squart.html 4.92 KB
<!DOCTYPE html>
<html lang="en">
  <head>
      <meta charset="UTF-8">
      <meta http-equiv="X-UA-Compatible" content="IE=edge">
      <meta name="viewport" content="width=device-width, initial-scale=1.0">
      <title>Squart Page</title>
  </head>
  <body>
    <div>Teachable Machine Pose Model - Squart</div>
    <button type="button" onclick="init()">Start</button>
    <div><canvas id="canvas"></canvas></div>
    <div id="label-container"></div>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.3.1/dist/tf.min.js"></script>
    <script src="https://cdn.jsdelivr.net/npm/@teachablemachine/pose@0.8/dist/teachablemachine-pose.min.js"></script>
    <script type="text/javascript">
        // More API functions here:
        // https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/pose
        // the link to your model provided by Teachable Machine export panel
        const URL = "https://teachablemachine.withgoogle.com/models/xymjZj4q-/"; // 임시 URI - stand , squart, bent(허리 굽은 자세) 학습.
        let model, webcam, ctx, labelContainer, maxPredictions;

        async function init() {
            const modelURL = URL + "model.json";
            const metadataURL = URL + "metadata.json";

            // load the model and metadata
            // Refer to tmImage.loadFromFiles() in the API to support files from a file picker
            // Note: the pose library adds a tmPose object to your window (window.tmPose)
            model = await tmPose.load(modelURL, metadataURL);
            maxPredictions = model.getTotalClasses();
            // Convenience function to setup a webcam
            const size = 600;
            const flip = true; // whether to flip the webcam
            webcam = new tmPose.Webcam(size, size, flip); // width, height, flip
            await webcam.setup(); // request access to the webcam
            await webcam.play();
            window.requestAnimationFrame(loop);
            // append/get elements to the DOM
            const canvas = document.getElementById("canvas");
            canvas.width = size; canvas.height = size;
            ctx = canvas.getContext("2d");
            labelContainer = document.getElementById("label-container");
            for (let i = 0; i < maxPredictions; i++) { // and class labels
                labelContainer.appendChild(document.createElement("div"));
            }
        }

        async function loop(timestamp) {
            webcam.update(); // update the webcam frame
            await predict();
            window.requestAnimationFrame(loop);
        }
        // 상태
        let status = "stand" ;
        // 갯수 count
        let count = 0;

        async function predict() {
            // Prediction #1: run input through posenet
            // estimatePose can take in an image, video or canvas html element
            const { pose, posenetOutput } = await model.estimatePose(webcam.canvas);
            // Prediction 2: run input through teachable machine classification model
            const prediction = await model.predict(posenetOutput);

            if (prediction[0].probability.toFixed(2) > 0.9) // 서있는 상태
            {
                if (status == "squart")
                {
                    count++;
                }
                status = "stand";
            }
            else if (prediction[1].probability.toFixed(2) == 1.00) // 스쿼트 자세
            {
                status = "squart";
            }
            else if (prediction[2].probability.toFixed(2) == 1.00) // 굽은 자세(잘못된 케이스)
            {
                if (status == "squart" || status == "stand") // 굽은 자세로 잘못 수행하면,
                {
                    console.log("잘못된 경우 입니다.")
                }
                status = "bent";
            }

            for (let i = 0; i < maxPredictions; i++) {
                const classPrediction =
                    prediction[i].className + ": " + prediction[i].probability.toFixed(2);
                labelContainer.childNodes[i].innerHTML = classPrediction;
            }

            // finally draw the poses
            drawPose(pose);
        }

        function drawPose(pose) {
            if (webcam.canvas) {
                ctx.drawImage(webcam.canvas, 0, 0);
                // draw the keypoints and skeleton
                if (pose) {
                    const minPartConfidence = 0.5;
                    tmPose.drawKeypoints(pose.keypoints, minPartConfidence, ctx);
                    tmPose.drawSkeleton(pose.keypoints, minPartConfidence, ctx);
                }
            }
        }
      </script>
    <!-- 유튜브 영상 띄우기 -->
    <iframe width="560" height="315" src="https://www.youtube.com/embed/9WhpAVOSyl8?start=22" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
  </body>
</html>