math.py
353 Bytes
""" Mathematical formulae for different expressions"""
import torch
from .torch_utils import EPSILON
def echo_mi(f, s):
N = s.shape[0]
s = s.view(N, -1)
return -torch.log(torch.abs(s) + EPSILON).sum(dim=1)
def get_echo_clip_factor(num_samples):
max_fx = 1
d_max = num_samples
return (2 ** (-23) / max_fx) ** (1.0 / d_max)