DepthFirstSearchTest.java
3.55 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.onlab.graph;
import org.junit.Test;
import java.util.Set;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import static org.onlab.graph.DepthFirstSearch.EdgeType;
/**
* Test of the DFS algorithm.
*/
public class DepthFirstSearchTest extends AbstractGraphPathSearchTest {
@Override
protected DepthFirstSearch<TestVertex, TestEdge> graphSearch() {
return new DepthFirstSearch<>();
}
@Test
public void defaultGraphTest() {
executeDefaultTest(3, 6, 5.0, 12.0);
executeBroadSearch();
}
@Test
public void defaultHopCountWeight() {
weight = null;
executeDefaultTest(3, 6, 3.0, 6.0);
executeBroadSearch();
}
protected void executeDefaultTest(int minLength, int maxLength,
double minCost, double maxCost) {
graph = new AdjacencyListsGraph<>(vertexes(), edges());
DepthFirstSearch<TestVertex, TestEdge> search = graphSearch();
DepthFirstSearch<TestVertex, TestEdge>.SpanningTreeResult result =
search.search(graph, A, H, weight);
Set<Path<TestVertex, TestEdge>> paths = result.paths();
assertEquals("incorrect path count", 1, paths.size());
Path path = paths.iterator().next();
System.out.println(path);
assertEquals("incorrect src", A, path.src());
assertEquals("incorrect dst", H, path.dst());
int l = path.edges().size();
assertTrue("incorrect path length " + l,
minLength <= l && l <= maxLength);
assertTrue("incorrect path cost " + path.cost(),
minCost <= path.cost() && path.cost() <= maxCost);
System.out.println(result.edges());
printPaths(paths);
}
public void executeBroadSearch() {
graph = new AdjacencyListsGraph<>(vertexes(), edges());
DepthFirstSearch<TestVertex, TestEdge> search = graphSearch();
// Perform narrow path search to a specific destination.
DepthFirstSearch<TestVertex, TestEdge>.SpanningTreeResult result =
search.search(graph, A, null, weight);
assertEquals("incorrect paths count", 7, result.paths().size());
int[] types = new int[]{0, 0, 0, 0};
for (EdgeType t : result.edges().values()) {
types[t.ordinal()] += 1;
}
assertEquals("incorrect tree-edge count", 7,
types[EdgeType.TREE_EDGE.ordinal()]);
assertEquals("incorrect back-edge count", 1,
types[EdgeType.BACK_EDGE.ordinal()]);
assertEquals("incorrect cross-edge & forward-edge count", 4,
types[EdgeType.FORWARD_EDGE.ordinal()] +
types[EdgeType.CROSS_EDGE.ordinal()]);
}
}