brain_age_slice_set.py
6.73 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""code for attention models"""
import math
import torch
from box import Box
from torch import nn
class MeanPool(nn.Module):
def forward(self, X):
return X.mean(dim=1, keepdim=True), None
class MaxPool(nn.Module):
def forward(self, X):
return X.max(dim=1, keepdim=True)[0], None
class PooledAttention(nn.Module):
def __init__(self, input_dim, dim_v, dim_k, num_heads, ln=False):
super(PooledAttention, self).__init__()
self.S = nn.Parameter(torch.zeros(1, dim_k))
nn.init.xavier_uniform_(self.S)
# transform to get key and value vector
self.fc_k = nn.Linear(input_dim, dim_k)
self.fc_v = nn.Linear(input_dim, dim_v)
self.dim_v = dim_v
self.dim_k = dim_k
self.num_heads = num_heads
if ln:
self.ln0 = nn.LayerNorm(dim_v)
def forward(self, X):
B, C, H = X.shape
Q = self.S.repeat(X.size(0), 1, 1)
K = self.fc_k(X.reshape(-1, H)).reshape(B, C, self.dim_k)
V = self.fc_v(X.reshape(-1, H)).reshape(B, C, self.dim_v)
dim_split = self.dim_v // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(dim_split), 2)
O = torch.cat(A.bmm(V_).split(B, 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
return O, A
def get_attention(self, X):
B, C, H = X.shape
Q = self.S.repeat(X.size(0), 1, 1)
K = self.fc_k(X.reshape(-1, H)).reshape(B, C, self.dim_k)
V = self.fc_v(X.reshape(-1, H)).reshape(B, C, self.dim_v)
dim_split = self.dim_v // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(dim_split), 2)
return A
def encoder_blk(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1, stride=1),
nn.InstanceNorm2d(out_channels),
nn.MaxPool2d(2, stride=2),
nn.ReLU()
)
class MRI_ATTN(nn.Module):
def __init__(self, attn_num_heads, attn_dim, attn_drop=False, agg_fn="attention", slice_dim=1,
*args, **kwargs):
super(MRI_ATTN, self).__init__()
self.input_dim = [(1, 109, 91), (91, 1, 91), (91, 109, 1)][slice_dim - 1]
self.num_heads = attn_num_heads
self.attn_dim = attn_dim
# Build Encoder
encoder_blocks = [
encoder_blk(1, 32),
encoder_blk(32, 64),
encoder_blk(64, 128),
encoder_blk(128, 256),
encoder_blk(256, 256)
]
self.encoder = nn.Sequential(*encoder_blocks)
if slice_dim == 1:
avg = nn.AvgPool2d([3, 2])
elif slice_dim == 2:
avg = nn.AvgPool2d([2, 2])
elif slice_dim == 3:
avg = nn.AvgPool2d([2, 3])
else:
raise Exception("Invalid slice dim")
self.slice_dim = slice_dim
# Post processing
self.post_proc = nn.Sequential(
nn.Conv2d(256, 64, 1, stride=1),
nn.InstanceNorm2d(64),
nn.ReLU(),
avg,
nn.Dropout(p=0.5) if attn_drop else nn.Identity(),
nn.Conv2d(64, self.num_heads * self.attn_dim, 1)
)
if agg_fn == "attention":
self.pooled_attention = PooledAttention(input_dim=self.num_heads * self.attn_dim,
dim_v=self.num_heads * self.attn_dim,
dim_k=self.num_heads * self.attn_dim,
num_heads=self.num_heads)
elif agg_fn == "mean":
self.pooled_attention = MeanPool()
elif agg_fn == "max":
self.pooled_attention = MaxPool()
else:
raise Exception("Invalid attention function")
# Build regressor
self.attn_post = nn.Linear(self.num_heads * self.attn_dim, 64)
self.regressor = nn.Sequential(nn.ReLU(), nn.Linear(64, 1))
self.init_weights()
def init_weights(self):
for k, m in self.named_modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear) and "regressor" in k:
m.bias.data.fill_(62.68)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def encode(self, x):
B, C, H, W, D = x.size()
if self.slice_dim == 1:
new_input = torch.cat([x[:, :, i, :, :] for i in range(H)], dim=0)
encoding = self.encoder(new_input)
encoding = self.post_proc(encoding)
encoding = torch.cat([i.unsqueeze(2) for i in torch.split(encoding, B, dim=0)], dim=2)
# note: squeezing is bad because batch dim can be dropped
encoding = encoding.squeeze(4).squeeze(3)
elif self.slice_dim == 2:
new_input = torch.cat([x[:, :, :, i, :] for i in range(W)], dim=0)
encoding = self.encoder(new_input)
encoding = self.post_proc(encoding)
encoding = torch.cat([i.unsqueeze(3) for i in torch.split(encoding, B, dim=0)], dim=3)
# note: squeezing is bad because batch dim can be dropped
encoding = encoding.squeeze(4).squeeze(2)
elif self.slice_dim == 3:
new_input = torch.cat([x[:, :, :, :, i] for i in range(D)], dim=0)
encoding = self.encoder(new_input)
encoding = self.post_proc(encoding)
encoding = torch.cat([i.unsqueeze(4) for i in torch.split(encoding, B, dim=0)], dim=4)
# note: squeezing is bad because batch dim can be dropped
encoding = encoding.squeeze(3).squeeze(2)
else:
raise Exception("Invalid slice dim")
# swap dims for input to attention
encoding = encoding.permute((0, 2, 1))
encoding, attention = self.pooled_attention(encoding)
return encoding.squeeze(1), attention
def forward(self, x):
embedding, attention = self.encode(x)
post = self.attn_post(embedding)
y_pred = self.regressor(post)
return Box({"y_pred": y_pred, "attention": attention})
def get_attention(self, x):
_, attention = self.encode(x)
return attention
def get_arch(*args, **kwargs):
return {"net": MRI_ATTN(*args, **kwargs)}