VANILA+Training_model.ipynb
21 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n평가방법 : positive를 높이는방식\\n\\n본논문\\n- STFT magnitude Spectrun\\n- n=40 log mel filter bank\\n\\n다른논문\\n-STFT maginitude spectogram\\n- n=80 mel scaled filter bank\\n- scale log magnitude\\n- batch nomalization (0,1)\\n- subtract mean overtime on spectogram (for remove frequency dependency noise = colored noise)\\n'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"'''\n",
"평가방법 : positive를 높이는방식\n",
"\n",
"본논문\n",
"- STFT magnitude Spectrun\n",
"- n=40 log mel filter bank\n",
"\n",
"다른논문\n",
"-STFT maginitude spectogram\n",
"- n=80 mel scaled filter bank\n",
"- scale log magnitude\n",
"- batch nomalization (0,1)\n",
"- subtract mean overtime on spectogram (for remove frequency dependency noise = colored noise)\n",
"'''"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[name: \"/device:CPU:0\"\n",
"device_type: \"CPU\"\n",
"memory_limit: 268435456\n",
"locality {\n",
"}\n",
"incarnation: 1817485338440268463\n",
"]\n"
]
}
],
"source": [
"from tensorflow.python.client import device_lib\n",
"print(device_lib.list_local_devices())\n",
"\n",
"from keras.utils.training_utils import multi_gpu_model\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gpunum = 0"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#path 관련 라이브러리\n",
"import glob\n",
"import csv\n",
"\n",
"#csv저장 라이브러리\n",
"import pandas as pd\n",
"\n",
"# Scientific Math 라이브러리 \n",
"import numpy as np\n",
"import librosa\n",
"import librosa.display\n",
"import os\n",
"\n",
"# Visualization 라이브러리\n",
"import matplotlib.pyplot as plt\n",
"import IPython.display as ipd\n",
"\n",
"#keras\n",
"from keras.utils import np_utils\n",
"from keras.models import Sequential\n",
"from keras.layers import Dense, Conv2D, MaxPooling2D, GRU,Dropout, Flatten,Reshape,BatchNormalization\n",
"from keras.callbacks import ModelCheckpoint, EarlyStopping\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.metrics import roc_curve, auc, roc_auc_score"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"audio_path = './SOUNDS/ff1010bird/'\n",
"audio_path2= './SOUNDS/warbler/'\n",
"n_mels = 40\n",
"n_frame = 500\n",
"window_size=1024\n",
"hop_size=512\n",
"sample_rate=25600\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preparing ff1010_labels.\n",
"Done.\n",
"Preparing walber_labels.\n",
"Done.\n"
]
}
],
"source": [
"#prepare labels\n",
"print(\"Preparing ff1010_labels.\")\n",
"labels_1=[]\n",
"with open(audio_path+'labels.csv', mode='r',encoding='utf-8') as f:\n",
" reader = csv.reader(f)\n",
" for row in reader : \n",
" labels_1.append(row)\n",
"labels_1.sort(key=lambda x:x[0])\n",
"labels_1 = np.array(labels_1) #아...그냥이렇게하면 넘피배열로 바꿀수있구나ㅠ\n",
"labels_1 = labels_1[0:-1,1]\n",
"print(\"Done.\")\n",
"\n",
"\n",
"print(\"Preparing walber_labels.\")\n",
"labels_2 = []\n",
"with open(audio_path2+'labels.csv', mode='r',encoding='utf-8') as f:\n",
" reader = csv.reader(f)\n",
" for row in reader : \n",
" labels_2.append(row)\n",
"labels_2.sort(key=lambda x:x[0])\n",
"labels_2 = np.array(labels_2) #아...그냥이렇게하면 넘피배열로 바꿀수있구나ㅠ\n",
"labels_2 = labels_2[0:6000,1]\n",
"print(\"Done.\")\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preparing ff1010_melspectogram.\n",
"part1_done\n",
"part2_done.\n",
"part3_done\n",
"part4_done.\n"
]
},
{
"data": {
"text/plain": [
"(7690, 20000)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"# prepare ff1010_melspecotograms\n",
"print(\"Preparing ff1010_melspectogram.\")\n",
"mel_spectogram_1 = []\n",
"with open(audio_path+'mel_spec.csv', mode='r',encoding='utf-8') as f:\n",
" reader = csv.reader(f)\n",
" next(reader)\n",
" for row in reader : \n",
" mel_spectogram_1.append(row)\n",
"print('Done')\n",
"\n",
"mel_spectogram_1 = np.array(mel_spectogram_1)\n",
"mel_spectogram_1= mel_spectogram_1[:,1:]\n",
"\n",
"np.shape(mel_spectogram_1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preparing ff1010_melspectogram.\n",
"part1\n",
"part2\n",
"Done.\n"
]
},
{
"data": {
"text/plain": [
"(6000, 20000)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# prepare ff1010_melspecotograms\n",
"print(\"Preparing walber_melspectogram.\")\n",
"mel_spectogram_2 = []\n",
"with open(audio_path2+'mel_spec.csv', mode='r',encoding='utf-8') as f:\n",
" reader = csv.reader(f)\n",
" next(reader)\n",
" for row in reader : \n",
" mel_spectogram_2.append(row)\n",
"print('Done')\n",
"\n",
"\n",
"mel_spectogram_2 = np.array(mel_spectogram_2)\n",
"mel_spectogram_2= mel_spectogram_2[:,1:]\n",
"\n",
"np.shape(mel_spectogram_2)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(13690,)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"MODEL_SAVE_FOLDER_PATH = './model/'\n",
"\n",
"if not os.path.exists(MODEL_SAVE_FOLDER_PATH):\n",
" os.mkdir(MODEL_SAVE_FOLDER_PATH)\n",
"\n",
"model_path = MODEL_SAVE_FOLDER_PATH + 'bird_sound-' + '{epoch:02d}-{val_loss:.4f}.hdf5'\n",
"\n",
"cb_checkpoint = ModelCheckpoint(filepath=model_path, monitor='val_loss',\n",
" verbose=1, save_best_only=True)\n",
"\n",
"cb_early_stopping = EarlyStopping(monitor='val_loss', patience=50)\n",
"\n",
"\n",
"ALL_Spectrogram = np.concatenate((mel_spectogram_1,mel_spectogram_2),axis=0) \n",
"X_train = ALL_Spectrogram[:14000,-1]\n",
"X_train = np.reshape(X_train,(14000,40,500,1))\n",
"X_test = ALL_Spectrogram[14000:,-1]\n",
"X_test = np.reshape(X_test,(14000,40,500,1))\n",
"\n",
"ALL_Labels = np.concatenate((labels_1,labels_2),axis=0) \n",
"Y_train = ALL_Labels[:14000,-1]\n",
"Y_train = np.reshape(Y_train,(14000))\n",
"Y_test = ALL_Labels[14000:,-1]\n",
"Y_test = np.reshape(Y_test,(14000))\n",
"np.shape(Y_train)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(None, 40, 500, 96)\n",
"(None, 8, 500, 96)\n",
"(None, 8, 500, 96)\n",
"(None, 4, 500, 96)\n",
"(None, 4, 500, 96)\n",
"(None, 2, 500, 96)\n",
"(None, 2, 500, 96)\n",
"(None, 1, 500, 96)\n",
"(None, 96, 500)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/ipykernel_launcher.py:54: UserWarning: Update your `GRU` call to the Keras 2 API: `GRU(return_sequences=True, units=500)`\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(None, 96, 500)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/ipykernel_launcher.py:57: UserWarning: Update your `GRU` call to the Keras 2 API: `GRU(return_sequences=True, units=500)`\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(None, 96, 500)\n",
"(None, 96, 500, 1)\n",
"(None, 96, 1, 1)\n",
"Train on 10267 samples, validate on 3423 samples\n",
"Epoch 1/50\n",
" - 431s - loss: 0.3637 - acc: 0.8467 - val_loss: 0.4091 - val_acc: 0.7885\n",
"\n",
"Epoch 00001: val_loss did not improve from 0.40740\n",
"Epoch 2/50\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-9-ff0adce6f8b3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.25\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 78\u001b[0;31m callbacks=[cb_checkpoint, cb_early_stopping])\n\u001b[0m\u001b[1;32m 79\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[0;31m# print('\\nAccuracy: {:.4f}'.format(model.evaluate(X_validation, Y_validation)[1]))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)\u001b[0m\n\u001b[1;32m 1040\u001b[0m \u001b[0minitial_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitial_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1041\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1042\u001b[0;31m validation_steps=validation_steps)\n\u001b[0m\u001b[1;32m 1043\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1044\u001b[0m def evaluate(self, x=None, y=None,\n",
"\u001b[0;32m~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/engine/training_arrays.py\u001b[0m in \u001b[0;36mfit_loop\u001b[0;34m(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0;31m# Do not slice the training phase flag.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m ins_batch = slice_arrays(\n\u001b[0;32m--> 185\u001b[0;31m ins[:-1], batch_ids) + [ins[-1]]\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0mins_batch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mslice_arrays\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_ids\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/utils/generic_utils.py\u001b[0m in \u001b[0;36mslice_arrays\u001b[0;34m(arrays, start, stop)\u001b[0m\n\u001b[1;32m 505\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'shape'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 506\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtolist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 507\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;32mNone\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0marrays\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 508\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 509\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;32mNone\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstop\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0marrays\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/keras/utils/generic_utils.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 505\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'shape'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 506\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtolist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 507\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;32mNone\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0marrays\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 508\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 509\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;32mNone\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstop\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0marrays\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"import keras.backend.tensorflow_backend as K\n",
"def CRNN() : \n",
" model = Sequential()\n",
" model.add(Conv2D(96, kernel_size=(5, 5), input_shape=(40, 500,1), padding='same',activation='relu')) #어쩌면 40,500만해야할지두\n",
" print(model.output_shape)\n",
" model.add(BatchNormalization())\n",
" model.add(MaxPooling2D(pool_size=(5,1)))\n",
" model.add(Dropout(0.25))\n",
" print(model.output_shape)\n",
"\n",
" model.add(Conv2D(96, (5, 5), padding='same',activation='relu'))\n",
" print(model.output_shape)\n",
" model.add(BatchNormalization())\n",
" model.add(MaxPooling2D(pool_size=(2,1)))\n",
" model.add(Dropout(0.25))\n",
" print(model.output_shape)\n",
"\n",
" model.add(Conv2D(96, (5, 5), padding='same',activation='relu'))\n",
" print(model.output_shape)\n",
" model.add(BatchNormalization())\n",
" model.add(MaxPooling2D(pool_size=(2,1)))\n",
" model.add(Dropout(0.25))\n",
" print(model.output_shape)\n",
"\n",
" model.add(Conv2D(96, (5, 5), padding='same', activation='relu'))\n",
" print(model.output_shape)\n",
" model.add(BatchNormalization())\n",
" model.add(MaxPooling2D(pool_size=(2,1)))\n",
" model.add(Dropout(0.25))\n",
" print(model.output_shape)\n",
"\n",
" model.add(Reshape((96,500))) #문제될거같은데..\n",
" print(model.output_shape)\n",
"\n",
" model.add(GRU(output_dim=500, return_sequences=True))\n",
" print(model.output_shape)\n",
"\n",
" model.add(GRU(output_dim=500, return_sequences=True))\n",
" print(model.output_shape)\n",
"\n",
" model.add(Reshape((96,500,1))) #문제될거같은데..2\n",
" print(model.output_shape)\n",
"\n",
" model.add(MaxPooling2D(pool_size=(1,500)))\n",
" print(model.output_shape)\n",
"\n",
" model.add(Flatten())\n",
" model.add(Dense(1, activation='sigmoid'))\n",
" model = multi_gpu_model(gpunum)\n",
" model.compile(loss='binary_crossentropy',\n",
" optimizer='adam',\n",
" metrics=['accuracy'])\n",
" # model.load_weights(MODEL_SAVE_FOLDER_PATH + 'bird_sound-' + '17-0.3943.hdf5')\n",
"\n",
" return model\n",
"\n",
"\n",
"def CRNN_Training(model) : \n",
"\n",
" history = model.fit(X_train, Y_train, \n",
" validation_split=0.25,\n",
" epochs=50, batch_size=64, verbose=2,\n",
" callbacks=[cb_checkpoint, cb_early_stopping])\n",
" \n",
" y_vloss = history.history['val_loss']\n",
" y_loss = history.history['loss']\n",
"\n",
" x_len = numpy.arange(len(y_loss))\n",
" plt.plot(x_len, y_loss, marker='.', c='blue', label=\"Train-set Loss\")\n",
" plt.plot(x_len, y_vloss, marker='.', c='red', label=\"Validation-set Loss\")\n",
"\n",
" plt.legend(loc='upper right')\n",
" plt.grid()\n",
" plt.xlabel('epoch')\n",
" plt.ylabel('loss')\n",
" plt.show()\n",
" \n",
" return model\n",
" \n",
"def CRNN_EVALUATE(model):\n",
" score = model.evaluate(X_test,Y_test,batch_size=64,verbose=2)\n",
" print(\"%s: %.2f%%\" % (model.metrics_names[1], scores[1]*100))\n",
" \n",
" false_positive_rate, true_positive_rate, thresholds = roc_curve(Y_test, model.predict(X_test).ravel())\n",
" print auc(false_positive_rate, true_positive_rate)\n",
" return model\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Layer = CRNN()\n",
"Layer = CRNN_Training(Layer)\n",
"Layer = CRNN_EVALUATE(Layer)\n",
"# RECALL이 중요\n",
"# TruePositive / ( TruePositive + TrueNegative )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"Finally,\n",
"for the bulbul submission, from each spectrogram we subtract\n",
"its mean over time, as a simple way of removing frequency-\n",
"dependent (colored) noise\n",
"\n",
"-> time axis의 평균\n",
"'''\n",
"'''\n",
"\n",
"the feature maps\n",
"of the last convolutional layer are stacked over the frequency -> frequency axis\n",
"axis and fed to 2 gated recurrent unit (GRU)\n",
"'''\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}