Toggle navigation
Toggle navigation
This project
Loading...
Sign in
이수빈
/
Find_your_own_personal_color
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
starbucksdolcelatte
2019-04-05 02:03:29 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
8573de5e6d4a773b95b8845313ad44bbc763e4ff
8573de5e
1 parent
12ed6306
Create DetectFace class
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
75 additions
and
0 deletions
detect_face.py
detect_face.py
0 → 100644
View file @
8573de5
# coding: utf-8
# import the necessary packages
from
imutils
import
face_utils
import
numpy
as
np
import
imutils
import
dlib
import
cv2
class
DetectFace
:
def
__init__
(
self
,
shape_predictor_dat
,
image
):
# initialize dlib's face detector (HOG-based)
# and then create the facial landmark predictor
self
.
detector
=
dlib
.
get_frontal_face_detector
()
self
.
predictor
=
dlib
.
shape_predictor
(
shape_predictor_dat
)
#face detection part
img
=
cv2
.
imread
(
image
)
self
.
img
=
imutils
.
resize
(
img
,
width
=
500
)
self
.
gray
=
cv2
.
cvtColor
(
self
.
img
,
cv2
.
COLOR_BGR2GRAY
)
# detect faces in the grayscale image
self
.
rects
=
self
.
detector
(
self
.
gray
,
1
)
print
(
rects
)
def
detect_face_part
(
self
):
# loop over the face detections
# i : name
# 0 : mouth, 1 : right_eyebrow, 2 : left_eyebrow
# 3 : right_eye, 4 : left_eye, 5 : nose, 6 : jaw
for
(
i
,
rect
)
in
enumerate
(
self
.
rects
):
# determine the facial landmarks for the face region, then
# convert the landmark (x, y)-coordinates to a NumPy array
shape
=
self
.
predictor
(
self
.
gray
,
rect
)
shape
=
face_utils
.
shape_to_np
(
shape
)
# loop over the face parts individually
for
(
name
,
(
i
,
j
))
in
face_utils
.
FACIAL_LANDMARKS_IDXS
.
items
():
# clone the original image so we can draw on it, then
# display the name of the face part on the image
clone
=
self
.
img
.
copy
()
cv2
.
putText
(
clone
,
name
,
(
10
,
30
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.7
,
(
0
,
0
,
255
),
2
)
# loop over the subset of facial landmarks, drawing the
# specific face part
for
(
x
,
y
)
in
shape
[
i
:
j
]:
cv2
.
circle
(
clone
,
(
x
,
y
),
1
,
(
0
,
0
,
255
),
-
1
)
print
(
name
)
print
(
shape
[
i
:
j
])
# extract the ROI of the face region as a separate image
(
x
,
y
,
w
,
h
)
=
cv2
.
boundingRect
(
np
.
array
([
shape
[
i
:
j
]]))
roi
=
self
.
img
[
y
:
y
+
h
,
x
:
x
+
w
]
roi
=
imutils
.
resize
(
roi
,
width
=
250
,
inter
=
cv2
.
INTER_CUBIC
)
# show the particular face part
cv2
.
imshow
(
"ROI"
,
roi
)
cv2
.
imshow
(
"Image"
,
clone
)
cv2
.
waitKey
(
0
)
# visualize all facial landmarks with a transparent overlay
output
=
face_utils
.
visualize_facial_landmarks
(
self
.
img
,
shape
)
cv2
.
imshow
(
"Image"
,
output
)
cv2
.
waitKey
(
0
)
def
detect_right_eye
(
self
):
def
detect_left_eye
(
self
):
def
detect_mouth
(
self
):
def
detect_right_cheek
(
self
):
def
detect_left_cheek
(
self
):
Please
register
or
login
to post a comment