big.mjs 20.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/*
 *  big.js v5.2.2
 *  A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
 *  Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
 *  https://github.com/MikeMcl/big.js/LICENCE
 */


/************************************** EDITABLE DEFAULTS *****************************************/


  // The default values below must be integers within the stated ranges.

  /*
   * The maximum number of decimal places (DP) of the results of operations involving division:
   * div and sqrt, and pow with negative exponents.
   */
var DP = 20,          // 0 to MAX_DP

  /*
   * The rounding mode (RM) used when rounding to the above decimal places.
   *
   *  0  Towards zero (i.e. truncate, no rounding).       (ROUND_DOWN)
   *  1  To nearest neighbour. If equidistant, round up.  (ROUND_HALF_UP)
   *  2  To nearest neighbour. If equidistant, to even.   (ROUND_HALF_EVEN)
   *  3  Away from zero.                                  (ROUND_UP)
   */
  RM = 1,             // 0, 1, 2 or 3

  // The maximum value of DP and Big.DP.
  MAX_DP = 1E6,       // 0 to 1000000

  // The maximum magnitude of the exponent argument to the pow method.
  MAX_POWER = 1E6,    // 1 to 1000000

  /*
   * The negative exponent (NE) at and beneath which toString returns exponential notation.
   * (JavaScript numbers: -7)
   * -1000000 is the minimum recommended exponent value of a Big.
   */
  NE = -7,            // 0 to -1000000

  /*
   * The positive exponent (PE) at and above which toString returns exponential notation.
   * (JavaScript numbers: 21)
   * 1000000 is the maximum recommended exponent value of a Big.
   * (This limit is not enforced or checked.)
   */
  PE = 21,            // 0 to 1000000


/**************************************************************************************************/


  // Error messages.
  NAME = '[big.js] ',
  INVALID = NAME + 'Invalid ',
  INVALID_DP = INVALID + 'decimal places',
  INVALID_RM = INVALID + 'rounding mode',
  DIV_BY_ZERO = NAME + 'Division by zero',

  // The shared prototype object.
  P = {},
  UNDEFINED = void 0,
  NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;


/*
 * Create and return a Big constructor.
 *
 */
function _Big_() {

  /*
   * The Big constructor and exported function.
   * Create and return a new instance of a Big number object.
   *
   * n {number|string|Big} A numeric value.
   */
  function Big(n) {
    var x = this;

    // Enable constructor usage without new.
    if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);

    // Duplicate.
    if (n instanceof Big) {
      x.s = n.s;
      x.e = n.e;
      x.c = n.c.slice();
    } else {
      parse(x, n);
    }

    /*
     * Retain a reference to this Big constructor, and shadow Big.prototype.constructor which
     * points to Object.
     */
    x.constructor = Big;
  }

  Big.prototype = P;
  Big.DP = DP;
  Big.RM = RM;
  Big.NE = NE;
  Big.PE = PE;
  Big.version = '5.2.2';

  return Big;
}


/*
 * Parse the number or string value passed to a Big constructor.
 *
 * x {Big} A Big number instance.
 * n {number|string} A numeric value.
 */
function parse(x, n) {
  var e, i, nl;

  // Minus zero?
  if (n === 0 && 1 / n < 0) n = '-0';
  else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');

  // Determine sign.
  x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;

  // Decimal point?
  if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');

  // Exponential form?
  if ((i = n.search(/e/i)) > 0) {

    // Determine exponent.
    if (e < 0) e = i;
    e += +n.slice(i + 1);
    n = n.substring(0, i);
  } else if (e < 0) {

    // Integer.
    e = n.length;
  }

  nl = n.length;

  // Determine leading zeros.
  for (i = 0; i < nl && n.charAt(i) == '0';) ++i;

  if (i == nl) {

    // Zero.
    x.c = [x.e = 0];
  } else {

    // Determine trailing zeros.
    for (; nl > 0 && n.charAt(--nl) == '0';);
    x.e = e - i - 1;
    x.c = [];

    // Convert string to array of digits without leading/trailing zeros.
    for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
  }

  return x;
}


/*
 * Round Big x to a maximum of dp decimal places using rounding mode rm.
 * Called by stringify, P.div, P.round and P.sqrt.
 *
 * x {Big} The Big to round.
 * dp {number} Integer, 0 to MAX_DP inclusive.
 * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
 * [more] {boolean} Whether the result of division was truncated.
 */
function round(x, dp, rm, more) {
  var xc = x.c,
    i = x.e + dp + 1;

  if (i < xc.length) {
    if (rm === 1) {

      // xc[i] is the digit after the digit that may be rounded up.
      more = xc[i] >= 5;
    } else if (rm === 2) {
      more = xc[i] > 5 || xc[i] == 5 &&
        (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);
    } else if (rm === 3) {
      more = more || !!xc[0];
    } else {
      more = false;
      if (rm !== 0) throw Error(INVALID_RM);
    }

    if (i < 1) {
      xc.length = 1;

      if (more) {

        // 1, 0.1, 0.01, 0.001, 0.0001 etc.
        x.e = -dp;
        xc[0] = 1;
      } else {

        // Zero.
        xc[0] = x.e = 0;
      }
    } else {

      // Remove any digits after the required decimal places.
      xc.length = i--;

      // Round up?
      if (more) {

        // Rounding up may mean the previous digit has to be rounded up.
        for (; ++xc[i] > 9;) {
          xc[i] = 0;
          if (!i--) {
            ++x.e;
            xc.unshift(1);
          }
        }
      }

      // Remove trailing zeros.
      for (i = xc.length; !xc[--i];) xc.pop();
    }
  } else if (rm < 0 || rm > 3 || rm !== ~~rm) {
    throw Error(INVALID_RM);
  }

  return x;
}


/*
 * Return a string representing the value of Big x in normal or exponential notation.
 * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
 *
 * x {Big}
 * id? {number} Caller id.
 *         1 toExponential
 *         2 toFixed
 *         3 toPrecision
 *         4 valueOf
 * n? {number|undefined} Caller's argument.
 * k? {number|undefined}
 */
function stringify(x, id, n, k) {
  var e, s,
    Big = x.constructor,
    z = !x.c[0];

  if (n !== UNDEFINED) {
    if (n !== ~~n || n < (id == 3) || n > MAX_DP) {
      throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);
    }

    x = new Big(x);

    // The index of the digit that may be rounded up.
    n = k - x.e;

    // Round?
    if (x.c.length > ++k) round(x, n, Big.RM);

    // toFixed: recalculate k as x.e may have changed if value rounded up.
    if (id == 2) k = x.e + n + 1;

    // Append zeros?
    for (; x.c.length < k;) x.c.push(0);
  }

  e = x.e;
  s = x.c.join('');
  n = s.length;

  // Exponential notation?
  if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {
    s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;

  // Normal notation.
  } else if (e < 0) {
    for (; ++e;) s = '0' + s;
    s = '0.' + s;
  } else if (e > 0) {
    if (++e > n) for (e -= n; e--;) s += '0';
    else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);
  } else if (n > 1) {
    s = s.charAt(0) + '.' + s.slice(1);
  }

  return x.s < 0 && (!z || id == 4) ? '-' + s : s;
}


// Prototype/instance methods


/*
 * Return a new Big whose value is the absolute value of this Big.
 */
P.abs = function () {
  var x = new this.constructor(this);
  x.s = 1;
  return x;
};


/*
 * Return 1 if the value of this Big is greater than the value of Big y,
 *       -1 if the value of this Big is less than the value of Big y, or
 *        0 if they have the same value.
*/
P.cmp = function (y) {
  var isneg,
    x = this,
    xc = x.c,
    yc = (y = new x.constructor(y)).c,
    i = x.s,
    j = y.s,
    k = x.e,
    l = y.e;

  // Either zero?
  if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;

  // Signs differ?
  if (i != j) return i;

  isneg = i < 0;

  // Compare exponents.
  if (k != l) return k > l ^ isneg ? 1 : -1;

  j = (k = xc.length) < (l = yc.length) ? k : l;

  // Compare digit by digit.
  for (i = -1; ++i < j;) {
    if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
  }

  // Compare lengths.
  return k == l ? 0 : k > l ^ isneg ? 1 : -1;
};


/*
 * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
 * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
 */
P.div = function (y) {
  var x = this,
    Big = x.constructor,
    a = x.c,                  // dividend
    b = (y = new Big(y)).c,   // divisor
    k = x.s == y.s ? 1 : -1,
    dp = Big.DP;

  if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);

  // Divisor is zero?
  if (!b[0]) throw Error(DIV_BY_ZERO);

  // Dividend is 0? Return +-0.
  if (!a[0]) return new Big(k * 0);

  var bl, bt, n, cmp, ri,
    bz = b.slice(),
    ai = bl = b.length,
    al = a.length,
    r = a.slice(0, bl),   // remainder
    rl = r.length,
    q = y,                // quotient
    qc = q.c = [],
    qi = 0,
    d = dp + (q.e = x.e - y.e) + 1;    // number of digits of the result

  q.s = k;
  k = d < 0 ? 0 : d;

  // Create version of divisor with leading zero.
  bz.unshift(0);

  // Add zeros to make remainder as long as divisor.
  for (; rl++ < bl;) r.push(0);

  do {

    // n is how many times the divisor goes into current remainder.
    for (n = 0; n < 10; n++) {

      // Compare divisor and remainder.
      if (bl != (rl = r.length)) {
        cmp = bl > rl ? 1 : -1;
      } else {
        for (ri = -1, cmp = 0; ++ri < bl;) {
          if (b[ri] != r[ri]) {
            cmp = b[ri] > r[ri] ? 1 : -1;
            break;
          }
        }
      }

      // If divisor < remainder, subtract divisor from remainder.
      if (cmp < 0) {

        // Remainder can't be more than 1 digit longer than divisor.
        // Equalise lengths using divisor with extra leading zero?
        for (bt = rl == bl ? b : bz; rl;) {
          if (r[--rl] < bt[rl]) {
            ri = rl;
            for (; ri && !r[--ri];) r[ri] = 9;
            --r[ri];
            r[rl] += 10;
          }
          r[rl] -= bt[rl];
        }

        for (; !r[0];) r.shift();
      } else {
        break;
      }
    }

    // Add the digit n to the result array.
    qc[qi++] = cmp ? n : ++n;

    // Update the remainder.
    if (r[0] && cmp) r[rl] = a[ai] || 0;
    else r = [a[ai]];

  } while ((ai++ < al || r[0] !== UNDEFINED) && k--);

  // Leading zero? Do not remove if result is simply zero (qi == 1).
  if (!qc[0] && qi != 1) {

    // There can't be more than one zero.
    qc.shift();
    q.e--;
  }

  // Round?
  if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);

  return q;
};


/*
 * Return true if the value of this Big is equal to the value of Big y, otherwise return false.
 */
P.eq = function (y) {
  return !this.cmp(y);
};


/*
 * Return true if the value of this Big is greater than the value of Big y, otherwise return
 * false.
 */
P.gt = function (y) {
  return this.cmp(y) > 0;
};


/*
 * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
 * return false.
 */
P.gte = function (y) {
  return this.cmp(y) > -1;
};


/*
 * Return true if the value of this Big is less than the value of Big y, otherwise return false.
 */
P.lt = function (y) {
  return this.cmp(y) < 0;
};


/*
 * Return true if the value of this Big is less than or equal to the value of Big y, otherwise
 * return false.
 */
P.lte = function (y) {
  return this.cmp(y) < 1;
};


/*
 * Return a new Big whose value is the value of this Big minus the value of Big y.
 */
P.minus = P.sub = function (y) {
  var i, j, t, xlty,
    x = this,
    Big = x.constructor,
    a = x.s,
    b = (y = new Big(y)).s;

  // Signs differ?
  if (a != b) {
    y.s = -b;
    return x.plus(y);
  }

  var xc = x.c.slice(),
    xe = x.e,
    yc = y.c,
    ye = y.e;

  // Either zero?
  if (!xc[0] || !yc[0]) {

    // y is non-zero? x is non-zero? Or both are zero.
    return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);
  }

  // Determine which is the bigger number. Prepend zeros to equalise exponents.
  if (a = xe - ye) {

    if (xlty = a < 0) {
      a = -a;
      t = xc;
    } else {
      ye = xe;
      t = yc;
    }

    t.reverse();
    for (b = a; b--;) t.push(0);
    t.reverse();
  } else {

    // Exponents equal. Check digit by digit.
    j = ((xlty = xc.length < yc.length) ? xc : yc).length;

    for (a = b = 0; b < j; b++) {
      if (xc[b] != yc[b]) {
        xlty = xc[b] < yc[b];
        break;
      }
    }
  }

  // x < y? Point xc to the array of the bigger number.
  if (xlty) {
    t = xc;
    xc = yc;
    yc = t;
    y.s = -y.s;
  }

  /*
   * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
   * needs to start at yc.length.
   */
  if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;

  // Subtract yc from xc.
  for (b = i; j > a;) {
    if (xc[--j] < yc[j]) {
      for (i = j; i && !xc[--i];) xc[i] = 9;
      --xc[i];
      xc[j] += 10;
    }

    xc[j] -= yc[j];
  }

  // Remove trailing zeros.
  for (; xc[--b] === 0;) xc.pop();

  // Remove leading zeros and adjust exponent accordingly.
  for (; xc[0] === 0;) {
    xc.shift();
    --ye;
  }

  if (!xc[0]) {

    // n - n = +0
    y.s = 1;

    // Result must be zero.
    xc = [ye = 0];
  }

  y.c = xc;
  y.e = ye;

  return y;
};


/*
 * Return a new Big whose value is the value of this Big modulo the value of Big y.
 */
P.mod = function (y) {
  var ygtx,
    x = this,
    Big = x.constructor,
    a = x.s,
    b = (y = new Big(y)).s;

  if (!y.c[0]) throw Error(DIV_BY_ZERO);

  x.s = y.s = 1;
  ygtx = y.cmp(x) == 1;
  x.s = a;
  y.s = b;

  if (ygtx) return new Big(x);

  a = Big.DP;
  b = Big.RM;
  Big.DP = Big.RM = 0;
  x = x.div(y);
  Big.DP = a;
  Big.RM = b;

  return this.minus(x.times(y));
};


/*
 * Return a new Big whose value is the value of this Big plus the value of Big y.
 */
P.plus = P.add = function (y) {
  var t,
    x = this,
    Big = x.constructor,
    a = x.s,
    b = (y = new Big(y)).s;

  // Signs differ?
  if (a != b) {
    y.s = -b;
    return x.minus(y);
  }

  var xe = x.e,
    xc = x.c,
    ye = y.e,
    yc = y.c;

  // Either zero? y is non-zero? x is non-zero? Or both are zero.
  if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);

  xc = xc.slice();

  // Prepend zeros to equalise exponents.
  // Note: reverse faster than unshifts.
  if (a = xe - ye) {
    if (a > 0) {
      ye = xe;
      t = yc;
    } else {
      a = -a;
      t = xc;
    }

    t.reverse();
    for (; a--;) t.push(0);
    t.reverse();
  }

  // Point xc to the longer array.
  if (xc.length - yc.length < 0) {
    t = yc;
    yc = xc;
    xc = t;
  }

  a = yc.length;

  // Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
  for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;

  // No need to check for zero, as +x + +y != 0 && -x + -y != 0

  if (b) {
    xc.unshift(b);
    ++ye;
  }

  // Remove trailing zeros.
  for (a = xc.length; xc[--a] === 0;) xc.pop();

  y.c = xc;
  y.e = ye;

  return y;
};


/*
 * Return a Big whose value is the value of this Big raised to the power n.
 * If n is negative, round to a maximum of Big.DP decimal places using rounding
 * mode Big.RM.
 *
 * n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
 */
P.pow = function (n) {
  var x = this,
    one = new x.constructor(1),
    y = one,
    isneg = n < 0;

  if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');
  if (isneg) n = -n;

  for (;;) {
    if (n & 1) y = y.times(x);
    n >>= 1;
    if (!n) break;
    x = x.times(x);
  }

  return isneg ? one.div(y) : y;
};


/*
 * Return a new Big whose value is the value of this Big rounded using rounding mode rm
 * to a maximum of dp decimal places, or, if dp is negative, to an integer which is a
 * multiple of 10**-dp.
 * If dp is not specified, round to 0 decimal places.
 * If rm is not specified, use Big.RM.
 *
 * dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
 * rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
 */
P.round = function (dp, rm) {
  var Big = this.constructor;
  if (dp === UNDEFINED) dp = 0;
  else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);
  return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);
};


/*
 * Return a new Big whose value is the square root of the value of this Big, rounded, if
 * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
 */
P.sqrt = function () {
  var r, c, t,
    x = this,
    Big = x.constructor,
    s = x.s,
    e = x.e,
    half = new Big(0.5);

  // Zero?
  if (!x.c[0]) return new Big(x);

  // Negative?
  if (s < 0) throw Error(NAME + 'No square root');

  // Estimate.
  s = Math.sqrt(x + '');

  // Math.sqrt underflow/overflow?
  // Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
  if (s === 0 || s === 1 / 0) {
    c = x.c.join('');
    if (!(c.length + e & 1)) c += '0';
    s = Math.sqrt(c);
    e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
    r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);
  } else {
    r = new Big(s);
  }

  e = r.e + (Big.DP += 4);

  // Newton-Raphson iteration.
  do {
    t = r;
    r = half.times(t.plus(x.div(t)));
  } while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));

  return round(r, Big.DP -= 4, Big.RM);
};


/*
 * Return a new Big whose value is the value of this Big times the value of Big y.
 */
P.times = P.mul = function (y) {
  var c,
    x = this,
    Big = x.constructor,
    xc = x.c,
    yc = (y = new Big(y)).c,
    a = xc.length,
    b = yc.length,
    i = x.e,
    j = y.e;

  // Determine sign of result.
  y.s = x.s == y.s ? 1 : -1;

  // Return signed 0 if either 0.
  if (!xc[0] || !yc[0]) return new Big(y.s * 0);

  // Initialise exponent of result as x.e + y.e.
  y.e = i + j;

  // If array xc has fewer digits than yc, swap xc and yc, and lengths.
  if (a < b) {
    c = xc;
    xc = yc;
    yc = c;
    j = a;
    a = b;
    b = j;
  }

  // Initialise coefficient array of result with zeros.
  for (c = new Array(j = a + b); j--;) c[j] = 0;

  // Multiply.

  // i is initially xc.length.
  for (i = b; i--;) {
    b = 0;

    // a is yc.length.
    for (j = a + i; j > i;) {

      // Current sum of products at this digit position, plus carry.
      b = c[j] + yc[i] * xc[j - i - 1] + b;
      c[j--] = b % 10;

      // carry
      b = b / 10 | 0;
    }

    c[j] = (c[j] + b) % 10;
  }

  // Increment result exponent if there is a final carry, otherwise remove leading zero.
  if (b) ++y.e;
  else c.shift();

  // Remove trailing zeros.
  for (i = c.length; !c[--i];) c.pop();
  y.c = c;

  return y;
};


/*
 * Return a string representing the value of this Big in exponential notation to dp fixed decimal
 * places and rounded using Big.RM.
 *
 * dp? {number} Integer, 0 to MAX_DP inclusive.
 */
P.toExponential = function (dp) {
  return stringify(this, 1, dp, dp);
};


/*
 * Return a string representing the value of this Big in normal notation to dp fixed decimal
 * places and rounded using Big.RM.
 *
 * dp? {number} Integer, 0 to MAX_DP inclusive.
 *
 * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
 * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
 */
P.toFixed = function (dp) {
  return stringify(this, 2, dp, this.e + dp);
};


/*
 * Return a string representing the value of this Big rounded to sd significant digits using
 * Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent
 * the integer part of the value in normal notation.
 *
 * sd {number} Integer, 1 to MAX_DP inclusive.
 */
P.toPrecision = function (sd) {
  return stringify(this, 3, sd, sd - 1);
};


/*
 * Return a string representing the value of this Big.
 * Return exponential notation if this Big has a positive exponent equal to or greater than
 * Big.PE, or a negative exponent equal to or less than Big.NE.
 * Omit the sign for negative zero.
 */
P.toString = function () {
  return stringify(this);
};


/*
 * Return a string representing the value of this Big.
 * Return exponential notation if this Big has a positive exponent equal to or greater than
 * Big.PE, or a negative exponent equal to or less than Big.NE.
 * Include the sign for negative zero.
 */
P.valueOf = P.toJSON = function () {
  return stringify(this, 4);
};


// Export


export var Big = _Big_();

export default Big;