squart.html 4.5 KB
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Squart Page</title>
</head>
<body>
    <div>온라인 헬스 케어 서비스 (스쿼트)</div>
<div>
    <script src = "./squart.js"></script>
    <sapn id = "user_count">0</sapn>
</div>
<button type="button" onclick="init()">Start</button>
<div><canvas id="canvas"></canvas></div>

<div id="label-container"></div>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.3.1/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/pose@0.8/dist/teachablemachine-pose.min.js"></script>
<script type="text/javascript">
    // More API functions here:
    // https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/pose

    // the link to your model provided by Teachable Machine export panel
    const URL = "https://teachablemachine.withgoogle.com/models/xymjZj4q-/"; // 임시 URI - stand , squart, bent(허리 굽은 자세) 학습.
    let model, webcam, ctx, labelContainer, maxPredictions;

    async function init() {
        const modelURL = URL + "model.json";
        const metadataURL = URL + "metadata.json";

        // load the model and metadata
        // Refer to tmImage.loadFromFiles() in the API to support files from a file picker
        // Note: the pose library adds a tmPose object to your window (window.tmPose)
        model = await tmPose.load(modelURL, metadataURL);
        maxPredictions = model.getTotalClasses();

        // Convenience function to setup a webcam
        const size = 200;
        const flip = true; // whether to flip the webcam
        webcam = new tmPose.Webcam(size, size, flip); // width, height, flip
        await webcam.setup(); // request access to the webcam
        await webcam.play();
        window.requestAnimationFrame(loop);

        // append/get elements to the DOM
        const canvas = document.getElementById("canvas");
        canvas.width = size; canvas.height = size;
        ctx = canvas.getContext("2d");
        labelContainer = document.getElementById("label-container");
        for (let i = 0; i < maxPredictions; i++) { // and class labels
            labelContainer.appendChild(document.createElement("div"));
        }
    }

    async function loop(timestamp) {
        webcam.update(); // update the webcam frame
        await predict();
        window.requestAnimationFrame(loop);
    }
    // 상태
    let status = "stand" ;
    // 갯수 count
    let count = 0;
    // 잘못된 경우 count
    let wrong_count = 0;

    async function predict() {
        // Prediction #1: run input through posenet
        // estimatePose can take in an image, video or canvas html element
        const { pose, posenetOutput } = await model.estimatePose(webcam.canvas);
        // Prediction 2: run input through teachable machine classification model
        const prediction = await model.predict(posenetOutput);

        if (prediction[0].probability.toFixed(2) > 0.9) // 서있는 상태
        {
            if (status == "squart")
            {
                count++;
                console.log(`올바른 스쿼트 : ${count}`)
            }
            status = "stand";
        }
        else if (prediction[1].probability.toFixed(2) > 1.00) // 스쿼트 자세
        {
            status = "squart";
        }
        else if (prediction[2].probability.toFixed(2) == 1.00) // 굽은 자세(잘못된 케이스)
        {
            if (status == "squart" || status == "stand") // 굽은 자세로 잘못 수행하면,
            {
                wrong_count++;
                console.log(`잘못된 자세 : ${wrong_count}`)
            }
            status = "bent";
        }

        for (let i = 0; i < maxPredictions; i++) {
            const classPrediction =
                prediction[i].className + ": " + prediction[i].probability.toFixed(2);
            labelContainer.childNodes[i].innerHTML = classPrediction;
        }

        // finally draw the poses
        drawPose(pose);
    }

    function drawPose(pose) {
        if (webcam.canvas) {
            ctx.drawImage(webcam.canvas, 0, 0);
            // draw the keypoints and skeleton
            if (pose) {
                const minPartConfidence = 0.5;
                tmPose.drawKeypoints(pose.keypoints, minPartConfidence, ctx);
                tmPose.drawSkeleton(pose.keypoints, minPartConfidence, ctx);
            }
        }
    }
</script>

</body>
</html>