workspace.ipynb
47.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import FinanceDataReader as fdr\n",
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def basicinform(input):\n",
" stocks = pd.read_csv('stockcodename.csv',index_col=0)\n",
" symbol = ''\n",
" for i in enumerate(stocks.Name) :\n",
" if i[1] == input:\n",
" symbol = (stocks.iloc[i[0]].Symbol)\n",
" break\n",
" df = fdr.DataReader(symbol)\n",
" ror_df = df.Close.pct_change()\n",
" volume = df.Volume.iloc[-1]\n",
" price = df.Close.iloc[-1]\n",
" ror = ror_df[-1]\n",
" #print(\"현재가: \", price)\n",
" #print(\"거래량: \", volume)\n",
" #print(\"전일 대비 수익률:\", ror)\n",
" #display(df)\n",
" value = {\"현재가\": price ,\n",
" \"거래랑\": volume ,\n",
" \"전일 대비 수익률:\" : ror\n",
" }\n",
" return value"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'현재가': 82800, '거래랑': 29341312, '전일 대비 수익률:': 0.024752475247524774}\n"
]
}
],
"source": [
"print(basicinform('삼성전자'))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"stocks = fdr.StockListing('KOSPI') # 코스피\n",
"stocks.to_csv(\"stockcodename.csv\",mode='w', encoding='utf-8-sig')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import datetime\n",
"import pandas as pd\n",
"import numpy as np\n",
"import FinanceDataReader as fdr\n",
"from scipy.optimize import minimize\n",
"import json\n",
"from datetime import date\n",
"import math\n",
"import itertools as it\n",
"import operator\n",
"from datetime import datetime\n",
"from scipy import stats\n",
"from scipy.stats import norm\n",
"from dateutil import rrule\n",
"from calendar import monthrange\n",
"from dateutil.relativedelta import relativedelta\n",
"from ast import literal_eval\n",
"\n",
"#소숫점 표현\n",
"pd.options.display.float_format = '{:.3f}'.format\n",
"np.set_printoptions(precision=3, suppress=True)\n",
"\n",
"class c_Models:\n",
" #Input 값으로, 자산 list, 사용자 포트폴리오 비중, 시작일, 마지막일\n",
" def __init__(self, assets, assets_w, start, end):\n",
" self.result = None\n",
" self.graph = None\n",
" \n",
" stocks = pd.read_csv('stockcodename.csv', index_col=0)\n",
" symbol = ''\n",
" self.asset_name = assets[:]\n",
" for k in range(len(assets)):\n",
" for i in enumerate(stocks.Name):\n",
" if i[1] == assets[k]:\n",
" assets[k] = (stocks.iloc[i[0]].Symbol)\n",
" break\n",
"\n",
" data = pd.DataFrame()\n",
" # 전체 자산 data들을 가지고 온 후, 정리함\n",
" \n",
" for asset in assets: #total_list:\n",
" tmp = fdr.DataReader(asset,start,end).Close\n",
" if len(data) == 0 :\n",
" data = tmp\n",
" else:\n",
" data = pd.concat([data,tmp], axis=1)\n",
" \n",
" data.columns = self.asset_name\n",
" \n",
" if data.isnull().values.any() == True: #불러온 data에 오류가 있다면\n",
" return \"No Data\",''\n",
"\n",
" else:\n",
" data = data.resample('M').mean() #일별 데이터를 월별 데이터로 만들어줌\n",
" data = data.pct_change() #월별 주가 데이터를 이용해 수익률 데이터로 변환\n",
" data.dropna(inplace=True) #결측치 제외(첫 row)\n",
"\n",
" self.data = data\n",
" self.assets_w = assets_w\n",
" self.mu = data.mean() * 12\n",
" self.cov = data.cov() * 12\n",
"\n",
" #GMV 최적화 : 제약 조건은 비중합=1, 공매도 불가능\n",
" def gmv_opt(self):\n",
" n_assets = len(self.data.columns)\n",
" w0 = np.ones(n_assets) / n_assets\n",
" fun = lambda w: np.dot(w.T, np.dot(self.cov, w))\n",
" constraints = ({'type':'eq', 'fun':lambda x: np.sum(x)-1})\n",
" bd = ((0,1),) * n_assets\n",
" #cov = data.cov() * 12\n",
" gmv = minimize(fun, w0, method = 'SLSQP', constraints=constraints, bounds=bd)\n",
" result = dict(zip(self.asset_name, np.round(gmv.x,3)))\n",
" return result\n",
" \n",
" #Max Sharp ratio : risk free rate은 0.8%로 지정했고, \n",
" def ms_opt(self):\n",
" n_assets = len(self.data.columns)\n",
" w0 = np.ones(n_assets) / n_assets\n",
" fun = lambda w: -(np.dot(w.T, self.mu) - 0.008) / np.sqrt(np.dot(w.T, np.dot(self.cov, w)))\n",
" bd = ((0,1),) * n_assets \n",
" constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})\n",
" maxsharp = minimize(fun, w0, method ='SLSQP', constraints=constraints, bounds=bd)\n",
" result = dict(zip(self.asset_name, np.round(maxsharp.x,3)))\n",
" return result\n",
" \n",
" def rp_opt(self):\n",
" def RC(cov, w):\n",
" pfo_std = np.sqrt(np.dot(w.T, np.dot(self.cov, w)))\n",
" mrc = 1/pfo_std * (np.dot(self.cov, w))\n",
" rc = mrc * w\n",
" rc = rc / rc.sum()\n",
" return rc\n",
" \n",
" \n",
" def RP_objective(x):\n",
" pfo_std = np.sqrt(np.dot(x.T, np.dot(self.cov, x)))\n",
" mrc = 1/pfo_std * (np.dot(self.cov, x))\n",
" rc = mrc * x\n",
" rc = rc / rc.sum()\n",
"\n",
" a = np.reshape(rc, (len(rc),1))\n",
" differs = a - a.T\n",
" objective = np.sum(np.square(differs))\n",
"\n",
" return objective \n",
" \n",
" n_assets = len(self.data.columns)\n",
" w0 = np.ones(n_assets) / n_assets\n",
" constraints = [{'type':'eq', 'fun': lambda x: np.sum(x) -1}]\n",
" bd = ((0,1),) * n_assets\n",
"\n",
" rp = minimize(RP_objective, w0, constraints=constraints, bounds = bd, method='SLSQP')\n",
" result = dict(zip(self.asset_name, np.round(rp.x,3)))\n",
" return result #, RC(self.cov, rp.x)\n",
"\n",
" def plotting(self):\n",
" wt_gmv = np.asarray(list(self.gmv_opt().values()))\n",
" wt_ms = np.asarray(list(self.ms_opt().values()))\n",
" wt_rp = np.asarray(list(self.rp_opt().values()))\n",
" \n",
" ret_gmv = np.dot(wt_gmv, self.mu)\n",
" ret_ms = np.dot(wt_ms, self.mu)\n",
" ret_rp = np.dot(wt_rp, self.mu)\n",
" vol_gmv = np.sqrt(np.dot(wt_gmv.T, np.dot(self.cov, wt_gmv)))\n",
" vol_ms = np.sqrt(np.dot(wt_ms.T, np.dot(self.cov, wt_ms)))\n",
" vol_rp = np.sqrt(np.dot(wt_rp.T, np.dot(self.cov, wt_rp)))\n",
" \n",
" wt_gmv = wt_gmv.tolist()\n",
" wt_ms = wt_ms.tolist()\n",
" wt_rp = wt_rp.tolist()\n",
" \n",
" user_ret = np.dot(self.assets_w, self.mu)\n",
" user_risk = np.sqrt(np.dot(self.assets_w, np.dot(self.cov, self.assets_w)))\n",
"\n",
" weights = {'gmv': wt_gmv, \"ms\" : wt_ms, \"rp\": wt_rp}\n",
" \n",
" #rec_rs = recommended_asset()\n",
"\n",
" trets = np.linspace(ret_gmv, max(self.mu), 30) # 30개 짜르기 \n",
" tvols = []\n",
" \n",
" efpoints = dict()\n",
" for i, tret in enumerate(trets): #이 개별 return마다 최소 risk 찾기\n",
" n_assets = len(self.data.columns)\n",
" w0 = np.ones(n_assets) / n_assets\n",
" fun = lambda w: np.dot(w.T ,np.dot(self.cov, w))\n",
" constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x) - 1},\n",
" {'type': 'ineq', 'fun': lambda x: np.dot(x, self.mu) - tret}]\n",
" #{'type': 'ineq', 'fun': lambda x: x}]\n",
" bd = ((0,1),) * n_assets\n",
"\n",
" minvol = minimize(fun, w0, method='SLSQP',bounds = bd, constraints=constraints)\n",
" tvols.append(np.sqrt(np.dot(minvol.x, np.dot(self.cov, minvol.x))))\n",
" \n",
" pnumber = '{}point'.format(i+1)\n",
" efpoints[pnumber] = minvol.x.tolist()\n",
" \n",
" if self.data.shape[0] <= 1:\n",
" error = '기간에러'\n",
" return error,1,1\n",
" else:\n",
" ret_vol = {\"GMV\": [vol_gmv, ret_gmv],\"MaxSharp\": [vol_ms, ret_ms],\"RiskParity\": [vol_rp, ret_rp], \"Trets\" : trets.tolist(), \"Tvols\": tvols, \"User\" : [user_risk,user_ret]} #, \"Recommended\" : rec_rs} \n",
" return ret_vol, json.dumps(efpoints), json.dumps(weights)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"class back_test:\n",
" # 단순 일별수익률의 평균을 *365하여 연간수익률을 산출\n",
" def __init__(self):\n",
" self.test = 0\n",
" \n",
" def Arithmetic_Mean_Annual(self,ret):\n",
" month_return = np.mean(ret)\n",
" return (month_return*252)\n",
"\n",
" # 기간중 투자했을때 하락할 수 있는 비율\n",
" def dd(self,ret):\n",
" cum_ret = (1 + ret).cumprod()\n",
" max_drawdown = 0\n",
" max_ret = 1\n",
" dd_list = []\n",
" c = 0\n",
" for ix_ret in cum_ret.values:\n",
" if max_ret < ix_ret:\n",
" max_ret = ix_ret\n",
" dd_list.append((ix_ret - max_ret) / max_ret) \n",
" c= c+1\n",
" return dd_list\n",
" \n",
" # 기간중 투자했을때 최고로 많이 하락할 수 있는 비율\n",
" def mdd(self,ret):\n",
" \n",
" cum_ret = (1 + ret).cumprod()\n",
" max_drawdown = 0\n",
" max_ret = 1\n",
" for ix_ret in cum_ret.values:\n",
" if max_drawdown > (ix_ret - max_ret) / max_ret:\n",
" max_drawdown = (ix_ret - max_ret) / max_ret\n",
" if max_ret < ix_ret:\n",
" max_ret = ix_ret\n",
"\n",
" return abs(max_drawdown)\n",
"\n",
" # 포트폴리오 수익률에서 무위험 수익률을 제한 후 이를 포트폴리오의 표준편차로 나눠 산출한 값, 즉 위험대비 얼마나 수익이 좋은지의 척도\n",
" def sharpe_ratio(self,ret, rf=0.008, num_of_date=252):\n",
" \n",
" return ((np.mean(ret - (rf / num_of_date))) / (np.std(ret))) * np.sqrt(num_of_date)\n",
" \n",
" # 설정한 confidence level에 따른(95%) 확률로 발생할 수 있는 손실액의 최대 액수\n",
" def value_at_risk(self,ret, para_or_hist=\"para\", confidence_level=0.95):\n",
" \n",
" vol = np.std(ret)\n",
" if para_or_hist == \"para\":\n",
" VaR = np.mean(ret) - vol * norm.ppf(confidence_level)\n",
" else:\n",
" print('error')\n",
"\n",
" return VaR\n",
" \n",
" # 전체 투자기간에서 상승한 ( ret > 0 ) 기간의 비율\n",
" def winning_rate(self,ret):\n",
" var_winning_rate = np.sum(ret > 0) / len(ret)\n",
" return var_winning_rate \n",
" \n",
" # 상승한날의 평균상승값을 하락한날의 평균하락값으로 나눈 비율\n",
" def profit_loss_ratio(self,ret):\n",
"\n",
" if np.sum(ret > 0) == 0:\n",
" var_profit_loss_ratio = 0\n",
" elif np.sum(ret < 0) == 0:\n",
" var_profit_loss_ratio = np.inf\n",
" else:\n",
" win_mean = np.mean(ret[ret > 0])\n",
" loss_mean = np.mean(ret[ret < 0])\n",
" var_profit_loss_ratio = win_mean / loss_mean\n",
" return abs(var_profit_loss_ratio)\n",
"\n",
" # 데이터 취합하는 코드 \n",
" #임시로 5가지 데이터 예시를 활용해 코드작성\n",
" # 선택한 종목의 이름과 비중, 투자기간을 input 값으로 받음 \n",
" \n",
" def backtest_data(self, assets,weight,start_data_1, end_data_1,start_amount,rebalancing_month, interval, opt_option):\n",
" # input으로 받는 assetnames 입력\n",
" a = assets\n",
" stock_num = len(a)\n",
" # input으로 받는 assetweights 입력\n",
" rebal_month = int(rebalancing_month)\n",
" # input으로 받는 rebalancing_month를 입력\n",
" # 나타내는 데이터 간격을 표시\n",
"\n",
" # weight 간격 \n",
" b = list(map(float, weight))\n",
" \n",
"\n",
" # input으로 받는 from_period와 to_period 입력\n",
" stock_return = pd.date_range(start=start_data_1, end=end_data_1)\n",
" stock_return = pd.DataFrame(stock_return)\n",
" stock_return.columns = ['Date']\n",
"\n",
" stocks = pd.read_csv('stockcodename.csv', index_col=0)\n",
" symbol = ''\n",
" asset_name = assets[:]\n",
" for k in range(len(assets)):\n",
" for i in enumerate(stocks.Name):\n",
" if i[1] == assets[k]:\n",
" assets[k] = (stocks.iloc[i[0]].Symbol)\n",
" break\n",
" \n",
" # input으로 받는 from_period와 to_period 입력\n",
" stock_return = pd.date_range(start=start_data_1, end=end_data_1)\n",
" stock_return = pd.DataFrame(stock_return)\n",
" stock_return.columns = ['Date']\n",
" \n",
"\n",
" for asset in assets: #total_list:\n",
" tmp = fdr.DataReader(asset,start_data_1,end_data_1)\n",
" tmp.insert(1,\"Date\",tmp.index.copy(),True)\n",
" tmp = tmp[['Date','Change']]\n",
" tmp.columns = ['Date',asset]\n",
" tmp = tmp.reset_index(drop=True)\n",
" stock_return = pd.merge(stock_return,tmp,how='inner', on='Date')\n",
"\n",
" stock_return = stock_return.dropna(axis=0)\n",
"\n",
" #print(stock_return)\n",
" if opt_option == 'basic' :\n",
"\n",
" # 투자비중으로 이루어진 dataframe 만들기\n",
"\n",
" start_datetime = stock_return.iloc[0,0]\n",
" end_datetime = stock_return.iloc[-1,0]\n",
" diff_months_list = list(rrule.rrule(rrule.MONTHLY, dtstart=start_datetime, until=end_datetime))\n",
" month_gap = len(diff_months_list)\n",
" rebal_roof = month_gap//rebal_month\n",
" rebal_weight = pd.DataFrame()\n",
"\n",
" for i in range(rebal_roof+1):\n",
" # 데이터로부터 리밸런싱기간만큼 가져오기\n",
" filtered_df =stock_return.loc[stock_return[\"Date\"].between(start_datetime, \n",
" start_datetime + relativedelta(months=rebal_month)+relativedelta(days = -1))]\n",
" # 리밸런싱 기간의 누적수익률 산출\n",
" for j in range(stock_num):\n",
" filtered_df.iloc[:,j+1] = (1 + filtered_df.iloc[:,j+1]).cumprod()\n",
" # 해당 누적수익률에 initial 투자비중을 곱해준다 \n",
" for j in range(stock_num):\n",
" filtered_df.iloc[:,j+1] = filtered_df.iloc[:,j+1]*float(b[j])\n",
" # 이후 각각의 종목의 비중을 계산해서 산출한다\n",
" filtered_df['total_value'] = filtered_df.sum(axis=1)\n",
" for j in range(stock_num):\n",
" filtered_df.iloc[:,j+1] = filtered_df.iloc[:,j+1]/filtered_df['total_value']\n",
"\n",
" rebal_weight = pd.concat([rebal_weight,filtered_df])\n",
" start_datetime = start_datetime + relativedelta(months=rebal_month)\n",
"\n",
" #final_day = monthrange(start_datetime.year, start_datetime.month)\n",
"\n",
" stock_weight = rebal_weight.iloc[:,:-1]\n",
" #print(stock_weight)\n",
" '''\n",
" stock_weight = stock_return.Date\n",
" stock_weight = pd.DataFrame(stock_weight)\n",
" c = 0\n",
" for stockweight in b:\n",
" stock_weight[a[c]] = float(stockweight)\n",
" c = c + 1\n",
" #print(stock_weight)\n",
" '''\n",
" else :\n",
" # 포트폴리오 최적화 코드를 통한 리벨런싱 이중 리스트 weight 산출\n",
" # 1. 입력 받은 start ~ end 날짜를 리밸런싱 기간으로 쪼개기 \n",
" opt_start_datetime = stock_return.iloc[0,0]\n",
" opt_end_datetime = stock_return.iloc[-1,0]\n",
" opt_diff_months_list = list(rrule.rrule(rrule.MONTHLY, dtstart=opt_start_datetime, until=opt_end_datetime))\n",
" opt_month_gap = len(opt_diff_months_list)\n",
" opt_rebal_roof = opt_month_gap//rebal_month\n",
" opt_rebal_weight = pd.DataFrame()\n",
" #opt_array = [[0]*stock_num]*(opt_rebal_roof+1)\n",
"\n",
" for i in range(opt_rebal_roof+1):\n",
" opt_df = stock_return.loc[stock_return[\"Date\"].between(opt_start_datetime,opt_start_datetime + relativedelta(months=rebal_month)+relativedelta(days = -1))]\n",
" # 최적화 코드에서 기간마다의 가중치를 가져온다\n",
" c_m = c_Models(a,b,opt_df.iat[0,0]- relativedelta(months=3),opt_df.iat[-1,0])\n",
" ret_vol, efpoints, weights = c_m.plotting()\n",
" weights = literal_eval(weights)\n",
" weights = weights.get(opt_option)\n",
" ##print(weights)\n",
" # 리밸런싱 기간의 누적수익률 산출\n",
" for j in range(stock_num):\n",
" opt_df.iloc[:,j+1] = (1 + opt_df.iloc[:,j+1]).cumprod()\n",
" # 해당 누적수익률에 initial 투자비중을 곱해준다 \n",
" for j in range(stock_num):\n",
" opt_df.iloc[:,j+1] = opt_df.iloc[:,j+1]*float(weights[j])\n",
" # 이후 각각의 종목의 비중을 계산해서 산출한다\n",
" opt_df['total_value'] = opt_df.sum(axis=1)\n",
" for j in range(stock_num):\n",
" opt_df.iloc[:,j+1] = opt_df.iloc[:,j+1]/opt_df['total_value']\n",
"\n",
" # 이후 각각의 종목의 비중을 계산해서 산출한다\n",
" #print(opt_df)\n",
" opt_rebal_weight = pd.concat([opt_rebal_weight,opt_df])\n",
" opt_start_datetime = opt_start_datetime + relativedelta(months=rebal_month)\n",
" #리밸런싱으로 start 기간이 고객이 원하는 end 기간보다 커지게 되면 종료 \n",
" if opt_start_datetime > stock_return.iloc[-1,0]: # i가 100일 때\n",
" break \n",
" stock_weight = opt_rebal_weight.iloc[:,:-1]\n",
" ##print(stock_weight)\n",
" # 수익률 데이터와 투자비중을 곱한 하나의 데이터 생성 \n",
" pfo_return = stock_weight.Date\n",
" pfo_return = pd.DataFrame(pfo_return)\n",
" # weight 와 return의 날짜 맞춰주기 \n",
" #pfo_return = pfo_return[0:len(stock_weight)]\n",
" pfo_return = pd.merge(pfo_return, stock_return, left_on='Date', right_on='Date', how='left')\n",
" pfo_return['mean_return'] = 0\n",
" ##print(pfo_return)\n",
" for i in range(0,len(pfo_return)):\n",
" return_result = list(pfo_return.iloc[i,1:1+stock_num])\n",
" return_weight = list(stock_weight.iloc[i,1:1+stock_num])\n",
" pfo_return.iloc[i,1+stock_num] = np.dot(return_result,return_weight)\n",
" #rint(pfo_return)\n",
" pfo_return['acc_return'] = [x+1 for x in pfo_return['mean_return']]\n",
" pfo_return['acc_return'] = list(it.accumulate(pfo_return['acc_return'], operator.mul))\n",
" pfo_return['acc_return'] = [x-1 for x in pfo_return['acc_return']]\n",
" pfo_return['final_balance'] = float(start_amount) + float(start_amount)*pfo_return['acc_return']\n",
" pfo_return['Drawdown_list'] = back_test.dd(input,pfo_return['mean_return'])\n",
" pfo_return = pfo_return.set_index('Date') \n",
" #print(pfo_return)\n",
" \n",
" \n",
" ### 벤치마크 데이터 로드 및 전처리\n",
" \n",
" tiker_list = ['KS11','US500'] \n",
" bench_list = [fdr.DataReader(ticker, start_data_1, end_data_1)['Change'] for ticker in tiker_list]\n",
" bench = pd.concat(bench_list, axis=1)\n",
" bench.columns = ['KOSPI', 'S&P500']\n",
" bench['KOSPI'] = bench['KOSPI'].fillna(0)\n",
" bench['S&P500'] = bench['S&P500'].fillna(0)\n",
" #bench = bench.dropna()\n",
" \n",
" # 벤치마크 누적수익률, DD 값 \n",
" \n",
" bench['KOSPI_acc'] = [x+1 for x in bench['KOSPI']]\n",
" bench['KOSPI_acc'] = list(it.accumulate(bench['KOSPI_acc'], operator.mul))\n",
" bench['KOSPI_acc'] = [x-1 for x in bench['KOSPI_acc']]\n",
" bench['KOSPI_balance'] = float(start_amount) + float(start_amount)*bench['KOSPI_acc']\n",
" bench['KOSPI_Drawdown'] = back_test.dd(input,bench['KOSPI'])\n",
" bench['S&P500_acc'] = [x+1 for x in bench['S&P500']]\n",
" bench['S&P500_acc'] = list(it.accumulate(bench['S&P500_acc'], operator.mul))\n",
" bench['S&P500_acc'] = [x-1 for x in bench['S&P500_acc']]\n",
" bench['S&P500_balance'] = float(start_amount) + float(start_amount)*bench['S&P500_acc']\n",
" bench['S&P500_Drawdown'] = back_test.dd(input,bench['S&P500'])\n",
" \n",
" if interval == 'monthly' or interval == 'weekly' :\n",
" if interval == 'monthly' :\n",
" inter = 'M'\n",
" if interval == 'weekly' :\n",
" inter = 'W'\n",
" pfo_return_interval = pfo_return.resample(inter).last()\n",
" pfo_return_first = pd.DataFrame(pfo_return.iloc[0]).transpose()\n",
" pfo_return_interval = pd.concat([pfo_return_first, pfo_return_interval])\n",
" pfo_return_interval['mean_return'] = pfo_return_interval['final_balance'].pct_change()\n",
" pfo_return_interval = pfo_return_interval.dropna()\n",
" \n",
" # 월별 간격으로 만들어주기, 여기서는 return과 value만 monthly로 산출함 나머지값은 daily\n",
" bench_interval = bench.resample(inter).last()\n",
" #bench_ex['KOSPI'] = bench_ex['final_balance'].pct_change()\n",
" bench_first = pd.DataFrame(bench.iloc[0]).transpose()\n",
" bench_interval = pd.concat([bench_first, bench_interval])\n",
" bench_interval['KOSPI'] = bench_interval['KOSPI_balance'].pct_change()\n",
" bench_interval['S&P500'] = bench_interval['S&P500_balance'].pct_change()\n",
" bench_interval = bench_interval.dropna()\n",
" \n",
" # 날짜타입 열로 만들기 및 str 타입으로 전처리 \n",
" pfo_return = pfo_return.rename_axis('Date').reset_index()\n",
" pfo_return['Date'] = pd.to_datetime(pfo_return['Date'], format='%d/%m/%Y').dt.date\n",
" pfo_return['Date'] = list(map(str, pfo_return['Date']))\n",
" \n",
" pfo_return_interval = pfo_return_interval.rename_axis('Date').reset_index()\n",
" pfo_return_interval['Date'] = pd.to_datetime(pfo_return_interval['Date'], format='%d/%m/%Y').dt.date\n",
" pfo_return_interval['Date'] = list(map(str, pfo_return_interval['Date']))\n",
" \n",
" bench = bench.rename_axis('Date').reset_index()\n",
" bench['Date'] = pd.to_datetime(bench['Date'], format='%d/%m/%Y').dt.date\n",
" bench['Date'] = list(map(str, bench['Date'])) \n",
" \n",
" bench_interval = bench_interval.rename_axis('Date').reset_index()\n",
" bench_interval['Date'] = pd.to_datetime(bench_interval['Date'], format='%d/%m/%Y').dt.date\n",
" bench_interval['Date'] = list(map(str, bench_interval['Date'])) \n",
" \n",
" backtest_return = {\n",
" 'pfo_return': [\n",
" {\n",
" 'Date': list(pfo_return_interval['Date']),\n",
" 'mean_return': list(pfo_return_interval['mean_return']), \n",
" 'acc_return ratio': list(pfo_return_interval['acc_return']),\n",
" 'final_balance': list(pfo_return_interval['final_balance']),\n",
" 'Drawdown_list' : list(pfo_return_interval['Drawdown_list'])\n",
" }\n",
" ], \n",
" 'bench': [\n",
" {\n",
" 'Date': list(bench_interval['Date']),\n",
" 'KOSPI_return': list(bench_interval['KOSPI']), \n",
" 'S&P500_return': list(bench_interval['S&P500']),\n",
" 'KOSPI_acc_return': list(bench_interval['KOSPI_acc']),\n",
" 'KOSPI_balance' : list(bench_interval['KOSPI_balance']), \n",
" 'KOSPI_Drawdown': list(bench_interval['KOSPI_Drawdown']),\n",
" 'S&P500_acc_return': list(bench_interval['S&P500_acc']),\n",
" 'S&P500_balance' : list(bench_interval['S&P500_balance']), \n",
" 'S&P500_Drawdown': list(bench_interval['S&P500_Drawdown'])\n",
" }\n",
" ], \n",
" 'indicator': [\n",
" {\n",
" 'Mean': back_test.Arithmetic_Mean_Annual(input,pfo_return['mean_return']),\n",
" 'Std': pfo_return['mean_return'].std() * np.sqrt(365), \n",
" 'Sharpe ratio': back_test.sharpe_ratio(input,pfo_return['mean_return']),\n",
" 'VaR': back_test.value_at_risk(input,pfo_return['mean_return']),\n",
" 'MDD': back_test.mdd(input,pfo_return['mean_return']),\n",
" 'Winning ratio': back_test.winning_rate(input,pfo_return['mean_return']),\n",
" 'Gain/Loss Ratio': back_test.profit_loss_ratio(input,pfo_return['mean_return'])\n",
" }\n",
" ], \n",
" 'KOSPI_indicator': [\n",
" {\n",
" 'Mean': back_test.Arithmetic_Mean_Annual(input,bench['KOSPI']),\n",
" 'Std': bench['KOSPI'].std() * np.sqrt(365), \n",
" 'Sharpe ratio': back_test.sharpe_ratio(input,bench['KOSPI']),\n",
" 'VaR': back_test.value_at_risk(input,bench['KOSPI']),\n",
" 'MDD': back_test.mdd(input,bench['KOSPI']),\n",
" 'Winning ratio': back_test.winning_rate(input,bench['KOSPI']),\n",
" 'Gain/Loss Ratio': back_test.profit_loss_ratio(input,bench['KOSPI'])\n",
" }\n",
" ], \n",
" 'S&P500_indicator': [\n",
" {\n",
" 'Mean': back_test.Arithmetic_Mean_Annual(input,bench['S&P500']),\n",
" 'Std': bench['S&P500'].std() * np.sqrt(365), \n",
" 'Sharpe ratio': back_test.sharpe_ratio(input,bench['S&P500']),\n",
" 'VaR': back_test.value_at_risk(input,bench['S&P500']),\n",
" 'MDD': back_test.mdd(input,bench['S&P500']),\n",
" 'Winning ratio': back_test.winning_rate(input,bench['S&P500']),\n",
" 'Gain/Loss Ratio': back_test.profit_loss_ratio(input,bench['S&P500'])\n",
" }\n",
" ]\n",
" } \n",
" \n",
" else :\n",
" # 날짜타입 열로 만들기 및 str 타입으로 전처리 \n",
" pfo_return = pfo_return.rename_axis('Date').reset_index()\n",
" pfo_return['Date'] = pd.to_datetime(pfo_return['Date'], format='%d/%m/%Y').dt.date\n",
" pfo_return['Date'] = list(map(str, pfo_return['Date']))\n",
" \n",
" bench = bench.rename_axis('Date').reset_index()\n",
" bench['Date'] = pd.to_datetime(bench['Date'], format='%d/%m/%Y').dt.date\n",
" bench['Date'] = list(map(str, bench['Date']))\n",
" backtest_return = {\n",
" 'pfo_return': [\n",
" {\n",
" 'Date': list(pfo_return['Date']),\n",
" 'mean_return': list(pfo_return['mean_return']), \n",
" 'acc_return ratio': list(pfo_return['acc_return']),\n",
" 'final_balance': list(pfo_return['final_balance']),\n",
" 'Drawdown_list' : list(pfo_return['Drawdown_list'])\n",
" }\n",
" ], \n",
" 'bench': [\n",
" {\n",
" 'Date': list(bench['Date']),\n",
" 'KOSPI_return': list(bench['KOSPI']), \n",
" 'S&P500_return': list(bench['S&P500']),\n",
" 'KOSPI_acc_return': list(bench['KOSPI_acc']),\n",
" 'KOSPI_balance' : list(bench['KOSPI_balance']), \n",
" 'KOSPI_Drawdown': list(bench['KOSPI_Drawdown']),\n",
" 'S&P500_acc_return': list(bench['S&P500_acc']),\n",
" 'S&P500_balance' : list(bench['S&P500_balance']), \n",
" 'S&P500_Drawdown': list(bench['S&P500_Drawdown'])\n",
" }\n",
" ], \n",
" 'indicator': [\n",
" {\n",
" 'Mean': back_test.Arithmetic_Mean_Annual(input,pfo_return['mean_return']),\n",
" 'Std': pfo_return['mean_return'].std() * np.sqrt(365), \n",
" 'Sharpe ratio': back_test.sharpe_ratio(input,pfo_return['mean_return']),\n",
" 'VaR': back_test.value_at_risk(input,pfo_return['mean_return']),\n",
" 'MDD': back_test.mdd(input,pfo_return['mean_return']),\n",
" 'Winning ratio': back_test.winning_rate(input,pfo_return['mean_return']),\n",
" 'Gain/Loss Ratio': back_test.profit_loss_ratio(input,pfo_return['mean_return'])\n",
" }\n",
" ], \n",
" 'KOSPI_indicator': [\n",
" {\n",
" 'Mean': back_test.Arithmetic_Mean_Annual(input,bench['KOSPI']),\n",
" 'Std': bench['KOSPI'].std() * np.sqrt(365), \n",
" 'Sharpe ratio': back_test.sharpe_ratio(input,bench['KOSPI']),\n",
" 'VaR': back_test.value_at_risk(input,bench['KOSPI']),\n",
" 'MDD': back_test.mdd(input,bench['KOSPI']),\n",
" 'Winning ratio': back_test.winning_rate(input,bench['KOSPI']),\n",
" 'Gain/Loss Ratio': back_test.profit_loss_ratio(input,bench['KOSPI'])\n",
" }\n",
" ], \n",
" 'S&P500_indicator': [\n",
" {\n",
" 'Mean': back_test.Arithmetic_Mean_Annual(input,bench['S&P500']),\n",
" 'Std': bench['S&P500'].std() * np.sqrt(365), \n",
" 'Sharpe ratio': back_test.sharpe_ratio(input,bench['S&P500']),\n",
" 'VaR': back_test.value_at_risk(input,bench['S&P500']),\n",
" 'MDD': back_test.mdd(input,bench['S&P500']),\n",
" 'Winning ratio': back_test.winning_rate(input,bench['S&P500']),\n",
" 'Gain/Loss Ratio': back_test.profit_loss_ratio(input,bench['S&P500'])\n",
" }\n",
" ]\n",
" } \n",
"\n",
" \n",
"\n",
" return backtest_return"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"({'GMV': [0.1858389981988727, 0.21203948231342723],\n",
" 'MaxSharp': [0.18671958740979067, 0.2139596912413942],\n",
" 'RiskParity': [0.20795176890404793, 0.21559809699947152],\n",
" 'Trets': [0.21203948231342723,\n",
" 0.21294773988703294,\n",
" 0.21385599746063863,\n",
" 0.21476425503424434,\n",
" 0.21567251260785003,\n",
" 0.21658077018145575,\n",
" 0.21748902775506146,\n",
" 0.21839728532866715,\n",
" 0.21930554290227286,\n",
" 0.22021380047587857,\n",
" 0.22112205804948426,\n",
" 0.22203031562308997,\n",
" 0.22293857319669566,\n",
" 0.22384683077030137,\n",
" 0.2247550883439071,\n",
" 0.22566334591751278,\n",
" 0.2265716034911185,\n",
" 0.2274798610647242,\n",
" 0.2283881186383299,\n",
" 0.2292963762119356,\n",
" 0.2302046337855413,\n",
" 0.231112891359147,\n",
" 0.23202114893275272,\n",
" 0.2329294065063584,\n",
" 0.23383766407996412,\n",
" 0.23474592165356983,\n",
" 0.23565417922717552,\n",
" 0.23656243680078123,\n",
" 0.23747069437438692,\n",
" 0.23837895194799263],\n",
" 'Tvols': [0.1858389981987725,\n",
" 0.18603980681220794,\n",
" 0.1866279462874506,\n",
" 0.18759977333781017,\n",
" 0.1889493691852574,\n",
" 0.19066871063768298,\n",
" 0.19274790351948154,\n",
" 0.1951754484924986,\n",
" 0.19793852894483158,\n",
" 0.2010233088543836,\n",
" 0.20441522611870286,\n",
" 0.2080992618687252,\n",
" 0.21206019173944504,\n",
" 0.2162828032765981,\n",
" 0.2207520817102024,\n",
" 0.22545335668848557,\n",
" 0.230372426146853,\n",
" 0.2354956425317311,\n",
" 0.24080997621842265,\n",
" 0.24630305688942764,\n",
" 0.25196319408160095,\n",
" 0.25777938370335385,\n",
" 0.2637413018896242,\n",
" 0.2698392894833826,\n",
" 0.2760643295664975,\n",
" 0.2824080201417004,\n",
" 0.288862545420281,\n",
" 0.29542064013059877,\n",
" 0.3020755588277587,\n",
" 0.3088210356801474],\n",
" 'User': [0.25113519989524385, 0.2169925302290805]},\n",
" '{\"1point\": [0.7270000003851871, 0.0, 0.272999999614813], \"2point\": [0.701931034333944, 0.0, 0.29806896566605606], \"3point\": [0.6768620689166184, 0.0, 0.32313793108338174], \"4point\": [0.6517931118624203, 0.0, 0.3482068881375798], \"5point\": [0.6267241338618083, 0.0, 0.37327586613819175], \"6point\": [0.6016551680700105, 0.0, 0.3983448319299896], \"7point\": [0.5765862068839319, 1.0625181290357943e-17, 0.42341379311606814], \"8point\": [0.5515172410659429, 3.469446951953614e-17, 0.4484827589340571], \"9point\": [0.5264482750472359, 0.0, 0.47355172495276426], \"10point\": [0.501379313669539, 0.0, 0.49862068633046097], \"11point\": [0.4763103453392776, 2.0816681711721685e-17, 0.5236896546607225], \"12point\": [0.45124137745684034, 0.0, 0.5487586225431597], \"13point\": [0.426172412012964, 0.0, 0.573827587987036], \"14point\": [0.40110344933541525, 6.938893903907228e-18, 0.5988965506645848], \"15point\": [0.376034481762012, 2.0816681711721685e-17, 0.623965518237988], \"16point\": [0.3509655176307255, 0.0, 0.6490344823692745], \"17point\": [0.3258965525334883, 0.0, 0.6741034474665117], \"18point\": [0.300827586518259, 4.163336342344337e-17, 0.699172413481741], \"19point\": [0.2757586213143949, 4.163336342344337e-17, 0.724241378685605], \"20point\": [0.2506896557025046, 2.7755575615628914e-17, 0.7493103442974953], \"21point\": [0.22562069008962146, 3.122502256758253e-17, 0.7743793099103785], \"22point\": [0.2005517244760024, 0.0, 0.7994482755239977], \"23point\": [0.17548275872525812, 1.3877787807814457e-17, 0.8245172412747419], \"24point\": [0.15041379287609932, 0.0, 0.8495862071239008], \"25point\": [0.12534482753941983, 1.6046192152785466e-17, 0.8746551724605802], \"26point\": [0.10027586412659925, 1.1102230246251565e-16, 0.8997241358734006], \"27point\": [0.07520689805671478, 0.0, 0.9247931019432855], \"28point\": [0.050137931954542976, 0.0, 0.9498620680454571], \"29point\": [0.025068965852762182, 0.0, 0.9749310341472383], \"30point\": [0.0, 3.533653586407226e-08, 0.9999999646634645]}',\n",
" '{\"gmv\": [0.727, 0.0, 0.273], \"ms\": [0.674, 0.0, 0.326], \"rp\": [0.443, 0.238, 0.319]}')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#gmv 포트폴리오 -> 해당 종목을 각각 몇 퍼센트로 투자해야 위험이 제일 적은가\n",
"c_Models(['삼성전자','LG전자','카카오'],[0.2,0.5,0.3],'2015-01-01','2021-04-01').plotting()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'삼성전자': 0.674, 'LG전자': 0.0, '카카오': 0.326}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#maxsharp ratio -> 위험대비 수익률이 제일 좋은 포트폴리오 비중 , 즉 가성비가 좋다\n",
"c_Models(['삼성전자','LG전자','카카오'],[0,0,0],'2015-01-01','2021-04-01').ms_opt()"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'삼성전자': 0.443, 'LG전자': 0.238, '카카오': 0.319}"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#risk parity -> 포트폴리오에 대한 자산 위험 비중을 동일하게 조정, 즉 삼전,lg,카카오의 포트폴리오 위험 기여도를 0.33으로 하게 만드는 비중\n",
"c_Models(['삼성전자','LG전자','카카오'],[0,0,0],'2015-01-01','2021-04-01').rp_opt()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"#def backtest_data(self,assets,weight,start_data_1, end_data_1,start_amount,rebalancing_month, interval, opt_option):\n",
"back_test().backtest_data(['삼성전자','LG전자'],[0.9,0.1],'2010-01-01', '2021-01-01',10000000,3, 'monthly', 'basic')"
]
},
{
"cell_type": "code",
"execution_count": 185,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Open</th>\n",
" <th>High</th>\n",
" <th>Low</th>\n",
" <th>Close</th>\n",
" <th>Volume</th>\n",
" <th>Change</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Date</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>1997-06-02</td>\n",
" <td>1215</td>\n",
" <td>1222</td>\n",
" <td>1179</td>\n",
" <td>1190</td>\n",
" <td>74990</td>\n",
" <td>nan</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1997-06-03</td>\n",
" <td>1190</td>\n",
" <td>1195</td>\n",
" <td>1174</td>\n",
" <td>1176</td>\n",
" <td>71360</td>\n",
" <td>-0.012</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1997-06-04</td>\n",
" <td>1161</td>\n",
" <td>1197</td>\n",
" <td>1161</td>\n",
" <td>1197</td>\n",
" <td>85220</td>\n",
" <td>0.018</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1997-06-05</td>\n",
" <td>1193</td>\n",
" <td>1206</td>\n",
" <td>1181</td>\n",
" <td>1188</td>\n",
" <td>81890</td>\n",
" <td>-0.008</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1997-06-07</td>\n",
" <td>1197</td>\n",
" <td>1215</td>\n",
" <td>1190</td>\n",
" <td>1197</td>\n",
" <td>32550</td>\n",
" <td>0.008</td>\n",
" </tr>\n",
" <tr>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2021-05-28</td>\n",
" <td>79800</td>\n",
" <td>80400</td>\n",
" <td>79400</td>\n",
" <td>80100</td>\n",
" <td>12360199</td>\n",
" <td>0.006</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2021-05-31</td>\n",
" <td>80300</td>\n",
" <td>80600</td>\n",
" <td>79600</td>\n",
" <td>80500</td>\n",
" <td>13321324</td>\n",
" <td>0.005</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2021-06-01</td>\n",
" <td>80500</td>\n",
" <td>81300</td>\n",
" <td>80100</td>\n",
" <td>80600</td>\n",
" <td>14058401</td>\n",
" <td>0.001</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2021-06-02</td>\n",
" <td>80400</td>\n",
" <td>81400</td>\n",
" <td>80300</td>\n",
" <td>80800</td>\n",
" <td>16414644</td>\n",
" <td>0.002</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2021-06-03</td>\n",
" <td>81300</td>\n",
" <td>83000</td>\n",
" <td>81100</td>\n",
" <td>82800</td>\n",
" <td>29341312</td>\n",
" <td>0.025</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>6000 rows × 6 columns</p>\n",
"</div>"
],
"text/plain": [
" Open High Low Close Volume Change\n",
"Date \n",
"1997-06-02 1215 1222 1179 1190 74990 nan\n",
"1997-06-03 1190 1195 1174 1176 71360 -0.012\n",
"1997-06-04 1161 1197 1161 1197 85220 0.018\n",
"1997-06-05 1193 1206 1181 1188 81890 -0.008\n",
"1997-06-07 1197 1215 1190 1197 32550 0.008\n",
"... ... ... ... ... ... ...\n",
"2021-05-28 79800 80400 79400 80100 12360199 0.006\n",
"2021-05-31 80300 80600 79600 80500 13321324 0.005\n",
"2021-06-01 80500 81300 80100 80600 14058401 0.001\n",
"2021-06-02 80400 81400 80300 80800 16414644 0.002\n",
"2021-06-03 81300 83000 81100 82800 29341312 0.025\n",
"\n",
"[6000 rows x 6 columns]"
]
},
"execution_count": 185,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = fdr.DataReader('005930')\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 192,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\"gmv\": [0.727, 0.0, 0.273], \"ms\": [0.674, 0.0, 0.326], \"rp\": [0.443, 0.238, 0.319]}\n",
"[0.674, 0.0, 0.326]\n"
]
}
],
"source": [
"c_m = c_Models(['삼성전자','LG전자','카카오'],[0,0,0],'2015-01-01','2021-04-01')\n",
"ret_vol, efpoints, weights = c_m.plotting()\n",
"print(weights)\n",
"weights = literal_eval(weights)\n",
"weights = weights.get('ms')\n",
"print(weights)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}