a dataset group. You use the dataset group to create a predictor. For more information, see howitworks-datasets-groups. To get a list of all your datasets, use the ListDatasets operation. For example Forecast datasets, see the Amazon Forecast Sample GitHub repository. The Status of a dataset must be ACTIVE before you can import training data. Use the DescribeDataset operation to get the status.
*/
createDataset(callback?: (err: AWSError, data: ForecastService.Types.CreateDatasetResponse) => void): Request<ForecastService.Types.CreateDatasetResponse, AWSError>;
/**
* Creates a dataset group, which holds a collection of related datasets. You can add datasets to the dataset group when you create the dataset group, or later by using the UpdateDatasetGroup operation. After creating a dataset group and adding datasets, you use the dataset group when you create a predictor. For more information, see howitworks-datasets-groups. To get a list of all your datasets groups, use the ListDatasetGroups operation. The Status of a dataset group must be ACTIVE before you can create use the dataset group to create a predictor. To get the status, use the DescribeDatasetGroup operation.
*/
createDatasetGroup(params: ForecastService.Types.CreateDatasetGroupRequest, callback?: (err: AWSError, data: ForecastService.Types.CreateDatasetGroupResponse) => void): Request<ForecastService.Types.CreateDatasetGroupResponse, AWSError>;
/**
* Creates a dataset group, which holds a collection of related datasets. You can add datasets to the dataset group when you create the dataset group, or later by using the UpdateDatasetGroup operation. After creating a dataset group and adding datasets, you use the dataset group when you create a predictor. For more information, see howitworks-datasets-groups. To get a list of all your datasets groups, use the ListDatasetGroups operation. The Status of a dataset group must be ACTIVE before you can create use the dataset group to create a predictor. To get the status, use the DescribeDatasetGroup operation.
*/
createDatasetGroup(callback?: (err: AWSError, data: ForecastService.Types.CreateDatasetGroupResponse) => void): Request<ForecastService.Types.CreateDatasetGroupResponse, AWSError>;
/**
* Imports your training data to an Amazon Forecast dataset. You provide the location of your training data in an Amazon Simple Storage Service (Amazon S3) bucket and the Amazon Resource Name (ARN) of the dataset that you want to import the data to. You must specify a DataSource object that includes an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. For more information, see aws-forecast-iam-roles. The training data must be in CSV format. The delimiter must be a comma (,). You can specify the path to a specific CSV file, the S3 bucket, or to a folder in the S3 bucket. For the latter two cases, Amazon Forecast imports all files up to the limit of 10,000 files. To get a list of all your dataset import jobs, filtered by specified criteria, use the ListDatasetImportJobs operation.
*/
createDatasetImportJob(params: ForecastService.Types.CreateDatasetImportJobRequest, callback?: (err: AWSError, data: ForecastService.Types.CreateDatasetImportJobResponse) => void): Request<ForecastService.Types.CreateDatasetImportJobResponse, AWSError>;
/**
* Imports your training data to an Amazon Forecast dataset. You provide the location of your training data in an Amazon Simple Storage Service (Amazon S3) bucket and the Amazon Resource Name (ARN) of the dataset that you want to import the data to. You must specify a DataSource object that includes an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. For more information, see aws-forecast-iam-roles. The training data must be in CSV format. The delimiter must be a comma (,). You can specify the path to a specific CSV file, the S3 bucket, or to a folder in the S3 bucket. For the latter two cases, Amazon Forecast imports all files up to the limit of 10,000 files. To get a list of all your dataset import jobs, filtered by specified criteria, use the ListDatasetImportJobs operation.
*/
createDatasetImportJob(callback?: (err: AWSError, data: ForecastService.Types.CreateDatasetImportJobResponse) => void): Request<ForecastService.Types.CreateDatasetImportJobResponse, AWSError>;
/**
* Creates a forecast for each item in the TARGET_TIME_SERIES dataset that was used to train the predictor. This is known as inference. To retrieve the forecast for a single item at low latency, use the operation. To export the complete forecast into your Amazon Simple Storage Service (Amazon S3) bucket, use the CreateForecastExportJob operation. The range of the forecast is determined by the ForecastHorizon value, which you specify in the CreatePredictor request, multiplied by the DataFrequency value, which you specify in the CreateDataset request. When you query a forecast, you can request a specific date range within the forecast. To get a list of all your forecasts, use the ListForecasts operation. The forecasts generated by Amazon Forecast are in the same time zone as the dataset that was used to create the predictor. For more information, see howitworks-forecast. The Status of the forecast must be ACTIVE before you can query or export the forecast. Use the DescribeForecast operation to get the status.
*/
createForecast(params: ForecastService.Types.CreateForecastRequest, callback?: (err: AWSError, data: ForecastService.Types.CreateForecastResponse) => void): Request<ForecastService.Types.CreateForecastResponse, AWSError>;
/**
* Creates a forecast for each item in the TARGET_TIME_SERIES dataset that was used to train the predictor. This is known as inference. To retrieve the forecast for a single item at low latency, use the operation. To export the complete forecast into your Amazon Simple Storage Service (Amazon S3) bucket, use the CreateForecastExportJob operation. The range of the forecast is determined by the ForecastHorizon value, which you specify in the CreatePredictor request, multiplied by the DataFrequency value, which you specify in the CreateDataset request. When you query a forecast, you can request a specific date range within the forecast. To get a list of all your forecasts, use the ListForecasts operation. The forecasts generated by Amazon Forecast are in the same time zone as the dataset that was used to create the predictor. For more information, see howitworks-forecast. The Status of the forecast must be ACTIVE before you can query or export the forecast. Use the DescribeForecast operation to get the status.
*/
createForecast(callback?: (err: AWSError, data: ForecastService.Types.CreateForecastResponse) => void): Request<ForecastService.Types.CreateForecastResponse, AWSError>;
/**
* Exports a forecast created by the CreateForecast operation to your Amazon Simple Storage Service (Amazon S3) bucket. The forecast file name will match the following conventions: <ForecastExportJobName>_<ExportTimestamp>_<PageNumber> where the <ExportTimestamp> component is in Java SimpleDateFormat (yyyy-MM-ddTHH-mm-ssZ). You must specify a DataDestination object that includes an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket. For more information, see aws-forecast-iam-roles. For more information, see howitworks-forecast. To get a list of all your forecast export jobs, use the ListForecastExportJobs operation. The Status of the forecast export job must be ACTIVE before you can access the forecast in your Amazon S3 bucket. To get the status, use the DescribeForecastExportJob operation.
*/
createForecastExportJob(params: ForecastService.Types.CreateForecastExportJobRequest, callback?: (err: AWSError, data: ForecastService.Types.CreateForecastExportJobResponse) => void): Request<ForecastService.Types.CreateForecastExportJobResponse, AWSError>;
/**
* Exports a forecast created by the CreateForecast operation to your Amazon Simple Storage Service (Amazon S3) bucket. The forecast file name will match the following conventions: <ForecastExportJobName>_<ExportTimestamp>_<PageNumber> where the <ExportTimestamp> component is in Java SimpleDateFormat (yyyy-MM-ddTHH-mm-ssZ). You must specify a DataDestination object that includes an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket. For more information, see aws-forecast-iam-roles. For more information, see howitworks-forecast. To get a list of all your forecast export jobs, use the ListForecastExportJobs operation. The Status of the forecast export job must be ACTIVE before you can access the forecast in your Amazon S3 bucket. To get the status, use the DescribeForecastExportJob operation.
*/
createForecastExportJob(callback?: (err: AWSError, data: ForecastService.Types.CreateForecastExportJobResponse) => void): Request<ForecastService.Types.CreateForecastExportJobResponse, AWSError>;
/**
* Creates an Amazon Forecast predictor. In the request, you provide a dataset group and either specify an algorithm or let Amazon Forecast choose the algorithm for you using AutoML. If you specify an algorithm, you also can override algorithm-specific hyperparameters. Amazon Forecast uses the chosen algorithm to train a model using the latest version of the datasets in the specified dataset group. The result is called a predictor. You then generate a forecast using the CreateForecast operation. After training a model, the CreatePredictor operation also evaluates it. To see the evaluation metrics, use the GetAccuracyMetrics operation. Always review the evaluation metrics before deciding to use the predictor to generate a forecast. Optionally, you can specify a featurization configuration to fill and aggregate the data fields in the TARGET_TIME_SERIES dataset to improve model training. For more information, see FeaturizationConfig. For RELATED_TIME_SERIES datasets, CreatePredictor verifies that the DataFrequency specified when the dataset was created matches the ForecastFrequency. TARGET_TIME_SERIES datasets don't have this restriction. Amazon Forecast also verifies the delimiter and timestamp format. For more information, see howitworks-datasets-groups. AutoML If you want Amazon Forecast to evaluate each algorithm and choose the one that minimizes the objective function, set PerformAutoML to true. The objective function is defined as the mean of the weighted p10, p50, and p90 quantile losses. For more information, see EvaluationResult. When AutoML is enabled, the following properties are disallowed: AlgorithmArn HPOConfig PerformHPO TrainingParameters To get a list of all of your predictors, use the ListPredictors operation. Before you can use the predictor to create a forecast, the Status of the predictor must be ACTIVE, signifying that training has completed. To get the status, use the DescribePredictor operation.
*/
createPredictor(params: ForecastService.Types.CreatePredictorRequest, callback?: (err: AWSError, data: ForecastService.Types.CreatePredictorResponse) => void): Request<ForecastService.Types.CreatePredictorResponse, AWSError>;
/**
* Creates an Amazon Forecast predictor. In the request, you provide a dataset group and either specify an algorithm or let Amazon Forecast choose the algorithm for you using AutoML. If you specify an algorithm, you also can override algorithm-specific hyperparameters. Amazon Forecast uses the chosen algorithm to train a model using the latest version of the datasets in the specified dataset group. The result is called a predictor. You then generate a forecast using the CreateForecast operation. After training a model, the CreatePredictor operation also evaluates it. To see the evaluation metrics, use the GetAccuracyMetrics operation. Always review the evaluation metrics before deciding to use the predictor to generate a forecast. Optionally, you can specify a featurization configuration to fill and aggregate the data fields in the TARGET_TIME_SERIES dataset to improve model training. For more information, see FeaturizationConfig. For RELATED_TIME_SERIES datasets, CreatePredictor verifies that the DataFrequency specified when the dataset was created matches the ForecastFrequency. TARGET_TIME_SERIES datasets don't have this restriction. Amazon Forecast also verifies the delimiter and timestamp format. For more information, see howitworks-datasets-groups. AutoML If you want Amazon Forecast to evaluate each algorithm and choose the one that minimizes the objective function, set PerformAutoML to true. The objective function is defined as the mean of the weighted p10, p50, and p90 quantile losses. For more information, see EvaluationResult. When AutoML is enabled, the following properties are disallowed: AlgorithmArn HPOConfig PerformHPO TrainingParameters To get a list of all of your predictors, use the ListPredictors operation. Before you can use the predictor to create a forecast, the Status of the predictor must be ACTIVE, signifying that training has completed. To get the status, use the DescribePredictor operation.
*/
createPredictor(callback?: (err: AWSError, data: ForecastService.Types.CreatePredictorResponse) => void): Request<ForecastService.Types.CreatePredictorResponse, AWSError>;
/**
* Deletes an Amazon Forecast dataset that was created using the CreateDataset operation. You can only delete datasets that have a status of ACTIVE or CREATE_FAILED. To get the status use the DescribeDataset operation.
*/
deleteDataset(params: ForecastService.Types.DeleteDatasetRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes an Amazon Forecast dataset that was created using the CreateDataset operation. You can only delete datasets that have a status of ACTIVE or CREATE_FAILED. To get the status use the DescribeDataset operation.
*/
deleteDataset(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a dataset group created using the CreateDatasetGroup operation. You can only delete dataset groups that have a status of ACTIVE, CREATE_FAILED, or UPDATE_FAILED. To get the status, use the DescribeDatasetGroup operation. This operation deletes only the dataset group, not the datasets in the group.
*/
deleteDatasetGroup(params: ForecastService.Types.DeleteDatasetGroupRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a dataset group created using the CreateDatasetGroup operation. You can only delete dataset groups that have a status of ACTIVE, CREATE_FAILED, or UPDATE_FAILED. To get the status, use the DescribeDatasetGroup operation. This operation deletes only the dataset group, not the datasets in the group.
*/
deleteDatasetGroup(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a dataset import job created using the CreateDatasetImportJob operation. You can delete only dataset import jobs that have a status of ACTIVE or CREATE_FAILED. To get the status, use the DescribeDatasetImportJob operation.
*/
deleteDatasetImportJob(params: ForecastService.Types.DeleteDatasetImportJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a dataset import job created using the CreateDatasetImportJob operation. You can delete only dataset import jobs that have a status of ACTIVE or CREATE_FAILED. To get the status, use the DescribeDatasetImportJob operation.
*/
deleteDatasetImportJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a forecast created using the CreateForecast operation. You can delete only forecasts that have a status of ACTIVE or CREATE_FAILED. To get the status, use the DescribeForecast operation. You can't delete a forecast while it is being exported. After a forecast is deleted, you can no longer query the forecast.
*/
deleteForecast(params: ForecastService.Types.DeleteForecastRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a forecast created using the CreateForecast operation. You can delete only forecasts that have a status of ACTIVE or CREATE_FAILED. To get the status, use the DescribeForecast operation. You can't delete a forecast while it is being exported. After a forecast is deleted, you can no longer query the forecast.
*/
deleteForecast(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a forecast export job created using the CreateForecastExportJob operation. You can delete only export jobs that have a status of ACTIVE or CREATE_FAILED. To get the status, use the DescribeForecastExportJob operation.
*/
deleteForecastExportJob(params: ForecastService.Types.DeleteForecastExportJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a forecast export job created using the CreateForecastExportJob operation. You can delete only export jobs that have a status of ACTIVE or CREATE_FAILED. To get the status, use the DescribeForecastExportJob operation.
*/
deleteForecastExportJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a predictor created using the CreatePredictor operation. You can delete only predictor that have a status of ACTIVE or CREATE_FAILED. To get the status, use the DescribePredictor operation.
*/
deletePredictor(params: ForecastService.Types.DeletePredictorRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Deletes a predictor created using the CreatePredictor operation. You can delete only predictor that have a status of ACTIVE or CREATE_FAILED. To get the status, use the DescribePredictor operation.
*/
deletePredictor(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
/**
* Describes an Amazon Forecast dataset created using the CreateDataset operation. In addition to listing the parameters specified in the CreateDataset request, this operation includes the following dataset properties: CreationTime LastModificationTime Status
*/
describeDataset(params: ForecastService.Types.DescribeDatasetRequest, callback?: (err: AWSError, data: ForecastService.Types.DescribeDatasetResponse) => void): Request<ForecastService.Types.DescribeDatasetResponse, AWSError>;
/**
* Describes an Amazon Forecast dataset created using the CreateDataset operation. In addition to listing the parameters specified in the CreateDataset request, this operation includes the following dataset properties: CreationTime LastModificationTime Status
*/
describeDataset(callback?: (err: AWSError, data: ForecastService.Types.DescribeDatasetResponse) => void): Request<ForecastService.Types.DescribeDatasetResponse, AWSError>;
/**
* Describes a dataset group created using the CreateDatasetGroup operation. In addition to listing the parameters provided in the CreateDatasetGroup request, this operation includes the following properties: DatasetArns - The datasets belonging to the group. CreationTime LastModificationTime Status
*/
describeDatasetGroup(params: ForecastService.Types.DescribeDatasetGroupRequest, callback?: (err: AWSError, data: ForecastService.Types.DescribeDatasetGroupResponse) => void): Request<ForecastService.Types.DescribeDatasetGroupResponse, AWSError>;
/**
* Describes a dataset group created using the CreateDatasetGroup operation. In addition to listing the parameters provided in the CreateDatasetGroup request, this operation includes the following properties: DatasetArns - The datasets belonging to the group. CreationTime LastModificationTime Status
*/
describeDatasetGroup(callback?: (err: AWSError, data: ForecastService.Types.DescribeDatasetGroupResponse) => void): Request<ForecastService.Types.DescribeDatasetGroupResponse, AWSError>;
/**
* Describes a dataset import job created using the CreateDatasetImportJob operation. In addition to listing the parameters provided in the CreateDatasetImportJob request, this operation includes the following properties: CreationTime LastModificationTime DataSize FieldStatistics Status Message - If an error occurred, information about the error.
*/
describeDatasetImportJob(params: ForecastService.Types.DescribeDatasetImportJobRequest, callback?: (err: AWSError, data: ForecastService.Types.DescribeDatasetImportJobResponse) => void): Request<ForecastService.Types.DescribeDatasetImportJobResponse, AWSError>;
/**
* Describes a dataset import job created using the CreateDatasetImportJob operation. In addition to listing the parameters provided in the CreateDatasetImportJob request, this operation includes the following properties: CreationTime LastModificationTime DataSize FieldStatistics Status Message - If an error occurred, information about the error.
*/
describeDatasetImportJob(callback?: (err: AWSError, data: ForecastService.Types.DescribeDatasetImportJobResponse) => void): Request<ForecastService.Types.DescribeDatasetImportJobResponse, AWSError>;
/**
* Describes a forecast created using the CreateForecast operation. In addition to listing the properties provided in the CreateForecast request, this operation lists the following properties: DatasetGroupArn - The dataset group that provided the training data. CreationTime LastModificationTime Status Message - If an error occurred, information about the error.
*/
describeForecast(params: ForecastService.Types.DescribeForecastRequest, callback?: (err: AWSError, data: ForecastService.Types.DescribeForecastResponse) => void): Request<ForecastService.Types.DescribeForecastResponse, AWSError>;
/**
* Describes a forecast created using the CreateForecast operation. In addition to listing the properties provided in the CreateForecast request, this operation lists the following properties: DatasetGroupArn - The dataset group that provided the training data. CreationTime LastModificationTime Status Message - If an error occurred, information about the error.
*/
describeForecast(callback?: (err: AWSError, data: ForecastService.Types.DescribeForecastResponse) => void): Request<ForecastService.Types.DescribeForecastResponse, AWSError>;
/**
* Describes a forecast export job created using the CreateForecastExportJob operation. In addition to listing the properties provided by the user in the CreateForecastExportJob request, this operation lists the following properties: CreationTime LastModificationTime Status Message - If an error occurred, information about the error.
*/
describeForecastExportJob(params: ForecastService.Types.DescribeForecastExportJobRequest, callback?: (err: AWSError, data: ForecastService.Types.DescribeForecastExportJobResponse) => void): Request<ForecastService.Types.DescribeForecastExportJobResponse, AWSError>;
/**
* Describes a forecast export job created using the CreateForecastExportJob operation. In addition to listing the properties provided by the user in the CreateForecastExportJob request, this operation lists the following properties: CreationTime LastModificationTime Status Message - If an error occurred, information about the error.
*/
describeForecastExportJob(callback?: (err: AWSError, data: ForecastService.Types.DescribeForecastExportJobResponse) => void): Request<ForecastService.Types.DescribeForecastExportJobResponse, AWSError>;
/**
* Describes a predictor created using the CreatePredictor operation. In addition to listing the properties provided in the CreatePredictor request, this operation lists the following properties: DatasetImportJobArns - The dataset import jobs used to import training data. AutoMLAlgorithmArns - If AutoML is performed, the algorithms that were evaluated. CreationTime LastModificationTime Status Message - If an error occurred, information about the error.
*/
describePredictor(params: ForecastService.Types.DescribePredictorRequest, callback?: (err: AWSError, data: ForecastService.Types.DescribePredictorResponse) => void): Request<ForecastService.Types.DescribePredictorResponse, AWSError>;
/**
* Describes a predictor created using the CreatePredictor operation. In addition to listing the properties provided in the CreatePredictor request, this operation lists the following properties: DatasetImportJobArns - The dataset import jobs used to import training data. AutoMLAlgorithmArns - If AutoML is performed, the algorithms that were evaluated. CreationTime LastModificationTime Status Message - If an error occurred, information about the error.
*/
describePredictor(callback?: (err: AWSError, data: ForecastService.Types.DescribePredictorResponse) => void): Request<ForecastService.Types.DescribePredictorResponse, AWSError>;
/**
* Provides metrics on the accuracy of the models that were trained by the CreatePredictor operation. Use metrics to see how well the model performed and to decide whether to use the predictor to generate a forecast. For more information, see metrics. This operation generates metrics for each backtest window that was evaluated. The number of backtest windows (NumberOfBacktestWindows) is specified using the EvaluationParameters object, which is optionally included in the CreatePredictor request. If NumberOfBacktestWindows isn't specified, the number defaults to one. The parameters of the filling method determine which items contribute to the metrics. If you want all items to contribute, specify zero. If you want only those items that have complete data in the range being evaluated to contribute, specify nan. For more information, see FeaturizationMethod. Before you can get accuracy metrics, the Status of the predictor must be ACTIVE, signifying that training has completed. To get the status, use the DescribePredictor operation.
*/
getAccuracyMetrics(params: ForecastService.Types.GetAccuracyMetricsRequest, callback?: (err: AWSError, data: ForecastService.Types.GetAccuracyMetricsResponse) => void): Request<ForecastService.Types.GetAccuracyMetricsResponse, AWSError>;
/**
* Provides metrics on the accuracy of the models that were trained by the CreatePredictor operation. Use metrics to see how well the model performed and to decide whether to use the predictor to generate a forecast. For more information, see metrics. This operation generates metrics for each backtest window that was evaluated. The number of backtest windows (NumberOfBacktestWindows) is specified using the EvaluationParameters object, which is optionally included in the CreatePredictor request. If NumberOfBacktestWindows isn't specified, the number defaults to one. The parameters of the filling method determine which items contribute to the metrics. If you want all items to contribute, specify zero. If you want only those items that have complete data in the range being evaluated to contribute, specify nan. For more information, see FeaturizationMethod. Before you can get accuracy metrics, the Status of the predictor must be ACTIVE, signifying that training has completed. To get the status, use the DescribePredictor operation.
*/
getAccuracyMetrics(callback?: (err: AWSError, data: ForecastService.Types.GetAccuracyMetricsResponse) => void): Request<ForecastService.Types.GetAccuracyMetricsResponse, AWSError>;
/**
* Returns a list of dataset groups created using the CreateDatasetGroup operation. For each dataset group, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the dataset group ARN with the DescribeDatasetGroup operation.
*/
listDatasetGroups(params: ForecastService.Types.ListDatasetGroupsRequest, callback?: (err: AWSError, data: ForecastService.Types.ListDatasetGroupsResponse) => void): Request<ForecastService.Types.ListDatasetGroupsResponse, AWSError>;
/**
* Returns a list of dataset groups created using the CreateDatasetGroup operation. For each dataset group, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the dataset group ARN with the DescribeDatasetGroup operation.
*/
listDatasetGroups(callback?: (err: AWSError, data: ForecastService.Types.ListDatasetGroupsResponse) => void): Request<ForecastService.Types.ListDatasetGroupsResponse, AWSError>;
/**
* Returns a list of dataset import jobs created using the CreateDatasetImportJob operation. For each import job, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the ARN with the DescribeDatasetImportJob operation. You can filter the list by providing an array of Filter objects.
*/
listDatasetImportJobs(params: ForecastService.Types.ListDatasetImportJobsRequest, callback?: (err: AWSError, data: ForecastService.Types.ListDatasetImportJobsResponse) => void): Request<ForecastService.Types.ListDatasetImportJobsResponse, AWSError>;
/**
* Returns a list of dataset import jobs created using the CreateDatasetImportJob operation. For each import job, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the ARN with the DescribeDatasetImportJob operation. You can filter the list by providing an array of Filter objects.
*/
listDatasetImportJobs(callback?: (err: AWSError, data: ForecastService.Types.ListDatasetImportJobsResponse) => void): Request<ForecastService.Types.ListDatasetImportJobsResponse, AWSError>;
/**
* Returns a list of datasets created using the CreateDataset operation. For each dataset, a summary of its properties, including its Amazon Resource Name (ARN), is returned. To retrieve the complete set of properties, use the ARN with the DescribeDataset operation.
*/
listDatasets(params: ForecastService.Types.ListDatasetsRequest, callback?: (err: AWSError, data: ForecastService.Types.ListDatasetsResponse) => void): Request<ForecastService.Types.ListDatasetsResponse, AWSError>;
/**
* Returns a list of datasets created using the CreateDataset operation. For each dataset, a summary of its properties, including its Amazon Resource Name (ARN), is returned. To retrieve the complete set of properties, use the ARN with the DescribeDataset operation.
*/
listDatasets(callback?: (err: AWSError, data: ForecastService.Types.ListDatasetsResponse) => void): Request<ForecastService.Types.ListDatasetsResponse, AWSError>;
/**
* Returns a list of forecast export jobs created using the CreateForecastExportJob operation. For each forecast export job, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). To retrieve the complete set of properties, use the ARN with the DescribeForecastExportJob operation. You can filter the list using an array of Filter objects.
*/
listForecastExportJobs(params: ForecastService.Types.ListForecastExportJobsRequest, callback?: (err: AWSError, data: ForecastService.Types.ListForecastExportJobsResponse) => void): Request<ForecastService.Types.ListForecastExportJobsResponse, AWSError>;
/**
* Returns a list of forecast export jobs created using the CreateForecastExportJob operation. For each forecast export job, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). To retrieve the complete set of properties, use the ARN with the DescribeForecastExportJob operation. You can filter the list using an array of Filter objects.
*/
listForecastExportJobs(callback?: (err: AWSError, data: ForecastService.Types.ListForecastExportJobsResponse) => void): Request<ForecastService.Types.ListForecastExportJobsResponse, AWSError>;
/**
* Returns a list of forecasts created using the CreateForecast operation. For each forecast, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). To retrieve the complete set of properties, specify the ARN with the DescribeForecast operation. You can filter the list using an array of Filter objects.
*/
listForecasts(params: ForecastService.Types.ListForecastsRequest, callback?: (err: AWSError, data: ForecastService.Types.ListForecastsResponse) => void): Request<ForecastService.Types.ListForecastsResponse, AWSError>;
/**
* Returns a list of forecasts created using the CreateForecast operation. For each forecast, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). To retrieve the complete set of properties, specify the ARN with the DescribeForecast operation. You can filter the list using an array of Filter objects.
*/
listForecasts(callback?: (err: AWSError, data: ForecastService.Types.ListForecastsResponse) => void): Request<ForecastService.Types.ListForecastsResponse, AWSError>;
/**
* Returns a list of predictors created using the CreatePredictor operation. For each predictor, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the ARN with the DescribePredictor operation. You can filter the list using an array of Filter objects.
*/
listPredictors(params: ForecastService.Types.ListPredictorsRequest, callback?: (err: AWSError, data: ForecastService.Types.ListPredictorsResponse) => void): Request<ForecastService.Types.ListPredictorsResponse, AWSError>;
/**
* Returns a list of predictors created using the CreatePredictor operation. For each predictor, this operation returns a summary of its properties, including its Amazon Resource Name (ARN). You can retrieve the complete set of properties by using the ARN with the DescribePredictor operation. You can filter the list using an array of Filter objects.
*/
listPredictors(callback?: (err: AWSError, data: ForecastService.Types.ListPredictorsResponse) => void): Request<ForecastService.Types.ListPredictorsResponse, AWSError>;
/**
* Replaces the datasets in a dataset group with the specified datasets. The Status of the dataset group must be ACTIVE before you can use the dataset group to create a predictor. Use the DescribeDatasetGroup operation to get the status.
*/
updateDatasetGroup(params: ForecastService.Types.UpdateDatasetGroupRequest, callback?: (err: AWSError, data: ForecastService.Types.UpdateDatasetGroupResponse) => void): Request<ForecastService.Types.UpdateDatasetGroupResponse, AWSError>;
/**
* Replaces the datasets in a dataset group with the specified datasets. The Status of the dataset group must be ACTIVE before you can use the dataset group to create a predictor. Use the DescribeDatasetGroup operation to get the status.
*/
updateDatasetGroup(callback?: (err: AWSError, data: ForecastService.Types.UpdateDatasetGroupResponse) => void): Request<ForecastService.Types.UpdateDatasetGroupResponse, AWSError>;
}
declare namespace ForecastService {
export type Arn = string;
export type ArnList = Arn[];
export type AttributeType = "string"|"integer"|"float"|"timestamp"|string;
export type Boolean = boolean;
export interface CategoricalParameterRange {
/**
* The name of the categorical hyperparameter to tune.
*/
Name: Name;
/**
* A list of the tunable categories for the hyperparameter.
*/
Values: Values;
}
export type CategoricalParameterRanges = CategoricalParameterRange[];
export interface ContinuousParameterRange {
/**
* The name of the hyperparameter to tune.
*/
Name: Name;
/**
* The maximum tunable value of the hyperparameter.
*/
MaxValue: Double;
/**
* The minimum tunable value of the hyperparameter.
*/
MinValue: Double;
/**
* The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values: Auto Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter. Linear Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. Logarithmic Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have values greater than 0. ReverseLogarithmic hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale. Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
*/
ScalingType?: ScalingType;
}
export type ContinuousParameterRanges = ContinuousParameterRange[];
export interface CreateDatasetGroupRequest {
/**
* A name for the dataset group.
*/
DatasetGroupName: Name;
/**
* The domain associated with the dataset group. When you add a dataset to a dataset group, this value and the value specified for the Domain parameter of the CreateDataset operation must match. The Domain and DatasetType that you choose determine the fields that must be present in training data that you import to a dataset. For example, if you choose the RETAIL domain and TARGET_TIME_SERIES as the DatasetType, Amazon Forecast requires that item_id, timestamp, and demand fields are present in your data. For more information, see howitworks-datasets-groups.
*/
Domain: Domain;
/**
* An array of Amazon Resource Names (ARNs) of the datasets that you want to include in the dataset group.
*/
DatasetArns?: ArnList;
}
export interface CreateDatasetGroupResponse {
/**
* The Amazon Resource Name (ARN) of the dataset group.
*/
DatasetGroupArn?: Arn;
}
export interface CreateDatasetImportJobRequest {
/**
* The name for the dataset import job. We recommend including the current timestamp in the name, for example, 20190721DatasetImport. This can help you avoid getting a ResourceAlreadyExistsException exception.
*/
DatasetImportJobName: Name;
/**
* The Amazon Resource Name (ARN) of the Amazon Forecast dataset that you want to import data to.
*/
DatasetArn: Arn;
/**
* The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. The training data must be stored in an Amazon S3 bucket. If encryption is used, DataSource must include an AWS Key Management Service (KMS) key and the IAM role must allow Amazon Forecast permission to access the key. The KMS key and IAM role must match those specified in the EncryptionConfig parameter of the CreateDataset operation.
*/
DataSource: DataSource;
/**
* The format of timestamps in the dataset. The format that you specify depends on the DataFrequency specified when the dataset was created. The following formats are supported "yyyy-MM-dd" For the following data frequencies: Y, M, W, and D "yyyy-MM-dd HH:mm:ss" For the following data frequencies: H, 30min, 15min, and 1min; and optionally, for: Y, M, W, and D If the format isn't specified, Amazon Forecast expects the format to be "yyyy-MM-dd HH:mm:ss".
*/
TimestampFormat?: TimestampFormat;
}
export interface CreateDatasetImportJobResponse {
/**
* The Amazon Resource Name (ARN) of the dataset import job.
*/
DatasetImportJobArn?: Arn;
}
export interface CreateDatasetRequest {
/**
* A name for the dataset.
*/
DatasetName: Name;
/**
* The domain associated with the dataset. When you add a dataset to a dataset group, this value and the value specified for the Domain parameter of the CreateDatasetGroup operation must match. The Domain and DatasetType that you choose determine the fields that must be present in the training data that you import to the dataset. For example, if you choose the RETAIL domain and TARGET_TIME_SERIES as the DatasetType, Amazon Forecast requires item_id, timestamp, and demand fields to be present in your data. For more information, see howitworks-datasets-groups.
*/
Domain: Domain;
/**
* The dataset type. Valid values depend on the chosen Domain.
*/
DatasetType: DatasetType;
/**
* The frequency of data collection. This parameter is required for RELATED_TIME_SERIES datasets. Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "D" indicates every day and "15min" indicates every 15 minutes.
*/
DataFrequency?: Frequency;
/**
* The schema for the dataset. The schema attributes and their order must match the fields in your data. The dataset Domain and DatasetType that you choose determine the minimum required fields in your training data. For information about the required fields for a specific dataset domain and type, see howitworks-domains-ds-types.
*/
Schema: Schema;
/**
* An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
*/
EncryptionConfig?: EncryptionConfig;
}
export interface CreateDatasetResponse {
/**
* The Amazon Resource Name (ARN) of the dataset.
*/
DatasetArn?: Arn;
}
export interface CreateForecastExportJobRequest {
/**
* The name for the forecast export job.
*/
ForecastExportJobName: Name;
/**
* The Amazon Resource Name (ARN) of the forecast that you want to export.
*/
ForecastArn: Arn;
/**
* The location where you want to save the forecast and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the location. The forecast must be exported to an Amazon S3 bucket. If encryption is used, Destination must include an AWS Key Management Service (KMS) key. The IAM role must allow Amazon Forecast permission to access the key.
*/
Destination: DataDestination;
}
export interface CreateForecastExportJobResponse {
/**
* The Amazon Resource Name (ARN) of the export job.
*/
ForecastExportJobArn?: Arn;
}
export interface CreateForecastRequest {
/**
* A name for the forecast.
*/
ForecastName: Name;
/**
* The Amazon Resource Name (ARN) of the predictor to use to generate the forecast.
*/
PredictorArn: Arn;
/**
* The quantiles at which probabilistic forecasts are generated. You can specify up to 5 quantiles per forecast. Accepted values include 0.01 to 0.99 (increments of .01 only) and mean. The mean forecast is different from the median (0.50) when the distribution is not symmetric (e.g. Beta, Negative Binomial). The default value is ["0.1", "0.5", "0.9"].
*/
ForecastTypes?: ForecastTypes;
}
export interface CreateForecastResponse {
/**
* The Amazon Resource Name (ARN) of the forecast.
*/
ForecastArn?: Arn;
}
export interface CreatePredictorRequest {
/**
* A name for the predictor.
*/
PredictorName: Name;
/**
* The Amazon Resource Name (ARN) of the algorithm to use for model training. Required if PerformAutoML is not set to true. Supported algorithms: arn:aws:forecast:::algorithm/ARIMA arn:aws:forecast:::algorithm/Deep_AR_Plus Supports hyperparameter optimization (HPO) arn:aws:forecast:::algorithm/ETS arn:aws:forecast:::algorithm/NPTS arn:aws:forecast:::algorithm/Prophet
*/
AlgorithmArn?: Arn;
/**
* Specifies the number of time-steps that the model is trained to predict. The forecast horizon is also called the prediction length. For example, if you configure a dataset for daily data collection (using the DataFrequency parameter of the CreateDataset operation) and set the forecast horizon to 10, the model returns predictions for 10 days. The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length.
*/
ForecastHorizon: Integer;
/**
* Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates the algorithms it provides and chooses the best algorithm and configuration for your training dataset. The default value is false. In this case, you are required to specify an algorithm. Set PerformAutoML to true to have Amazon Forecast perform AutoML. This is a good option if you aren't sure which algorithm is suitable for your training data. In this case, PerformHPO must be false.
*/
PerformAutoML?: Boolean;
/**
* Whether to perform hyperparameter optimization (HPO). HPO finds optimal hyperparameter values for your training data. The process of performing HPO is known as running a hyperparameter tuning job. The default value is false. In this case, Amazon Forecast uses default hyperparameter values from the chosen algorithm. To override the default values, set PerformHPO to true and, optionally, supply the HyperParameterTuningJobConfig object. The tuning job specifies a metric to optimize, which hyperparameters participate in tuning, and the valid range for each tunable hyperparameter. In this case, you are required to specify an algorithm and PerformAutoML must be false. The following algorithm supports HPO: DeepAR+
*/
PerformHPO?: Boolean;
/**
* The hyperparameters to override for model training. The hyperparameters that you can override are listed in the individual algorithms. For the list of supported algorithms, see aws-forecast-choosing-recipes.
*/
TrainingParameters?: TrainingParameters;
/**
* Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
*/
EvaluationParameters?: EvaluationParameters;
/**
* Provides hyperparameter override values for the algorithm. If you don't provide this parameter, Amazon Forecast uses default values. The individual algorithms specify which hyperparameters support hyperparameter optimization (HPO). For more information, see aws-forecast-choosing-recipes. If you included the HPOConfig object, you must set PerformHPO to true.
*/
HPOConfig?: HyperParameterTuningJobConfig;
/**
* Describes the dataset group that contains the data to use to train the predictor.
*/
InputDataConfig: InputDataConfig;
/**
* The featurization configuration.
*/
FeaturizationConfig: FeaturizationConfig;
/**
* An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
*/
EncryptionConfig?: EncryptionConfig;
}
export interface CreatePredictorResponse {
/**
* The Amazon Resource Name (ARN) of the predictor.
*/
PredictorArn?: Arn;
}
export interface DataDestination {
/**
* The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.
*/
S3Config: S3Config;
}
export interface DataSource {
/**
* The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.
*/
S3Config: S3Config;
}
export interface DatasetGroupSummary {
/**
* The Amazon Resource Name (ARN) of the dataset group.
*/
DatasetGroupArn?: Arn;
/**
* The name of the dataset group.
*/
DatasetGroupName?: Name;
/**
* When the dataset group was created.
*/
CreationTime?: Timestamp;
/**
* When the dataset group was created or last updated from a call to the UpdateDatasetGroup operation. While the dataset group is being updated, LastModificationTime is the current time of the ListDatasetGroups call.
*/
LastModificationTime?: Timestamp;
}
export type DatasetGroups = DatasetGroupSummary[];
export interface DatasetImportJobSummary {
/**
* The Amazon Resource Name (ARN) of the dataset import job.
*/
DatasetImportJobArn?: Arn;
/**
* The name of the dataset import job.
*/
DatasetImportJobName?: Name;
/**
* The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. The training data must be stored in an Amazon S3 bucket. If encryption is used, DataSource includes an AWS Key Management Service (KMS) key.
*/
DataSource?: DataSource;
/**
* The status of the dataset import job. The status is reflected in the status of the dataset. For example, when the import job status is CREATE_IN_PROGRESS, the status of the dataset is UPDATE_IN_PROGRESS. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
*/
Status?: Status;
/**
* If an error occurred, an informational message about the error.
*/
Message?: ErrorMessage;
/**
* When the dataset import job was created.
*/
CreationTime?: Timestamp;
/**
* The last time that the dataset was modified. The time depends on the status of the job, as follows: CREATE_PENDING - The same time as CreationTime. CREATE_IN_PROGRESS - The current timestamp. ACTIVE or CREATE_FAILED - When the job finished or failed.
*/
LastModificationTime?: Timestamp;
}
export type DatasetImportJobs = DatasetImportJobSummary[];
export interface DatasetSummary {
/**
* The Amazon Resource Name (ARN) of the dataset.
*/
DatasetArn?: Arn;
/**
* The name of the dataset.
*/
DatasetName?: Name;
/**
* The dataset type.
*/
DatasetType?: DatasetType;
/**
* The domain associated with the dataset.
*/
Domain?: Domain;
/**
* When the dataset was created.
*/
CreationTime?: Timestamp;
/**
* When you create a dataset, LastModificationTime is the same as CreationTime. While data is being imported to the dataset, LastModificationTime is the current time of the ListDatasets call. After a CreateDatasetImportJob operation has finished, LastModificationTime is when the import job completed or failed.
*/
LastModificationTime?: Timestamp;
}
export type DatasetType = "TARGET_TIME_SERIES"|"RELATED_TIME_SERIES"|"ITEM_METADATA"|string;
export type Datasets = DatasetSummary[];
export interface DeleteDatasetGroupRequest {
/**
* The Amazon Resource Name (ARN) of the dataset group to delete.
*/
DatasetGroupArn: Arn;
}
export interface DeleteDatasetImportJobRequest {
/**
* The Amazon Resource Name (ARN) of the dataset import job to delete.
*/
DatasetImportJobArn: Arn;
}
export interface DeleteDatasetRequest {
/**
* The Amazon Resource Name (ARN) of the dataset to delete.
*/
DatasetArn: Arn;
}
export interface DeleteForecastExportJobRequest {
/**
* The Amazon Resource Name (ARN) of the forecast export job to delete.
*/
ForecastExportJobArn: Arn;
}
export interface DeleteForecastRequest {
/**
* The Amazon Resource Name (ARN) of the forecast to delete.
*/
ForecastArn: Arn;
}
export interface DeletePredictorRequest {
/**
* The Amazon Resource Name (ARN) of the predictor to delete.
*/
PredictorArn: Arn;
}
export interface DescribeDatasetGroupRequest {
/**
* The Amazon Resource Name (ARN) of the dataset group.
*/
DatasetGroupArn: Arn;
}
export interface DescribeDatasetGroupResponse {
/**
* The name of the dataset group.
*/
DatasetGroupName?: Name;
/**
* The ARN of the dataset group.
*/
DatasetGroupArn?: Arn;
/**
* An array of Amazon Resource Names (ARNs) of the datasets contained in the dataset group.
*/
DatasetArns?: ArnList;
/**
* The domain associated with the dataset group.
*/
Domain?: Domain;
/**
* The status of the dataset group. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED The UPDATE states apply when you call the UpdateDatasetGroup operation. The Status of the dataset group must be ACTIVE before you can use the dataset group to create a predictor.
*/
Status?: Status;
/**
* When the dataset group was created.
*/
CreationTime?: Timestamp;
/**
* When the dataset group was created or last updated from a call to the UpdateDatasetGroup operation. While the dataset group is being updated, LastModificationTime is the current time of the DescribeDatasetGroup call.
*/
LastModificationTime?: Timestamp;
}
export interface DescribeDatasetImportJobRequest {
/**
* The Amazon Resource Name (ARN) of the dataset import job.
*/
DatasetImportJobArn: Arn;
}
export interface DescribeDatasetImportJobResponse {
/**
* The name of the dataset import job.
*/
DatasetImportJobName?: Name;
/**
* The ARN of the dataset import job.
*/
DatasetImportJobArn?: Arn;
/**
* The Amazon Resource Name (ARN) of the dataset that the training data was imported to.
*/
DatasetArn?: Arn;
/**
* The format of timestamps in the dataset. The format that you specify depends on the DataFrequency specified when the dataset was created. The following formats are supported "yyyy-MM-dd" For the following data frequencies: Y, M, W, and D "yyyy-MM-dd HH:mm:ss" For the following data frequencies: H, 30min, 15min, and 1min; and optionally, for: Y, M, W, and D
*/
TimestampFormat?: TimestampFormat;
/**
* The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. If encryption is used, DataSource includes an AWS Key Management Service (KMS) key.
*/
DataSource?: DataSource;
/**
* Statistical information about each field in the input data.
*/
FieldStatistics?: FieldStatistics;
/**
* The size of the dataset in gigabytes (GB) after the import job has finished.
*/
DataSize?: Double;
/**
* The status of the dataset import job. The status is reflected in the status of the dataset. For example, when the import job status is CREATE_IN_PROGRESS, the status of the dataset is UPDATE_IN_PROGRESS. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
*/
Status?: Status;
/**
* If an error occurred, an informational message about the error.
*/
Message?: Message;
/**
* When the dataset import job was created.
*/
CreationTime?: Timestamp;
/**
* The last time that the dataset was modified. The time depends on the status of the job, as follows: CREATE_PENDING - The same time as CreationTime. CREATE_IN_PROGRESS - The current timestamp. ACTIVE or CREATE_FAILED - When the job finished or failed.
*/
LastModificationTime?: Timestamp;
}
export interface DescribeDatasetRequest {
/**
* The Amazon Resource Name (ARN) of the dataset.
*/
DatasetArn: Arn;
}
export interface DescribeDatasetResponse {
/**
* The Amazon Resource Name (ARN) of the dataset.
*/
DatasetArn?: Arn;
/**
* The name of the dataset.
*/
DatasetName?: Name;
/**
* The domain associated with the dataset.
*/
Domain?: Domain;
/**
* The dataset type.
*/
DatasetType?: DatasetType;
/**
* The frequency of data collection. Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "M" indicates every month and "30min" indicates every 30 minutes.
*/
DataFrequency?: Frequency;
/**
* An array of SchemaAttribute objects that specify the dataset fields. Each SchemaAttribute specifies the name and data type of a field.
*/
Schema?: Schema;
/**
* The AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
*/
EncryptionConfig?: EncryptionConfig;
/**
* The status of the dataset. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED The UPDATE states apply while data is imported to the dataset from a call to the CreateDatasetImportJob operation and reflect the status of the dataset import job. For example, when the import job status is CREATE_IN_PROGRESS, the status of the dataset is UPDATE_IN_PROGRESS. The Status of the dataset must be ACTIVE before you can import training data.
*/
Status?: Status;
/**
* When the dataset was created.
*/
CreationTime?: Timestamp;
/**
* When you create a dataset, LastModificationTime is the same as CreationTime. While data is being imported to the dataset, LastModificationTime is the current time of the DescribeDataset call. After a CreateDatasetImportJob operation has finished, LastModificationTime is when the import job completed or failed.
*/
LastModificationTime?: Timestamp;
}
export interface DescribeForecastExportJobRequest {
/**
* The Amazon Resource Name (ARN) of the forecast export job.
*/
ForecastExportJobArn: Arn;
}
export interface DescribeForecastExportJobResponse {
/**
* The ARN of the forecast export job.
*/
ForecastExportJobArn?: Arn;
/**
* The name of the forecast export job.
*/
ForecastExportJobName?: Name;
/**
* The Amazon Resource Name (ARN) of the exported forecast.
*/
ForecastArn?: Arn;
/**
* The path to the Amazon Simple Storage Service (Amazon S3) bucket where the forecast is exported.
*/
Destination?: DataDestination;
/**
* If an error occurred, an informational message about the error.
*/
Message?: Message;
/**
* The status of the forecast export job. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED The Status of the forecast export job must be ACTIVE before you can access the forecast in your S3 bucket.
*/
Status?: Status;
/**
* When the forecast export job was created.
*/
CreationTime?: Timestamp;
/**
* When the last successful export job finished.
*/
LastModificationTime?: Timestamp;
}
export interface DescribeForecastRequest {
/**
* The Amazon Resource Name (ARN) of the forecast.
*/
ForecastArn: Arn;
}
export interface DescribeForecastResponse {
/**
* The forecast ARN as specified in the request.
*/
ForecastArn?: Arn;
/**
* The name of the forecast.
*/
ForecastName?: Name;
/**
* The quantiles at which proababilistic forecasts were generated.
*/
ForecastTypes?: ForecastTypes;
/**
* The ARN of the predictor used to generate the forecast.
*/
PredictorArn?: Arn;
/**
* The ARN of the dataset group that provided the data used to train the predictor.
*/
DatasetGroupArn?: Arn;
/**
* The status of the forecast. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED The Status of the forecast must be ACTIVE before you can query or export the forecast.
*/
Status?: String;
/**
* If an error occurred, an informational message about the error.
*/
Message?: ErrorMessage;
/**
* When the forecast creation task was created.
*/
CreationTime?: Timestamp;
/**
* Initially, the same as CreationTime (status is CREATE_PENDING). Updated when inference (creating the forecast) starts (status changed to CREATE_IN_PROGRESS), and when inference is complete (status changed to ACTIVE) or fails (status changed to CREATE_FAILED).
*/
LastModificationTime?: Timestamp;
}
export interface DescribePredictorRequest {
/**
* The Amazon Resource Name (ARN) of the predictor that you want information about.
*/
PredictorArn: Arn;
}
export interface DescribePredictorResponse {
/**
* The ARN of the predictor.
*/
PredictorArn?: Name;
/**
* The name of the predictor.
*/
PredictorName?: Name;
/**
* The Amazon Resource Name (ARN) of the algorithm used for model training.
*/
AlgorithmArn?: Arn;
/**
* The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
*/
ForecastHorizon?: Integer;
/**
* Whether the predictor is set to perform AutoML.
*/
PerformAutoML?: Boolean;
/**
* Whether the predictor is set to perform hyperparameter optimization (HPO).
*/
PerformHPO?: Boolean;
/**
* The default training parameters or overrides selected during model training. If using the AutoML algorithm or if HPO is turned on while using the DeepAR+ algorithms, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.
*/
TrainingParameters?: TrainingParameters;
/**
* Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
*/
EvaluationParameters?: EvaluationParameters;
/**
* The hyperparameter override values for the algorithm.
*/
HPOConfig?: HyperParameterTuningJobConfig;
/**
* Describes the dataset group that contains the data to use to train the predictor.
*/
InputDataConfig?: InputDataConfig;
/**
* The featurization configuration.
*/
FeaturizationConfig?: FeaturizationConfig;
/**
* An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
*/
EncryptionConfig?: EncryptionConfig;
/**
* Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
*/
PredictorExecutionDetails?: PredictorExecutionDetails;
/**
* An array of the ARNs of the dataset import jobs used to import training data for the predictor.
*/
DatasetImportJobArns?: ArnList;
/**
* When PerformAutoML is specified, the ARN of the chosen algorithm.
*/
AutoMLAlgorithmArns?: ArnList;
/**
* The status of the predictor. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.
*/
Status?: Status;
/**
* If an error occurred, an informational message about the error.
*/
Message?: Message;
/**
* When the model training task was created.
*/
CreationTime?: Timestamp;
/**
* Initially, the same as CreationTime (when the status is CREATE_PENDING). This value is updated when training starts (when the status changes to CREATE_IN_PROGRESS), and when training has completed (when the status changes to ACTIVE) or fails (when the status changes to CREATE_FAILED).
*/
LastModificationTime?: Timestamp;
}
export type Domain = "RETAIL"|"CUSTOM"|"INVENTORY_PLANNING"|"EC2_CAPACITY"|"WORK_FORCE"|"WEB_TRAFFIC"|"METRICS"|string;
export type Double = number;
export interface EncryptionConfig {
/**
* The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key. Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.
*/
RoleArn: Arn;
/**
* The Amazon Resource Name (ARN) of the KMS key.
*/
KMSKeyArn: KMSKeyArn;
}
export type ErrorMessage = string;
export interface EvaluationParameters {
/**
* The number of times to split the input data. The default is 1. Valid values are 1 through 5.
*/
NumberOfBacktestWindows?: Integer;
/**
* The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length. ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length
*/
BackTestWindowOffset?: Integer;
}
export interface EvaluationResult {
/**
* The Amazon Resource Name (ARN) of the algorithm that was evaluated.
*/
AlgorithmArn?: Arn;
/**
* The array of test windows used for evaluating the algorithm. The NumberOfBacktestWindows from the EvaluationParameters object determines the number of windows in the array.
*/
TestWindows?: TestWindows;
}
export type EvaluationType = "SUMMARY"|"COMPUTED"|string;
export interface Featurization {
/**
* The name of the schema attribute that specifies the data field to be featurized. Only the target field of the TARGET_TIME_SERIES dataset type is supported. For example, for the RETAIL domain, the target is demand, and for the CUSTOM domain, the target is target_value.
*/
AttributeName: Name;
/**
* An array of one FeaturizationMethod object that specifies the feature transformation method.
*/
FeaturizationPipeline?: FeaturizationPipeline;
}
export interface FeaturizationConfig {
/**
* The frequency of predictions in a forecast. Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes. The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency. When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.
*/
ForecastFrequency: Frequency;
/**
* An array of dimension (field) names that specify how to group the generated forecast. For example, suppose that you are generating a forecast for item sales across all of your stores, and your dataset contains a store_id field. If you want the sales forecast for each item by store, you would specify store_id as the dimension. All forecast dimensions specified in the TARGET_TIME_SERIES dataset don't need to be specified in the CreatePredictor request. All forecast dimensions specified in the RELATED_TIME_SERIES dataset must be specified in the CreatePredictor request.
*/
ForecastDimensions?: ForecastDimensions;
/**
* An array of featurization (transformation) information for the fields of a dataset. Only a single featurization is supported.
*/
Featurizations?: Featurizations;
}
export interface FeaturizationMethod {
/**
* The name of the method. The "filling" method is the only supported method.
*/
FeaturizationMethodName: FeaturizationMethodName;
/**
* The method parameters (key-value pairs). Specify these parameters to override the default values. The following list shows the parameters and their valid values. Bold signifies the default value. aggregation: sum, avg, first, min, max frontfill: none middlefill: zero, nan (not a number) backfill: zero, nan
*/
FeaturizationMethodParameters?: FeaturizationMethodParameters;
}
export type FeaturizationMethodName = "filling"|string;
export type FeaturizationMethodParameters = {[key: string]: ParameterValue};
export type FeaturizationPipeline = FeaturizationMethod[];
export type Featurizations = Featurization[];
export type FieldStatistics = {[key: string]: Statistics};
export interface Filter {
/**
* The name of the parameter to filter on.
*/
Key: String;
/**
* The value to match.
*/
Value: Arn;
/**
* The condition to apply. To include the objects that match the statement, specify IS. To exclude matching objects, specify IS_NOT.
*/
Condition: FilterConditionString;
}
export type FilterConditionString = "IS"|"IS_NOT"|string;
export type Filters = Filter[];
export type ForecastDimensions = Name[];
export interface ForecastExportJobSummary {
/**
* The Amazon Resource Name (ARN) of the forecast export job.
*/
ForecastExportJobArn?: Arn;
/**
* The name of the forecast export job.
*/
ForecastExportJobName?: Name;
/**
* The path to the Amazon Simple Storage Service (Amazon S3) bucket where the forecast is exported.
*/
Destination?: DataDestination;
/**
* The status of the forecast export job. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED The Status of the forecast export job must be ACTIVE before you can access the forecast in your S3 bucket.
*/
Status?: Status;
/**
* If an error occurred, an informational message about the error.
*/
Message?: ErrorMessage;
/**
* When the forecast export job was created.
*/
CreationTime?: Timestamp;
/**
* When the last successful export job finished.
*/
LastModificationTime?: Timestamp;
}
export type ForecastExportJobs = ForecastExportJobSummary[];
export interface ForecastSummary {
/**
* The ARN of the forecast.
*/
ForecastArn?: Arn;
/**
* The name of the forecast.
*/
ForecastName?: Name;
/**
* The ARN of the predictor used to generate the forecast.
*/
PredictorArn?: String;
/**
* The Amazon Resource Name (ARN) of the dataset group that provided the data used to train the predictor.
*/
DatasetGroupArn?: String;
/**
* The status of the forecast. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED The Status of the forecast must be ACTIVE before you can query or export the forecast.
*/
Status?: Status;
/**
* If an error occurred, an informational message about the error.
*/
Message?: ErrorMessage;
/**
* When the forecast creation task was created.
*/
CreationTime?: Timestamp;
/**
* Initially, the same as CreationTime (status is CREATE_PENDING). Updated when inference (creating the forecast) starts (status changed to CREATE_IN_PROGRESS), and when inference is complete (status changed to ACTIVE) or fails (status changed to CREATE_FAILED).
*/
LastModificationTime?: Timestamp;
}
export type ForecastType = string;
export type ForecastTypes = ForecastType[];
export type Forecasts = ForecastSummary[];
export type Frequency = string;
export interface GetAccuracyMetricsRequest {
/**
* The Amazon Resource Name (ARN) of the predictor to get metrics for.
*/
PredictorArn: Arn;
}
export interface GetAccuracyMetricsResponse {
/**
* An array of results from evaluating the predictor.
*/
PredictorEvaluationResults?: PredictorEvaluationResults;
}
export interface HyperParameterTuningJobConfig {
/**
* Specifies the ranges of valid values for the hyperparameters.
*/
ParameterRanges?: ParameterRanges;
}
export interface InputDataConfig {
/**
* The Amazon Resource Name (ARN) of the dataset group.
*/
DatasetGroupArn: Arn;
/**
* An array of supplementary features. The only supported feature is a holiday calendar.
*/
SupplementaryFeatures?: SupplementaryFeatures;
}
export type Integer = number;
export interface IntegerParameterRange {
/**
* The name of the hyperparameter to tune.
*/
Name: Name;
/**
* The maximum tunable value of the hyperparameter.
*/
MaxValue: Integer;
/**
* The minimum tunable value of the hyperparameter.
*/
MinValue: Integer;
/**
* The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values: Auto Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter. Linear Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale. Logarithmic Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale. Logarithmic scaling works only for ranges that have values greater than 0. ReverseLogarithmic Not supported for IntegerParameterRange. Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0. For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:
*/
ScalingType?: ScalingType;
}
export type IntegerParameterRanges = IntegerParameterRange[];
export type KMSKeyArn = string;
export interface ListDatasetGroupsRequest {
/**
* If the result of the previous request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
*/
NextToken?: NextToken;
/**
* The number of items to return in the response.
*/
MaxResults?: MaxResults;
}
export interface ListDatasetGroupsResponse {
/**
* An array of objects that summarize each dataset group's properties.
*/
DatasetGroups?: DatasetGroups;
/**
* If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListDatasetImportJobsRequest {
/**
* If the result of the previous request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
*/
NextToken?: NextToken;
/**
* The number of items to return in the response.
*/
MaxResults?: MaxResults;
/**
* An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT, which specifies whether to include or exclude the datasets that match the statement from the list, respectively. The match statement consists of a key and a value. Filter properties Condition - The condition to apply. Valid values are IS and IS_NOT. To include the datasets that match the statement, specify IS. To exclude matching datasets, specify IS_NOT. Key - The name of the parameter to filter on. Valid values are DatasetArn and Status. Value - The value to match. For example, to list all dataset import jobs whose status is ACTIVE, you specify the following filter: "Filters": [ { "Condition": "IS", "Key": "Status", "Value": "ACTIVE" } ]
*/
Filters?: Filters;
}
export interface ListDatasetImportJobsResponse {
/**
* An array of objects that summarize each dataset import job's properties.
*/
DatasetImportJobs?: DatasetImportJobs;
/**
* If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListDatasetsRequest {
/**
* If the result of the previous request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
*/
NextToken?: NextToken;
/**
* The number of items to return in the response.
*/
MaxResults?: MaxResults;
}
export interface ListDatasetsResponse {
/**
* An array of objects that summarize each dataset's properties.
*/
Datasets?: Datasets;
/**
* If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListForecastExportJobsRequest {
/**
* If the result of the previous request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
*/
NextToken?: NextToken;
/**
* The number of items to return in the response.
*/
MaxResults?: MaxResults;
/**
* An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT, which specifies whether to include or exclude the forecast export jobs that match the statement from the list, respectively. The match statement consists of a key and a value. Filter properties Condition - The condition to apply. Valid values are IS and IS_NOT. To include the forecast export jobs that match the statement, specify IS. To exclude matching forecast export jobs, specify IS_NOT. Key - The name of the parameter to filter on. Valid values are ForecastArn and Status. Value - The value to match. For example, to list all jobs that export a forecast named electricityforecast, specify the following filter: "Filters": [ { "Condition": "IS", "Key": "ForecastArn", "Value": "arn:aws:forecast:us-west-2:<acct-id>:forecast/electricityforecast" } ]
*/
Filters?: Filters;
}
export interface ListForecastExportJobsResponse {
/**
* An array of objects that summarize each export job's properties.
*/
ForecastExportJobs?: ForecastExportJobs;
/**
* If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListForecastsRequest {
/**
* If the result of the previous request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
*/
NextToken?: NextToken;
/**
* The number of items to return in the response.
*/
MaxResults?: MaxResults;
/**
* An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT, which specifies whether to include or exclude the forecasts that match the statement from the list, respectively. The match statement consists of a key and a value. Filter properties Condition - The condition to apply. Valid values are IS and IS_NOT. To include the forecasts that match the statement, specify IS. To exclude matching forecasts, specify IS_NOT. Key - The name of the parameter to filter on. Valid values are DatasetGroupArn, PredictorArn, and Status. Value - The value to match. For example, to list all forecasts whose status is not ACTIVE, you would specify: "Filters": [ { "Condition": "IS_NOT", "Key": "Status", "Value": "ACTIVE" } ]
*/
Filters?: Filters;
}
export interface ListForecastsResponse {
/**
* An array of objects that summarize each forecast's properties.
*/
Forecasts?: Forecasts;
/**
* If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.
*/
NextToken?: NextToken;
}
export interface ListPredictorsRequest {
/**
* If the result of the previous request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request. Tokens expire after 24 hours.
*/
NextToken?: NextToken;
/**
* The number of items to return in the response.
*/
MaxResults?: MaxResults;
/**
* An array of filters. For each filter, you provide a condition and a match statement. The condition is either IS or IS_NOT, which specifies whether to include or exclude the predictors that match the statement from the list, respectively. The match statement consists of a key and a value. Filter properties Condition - The condition to apply. Valid values are IS and IS_NOT. To include the predictors that match the statement, specify IS. To exclude matching predictors, specify IS_NOT. Key - The name of the parameter to filter on. Valid values are DatasetGroupArn and Status. Value - The value to match. For example, to list all predictors whose status is ACTIVE, you would specify: "Filters": [ { "Condition": "IS", "Key": "Status", "Value": "ACTIVE" } ]
*/
Filters?: Filters;
}
export interface ListPredictorsResponse {
/**
* An array of objects that summarize each predictor's properties.
*/
Predictors?: Predictors;
/**
* If the response is truncated, Amazon Forecast returns this token. To retrieve the next set of results, use the token in the next request.
*/
NextToken?: NextToken;
}
export type MaxResults = number;
export type Message = string;
export interface Metrics {
/**
* The root mean square error (RMSE).
*/
RMSE?: Double;
/**
* An array of weighted quantile losses. Quantiles divide a probability distribution into regions of equal probability. The distribution in this case is the loss function.
*/
WeightedQuantileLosses?: WeightedQuantileLosses;
}
export type Name = string;
export type NextToken = string;
export type ParameterKey = string;
export interface ParameterRanges {
/**
* Specifies the tunable range for each categorical hyperparameter.
*/
CategoricalParameterRanges?: CategoricalParameterRanges;
/**
* Specifies the tunable range for each continuous hyperparameter.
*/
ContinuousParameterRanges?: ContinuousParameterRanges;
/**
* Specifies the tunable range for each integer hyperparameter.
*/
IntegerParameterRanges?: IntegerParameterRanges;
}
export type ParameterValue = string;
export type PredictorEvaluationResults = EvaluationResult[];
export interface PredictorExecution {
/**
* The ARN of the algorithm used to test the predictor.
*/
AlgorithmArn?: Arn;
/**
* An array of test windows used to evaluate the algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.
*/
TestWindows?: TestWindowDetails;
}
export interface PredictorExecutionDetails {
/**
* An array of the backtests performed to evaluate the accuracy of the predictor against a particular algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.
*/
PredictorExecutions?: PredictorExecutions;
}
export type PredictorExecutions = PredictorExecution[];
export interface PredictorSummary {
/**
* The ARN of the predictor.
*/
PredictorArn?: Arn;
/**
* The name of the predictor.
*/
PredictorName?: Name;
/**
* The Amazon Resource Name (ARN) of the dataset group that contains the data used to train the predictor.
*/
DatasetGroupArn?: Arn;
/**
* The status of the predictor. States include: ACTIVE CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED UPDATE_PENDING, UPDATE_IN_PROGRESS, UPDATE_FAILED The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.
*/
Status?: Status;
/**
* If an error occurred, an informational message about the error.
*/
Message?: ErrorMessage;
/**
* When the model training task was created.
*/
CreationTime?: Timestamp;
/**
* Initially, the same as CreationTime (status is CREATE_PENDING). Updated when training starts (status changed to CREATE_IN_PROGRESS), and when training is complete (status changed to ACTIVE) or fails (status changed to CREATE_FAILED).
*/
LastModificationTime?: Timestamp;
}
export type Predictors = PredictorSummary[];
export interface S3Config {
/**
* The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.
*/
Path: S3Path;
/**
* The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key. Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.
*/
RoleArn: Arn;
/**
* The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.
*/
KMSKeyArn?: KMSKeyArn;
}
export type S3Path = string;
export type ScalingType = "Auto"|"Linear"|"Logarithmic"|"ReverseLogarithmic"|string;
export interface Schema {
/**
* An array of attributes specifying the name and type of each field in a dataset.
*/
Attributes?: SchemaAttributes;
}
export interface SchemaAttribute {
/**
* The name of the dataset field.
*/
AttributeName?: Name;
/**
* The data type of the field.
*/
AttributeType?: AttributeType;
}
export type SchemaAttributes = SchemaAttribute[];
export interface Statistics {
/**
* The number of values in the field.
*/
Count?: Integer;
/**
* The number of distinct values in the field.
*/
CountDistinct?: Integer;
/**
* The number of null values in the field.
*/
CountNull?: Integer;
/**
* The number of NAN (not a number) values in the field.
*/
CountNan?: Integer;
/**
* For a numeric field, the minimum value in the field.
*/
Min?: String;
/**
* For a numeric field, the maximum value in the field.
*/
Max?: String;
/**
* For a numeric field, the average value in the field.
*/
Avg?: Double;
/**
* For a numeric field, the standard deviation.
*/
Stddev?: Double;
}
export type Status = string;
export type String = string;
export interface SupplementaryFeature {
/**
* The name of the feature. This must be "holiday".
*/
Name: Name;
/**
* One of the following 2 letter country codes: "AU" - AUSTRALIA "DE" - GERMANY "JP" - JAPAN "US" - UNITED_STATES "UK" - UNITED_KINGDOM
*/
Value: Value;
}
export type SupplementaryFeatures = SupplementaryFeature[];
export type TestWindowDetails = TestWindowSummary[];
export interface TestWindowSummary {
/**
* The time at which the test began.
*/
TestWindowStart?: Timestamp;
/**
* The time at which the test ended.
*/
TestWindowEnd?: Timestamp;
/**
* The status of the test. Possible status values are: ACTIVE CREATE_IN_PROGRESS CREATE_FAILED
*/
Status?: Status;
/**
* If the test failed, the reason why it failed.
*/
Message?: ErrorMessage;
}
export type TestWindows = WindowSummary[];
export type Timestamp = Date;
export type TimestampFormat = string;
export type TrainingParameters = {[key: string]: ParameterValue};
export interface UpdateDatasetGroupRequest {
/**
* The ARN of the dataset group.
*/
DatasetGroupArn: Arn;
/**
* An array of the Amazon Resource Names (ARNs) of the datasets to add to the dataset group.
*/
DatasetArns: ArnList;
}
export interface UpdateDatasetGroupResponse {
}
export type Value = string;
export type Values = Value[];
export interface WeightedQuantileLoss {
/**
* The quantile. Quantiles divide a probability distribution into regions of equal probability. For example, if the distribution was divided into 5 regions of equal probability, the quantiles would be 0.2, 0.4, 0.6, and 0.8.
*/
Quantile?: Double;
/**
* The difference between the predicted value and the actual value over the quantile, weighted (normalized) by dividing by the sum over all quantiles.
*/
LossValue?: Double;
}
export type WeightedQuantileLosses = WeightedQuantileLoss[];
export interface WindowSummary {
/**
* The timestamp that defines the start of the window.
*/
TestWindowStart?: Timestamp;
/**
* The timestamp that defines the end of the window.
*/
TestWindowEnd?: Timestamp;
/**
* The number of data points within the window.
*/
ItemCount?: Integer;
/**
* The type of evaluation. SUMMARY - The average metrics across all windows. COMPUTED - The metrics for the specified window.
*/
EvaluationType?: EvaluationType;
/**
* Provides metrics used to evaluate the performance of a predictor.
*/
Metrics?: Metrics;
}
/**
* A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
*/
export type apiVersion = "2018-06-26"|"latest"|string;
export interface ClientApiVersions {
/**
* A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
*/
apiVersion?: apiVersion;
}
export type ClientConfiguration = ServiceConfigurationOptions & ClientApiVersions;
/**
* Contains interfaces for use with the ForecastService client.
*/
export import Types = ForecastService;
}
export = ForecastService;