v1.d.ts 107 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/**
 * Copyright 2019 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
import { GaxiosPromise } from 'gaxios';
import { Compute, JWT, OAuth2Client, UserRefreshClient } from 'google-auth-library';
import { APIRequestContext, BodyResponseCallback, GlobalOptions, GoogleConfigurable, MethodOptions } from 'googleapis-common';
export declare namespace remotebuildexecution_v1 {
    interface Options extends GlobalOptions {
        version: 'v1';
    }
    interface StandardParameters {
        /**
         * V1 error format.
         */
        '$.xgafv'?: string;
        /**
         * OAuth access token.
         */
        access_token?: string;
        /**
         * Data format for response.
         */
        alt?: string;
        /**
         * JSONP
         */
        callback?: string;
        /**
         * Selector specifying which fields to include in a partial response.
         */
        fields?: string;
        /**
         * API key. Your API key identifies your project and provides you with API
         * access, quota, and reports. Required unless you provide an OAuth 2.0
         * token.
         */
        key?: string;
        /**
         * OAuth 2.0 token for the current user.
         */
        oauth_token?: string;
        /**
         * Returns response with indentations and line breaks.
         */
        prettyPrint?: boolean;
        /**
         * Available to use for quota purposes for server-side applications. Can be
         * any arbitrary string assigned to a user, but should not exceed 40
         * characters.
         */
        quotaUser?: string;
        /**
         * Legacy upload protocol for media (e.g. "media", "multipart").
         */
        uploadType?: string;
        /**
         * Upload protocol for media (e.g. "raw", "multipart").
         */
        upload_protocol?: string;
    }
    /**
     * Remote Build Execution API
     *
     * Supplies a Remote Execution API service for tools such as bazel.
     *
     * @example
     * const {google} = require('googleapis');
     * const remotebuildexecution = google.remotebuildexecution('v1');
     *
     * @namespace remotebuildexecution
     * @type {Function}
     * @version v1
     * @variation v1
     * @param {object=} options Options for Remotebuildexecution
     */
    class Remotebuildexecution {
        context: APIRequestContext;
        media: Resource$Media;
        operations: Resource$Operations;
        projects: Resource$Projects;
        v1: Resource$V1;
        constructor(options: GlobalOptions, google?: GoogleConfigurable);
    }
    /**
     * An `Action` captures all the information about an execution which is
     * required to reproduce it.  `Action`s are the core component of the
     * [Execution] service. A single `Action` represents a repeatable action that
     * can be performed by the execution service. `Action`s can be succinctly
     * identified by the digest of their wire format encoding and, once an
     * `Action` has been executed, will be cached in the action cache. Future
     * requests can then use the cached result rather than needing to run afresh.
     * When a server completes execution of an Action, it MAY choose to cache the
     * result in the ActionCache unless `do_not_cache` is `true`. Clients SHOULD
     * expect the server to do so. By default, future calls to Execute the same
     * `Action` will also serve their results from the cache. Clients must take
     * care to understand the caching behaviour. Ideally, all `Action`s will be
     * reproducible so that serving a result from cache is always desirable and
     * correct.
     */
    interface Schema$BuildBazelRemoteExecutionV2Action {
        /**
         * The digest of the Command to run, which MUST be present in the
         * ContentAddressableStorage.
         */
        commandDigest?: Schema$BuildBazelRemoteExecutionV2Digest;
        /**
         * If true, then the `Action`'s result cannot be cached.
         */
        doNotCache?: boolean;
        /**
         * The digest of the root Directory for the input files. The files in the
         * directory tree are available in the correct location on the build machine
         * before the command is executed. The root directory, as well as every
         * subdirectory and content blob referred to, MUST be in the
         * ContentAddressableStorage.
         */
        inputRootDigest?: Schema$BuildBazelRemoteExecutionV2Digest;
        /**
         * A timeout after which the execution should be killed. If the timeout is
         * absent, then the client is specifying that the execution should continue
         * as long as the server will let it. The server SHOULD impose a timeout if
         * the client does not specify one, however, if the client does specify a
         * timeout that is longer than the server's maximum timeout, the server
         * MUST reject the request.  The timeout is a part of the Action message,
         * and therefore two `Actions` with different timeouts are different, even
         * if they are otherwise identical. This is because, if they were not,
         * running an `Action` with a lower timeout than is required might result in
         * a cache hit from an execution run with a longer timeout, hiding the fact
         * that the timeout is too short. By encoding it directly in the `Action`, a
         * lower timeout will result in a cache miss and the execution timeout will
         * fail immediately, rather than whenever the cache entry gets evicted.
         */
        timeout?: string;
    }
    /**
     * An ActionResult represents the result of an Action being run.
     */
    interface Schema$BuildBazelRemoteExecutionV2ActionResult {
        /**
         * The details of the execution that originally produced this result.
         */
        executionMetadata?: Schema$BuildBazelRemoteExecutionV2ExecutedActionMetadata;
        /**
         * The exit code of the command.
         */
        exitCode?: number;
        /**
         * The output directories of the action. For each output directory requested
         * in the `output_directories` field of the Action, if the corresponding
         * directory existed after the action completed, a single entry will be
         * present in the output list, which will contain the digest of a Tree
         * message containing the directory tree, and the path equal exactly to the
         * corresponding Action output_directories member.  As an example, suppose
         * the Action had an output directory `a/b/dir` and the execution produced
         * the following contents in `a/b/dir`: a file named `bar` and a directory
         * named `foo` with an executable file named `baz`. Then, output_directory
         * will contain (hashes shortened for readability):  ```json //
         * OutputDirectory proto: {   path: "a/b/dir"   tree_digest: {
         * hash: "4a73bc9d03...",     size: 55   } } // Tree proto with
         * hash "4a73bc9d03..." and size 55: {   root: {     files: [ {
         * name: "bar",         digest: {           hash:
         * "4a73bc9d03...",           size: 65534         }       }     ],
         * directories: [       {         name: "foo",         digest: {
         * hash: "4cf2eda940...",           size: 43         }       } ]
         * }   children : {     // (Directory proto with hash
         * "4cf2eda940..." and size 43)     files: [       {         name:
         * "baz",         digest: {           hash:
         * "b2c941073e...",           size: 1294,         },
         * is_executable: true       }     ]   } } ```
         */
        outputDirectories?: Schema$BuildBazelRemoteExecutionV2OutputDirectory[];
        /**
         * The output directories of the action that are symbolic links to other
         * directories. Those may be links to other output directories, or input
         * directories, or even absolute paths outside of the working directory, if
         * the server supports SymlinkAbsolutePathStrategy.ALLOWED. For each output
         * directory requested in the `output_directories` field of the Action, if
         * the directory file existed after the action completed, a single entry
         * will be present either in this field, or in the `output_directories`
         * field, if the directory was not a symbolic link.  If the action does not
         * produce the requested output, or produces a file where a directory is
         * expected or vice versa, then that output will be omitted from the list.
         * The server is free to arrange the output list as desired; clients MUST
         * NOT assume that the output list is sorted.
         */
        outputDirectorySymlinks?: Schema$BuildBazelRemoteExecutionV2OutputSymlink[];
        /**
         * The output files of the action. For each output file requested in the
         * `output_files` field of the Action, if the corresponding file existed
         * after the action completed, a single entry will be present either in this
         * field, or in the output_file_symlinks field, if the file was a symbolic
         * link to another file.  If the action does not produce the requested
         * output, or produces a directory where a regular file is expected or vice
         * versa, then that output will be omitted from the list. The server is free
         * to arrange the output list as desired; clients MUST NOT assume that the
         * output list is sorted.
         */
        outputFiles?: Schema$BuildBazelRemoteExecutionV2OutputFile[];
        /**
         * The output files of the action that are symbolic links to other files.
         * Those may be links to other output files, or input files, or even
         * absolute paths outside of the working directory, if the server supports
         * SymlinkAbsolutePathStrategy.ALLOWED. For each output file requested in
         * the `output_files` field of the Action, if the corresponding file existed
         * after the action completed, a single entry will be present either in this
         * field, or in the `output_files` field, if the file was not a symbolic
         * link.  If the action does not produce the requested output, or produces a
         * directory where a regular file is expected or vice versa, then that
         * output will be omitted from the list. The server is free to arrange the
         * output list as desired; clients MUST NOT assume that the output list is
         * sorted.
         */
        outputFileSymlinks?: Schema$BuildBazelRemoteExecutionV2OutputSymlink[];
        /**
         * The digest for a blob containing the standard error of the action, which
         * can be retrieved from the ContentAddressableStorage. See `stderr_raw` for
         * when this will be set.
         */
        stderrDigest?: Schema$BuildBazelRemoteExecutionV2Digest;
        /**
         * The standard error buffer of the action. The server will determine, based
         * on the size of the buffer, whether to return it in raw form or to return
         * a digest in `stderr_digest` that points to the buffer. If neither is set,
         * then the buffer is empty. The client SHOULD NOT assume it will get one of
         * the raw buffer or a digest on any given request and should be prepared to
         * handle either.
         */
        stderrRaw?: string;
        /**
         * The digest for a blob containing the standard output of the action, which
         * can be retrieved from the ContentAddressableStorage. See `stdout_raw` for
         * when this will be set.
         */
        stdoutDigest?: Schema$BuildBazelRemoteExecutionV2Digest;
        /**
         * The standard output buffer of the action. The server will determine,
         * based on the size of the buffer, whether to return it in raw form or to
         * return a digest in `stdout_digest` that points to the buffer. If neither
         * is set, then the buffer is empty. The client SHOULD NOT assume it will
         * get one of the raw buffer or a digest on any given request and should be
         * prepared to handle either.
         */
        stdoutRaw?: string;
    }
    /**
     * A `Command` is the actual command executed by a worker running an Action
     * and specifications of its environment.  Except as otherwise required, the
     * environment (such as which system libraries or binaries are available, and
     * what filesystems are mounted where) is defined by and specific to the
     * implementation of the remote execution API.
     */
    interface Schema$BuildBazelRemoteExecutionV2Command {
        /**
         * The arguments to the command. The first argument must be the path to the
         * executable, which must be either a relative path, in which case it is
         * evaluated with respect to the input root, or an absolute path.
         */
        arguments?: string[];
        /**
         * The environment variables to set when running the program. The worker may
         * provide its own default environment variables; these defaults can be
         * overridden using this field. Additional variables can also be specified.
         * In order to ensure that equivalent Commands always hash to the same
         * value, the environment variables MUST be lexicographically sorted by
         * name. Sorting of strings is done by code point, equivalently, by the
         * UTF-8 bytes.
         */
        environmentVariables?: Schema$BuildBazelRemoteExecutionV2CommandEnvironmentVariable[];
        /**
         * A list of the output directories that the client expects to retrieve from
         * the action. Only the listed directories will be returned (an entire
         * directory structure will be returned as a Tree message digest, see
         * OutputDirectory), as well as files listed in `output_files`. Other files
         * or directories that may be created during command execution are
         * discarded.  The paths are relative to the working directory of the action
         * execution. The paths are specified using a single forward slash (`/`) as
         * a path separator, even if the execution platform natively uses a
         * different separator. The path MUST NOT include a trailing slash, nor a
         * leading slash, being a relative path. The special value of empty string
         * is allowed, although not recommended, and can be used to capture the
         * entire working directory tree, including inputs.  In order to ensure
         * consistent hashing of the same Action, the output paths MUST be sorted
         * lexicographically by code point (or, equivalently, by UTF-8 bytes).  An
         * output directory cannot be duplicated or have the same path as any of the
         * listed output files.  Directories leading up to the output directories
         * (but not the output directories themselves) are created by the worker
         * prior to execution, even if they are not explicitly part of the input
         * root.
         */
        outputDirectories?: string[];
        /**
         * A list of the output files that the client expects to retrieve from the
         * action. Only the listed files, as well as directories listed in
         * `output_directories`, will be returned to the client as output. Other
         * files or directories that may be created during command execution are
         * discarded.  The paths are relative to the working directory of the action
         * execution. The paths are specified using a single forward slash (`/`) as
         * a path separator, even if the execution platform natively uses a
         * different separator. The path MUST NOT include a trailing slash, nor a
         * leading slash, being a relative path.  In order to ensure consistent
         * hashing of the same Action, the output paths MUST be sorted
         * lexicographically by code point (or, equivalently, by UTF-8 bytes).  An
         * output file cannot be duplicated, be a parent of another output file, or
         * have the same path as any of the listed output directories.  Directories
         * leading up to the output files are created by the worker prior to
         * execution, even if they are not explicitly part of the input root.
         */
        outputFiles?: string[];
        /**
         * The platform requirements for the execution environment. The server MAY
         * choose to execute the action on any worker satisfying the requirements,
         * so the client SHOULD ensure that running the action on any such worker
         * will have the same result.
         */
        platform?: Schema$BuildBazelRemoteExecutionV2Platform;
        /**
         * The working directory, relative to the input root, for the command to run
         * in. It must be a directory which exists in the input tree. If it is left
         * empty, then the action is run in the input root.
         */
        workingDirectory?: string;
    }
    /**
     * An `EnvironmentVariable` is one variable to set in the running
     * program's environment.
     */
    interface Schema$BuildBazelRemoteExecutionV2CommandEnvironmentVariable {
        /**
         * The variable name.
         */
        name?: string;
        /**
         * The variable value.
         */
        value?: string;
    }
    /**
     * A content digest. A digest for a given blob consists of the size of the
     * blob and its hash. The hash algorithm to use is defined by the server, but
     * servers SHOULD use SHA-256.  The size is considered to be an integral part
     * of the digest and cannot be separated. That is, even if the `hash` field is
     * correctly specified but `size_bytes` is not, the server MUST reject the
     * request.  The reason for including the size in the digest is as follows: in
     * a great many cases, the server needs to know the size of the blob it is
     * about to work with prior to starting an operation with it, such as
     * flattening Merkle tree structures or streaming it to a worker. Technically,
     * the server could implement a separate metadata store, but this results in a
     * significantly more complicated implementation as opposed to having the
     * client specify the size up-front (or storing the size along with the digest
     * in every message where digests are embedded). This does mean that the API
     * leaks some implementation details of (what we consider to be) a reasonable
     * server implementation, but we consider this to be a worthwhile tradeoff.
     * When a `Digest` is used to refer to a proto message, it always refers to
     * the message in binary encoded form. To ensure consistent hashing, clients
     * and servers MUST ensure that they serialize messages according to the
     * following rules, even if there are alternate valid encodings for the same
     * message:  * Fields are serialized in tag order. * There are no unknown
     * fields. * There are no duplicate fields. * Fields are serialized according
     * to the default semantics for their type.  Most protocol buffer
     * implementations will always follow these rules when serializing, but care
     * should be taken to avoid shortcuts. For instance, concatenating two
     * messages to merge them may produce duplicate fields.
     */
    interface Schema$BuildBazelRemoteExecutionV2Digest {
        /**
         * The hash. In the case of SHA-256, it will always be a lowercase hex
         * string exactly 64 characters long.
         */
        hash?: string;
        /**
         * The size of the blob, in bytes.
         */
        sizeBytes?: string;
    }
    /**
     * A `Directory` represents a directory node in a file tree, containing zero
     * or more children FileNodes, DirectoryNodes and SymlinkNodes. Each `Node`
     * contains its name in the directory, either the digest of its content
     * (either a file blob or a `Directory` proto) or a symlink target, as well as
     * possibly some metadata about the file or directory.  In order to ensure
     * that two equivalent directory trees hash to the same value, the following
     * restrictions MUST be obeyed when constructing a a `Directory`:  * Every
     * child in the directory must have a path of exactly one segment.   Multiple
     * levels of directory hierarchy may not be collapsed. * Each child in the
     * directory must have a unique path segment (file name). * The files,
     * directories and symlinks in the directory must each be sorted   in
     * lexicographical order by path. The path strings must be sorted by code
     * point, equivalently, by UTF-8 bytes.  A `Directory` that obeys the
     * restrictions is said to be in canonical form.  As an example, the following
     * could be used for a file named `bar` and a directory named `foo` with an
     * executable file named `baz` (hashes shortened for readability):  ```json //
     * (Directory proto) {   files: [     {       name: "bar", digest: {
     * hash: "4a73bc9d03...",         size: 65534       }     }   ],
     * directories: [     {       name: "foo",       digest: { hash:
     * "4cf2eda940...",         size: 43       }     }   ] }  //
     * (Directory proto with hash "4cf2eda940..." and size 43) { files:
     * [     {       name: "baz",       digest: {         hash:
     * "b2c941073e...",         size: 1294,       }, is_executable: true
     * }   ] } ```
     */
    interface Schema$BuildBazelRemoteExecutionV2Directory {
        /**
         * The subdirectories in the directory.
         */
        directories?: Schema$BuildBazelRemoteExecutionV2DirectoryNode[];
        /**
         * The files in the directory.
         */
        files?: Schema$BuildBazelRemoteExecutionV2FileNode[];
        /**
         * The symlinks in the directory.
         */
        symlinks?: Schema$BuildBazelRemoteExecutionV2SymlinkNode[];
    }
    /**
     * A `DirectoryNode` represents a child of a Directory which is itself a
     * `Directory` and its associated metadata.
     */
    interface Schema$BuildBazelRemoteExecutionV2DirectoryNode {
        /**
         * The digest of the Directory object represented. See Digest for
         * information about how to take the digest of a proto message.
         */
        digest?: Schema$BuildBazelRemoteExecutionV2Digest;
        /**
         * The name of the directory.
         */
        name?: string;
    }
    /**
     * ExecutedActionMetadata contains details about a completed execution.
     */
    interface Schema$BuildBazelRemoteExecutionV2ExecutedActionMetadata {
        /**
         * When the worker completed executing the action command.
         */
        executionCompletedTimestamp?: string;
        /**
         * When the worker started executing the action command.
         */
        executionStartTimestamp?: string;
        /**
         * When the worker finished fetching action inputs.
         */
        inputFetchCompletedTimestamp?: string;
        /**
         * When the worker started fetching action inputs.
         */
        inputFetchStartTimestamp?: string;
        /**
         * When the worker finished uploading action outputs.
         */
        outputUploadCompletedTimestamp?: string;
        /**
         * When the worker started uploading action outputs.
         */
        outputUploadStartTimestamp?: string;
        /**
         * When was the action added to the queue.
         */
        queuedTimestamp?: string;
        /**
         * The name of the worker which ran the execution.
         */
        worker?: string;
        /**
         * When the worker completed the action, including all stages.
         */
        workerCompletedTimestamp?: string;
        /**
         * When the worker received the action.
         */
        workerStartTimestamp?: string;
    }
    /**
     * Metadata about an ongoing execution, which will be contained in the
     * metadata field of the Operation.
     */
    interface Schema$BuildBazelRemoteExecutionV2ExecuteOperationMetadata {
        /**
         * The digest of the Action being executed.
         */
        actionDigest?: Schema$BuildBazelRemoteExecutionV2Digest;
        stage?: string;
        /**
         * If set, the client can use this name with ByteStream.Read to stream the
         * standard error.
         */
        stderrStreamName?: string;
        /**
         * If set, the client can use this name with ByteStream.Read to stream the
         * standard output.
         */
        stdoutStreamName?: string;
    }
    /**
     * The response message for Execution.Execute, which will be contained in the
     * response field of the Operation.
     */
    interface Schema$BuildBazelRemoteExecutionV2ExecuteResponse {
        /**
         * True if the result was served from cache, false if it was executed.
         */
        cachedResult?: boolean;
        /**
         * Freeform informational message with details on the execution of the
         * action that may be displayed to the user upon failure or when requested
         * explicitly.
         */
        message?: string;
        /**
         * The result of the action.
         */
        result?: Schema$BuildBazelRemoteExecutionV2ActionResult;
        /**
         * An optional list of additional log outputs the server wishes to provide.
         * A server can use this to return execution-specific logs however it
         * wishes. This is intended primarily to make it easier for users to debug
         * issues that may be outside of the actual job execution, such as by
         * identifying the worker executing the action or by providing logs from the
         * worker's setup phase. The keys SHOULD be human readable so that a
         * client can display them to a user.
         */
        serverLogs?: {
            [key: string]: Schema$BuildBazelRemoteExecutionV2LogFile;
        };
        /**
         * If the status has a code other than `OK`, it indicates that the action
         * did not finish execution. For example, if the operation times out during
         * execution, the status will have a `DEADLINE_EXCEEDED` code. Servers MUST
         * use this field for errors in execution, rather than the error field on
         * the `Operation` object.  If the status code is other than `OK`, then the
         * result MUST NOT be cached. For an error status, the `result` field is
         * optional; the server may populate the output-, stdout-, and
         * stderr-related fields if it has any information available, such as the
         * stdout and stderr of a timed-out action.
         */
        status?: Schema$GoogleRpcStatus;
    }
    /**
     * A `FileNode` represents a single file and associated metadata.
     */
    interface Schema$BuildBazelRemoteExecutionV2FileNode {
        /**
         * The digest of the file's content.
         */
        digest?: Schema$BuildBazelRemoteExecutionV2Digest;
        /**
         * True if file is executable, false otherwise.
         */
        isExecutable?: boolean;
        /**
         * The name of the file.
         */
        name?: string;
    }
    /**
     * A `LogFile` is a log stored in the CAS.
     */
    interface Schema$BuildBazelRemoteExecutionV2LogFile {
        /**
         * The digest of the log contents.
         */
        digest?: Schema$BuildBazelRemoteExecutionV2Digest;
        /**
         * This is a hint as to the purpose of the log, and is set to true if the
         * log is human-readable text that can be usefully displayed to a user, and
         * false otherwise. For instance, if a command-line client wishes to print
         * the server logs to the terminal for a failed action, this allows it to
         * avoid displaying a binary file.
         */
        humanReadable?: boolean;
    }
    /**
     * An `OutputDirectory` is the output in an `ActionResult` corresponding to a
     * directory's full contents rather than a single file.
     */
    interface Schema$BuildBazelRemoteExecutionV2OutputDirectory {
        /**
         * The full path of the directory relative to the working directory. The
         * path separator is a forward slash `/`. Since this is a relative path, it
         * MUST NOT begin with a leading forward slash. The empty string value is
         * allowed, and it denotes the entire working directory.
         */
        path?: string;
        /**
         * The digest of the encoded Tree proto containing the directory's
         * contents.
         */
        treeDigest?: Schema$BuildBazelRemoteExecutionV2Digest;
    }
    /**
     * An `OutputFile` is similar to a FileNode, but it is used as an output in an
     * `ActionResult`. It allows a full file path rather than only a name.
     * `OutputFile` is binary-compatible with `FileNode`.
     */
    interface Schema$BuildBazelRemoteExecutionV2OutputFile {
        /**
         * The digest of the file's content.
         */
        digest?: Schema$BuildBazelRemoteExecutionV2Digest;
        /**
         * True if file is executable, false otherwise.
         */
        isExecutable?: boolean;
        /**
         * The full path of the file relative to the working directory, including
         * the filename. The path separator is a forward slash `/`. Since this is a
         * relative path, it MUST NOT begin with a leading forward slash.
         */
        path?: string;
    }
    /**
     * An `OutputSymlink` is similar to a Symlink, but it is used as an output in
     * an `ActionResult`.  `OutputSymlink` is binary-compatible with
     * `SymlinkNode`.
     */
    interface Schema$BuildBazelRemoteExecutionV2OutputSymlink {
        /**
         * The full path of the symlink relative to the working directory, including
         * the filename. The path separator is a forward slash `/`. Since this is a
         * relative path, it MUST NOT begin with a leading forward slash.
         */
        path?: string;
        /**
         * The target path of the symlink. The path separator is a forward slash
         * `/`. The target path can be relative to the parent directory of the
         * symlink or it can be an absolute path starting with `/`. Support for
         * absolute paths can be checked using the Capabilities API. The canonical
         * form forbids the substrings `/./` and `//` in the target path. `..`
         * components are allowed anywhere in the target path.
         */
        target?: string;
    }
    /**
     * A `Platform` is a set of requirements, such as hardware, operating system,
     * or compiler toolchain, for an Action's execution environment. A
     * `Platform` is represented as a series of key-value pairs representing the
     * properties that are required of the platform.
     */
    interface Schema$BuildBazelRemoteExecutionV2Platform {
        /**
         * The properties that make up this platform. In order to ensure that
         * equivalent `Platform`s always hash to the same value, the properties MUST
         * be lexicographically sorted by name, and then by value. Sorting of
         * strings is done by code point, equivalently, by the UTF-8 bytes.
         */
        properties?: Schema$BuildBazelRemoteExecutionV2PlatformProperty[];
    }
    /**
     * A single property for the environment. The server is responsible for
     * specifying the property `name`s that it accepts. If an unknown `name` is
     * provided in the requirements for an Action, the server SHOULD reject the
     * execution request. If permitted by the server, the same `name` may occur
     * multiple times.  The server is also responsible for specifying the
     * interpretation of property `value`s. For instance, a property describing
     * how much RAM must be available may be interpreted as allowing a worker with
     * 16GB to fulfill a request for 8GB, while a property describing the OS
     * environment on which the action must be performed may require an exact
     * match with the worker's OS.  The server MAY use the `value` of one or
     * more properties to determine how it sets up the execution environment, such
     * as by making specific system files available to the worker.
     */
    interface Schema$BuildBazelRemoteExecutionV2PlatformProperty {
        /**
         * The property name.
         */
        name?: string;
        /**
         * The property value.
         */
        value?: string;
    }
    /**
     * An optional Metadata to attach to any RPC request to tell the server about
     * an external context of the request. The server may use this for logging or
     * other purposes. To use it, the client attaches the header to the call using
     * the canonical proto serialization:  * name:
     * `build.bazel.remote.execution.v2.requestmetadata-bin` * contents: the
     * base64 encoded binary `RequestMetadata` message.
     */
    interface Schema$BuildBazelRemoteExecutionV2RequestMetadata {
        /**
         * An identifier that ties multiple requests to the same action. For
         * example, multiple requests to the CAS, Action Cache, and Execution API
         * are used in order to compile foo.cc.
         */
        actionId?: string;
        /**
         * An identifier to tie multiple tool invocations together. For example,
         * runs of foo_test, bar_test and baz_test on a post-submit of a given
         * patch.
         */
        correlatedInvocationsId?: string;
        /**
         * The details for the tool invoking the requests.
         */
        toolDetails?: Schema$BuildBazelRemoteExecutionV2ToolDetails;
        /**
         * An identifier that ties multiple actions together to a final result. For
         * example, multiple actions are required to build and run foo_test.
         */
        toolInvocationId?: string;
    }
    /**
     * A `SymlinkNode` represents a symbolic link.
     */
    interface Schema$BuildBazelRemoteExecutionV2SymlinkNode {
        /**
         * The name of the symlink.
         */
        name?: string;
        /**
         * The target path of the symlink. The path separator is a forward slash
         * `/`. The target path can be relative to the parent directory of the
         * symlink or it can be an absolute path starting with `/`. Support for
         * absolute paths can be checked using the Capabilities API. The canonical
         * form forbids the substrings `/./` and `//` in the target path. `..`
         * components are allowed anywhere in the target path.
         */
        target?: string;
    }
    /**
     * Details for the tool used to call the API.
     */
    interface Schema$BuildBazelRemoteExecutionV2ToolDetails {
        /**
         * Name of the tool, e.g. bazel.
         */
        toolName?: string;
        /**
         * Version of the tool used for the request, e.g. 5.0.3.
         */
        toolVersion?: string;
    }
    /**
     * A `Tree` contains all the Directory protos in a single directory Merkle
     * tree, compressed into one message.
     */
    interface Schema$BuildBazelRemoteExecutionV2Tree {
        /**
         * All the child directories: the directories referred to by the root and,
         * recursively, all its children. In order to reconstruct the directory
         * tree, the client must take the digests of each of the child directories
         * and then build up a tree starting from the `root`.
         */
        children?: Schema$BuildBazelRemoteExecutionV2Directory[];
        /**
         * The root directory in the tree.
         */
        root?: Schema$BuildBazelRemoteExecutionV2Directory;
    }
    /**
     * Media resource.
     */
    interface Schema$GoogleBytestreamMedia {
        /**
         * Name of the media resource.
         */
        resourceName?: string;
    }
    /**
     * CommandDuration contains the various duration metrics tracked when a bot
     * performs a command.
     */
    interface Schema$GoogleDevtoolsRemotebuildbotCommandDurations {
        /**
         * The time spent preparing the command to be run in a Docker container
         * (includes pulling the Docker image, if necessary).
         */
        dockerPrep?: string;
        /**
         * The time spent downloading the input files and constructing the working
         * directory.
         */
        download?: string;
        /**
         * The time spent executing the command (i.e., doing useful work).
         */
        execution?: string;
        /**
         * The timestamp when preparation is done and bot starts downloading files.
         */
        isoPrepDone?: string;
        /**
         * The time spent completing the command, in total.
         */
        overall?: string;
        /**
         * The time spent uploading the stdout logs.
         */
        stdout?: string;
        /**
         * The time spent uploading the output files.
         */
        upload?: string;
    }
    /**
     * CommandEvents contains counters for the number of warnings and errors that
     * occurred during the execution of a command.
     */
    interface Schema$GoogleDevtoolsRemotebuildbotCommandEvents {
        /**
         * Indicates whether we are using a cached Docker image (true) or had to
         * pull the Docker image (false) for this command.
         */
        dockerCacheHit?: boolean;
        /**
         * The input cache miss ratio.
         */
        inputCacheMiss?: number;
        /**
         * The number of errors reported.
         */
        numErrors?: string;
        /**
         * The number of warnings reported.
         */
        numWarnings?: string;
    }
    /**
     * The request used for `CreateInstance`.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaCreateInstanceRequest {
        /**
         * Specifies the instance to create. The name in the instance, if specified
         * in the instance, is ignored.
         */
        instance?: Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaInstance;
        /**
         * ID of the created instance. A valid `instance_id` must: be 6-50
         * characters long, contain only lowercase letters, digits, hyphens and
         * underscores, start with a lowercase letter, and end with a lowercase
         * letter or a digit.
         */
        instanceId?: string;
        /**
         * Resource name of the project containing the instance. Format:
         * `projects/[PROJECT_ID]`.
         */
        parent?: string;
    }
    /**
     * The request used for `CreateWorkerPool`.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaCreateWorkerPoolRequest {
        /**
         * Resource name of the instance in which to create the new worker pool.
         * Format: `projects/[PROJECT_ID]/instances/[INSTANCE_ID]`.
         */
        parent?: string;
        /**
         * ID of the created worker pool. A valid pool ID must: be 6-50 characters
         * long, contain only lowercase letters, digits, hyphens and underscores,
         * start with a lowercase letter, and end with a lowercase letter or a
         * digit.
         */
        poolId?: string;
        /**
         * Specifies the worker pool to create. The name in the worker pool, if
         * specified, is ignored.
         */
        workerPool?: Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaWorkerPool;
    }
    /**
     * The request used for `DeleteInstance`.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaDeleteInstanceRequest {
        /**
         * Name of the instance to delete. Format:
         * `projects/[PROJECT_ID]/instances/[INSTANCE_ID]`.
         */
        name?: string;
    }
    /**
     * The request used for DeleteWorkerPool.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaDeleteWorkerPoolRequest {
        /**
         * Name of the worker pool to delete. Format:
         * `projects/[PROJECT_ID]/instances/[INSTANCE_ID]/workerpools/[POOL_ID]`.
         */
        name?: string;
    }
    /**
     * The request used for `GetInstance`.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaGetInstanceRequest {
        /**
         * Name of the instance to retrieve. Format:
         * `projects/[PROJECT_ID]/instances/[INSTANCE_ID]`.
         */
        name?: string;
    }
    /**
     * The request used for GetWorkerPool.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaGetWorkerPoolRequest {
        /**
         * Name of the worker pool to retrieve. Format:
         * `projects/[PROJECT_ID]/instances/[INSTANCE_ID]/workerpools/[POOL_ID]`.
         */
        name?: string;
    }
    /**
     * Instance conceptually encapsulates all Remote Build Execution resources for
     * remote builds. An instance consists of storage and compute resources (for
     * example, `ContentAddressableStorage`, `ActionCache`, `WorkerPools`) used
     * for running remote builds. All Remote Build Execution API calls are scoped
     * to an instance.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaInstance {
        /**
         * The location is a GCP region. Currently only `us-central1` is supported.
         */
        location?: string;
        /**
         * Output only. Whether stack driver logging is enabled for the instance.
         */
        loggingEnabled?: boolean;
        /**
         * Output only. Instance resource name formatted as:
         * `projects/[PROJECT_ID]/instances/[INSTANCE_ID]`. Name should not be
         * populated when creating an instance since it is provided in the
         * `instance_id` field.
         */
        name?: string;
        /**
         * Output only. State of the instance.
         */
        state?: string;
    }
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaListInstancesRequest {
        /**
         * Resource name of the project. Format: `projects/[PROJECT_ID]`.
         */
        parent?: string;
    }
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaListInstancesResponse {
        /**
         * The list of instances in a given project.
         */
        instances?: Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaInstance[];
    }
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaListWorkerPoolsRequest {
        /**
         * Resource name of the instance. Format:
         * `projects/[PROJECT_ID]/instances/[INSTANCE_ID]`.
         */
        parent?: string;
    }
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaListWorkerPoolsResponse {
        /**
         * The list of worker pools in a given instance.
         */
        workerPools?: Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaWorkerPool[];
    }
    /**
     * The request used for UpdateWorkerPool.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaUpdateWorkerPoolRequest {
        /**
         * The update mask applies to worker_pool. For the `FieldMask` definition,
         * see
         * https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#fieldmask
         * If an empty update_mask is provided, only the non-default valued field in
         * the worker pool field will be updated. Note that in order to update a
         * field to the default value (zero, false, empty string) an explicit
         * update_mask must be provided.
         */
        updateMask?: string;
        /**
         * Specifies the worker pool to update.
         */
        workerPool?: Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaWorkerPool;
    }
    /**
     * Defines the configuration to be used for a creating workers in the worker
     * pool.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaWorkerConfig {
        /**
         * Required. Size of the disk attached to the worker, in GB. See
         * https://cloud.google.com/compute/docs/disks/
         */
        diskSizeGb?: string;
        /**
         * Required. Disk Type to use for the worker. See [Storage
         * options](https://cloud.google.com/compute/docs/disks/#introduction).
         * Currently only `pd-standard` is supported.
         */
        diskType?: string;
        /**
         * Required. Machine type of the worker, such as `n1-standard-2`. See
         * https://cloud.google.com/compute/docs/machine-types for a list of
         * supported machine types. Note that `f1-micro` and `g1-small` are not yet
         * supported.
         */
        machineType?: string;
        /**
         * Minimum CPU platform to use when creating the worker. See [CPU
         * Platforms](https://cloud.google.com/compute/docs/cpu-platforms).
         */
        minCpuPlatform?: string;
        /**
         * Determines whether the worker is reserved (equivalent to a Compute Engine
         * on-demand VM and therefore won't be preempted). See [Preemptible
         * VMs](https://cloud.google.com/preemptible-vms/) for more details.
         */
        reserved?: boolean;
    }
    /**
     * A worker pool resource in the Remote Build Execution API.
     */
    interface Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaWorkerPool {
        /**
         * WorkerPool resource name formatted as:
         * `projects/[PROJECT_ID]/instances/[INSTANCE_ID]/workerpools/[POOL_ID]`.
         * name should not be populated when creating a worker pool since it is
         * provided in the `poolId` field.
         */
        name?: string;
        /**
         * Output only. State of the worker pool.
         */
        state?: string;
        /**
         * Specifies the properties, such as machine type and disk size, used for
         * creating workers in a worker pool.
         */
        workerConfig?: Schema$GoogleDevtoolsRemotebuildexecutionAdminV1alphaWorkerConfig;
        /**
         * The desired number of workers in the worker pool. Must be a value between
         * 0 and 1000.
         */
        workerCount?: string;
    }
    /**
     * An ActionResult represents the result of an Action being run.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testActionResult {
        /**
         * The exit code of the command.
         */
        exitCode?: number;
        /**
         * The output directories of the action. For each output directory requested
         * in the `output_directories` field of the Action, if the corresponding
         * directory existed after the action completed, a single entry will be
         * present in the output list, which will contain the digest of a Tree
         * message containing the directory tree, and the path equal exactly to the
         * corresponding Action output_directories member. As an example, suppose
         * the Action had an output directory `a/b/dir` and the execution produced
         * the following contents in `a/b/dir`: a file named `bar` and a directory
         * named `foo` with an executable file named `baz`. Then, output_directory
         * will contain (hashes shortened for readability):  ```json //
         * OutputDirectory proto: {   path: "a/b/dir"   tree_digest: {
         * hash: "4a73bc9d03...",     size: 55   } } // Tree proto with
         * hash "4a73bc9d03..." and size 55: {   root: {     files: [ {
         * name: "bar",         digest: {           hash:
         * "4a73bc9d03...",           size: 65534         }       }     ],
         * directories: [       {         name: "foo",         digest: {
         * hash: "4cf2eda940...",           size: 43         }       } ]
         * }   children : {     // (Directory proto with hash
         * "4cf2eda940..." and size 43)     files: [       {         name:
         * "baz",         digest: {           hash:
         * "b2c941073e...",           size: 1294,         },
         * is_executable: true       }     ]   } } ```
         */
        outputDirectories?: Schema$GoogleDevtoolsRemoteexecutionV1testOutputDirectory[];
        /**
         * The output files of the action. For each output file requested in the
         * `output_files` field of the Action, if the corresponding file existed
         * after the action completed, a single entry will be present in the output
         * list.  If the action does not produce the requested output, or produces a
         * directory where a regular file is expected or vice versa, then that
         * output will be omitted from the list. The server is free to arrange the
         * output list as desired; clients MUST NOT assume that the output list is
         * sorted.
         */
        outputFiles?: Schema$GoogleDevtoolsRemoteexecutionV1testOutputFile[];
        /**
         * The digest for a blob containing the standard error of the action, which
         * can be retrieved from the ContentAddressableStorage. See `stderr_raw` for
         * when this will be set.
         */
        stderrDigest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
        /**
         * The standard error buffer of the action. The server will determine, based
         * on the size of the buffer, whether to return it in raw form or to return
         * a digest in `stderr_digest` that points to the buffer. If neither is set,
         * then the buffer is empty. The client SHOULD NOT assume it will get one of
         * the raw buffer or a digest on any given request and should be prepared to
         * handle either.
         */
        stderrRaw?: string;
        /**
         * The digest for a blob containing the standard output of the action, which
         * can be retrieved from the ContentAddressableStorage. See `stdout_raw` for
         * when this will be set.
         */
        stdoutDigest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
        /**
         * The standard output buffer of the action. The server will determine,
         * based on the size of the buffer, whether to return it in raw form or to
         * return a digest in `stdout_digest` that points to the buffer. If neither
         * is set, then the buffer is empty. The client SHOULD NOT assume it will
         * get one of the raw buffer or a digest on any given request and should be
         * prepared to handle either.
         */
        stdoutRaw?: string;
    }
    /**
     * A `Command` is the actual command executed by a worker running an Action.
     * Except as otherwise required, the environment (such as which system
     * libraries or binaries are available, and what filesystems are mounted
     * where) is defined by and specific to the implementation of the remote
     * execution API.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testCommand {
        /**
         * The arguments to the command. The first argument must be the path to the
         * executable, which must be either a relative path, in which case it is
         * evaluated with respect to the input root, or an absolute path.  The
         * working directory will always be the input root.
         */
        arguments?: string[];
        /**
         * The environment variables to set when running the program. The worker may
         * provide its own default environment variables; these defaults can be
         * overridden using this field. Additional variables can also be specified.
         * In order to ensure that equivalent `Command`s always hash to the same
         * value, the environment variables MUST be lexicographically sorted by
         * name. Sorting of strings is done by code point, equivalently, by the
         * UTF-8 bytes.
         */
        environmentVariables?: Schema$GoogleDevtoolsRemoteexecutionV1testCommandEnvironmentVariable[];
    }
    /**
     * An `EnvironmentVariable` is one variable to set in the running
     * program's environment.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testCommandEnvironmentVariable {
        /**
         * The variable name.
         */
        name?: string;
        /**
         * The variable value.
         */
        value?: string;
    }
    /**
     * A content digest. A digest for a given blob consists of the size of the
     * blob and its hash. The hash algorithm to use is defined by the server, but
     * servers SHOULD use SHA-256.  The size is considered to be an integral part
     * of the digest and cannot be separated. That is, even if the `hash` field is
     * correctly specified but `size_bytes` is not, the server MUST reject the
     * request.  The reason for including the size in the digest is as follows: in
     * a great many cases, the server needs to know the size of the blob it is
     * about to work with prior to starting an operation with it, such as
     * flattening Merkle tree structures or streaming it to a worker. Technically,
     * the server could implement a separate metadata store, but this results in a
     * significantly more complicated implementation as opposed to having the
     * client specify the size up-front (or storing the size along with the digest
     * in every message where digests are embedded). This does mean that the API
     * leaks some implementation details of (what we consider to be) a reasonable
     * server implementation, but we consider this to be a worthwhile tradeoff.
     * When a `Digest` is used to refer to a proto message, it always refers to
     * the message in binary encoded form. To ensure consistent hashing, clients
     * and servers MUST ensure that they serialize messages according to the
     * following rules, even if there are alternate valid encodings for the same
     * message. - Fields are serialized in tag order. - There are no unknown
     * fields. - There are no duplicate fields. - Fields are serialized according
     * to the default semantics for their type.  Most protocol buffer
     * implementations will always follow these rules when serializing, but care
     * should be taken to avoid shortcuts. For instance, concatenating two
     * messages to merge them may produce duplicate fields.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testDigest {
        /**
         * The hash. In the case of SHA-256, it will always be a lowercase hex
         * string exactly 64 characters long.
         */
        hash?: string;
        /**
         * The size of the blob, in bytes.
         */
        sizeBytes?: string;
    }
    /**
     * A `Directory` represents a directory node in a file tree, containing zero
     * or more children FileNodes and DirectoryNodes. Each `Node` contains its
     * name in the directory, the digest of its content (either a file blob or a
     * `Directory` proto), as well as possibly some metadata about the file or
     * directory.  In order to ensure that two equivalent directory trees hash to
     * the same value, the following restrictions MUST be obeyed when constructing
     * a a `Directory`:   - Every child in the directory must have a path of
     * exactly one segment.     Multiple levels of directory hierarchy may not be
     * collapsed.   - Each child in the directory must have a unique path segment
     * (file name).   - The files and directories in the directory must each be
     * sorted in     lexicographical order by path. The path strings must be
     * sorted by code     point, equivalently, by UTF-8 bytes.  A `Directory` that
     * obeys the restrictions is said to be in canonical form.  As an example, the
     * following could be used for a file named `bar` and a directory named `foo`
     * with an executable file named `baz` (hashes shortened for readability):
     * ```json // (Directory proto) {   files: [     {       name:
     * "bar",       digest: {         hash: "4a73bc9d03...",
     * size: 65534       }     }   ],   directories: [     {       name:
     * "foo",       digest: {         hash: "4cf2eda940...",
     * size: 43       }     }   ] }  // (Directory proto with hash
     * "4cf2eda940..." and size 43) {   files: [     {       name:
     * "baz",       digest: {         hash: "b2c941073e...",
     * size: 1294,       },       is_executable: true     }   ] } ```
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testDirectory {
        /**
         * The subdirectories in the directory.
         */
        directories?: Schema$GoogleDevtoolsRemoteexecutionV1testDirectoryNode[];
        /**
         * The files in the directory.
         */
        files?: Schema$GoogleDevtoolsRemoteexecutionV1testFileNode[];
    }
    /**
     * A `DirectoryNode` represents a child of a Directory which is itself a
     * `Directory` and its associated metadata.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testDirectoryNode {
        /**
         * The digest of the Directory object represented. See Digest for
         * information about how to take the digest of a proto message.
         */
        digest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
        /**
         * The name of the directory.
         */
        name?: string;
    }
    /**
     * Metadata about an ongoing execution, which will be contained in the
     * metadata field of the Operation.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testExecuteOperationMetadata {
        /**
         * The digest of the Action being executed.
         */
        actionDigest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
        stage?: string;
        /**
         * If set, the client can use this name with ByteStream.Read to stream the
         * standard error.
         */
        stderrStreamName?: string;
        /**
         * If set, the client can use this name with ByteStream.Read to stream the
         * standard output.
         */
        stdoutStreamName?: string;
    }
    /**
     * The response message for Execution.Execute, which will be contained in the
     * response field of the Operation.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testExecuteResponse {
        /**
         * True if the result was served from cache, false if it was executed.
         */
        cachedResult?: boolean;
        /**
         * The result of the action.
         */
        result?: Schema$GoogleDevtoolsRemoteexecutionV1testActionResult;
        /**
         * An optional list of additional log outputs the server wishes to provide.
         * A server can use this to return execution-specific logs however it
         * wishes. This is intended primarily to make it easier for users to debug
         * issues that may be outside of the actual job execution, such as by
         * identifying the worker executing the action or by providing logs from the
         * worker's setup phase. The keys SHOULD be human readable so that a
         * client can display them to a user.
         */
        serverLogs?: {
            [key: string]: Schema$GoogleDevtoolsRemoteexecutionV1testLogFile;
        };
        /**
         * If the status has a code other than `OK`, it indicates that the action
         * did not finish execution. For example, if the operation times out during
         * execution, the status will have a `DEADLINE_EXCEEDED` code. Servers MUST
         * use this field for errors in execution, rather than the error field on
         * the `Operation` object.  If the status code is other than `OK`, then the
         * result MUST NOT be cached. For an error status, the `result` field is
         * optional; the server may populate the output-, stdout-, and
         * stderr-related fields if it has any information available, such as the
         * stdout and stderr of a timed-out action.
         */
        status?: Schema$GoogleRpcStatus;
    }
    /**
     * A `FileNode` represents a single file and associated metadata.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testFileNode {
        /**
         * The digest of the file's content.
         */
        digest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
        /**
         * True if file is executable, false otherwise.
         */
        isExecutable?: boolean;
        /**
         * The name of the file.
         */
        name?: string;
    }
    /**
     * A `LogFile` is a log stored in the CAS.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testLogFile {
        /**
         * The digest of the log contents.
         */
        digest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
        /**
         * This is a hint as to the purpose of the log, and is set to true if the
         * log is human-readable text that can be usefully displayed to a user, and
         * false otherwise. For instance, if a command-line client wishes to print
         * the server logs to the terminal for a failed action, this allows it to
         * avoid displaying a binary file.
         */
        humanReadable?: boolean;
    }
    /**
     * An `OutputDirectory` is the output in an `ActionResult` corresponding to a
     * directory's full contents rather than a single file.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testOutputDirectory {
        /**
         * DEPRECATED: This field is deprecated and should no longer be used.
         */
        digest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
        /**
         * The full path of the directory relative to the working directory. The
         * path separator is a forward slash `/`. Since this is a relative path, it
         * MUST NOT begin with a leading forward slash. The empty string value is
         * allowed, and it denotes the entire working directory.
         */
        path?: string;
        /**
         * The digest of the encoded Tree proto containing the directory's
         * contents.
         */
        treeDigest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
    }
    /**
     * An `OutputFile` is similar to a FileNode, but it is tailored for output as
     * part of an `ActionResult`. It allows a full file path rather than only a
     * name, and allows the server to include content inline.  `OutputFile` is
     * binary-compatible with `FileNode`.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testOutputFile {
        /**
         * The raw content of the file.  This field may be used by the server to
         * provide the content of a file inline in an ActionResult and avoid
         * requiring that the client make a separate call to
         * [ContentAddressableStorage.GetBlob] to retrieve it.  The client SHOULD
         * NOT assume that it will get raw content with any request, and always be
         * prepared to retrieve it via `digest`.
         */
        content?: string;
        /**
         * The digest of the file's content.
         */
        digest?: Schema$GoogleDevtoolsRemoteexecutionV1testDigest;
        /**
         * True if file is executable, false otherwise.
         */
        isExecutable?: boolean;
        /**
         * The full path of the file relative to the input root, including the
         * filename. The path separator is a forward slash `/`. Since this is a
         * relative path, it MUST NOT begin with a leading forward slash.
         */
        path?: string;
    }
    /**
     * An optional Metadata to attach to any RPC request to tell the server about
     * an external context of the request. The server may use this for logging or
     * other purposes. To use it, the client attaches the header to the call using
     * the canonical proto serialization: name:
     * google.devtools.remoteexecution.v1test.requestmetadata-bin contents: the
     * base64 encoded binary RequestMetadata message.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testRequestMetadata {
        /**
         * An identifier that ties multiple requests to the same action. For
         * example, multiple requests to the CAS, Action Cache, and Execution API
         * are used in order to compile foo.cc.
         */
        actionId?: string;
        /**
         * An identifier to tie multiple tool invocations together. For example,
         * runs of foo_test, bar_test and baz_test on a post-submit of a given
         * patch.
         */
        correlatedInvocationsId?: string;
        /**
         * The details for the tool invoking the requests.
         */
        toolDetails?: Schema$GoogleDevtoolsRemoteexecutionV1testToolDetails;
        /**
         * An identifier that ties multiple actions together to a final result. For
         * example, multiple actions are required to build and run foo_test.
         */
        toolInvocationId?: string;
    }
    /**
     * Details for the tool used to call the API.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testToolDetails {
        /**
         * Name of the tool, e.g. bazel.
         */
        toolName?: string;
        /**
         * Version of the tool used for the request, e.g. 5.0.3.
         */
        toolVersion?: string;
    }
    /**
     * A `Tree` contains all the Directory protos in a single directory Merkle
     * tree, compressed into one message.
     */
    interface Schema$GoogleDevtoolsRemoteexecutionV1testTree {
        /**
         * All the child directories: the directories referred to by the root and,
         * recursively, all its children. In order to reconstruct the directory
         * tree, the client must take the digests of each of the child directories
         * and then build up a tree starting from the `root`.
         */
        children?: Schema$GoogleDevtoolsRemoteexecutionV1testDirectory[];
        /**
         * The root directory in the tree.
         */
        root?: Schema$GoogleDevtoolsRemoteexecutionV1testDirectory;
    }
    /**
     * AdminTemp is a prelimiary set of administration tasks. It's called
     * "Temp" because we do not yet know the best way to represent admin
     * tasks; it's possible that this will be entirely replaced in later
     * versions of this API. If this message proves to be sufficient, it will be
     * renamed in the alpha or beta release of this API.  This message (suitably
     * marshalled into a protobuf.Any) can be used as the inline_assignment field
     * in a lease; the lease assignment field should simply be `"admin"`
     * in these cases.  This message is heavily based on Swarming administration
     * tasks from the LUCI project
     * (http://github.com/luci/luci-py/appengine/swarming).
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2AdminTemp {
        /**
         * The argument to the admin action; see `Command` for semantics.
         */
        arg?: string;
        /**
         * The admin action; see `Command` for legal values.
         */
        command?: string;
    }
    /**
     * Describes a blob of binary content with its digest.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2Blob {
        /**
         * The contents of the blob.
         */
        contents?: string;
        /**
         * The digest of the blob. This should be verified by the receiver.
         */
        digest?: Schema$GoogleDevtoolsRemoteworkersV1test2Digest;
    }
    /**
     * DEPRECATED - use CommandResult instead. Describes the actual outputs from
     * the task.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2CommandOutputs {
        /**
         * exit_code is only fully reliable if the status' code is OK. If the
         * task exceeded its deadline or was cancelled, the process may still
         * produce an exit code as it is cancelled, and this will be populated, but
         * a successful (zero) is unlikely to be correct unless the status code is
         * OK.
         */
        exitCode?: number;
        /**
         * The output files. The blob referenced by the digest should contain one of
         * the following (implementation-dependent):    * A marshalled
         * DirectoryMetadata of the returned filesystem    * A LUCI-style .isolated
         * file
         */
        outputs?: Schema$GoogleDevtoolsRemoteworkersV1test2Digest;
    }
    /**
     * DEPRECATED - use CommandResult instead. Can be used as part of
     * CompleteRequest.metadata, or are part of a more sophisticated message.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2CommandOverhead {
        /**
         * The elapsed time between calling Accept and Complete. The server will
         * also have its own idea of what this should be, but this excludes the
         * overhead of the RPCs and the bot response time.
         */
        duration?: string;
        /**
         * The amount of time *not* spent executing the command (ie
         * uploading/downloading files).
         */
        overhead?: string;
    }
    /**
     * All information about the execution of a command, suitable for providing as
     * the Bots interface's `Lease.result` field.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2CommandResult {
        /**
         * The elapsed time between calling Accept and Complete. The server will
         * also have its own idea of what this should be, but this excludes the
         * overhead of the RPCs and the bot response time.
         */
        duration?: string;
        /**
         * The exit code of the process. An exit code of "0" should only
         * be trusted if `status` has a code of OK (otherwise it may simply be
         * unset).
         */
        exitCode?: number;
        /**
         * Implementation-dependent metadata about the task. Both servers and bots
         * may define messages which can be encoded here; bots are free to provide
         * metadata in multiple formats, and servers are free to choose one or more
         * of the values to process and ignore others. In particular, it is *not*
         * considered an error for the bot to provide the server with a field that
         * it doesn't know about.
         */
        metadata?: Array<{
            [key: string]: any;
        }>;
        /**
         * The output files. The blob referenced by the digest should contain one of
         * the following (implementation-dependent):    * A marshalled
         * DirectoryMetadata of the returned filesystem    * A LUCI-style .isolated
         * file
         */
        outputs?: Schema$GoogleDevtoolsRemoteworkersV1test2Digest;
        /**
         * The amount of time *not* spent executing the command (ie
         * uploading/downloading files).
         */
        overhead?: string;
        /**
         * An overall status for the command. For example, if the command timed out,
         * this might have a code of DEADLINE_EXCEEDED; if it was killed by the OS
         * for memory exhaustion, it might have a code of RESOURCE_EXHAUSTED.
         */
        status?: Schema$GoogleRpcStatus;
    }
    /**
     * Describes a shell-style task to execute, suitable for providing as the Bots
     * interface&#39;s `Lease.payload` field.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2CommandTask {
        /**
         * The expected outputs from the task.
         */
        expectedOutputs?: Schema$GoogleDevtoolsRemoteworkersV1test2CommandTaskOutputs;
        /**
         * The inputs to the task.
         */
        inputs?: Schema$GoogleDevtoolsRemoteworkersV1test2CommandTaskInputs;
        /**
         * The timeouts of this task.
         */
        timeouts?: Schema$GoogleDevtoolsRemoteworkersV1test2CommandTaskTimeouts;
    }
    /**
     * Describes the inputs to a shell-style task.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2CommandTaskInputs {
        /**
         * The command itself to run (e.g., argv).  This field should be passed
         * directly to the underlying operating system, and so it must be sensible
         * to that operating system. For example, on Windows, the first argument
         * might be &quot;C:\Windows\System32\ping.exe&quot; - that is, using drive
         * letters and backslashes. A command for a *nix system, on the other hand,
         * would use forward slashes.  All other fields in the RWAPI must
         * consistently use forward slashes, since those fields may be interpretted
         * by both the service and the bot.
         */
        arguments?: string[];
        /**
         * All environment variables required by the task.
         */
        environmentVariables?: Schema$GoogleDevtoolsRemoteworkersV1test2CommandTaskInputsEnvironmentVariable[];
        /**
         * The input filesystem to be set up prior to the task beginning. The
         * contents should be a repeated set of FileMetadata messages though other
         * formats are allowed if better for the implementation (eg, a LUCI-style
         * .isolated file).  This field is repeated since implementations might want
         * to cache the metadata, in which case it may be useful to break up
         * portions of the filesystem that change frequently (eg, specific input
         * files) from those that don&#39;t (eg, standard header files).
         */
        files?: Schema$GoogleDevtoolsRemoteworkersV1test2Digest[];
        /**
         * Inline contents for blobs expected to be needed by the bot to execute the
         * task. For example, contents of entries in `files` or blobs that are
         * indirectly referenced by an entry there.  The bot should check against
         * this list before downloading required task inputs to reduce the number of
         * communications between itself and the remote CAS server.
         */
        inlineBlobs?: Schema$GoogleDevtoolsRemoteworkersV1test2Blob[];
        /**
         * Directory from which a command is executed. It is a relative directory
         * with respect to the bot&#39;s working directory (i.e., &quot;./&quot;).
         * If it is non-empty, then it must exist under &quot;./&quot;. Otherwise,
         * &quot;./&quot; will be used.
         */
        workingDirectory?: string;
    }
    /**
     * An environment variable required by this task.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2CommandTaskInputsEnvironmentVariable {
        /**
         * The envvar name.
         */
        name?: string;
        /**
         * The envvar value.
         */
        value?: string;
    }
    /**
     * Describes the expected outputs of the command.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2CommandTaskOutputs {
        /**
         * A list of expected directories, relative to the execution root. All paths
         * MUST be delimited by forward slashes.
         */
        directories?: string[];
        /**
         * A list of expected files, relative to the execution root. All paths MUST
         * be delimited by forward slashes.
         */
        files?: string[];
        /**
         * The destination to which any stderr should be sent. The method by which
         * the bot should send the stream contents to that destination is not
         * defined in this API. As examples, the destination could be a file
         * referenced in the `files` field in this message, or it could be a URI
         * that must be written via the ByteStream API.
         */
        stderrDestination?: string;
        /**
         * The destination to which any stdout should be sent. The method by which
         * the bot should send the stream contents to that destination is not
         * defined in this API. As examples, the destination could be a file
         * referenced in the `files` field in this message, or it could be a URI
         * that must be written via the ByteStream API.
         */
        stdoutDestination?: string;
    }
    /**
     * Describes the timeouts associated with this task.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2CommandTaskTimeouts {
        /**
         * This specifies the maximum time that the task can run, excluding the time
         * required to download inputs or upload outputs. That is, the worker will
         * terminate the task if it runs longer than this.
         */
        execution?: string;
        /**
         * This specifies the maximum amount of time the task can be idle - that is,
         * go without generating some output in either stdout or stderr. If the
         * process is silent for more than the specified time, the worker will
         * terminate the task.
         */
        idle?: string;
        /**
         * If the execution or IO timeouts are exceeded, the worker will try to
         * gracefully terminate the task and return any existing logs. However,
         * tasks may be hard-frozen in which case this process will fail. This
         * timeout specifies how long to wait for a terminated task to shut down
         * gracefully (e.g. via SIGTERM) before we bring down the hammer (e.g.
         * SIGKILL on *nix, CTRL_BREAK_EVENT on Windows).
         */
        shutdown?: string;
    }
    /**
     * The CommandTask and CommandResult messages assume the existence of a
     * service that can serve blobs of content, identified by a hash and size
     * known as a &quot;digest.&quot; The method by which these blobs may be
     * retrieved is not specified here, but a model implementation is in the
     * Remote Execution API&#39;s &quot;ContentAddressibleStorage&quot; interface.
     * In the context of the RWAPI, a Digest will virtually always refer to the
     * contents of a file or a directory. The latter is represented by the
     * byte-encoded Directory message.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2Digest {
        /**
         * A string-encoded hash (eg &quot;1a2b3c&quot;, not the byte array [0x1a,
         * 0x2b, 0x3c]) using an implementation-defined hash algorithm (eg SHA-256).
         */
        hash?: string;
        /**
         * The size of the contents. While this is not strictly required as part of
         * an identifier (after all, any given hash will have exactly one canonical
         * size), it&#39;s useful in almost all cases when one might want to send or
         * retrieve blobs of content and is included here for this reason.
         */
        sizeBytes?: string;
    }
    /**
     * The contents of a directory. Similar to the equivalent message in the
     * Remote Execution API.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2Directory {
        /**
         * Any subdirectories
         */
        directories?: Schema$GoogleDevtoolsRemoteworkersV1test2DirectoryMetadata[];
        /**
         * The files in this directory
         */
        files?: Schema$GoogleDevtoolsRemoteworkersV1test2FileMetadata[];
    }
    /**
     * The metadata for a directory. Similar to the equivalent message in the
     * Remote Execution API.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2DirectoryMetadata {
        /**
         * A pointer to the contents of the directory, in the form of a marshalled
         * Directory message.
         */
        digest?: Schema$GoogleDevtoolsRemoteworkersV1test2Digest;
        /**
         * The path of the directory, as in FileMetadata.path.
         */
        path?: string;
    }
    /**
     * The metadata for a file. Similar to the equivalent message in the Remote
     * Execution API.
     */
    interface Schema$GoogleDevtoolsRemoteworkersV1test2FileMetadata {
        /**
         * If the file is small enough, its contents may also or alternatively be
         * listed here.
         */
        contents?: string;
        /**
         * A pointer to the contents of the file. The method by which a client
         * retrieves the contents from a CAS system is not defined here.
         */
        digest?: Schema$GoogleDevtoolsRemoteworkersV1test2Digest;
        /**
         * Properties of the file
         */
        isExecutable?: boolean;
        /**
         * The path of this file. If this message is part of the
         * CommandOutputs.outputs fields, the path is relative to the execution root
         * and must correspond to an entry in CommandTask.outputs.files. If this
         * message is part of a Directory message, then the path is relative to the
         * root of that directory. All paths MUST be delimited by forward slashes.
         */
        path?: string;
    }
    /**
     * The request message for Operations.CancelOperation.
     */
    interface Schema$GoogleLongrunningCancelOperationRequest {
    }
    /**
     * The response message for Operations.ListOperations.
     */
    interface Schema$GoogleLongrunningListOperationsResponse {
        /**
         * The standard List next-page token.
         */
        nextPageToken?: string;
        /**
         * A list of operations that matches the specified filter in the request.
         */
        operations?: Schema$GoogleLongrunningOperation[];
    }
    /**
     * This resource represents a long-running operation that is the result of a
     * network API call.
     */
    interface Schema$GoogleLongrunningOperation {
        /**
         * If the value is `false`, it means the operation is still in progress. If
         * `true`, the operation is completed, and either `error` or `response` is
         * available.
         */
        done?: boolean;
        /**
         * The error result of the operation in case of failure or cancellation.
         */
        error?: Schema$GoogleRpcStatus;
        /**
         * Service-specific metadata associated with the operation.  It typically
         * contains progress information and common metadata such as create time.
         * Some services might not provide such metadata.  Any method that returns a
         * long-running operation should document the metadata type, if any.
         */
        metadata?: {
            [key: string]: any;
        };
        /**
         * The server-assigned name, which is only unique within the same service
         * that originally returns it. If you use the default HTTP mapping, the
         * `name` should have the format of `operations/some/unique/name`.
         */
        name?: string;
        /**
         * The normal response of the operation in case of success.  If the original
         * method returns no data on success, such as `Delete`, the response is
         * `google.protobuf.Empty`.  If the original method is standard
         * `Get`/`Create`/`Update`, the response should be the resource.  For other
         * methods, the response should have the type `XxxResponse`, where `Xxx` is
         * the original method name.  For example, if the original method name is
         * `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
         */
        response?: {
            [key: string]: any;
        };
    }
    /**
     * A generic empty message that you can re-use to avoid defining duplicated
     * empty messages in your APIs. A typical example is to use it as the request
     * or the response type of an API method. For instance:      service Foo { rpc
     * Bar(google.protobuf.Empty) returns (google.protobuf.Empty);     }  The JSON
     * representation for `Empty` is empty JSON object `{}`.
     */
    interface Schema$GoogleProtobufEmpty {
    }
    /**
     * The `Status` type defines a logical error model that is suitable for
     * different programming environments, including REST APIs and RPC APIs. It is
     * used by [gRPC](https://github.com/grpc). The error model is designed to be:
     * - Simple to use and understand for most users - Flexible enough to meet
     * unexpected needs  # Overview  The `Status` message contains three pieces of
     * data: error code, error message, and error details. The error code should
     * be an enum value of google.rpc.Code, but it may accept additional error
     * codes if needed.  The error message should be a developer-facing English
     * message that helps developers *understand* and *resolve* the error. If a
     * localized user-facing error message is needed, put the localized message in
     * the error details or localize it in the client. The optional error details
     * may contain arbitrary information about the error. There is a predefined
     * set of error detail types in the package `google.rpc` that can be used for
     * common error conditions.  # Language mapping  The `Status` message is the
     * logical representation of the error model, but it is not necessarily the
     * actual wire format. When the `Status` message is exposed in different
     * client libraries and different wire protocols, it can be mapped
     * differently. For example, it will likely be mapped to some exceptions in
     * Java, but more likely mapped to some error codes in C.  # Other uses  The
     * error model and the `Status` message can be used in a variety of
     * environments, either with or without APIs, to provide a consistent
     * developer experience across different environments.  Example uses of this
     * error model include:  - Partial errors. If a service needs to return
     * partial errors to the client,     it may embed the `Status` in the normal
     * response to indicate the partial     errors.  - Workflow errors. A typical
     * workflow has multiple steps. Each step may     have a `Status` message for
     * error reporting.  - Batch operations. If a client uses batch request and
     * batch response, the     `Status` message should be used directly inside
     * batch response, one for     each error sub-response.  - Asynchronous
     * operations. If an API call embeds asynchronous operation     results in its
     * response, the status of those operations should be     represented directly
     * using the `Status` message.  - Logging. If some API errors are stored in
     * logs, the message `Status` could     be used directly after any stripping
     * needed for security/privacy reasons.
     */
    interface Schema$GoogleRpcStatus {
        /**
         * The status code, which should be an enum value of google.rpc.Code.
         */
        code?: number;
        /**
         * A list of messages that carry the error details.  There is a common set
         * of message types for APIs to use.
         */
        details?: Array<{
            [key: string]: any;
        }>;
        /**
         * A developer-facing error message, which should be in English. Any
         * user-facing error message should be localized and sent in the
         * google.rpc.Status.details field, or localized by the client.
         */
        message?: string;
    }
    /**
     * A Change indicates the most recent state of an element.
     */
    interface Schema$GoogleWatcherV1Change {
        /**
         * If true, this Change is followed by more Changes that are in the same
         * group as this Change.
         */
        continued?: boolean;
        /**
         * The actual change data. This field is present only when `state() ==
         * EXISTS` or `state() == ERROR`. Please see google.protobuf.Any about how
         * to use the Any type.
         */
        data?: {
            [key: string]: any;
        };
        /**
         * Name of the element, interpreted relative to the entity&#39;s actual
         * name. &quot;&quot; refers to the entity itself. The element name is a
         * valid UTF-8 string.
         */
        element?: string;
        /**
         * If present, provides a compact representation of all the messages that
         * have been received by the caller for the given entity, e.g., it could be
         * a sequence number or a multi-part timestamp/version vector. This marker
         * can be provided in the Request message, allowing the caller to resume the
         * stream watching at a specific point without fetching the initial state.
         */
        resumeMarker?: string;
        /**
         * The state of the `element`.
         */
        state?: string;
    }
    /**
     * A batch of Change messages.
     */
    interface Schema$GoogleWatcherV1ChangeBatch {
        /**
         * A list of Change messages.
         */
        changes?: Schema$GoogleWatcherV1Change[];
    }
    class Resource$Media {
        context: APIRequestContext;
        constructor(context: APIRequestContext);
        /**
         * remotebuildexecution.media.download
         * @desc Downloads media. Download is supported on the URI
         * `/v1/media/{+name}?alt=media`.
         * @alias remotebuildexecution.media.download
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.resourceName Name of the media that is being downloaded.  See ReadRequest.resource_name.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        download(params?: Params$Resource$Media$Download, options?: MethodOptions): GaxiosPromise<Schema$GoogleBytestreamMedia>;
        download(params: Params$Resource$Media$Download, options: MethodOptions | BodyResponseCallback<Schema$GoogleBytestreamMedia>, callback: BodyResponseCallback<Schema$GoogleBytestreamMedia>): void;
        download(params: Params$Resource$Media$Download, callback: BodyResponseCallback<Schema$GoogleBytestreamMedia>): void;
        download(callback: BodyResponseCallback<Schema$GoogleBytestreamMedia>): void;
        /**
         * remotebuildexecution.media.upload
         * @desc Uploads media. Upload is supported on the URI
         * `/upload/v1/media/{+name}`.
         * @alias remotebuildexecution.media.upload
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.resourceName Name of the media that is being downloaded.  See ReadRequest.resource_name.
         * @param  {object} params.resource Media resource metadata
         * @param {object} params.media Media object
         * @param {string} params.media.mimeType Media mime-type
         * @param {string|object} params.media.body Media body contents
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        upload(params?: Params$Resource$Media$Upload, options?: MethodOptions): GaxiosPromise<Schema$GoogleBytestreamMedia>;
        upload(params: Params$Resource$Media$Upload, options: MethodOptions | BodyResponseCallback<Schema$GoogleBytestreamMedia>, callback: BodyResponseCallback<Schema$GoogleBytestreamMedia>): void;
        upload(params: Params$Resource$Media$Upload, callback: BodyResponseCallback<Schema$GoogleBytestreamMedia>): void;
        upload(callback: BodyResponseCallback<Schema$GoogleBytestreamMedia>): void;
    }
    interface Params$Resource$Media$Download extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Name of the media that is being downloaded.  See
         * ReadRequest.resource_name.
         */
        resourceName?: string;
    }
    interface Params$Resource$Media$Upload extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * Name of the media that is being downloaded.  See
         * ReadRequest.resource_name.
         */
        resourceName?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleBytestreamMedia;
        /**
         * Media metadata
         */
        media?: {
            /**
             * Media mime-type
             */
            mimeType?: string;
            /**
             * Media body contents
             */
            body?: any;
        };
    }
    class Resource$Operations {
        context: APIRequestContext;
        constructor(context: APIRequestContext);
        /**
         * remotebuildexecution.operations.cancel
         * @desc Starts asynchronous cancellation on a long-running operation.  The
         * server makes a best effort to cancel the operation, but success is not
         * guaranteed.  If the server doesn't support this method, it returns
         * `google.rpc.Code.UNIMPLEMENTED`.  Clients can use Operations.GetOperation
         * or other methods to check whether the cancellation succeeded or whether
         * the operation completed despite cancellation. On successful cancellation,
         * the operation is not deleted; instead, it becomes an operation with an
         * Operation.error value with a google.rpc.Status.code of 1, corresponding
         * to `Code.CANCELLED`.
         * @alias remotebuildexecution.operations.cancel
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name The name of the operation resource to be cancelled.
         * @param {().GoogleLongrunningCancelOperationRequest} params.resource Request body data
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        cancel(params?: Params$Resource$Operations$Cancel, options?: MethodOptions): GaxiosPromise<Schema$GoogleProtobufEmpty>;
        cancel(params: Params$Resource$Operations$Cancel, options: MethodOptions | BodyResponseCallback<Schema$GoogleProtobufEmpty>, callback: BodyResponseCallback<Schema$GoogleProtobufEmpty>): void;
        cancel(params: Params$Resource$Operations$Cancel, callback: BodyResponseCallback<Schema$GoogleProtobufEmpty>): void;
        cancel(callback: BodyResponseCallback<Schema$GoogleProtobufEmpty>): void;
        /**
         * remotebuildexecution.operations.delete
         * @desc Deletes a long-running operation. This method indicates that the
         * client is no longer interested in the operation result. It does not
         * cancel the operation. If the server doesn't support this method, it
         * returns `google.rpc.Code.UNIMPLEMENTED`.
         * @alias remotebuildexecution.operations.delete
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name The name of the operation resource to be deleted.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        delete(params?: Params$Resource$Operations$Delete, options?: MethodOptions): GaxiosPromise<Schema$GoogleProtobufEmpty>;
        delete(params: Params$Resource$Operations$Delete, options: MethodOptions | BodyResponseCallback<Schema$GoogleProtobufEmpty>, callback: BodyResponseCallback<Schema$GoogleProtobufEmpty>): void;
        delete(params: Params$Resource$Operations$Delete, callback: BodyResponseCallback<Schema$GoogleProtobufEmpty>): void;
        delete(callback: BodyResponseCallback<Schema$GoogleProtobufEmpty>): void;
        /**
         * remotebuildexecution.operations.list
         * @desc Lists operations that match the specified filter in the request. If
         * the server doesn't support this method, it returns `UNIMPLEMENTED`. NOTE:
         * the `name` binding allows API services to override the binding to use
         * different resource name schemes, such as `users/x/operations`. To
         * override the binding, API services can add a binding such as
         * `"/v1/{name=users/x}/operations"` to their service configuration. For
         * backwards compatibility, the default name includes the operations
         * collection id, however overriding users must ensure the name binding is
         * the parent resource, without the operations collection id.
         * @alias remotebuildexecution.operations.list
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string=} params.filter The standard list filter.
         * @param {string} params.name The name of the operation's parent resource.
         * @param {integer=} params.pageSize The standard list page size.
         * @param {string=} params.pageToken The standard list page token.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        list(params?: Params$Resource$Operations$List, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunningListOperationsResponse>;
        list(params: Params$Resource$Operations$List, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunningListOperationsResponse>, callback: BodyResponseCallback<Schema$GoogleLongrunningListOperationsResponse>): void;
        list(params: Params$Resource$Operations$List, callback: BodyResponseCallback<Schema$GoogleLongrunningListOperationsResponse>): void;
        list(callback: BodyResponseCallback<Schema$GoogleLongrunningListOperationsResponse>): void;
    }
    interface Params$Resource$Operations$Cancel extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * The name of the operation resource to be cancelled.
         */
        name?: string;
        /**
         * Request body metadata
         */
        requestBody?: Schema$GoogleLongrunningCancelOperationRequest;
    }
    interface Params$Resource$Operations$Delete extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * The name of the operation resource to be deleted.
         */
        name?: string;
    }
    interface Params$Resource$Operations$List extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * The standard list filter.
         */
        filter?: string;
        /**
         * The name of the operation's parent resource.
         */
        name?: string;
        /**
         * The standard list page size.
         */
        pageSize?: number;
        /**
         * The standard list page token.
         */
        pageToken?: string;
    }
    class Resource$Projects {
        context: APIRequestContext;
        operations: Resource$Projects$Operations;
        constructor(context: APIRequestContext);
    }
    class Resource$Projects$Operations {
        context: APIRequestContext;
        constructor(context: APIRequestContext);
        /**
         * remotebuildexecution.projects.operations.get
         * @desc Gets the latest state of a long-running operation.  Clients can use
         * this method to poll the operation result at intervals as recommended by
         * the API service.
         * @alias remotebuildexecution.projects.operations.get
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string} params.name The name of the operation resource.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        get(params?: Params$Resource$Projects$Operations$Get, options?: MethodOptions): GaxiosPromise<Schema$GoogleLongrunningOperation>;
        get(params: Params$Resource$Projects$Operations$Get, options: MethodOptions | BodyResponseCallback<Schema$GoogleLongrunningOperation>, callback: BodyResponseCallback<Schema$GoogleLongrunningOperation>): void;
        get(params: Params$Resource$Projects$Operations$Get, callback: BodyResponseCallback<Schema$GoogleLongrunningOperation>): void;
        get(callback: BodyResponseCallback<Schema$GoogleLongrunningOperation>): void;
    }
    interface Params$Resource$Projects$Operations$Get extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * The name of the operation resource.
         */
        name?: string;
    }
    class Resource$V1 {
        context: APIRequestContext;
        constructor(context: APIRequestContext);
        /**
         * remotebuildexecution.watch
         * @desc Start a streaming RPC to get watch information from the server.
         * @alias remotebuildexecution.watch
         * @memberOf! ()
         *
         * @param {object} params Parameters for request
         * @param {string=} params.resumeMarker The `resume_marker` specifies how much of the existing underlying state is delivered to the client when the watch request is received by the system. The client can set this marker in one of the following ways to get different semantics:  *   Parameter is not specified or has the value "".     Semantics: Fetch initial state.     The client wants the entity's initial state to be delivered. See the     description in "Initial State".  *   Parameter is set to the string "now" (UTF-8 encoding).     Semantics: Fetch new changes only.     The client just wants to get the changes received by the system after     the watch point. The system may deliver changes from before the watch     point as well.  *   Parameter is set to a value received in an earlier     `Change.resume_marker` field while watching the same entity.     Semantics: Resume from a specific point.     The client wants to receive the changes from a specific point; this     value must correspond to a value received in the `Change.resume_marker`     field. The system may deliver changes from before the `resume_marker`     as well. If the system cannot resume the stream from this point (e.g.,     if it is too far behind in the stream), it can raise the     `FAILED_PRECONDITION` error.  An implementation MUST support an unspecified parameter and the empty string "" marker (initial state fetching) and the "now" marker. It need not support resuming from a specific point.
         * @param {string=} params.target The `target` value **must** be a valid URL path pointing to an entity to watch. Note that the service name **must** be removed from the target field (e.g., the target field must say "/foo/bar", not "myservice.googleapis.com/foo/bar"). A client is also allowed to pass system-specific parameters in the URL that are only obeyed by some implementations. Some parameters will be implementation-specific. However, some have predefined meaning and are listed here:   * recursive = true|false [default=false]    If set to true, indicates that the client wants to watch all elements    of entities in the subtree rooted at the entity's name in `target`. For    descendants that are not the immediate children of the target, the    `Change.element` will contain slashes.     Note that some namespaces and entities will not support recursive    watching. When watching such an entity, a client must not set recursive    to true. Otherwise, it will receive an `UNIMPLEMENTED` error.  Normal URL encoding must be used inside `target`.  For example, if a query parameter name or value, or the non-query parameter portion of `target` contains a special character, it must be %-encoded.  We recommend that clients and servers use their runtime's URL library to produce and consume target values.
         * @param {object} [options] Optionally override request options, such as `url`, `method`, and `encoding`.
         * @param {callback} callback The callback that handles the response.
         * @return {object} Request object
         */
        watch(params?: Params$Resource$V1$Watch, options?: MethodOptions): GaxiosPromise<Schema$GoogleWatcherV1ChangeBatch>;
        watch(params: Params$Resource$V1$Watch, options: MethodOptions | BodyResponseCallback<Schema$GoogleWatcherV1ChangeBatch>, callback: BodyResponseCallback<Schema$GoogleWatcherV1ChangeBatch>): void;
        watch(params: Params$Resource$V1$Watch, callback: BodyResponseCallback<Schema$GoogleWatcherV1ChangeBatch>): void;
        watch(callback: BodyResponseCallback<Schema$GoogleWatcherV1ChangeBatch>): void;
    }
    interface Params$Resource$V1$Watch extends StandardParameters {
        /**
         * Auth client or API Key for the request
         */
        auth?: string | OAuth2Client | JWT | Compute | UserRefreshClient;
        /**
         * The `resume_marker` specifies how much of the existing underlying state
         * is delivered to the client when the watch request is received by the
         * system. The client can set this marker in one of the following ways to
         * get different semantics:  *   Parameter is not specified or has the value
         * "".     Semantics: Fetch initial state.     The client wants the entity's
         * initial state to be delivered. See the     description in "Initial
         * State".  *   Parameter is set to the string "now" (UTF-8 encoding).
         * Semantics: Fetch new changes only.     The client just wants to get the
         * changes received by the system after     the watch point. The system may
         * deliver changes from before the watch     point as well.  *   Parameter
         * is set to a value received in an earlier     `Change.resume_marker` field
         * while watching the same entity.     Semantics: Resume from a specific
         * point.     The client wants to receive the changes from a specific point;
         * this     value must correspond to a value received in the
         * `Change.resume_marker`     field. The system may deliver changes from
         * before the `resume_marker`     as well. If the system cannot resume the
         * stream from this point (e.g.,     if it is too far behind in the stream),
         * it can raise the     `FAILED_PRECONDITION` error.  An implementation MUST
         * support an unspecified parameter and the empty string "" marker (initial
         * state fetching) and the "now" marker. It need not support resuming from a
         * specific point.
         */
        resumeMarker?: string;
        /**
         * The `target` value **must** be a valid URL path pointing to an entity to
         * watch. Note that the service name **must** be removed from the target
         * field (e.g., the target field must say "/foo/bar", not
         * "myservice.googleapis.com/foo/bar"). A client is also allowed to pass
         * system-specific parameters in the URL that are only obeyed by some
         * implementations. Some parameters will be implementation-specific.
         * However, some have predefined meaning and are listed here:   * recursive
         * = true|false [default=false]    If set to true, indicates that the client
         * wants to watch all elements    of entities in the subtree rooted at the
         * entity's name in `target`. For    descendants that are not the immediate
         * children of the target, the    `Change.element` will contain slashes.
         * Note that some namespaces and entities will not support recursive
         * watching. When watching such an entity, a client must not set recursive
         * to true. Otherwise, it will receive an `UNIMPLEMENTED` error.  Normal URL
         * encoding must be used inside `target`.  For example, if a query parameter
         * name or value, or the non-query parameter portion of `target` contains a
         * special character, it must be %-encoded.  We recommend that clients and
         * servers use their runtime's URL library to produce and consume target
         * values.
         */
        target?: string;
    }
}